16 research outputs found

    Characterization of 4-HNE Modified L-FABP Reveals Alterations in Structural and Functional Dynamics

    Get PDF
    4-Hydroxynonenal (4-HNE) is a reactive Ξ±,Ξ²-unsaturated aldehyde produced during oxidative stress and subsequent lipid peroxidation of polyunsaturated fatty acids. The reactivity of 4-HNE towards DNA and nucleophilic amino acids has been well established. In this report, using proteomic approaches, liver fatty acid-binding protein (L-FABP) is identified as a target for modification by 4-HNE. This lipid binding protein mediates the uptake and trafficking of hydrophobic ligands throughout cellular compartments. Ethanol caused a significant decrease in L-FABP protein (P<0.001) and mRNA (P<0.05), as well as increased poly-ubiquitinated L-FABP (P<0.001). Sites of 4-HNE adduction on mouse recombinant L-FABP were mapped using MALDI-TOF/TOF mass spectrometry on apo (Lys57 and Cys69) and holo (Lys6, Lys31, His43, Lys46, Lys57 and Cys69) L-FABP. The impact of 4-HNE adduction was found to occur in a concentration-dependent manner; affinity for the fluorescent ligand, anilinonaphthalene-8-sulfonic acid, was reduced from 0.347 Β΅M to Kd1β€Š=β€Š0.395 Β΅M and Kd2β€Š=β€Š34.20 Β΅M. Saturation analyses revealed that capacity for ligand is reduced by approximately 50% when adducted by 4-HNE. Thermal stability curves of apo L-FABP was also found to be significantly affected by 4-HNE adduction (Ξ”Tmβ€Š=β€Š5.44Β°C, P<0.01). Computational-based molecular modeling simulations of adducted protein revealed minor conformational changes in global protein structure of apo and holo L-FABP while more apparent differences were observed within the internal binding pocket, revealing reduced area and structural integrity. New solvent accessible portals on the periphery of the protein were observed following 4-HNE modification in both the apo and holo state, suggesting an adaptive response to carbonylation. The results from this study detail the dynamic process associated with L-FABP modification by 4-HNE and provide insight as to how alterations in structural integrity and ligand binding may a contributing factor in the pathogenesis of ALD

    Cafeteria diet-induced obesity causes oxidative damage in white adipose

    No full text
    Obesity continues to be one of the most prominent public health dilemmas in the world. The complex interaction among the varied causes of obesity makes it a particularly challenging problem to address. While typical high-fat purified diets successfully induce weight gain in rodents, we have described a more robust model of diet-induced obesity based on feeding rats a diet consisting of highly palatable, energy-dense human junk foods – the β€œcafeteria” diet (CAF, 45-53% kcal from fat). We previously reported that CAF-fed rats became hyperphagic, gained more weight, and developed more severe hyperinsulinemia, hyperglycemia, and glucose intolerance compared to the lard-based 45% kcal from fat high fat diet–fed group. In addition, the CAF diet-fed group displayed a higher degree of inflammation in adipose and liver, mitochondrial dysfunction, and an increased concentration of lipid-derived, pro-inflammatory mediators. Building upon our previous findings, we aimed to determine mechanisms that underlie physiologic findings in the CAF diet. We investigated the effect of CAF diet-induced obesity on adipose tissue specifically using expression arrays and immunohistochemistry. Genomic evidence indicated the CAF diet induced alterations in the white adipose gene transcriptome, with notable suppression of glutathione-related genes and pathways involved in mitigating oxidative stress. Immunohistochemical analysis indicated a doubling in adipose lipid peroxidation marker 4-HNE levels compared to rats that remained lean on control standard chow diet. Our data indicates that the CAF diet drives an increase in oxidative damage in white adipose tissue that may affect tissue homeostasis. Oxidative stress drives activation of inflammatory kinases that can perturb insulin signaling leading to glucose intolerance and diabetes

    Proteomic analysis of human cervico-vaginal fluid displays differential protein expression in association with labor onset at term

    No full text
    Human labor is characterized by dramatic physiological and structural alterations of the cervix and overlying fetal membranes, leading to myometrial activation and delivery. To investigate the potential mechanism of these changes, we performed 2D PAGE proteomic analysis on serial cervico-vaginal fluid samples obtained from women during late pregnancy and spontaneous labor. We identified 9 protein spots that were significantly altered (p < 0.05) in association with spontaneous term labor. Eight protein spots were definitively characterized by electrospray ion-trap mass spectrometry yielding 7 different proteins: cystatin-A, interleukin-1 receptor antagonist, glutathione S-transferase P, peroxiredoxin-2, thioredoxin, copper-zinc superoxide dismutase, and epidermal fatty-acid binding protein. These proteins are involved in protease inhibition, anti-inflammatory cytokine activity, and oxidative stress defense. These findings may provide an insight into the biochemical processes and timing associated with extracellular matrix remodelling of the cervix, supracervical fetal membranes, and myometrial activation in association with spontaneous term labor. Application of these findings may lead to development of predictive biomarkers of labor onset
    corecore