2,788 research outputs found
The life cycle of starbursting circumnuclear gas discs
High-resolution observations from the sub-mm to the optical wavelength regime
resolve the central few 100pc region of nearby galaxies in great detail. They
reveal a large diversity of features: thick gas and stellar discs, nuclear
starbursts, in- and outflows, central activity, jet interaction, etc.
Concentrating on the role circumnuclear discs play in the life cycles of
galactic nuclei, we employ 3D adaptive mesh refinement hydrodynamical
simulations with the RAMSES code to self-consistently trace the evolution from
a quasi-stable gas disc, undergoing gravitational (Toomre) instability, the
formation of clumps and stars and the disc's subsequent, partial dispersal via
stellar feedback. Our approach builds upon the observational finding that many
nearby Seyfert galaxies have undergone intense nuclear starbursts in their
recent past and in many nearby sources star formation is concentrated in a
handful of clumps on a few 100pc distant from the galactic centre. We show that
such observations can be understood as the result of gravitational
instabilities in dense circumnuclear discs. By comparing these simulations to
available integral field unit observations of a sample of nearby galactic
nuclei, we find consistent gas and stellar masses, kinematics, star formation
and outflow properties. Important ingredients in the simulations are the
self-consistent treatment of star formation and the dynamical evolution of the
stellar distribution as well as the modelling of a delay time distribution for
the supernova feedback. The knowledge of the resulting simulated density
structure and kinematics on pc scale is vital for understanding inflow and
feedback processes towards galactic scales.Comment: accepted by MNRA
Relationships between skin follicle characteristics and fibre properties of Suri and Huacaya alpacas and Peppin Merino sheep
We aimed to quantify the number, type and arrangement of skin follicles in Huacaya and Suri alpaca skin and correlate their follicle characteristics with fibre traits of harvested fibre and compared these relationships with those of Merino sheep. Fibre and skin samples were collected from the mid-side of 12 Huacaya alpacas, 24 Suri alpacas and 10 Merino sheep. The mean fibre diameter (MFD ± s.e.) of the Huacaya and Suri were: 35.5 ± 0.9 and 28.3 ± 1.0 μm, respectively. The follicle groups found for alpacas were very different from the normal trio of primary follicles found in sheep and goats. The follicle group of the alpacas consisted of a single primary follicle surrounded by a variable number of secondary follicles. The mean ± s.e. primary follicle density was 3.1 ± 0.3 and 2.7 ± 0.1 follicles/mm2 for Huacaya and Suri, respectively. The mean ± s.e. secondary follicle density (SFD) was 13.7 ± 1.2 and 17.5 ± 0.6 follicles/mm2 for Huacaya and Suri, respectively. The mean ± s.e. ratio of secondary to primary follicles (S/P ratio) was 5.1 ± 0.5 for the Huacaya and 7.3 ± 0.2 for the Suri alpacas. The sheep had higher S/P ratios and SFD, lower MFD and produced significantly heavier fleeces. The key correlations found between traits in alpacas include a negative correlation between SFD and MFD (r = –0.71, P = 0.001) and a negative correlation between S/P ratio and MFD (r = –0.44, P = 0.003) and a positive correlation between S/P ratio and total follicle density (r = 0.38, P = 0.010). The study revealed that important relationships exist between alpaca skin follicle characteristics and fibre characteristics. It was the number of secondary follicles in a group that imparts density and a corresponding reduced MFD.<br /
Antichain cutsets of strongly connected posets
Rival and Zaguia showed that the antichain cutsets of a finite Boolean
lattice are exactly the level sets. We show that a similar characterization of
antichain cutsets holds for any strongly connected poset of locally finite
height. As a corollary, we get such a characterization for semimodular
lattices, supersolvable lattices, Bruhat orders, locally shellable lattices,
and many more. We also consider a generalization to strongly connected
hypergraphs having finite edges.Comment: 12 pages; v2 contains minor fixes for publicatio
Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields
International audienceFor high-resolution measurements of temperature fields in the atmospheric boundary layer and the lower free troposphere a scanning eye-safe lidar which deploys the rotational Raman technique at 355 nm was developed. To optimize the filters of the receiver for both high nighttime and daytime performance, detailed simulation studies have been performed. The receiver is fiber-coupled to a sequential setup of multicavity interference filters used under small angles of incidence. Examples of nighttime and daytime measurements with the system which has a total power-aperture-efficiency product of 0.006 W m2 are presented. Noontime temperature measurements with a temporal resolution of 60 s result in 1-sigma statistical temperature uncertainty of <1 K up to 1 km height and <2 K up to 2 km height. With an integration time of 60 min and a gliding average of 750 m a 1-sigma statistical temperature uncertainty of <1 K up to 14 km height is achieved during night
Product Service System Innovation in the Smart City
Product service systems (PSS) may usefully form part of the mix of innovations necessary to move society toward more sustainable futures. However, despite such potential, PSS implementation is highly uneven and limited. Drawing on an alternate socio-technical perspective of innovation, this paper provides fresh insights, on among other things the role of context in PSS innovation, to address this issue. Case study research is presented focusing on a use orientated PSS in an urban environment: the Copenhagen city bike scheme. The paper shows that PSS innovation is a situated complex process, shaped by actors and knowledge from other locales. It argues that further research is needed to investigate how actors interests shape PSS innovation. It recommends that institutional spaces should be provided in governance landscapes associated with urban environments to enable legitimate PSS concepts to co-evolve in light of locally articulated sustainability principles and priorities
Vulnerability analysis of satellite-based synchronized smart grids monitoring systems
The large-scale deployment of wide-area monitoring systems could play a strategic role in supporting the evolution of traditional power systems toward smarter and self-healing grids. The correct operation of these synchronized monitoring systems requires a common and accurate timing reference usually provided by a satellite-based global positioning system. Although these satellites signals provide timing accuracy that easily exceeds the needs of the power industry, they are extremely vulnerable to radio frequency interference. Consequently, a comprehensive analysis aimed at identifying their potential vulnerabilities is of paramount importance for correct and safe wide-area monitoring system operation. Armed with such a vision, this article presents and discusses the results of an experimental analysis aimed at characterizing the vulnerability of global positioning system based wide-area monitoring systems to external interferences. The article outlines the potential strategies that could be adopted to protect global positioning system receivers from external cyber-attacks and proposes decentralized defense strategies based on self-organizing sensor networks aimed at assuring correct time synchronization in the presence of external attacks
Density and molecular epidemiology of Aspergillus in air and relationship to outbreaks of Aspergillus infection
After five patients were diagnosed with nosocomial invasive aspergillosis
          caused by Aspergillus fumigatus and A. flavus, a 14-month surveillance
          program for pathogenic and nonpathogenic fungal conidia in the air within
          and outside the University Hospital in Rotterdam (The Netherlands) was
          begun. A. fumigatus isolates obtained from the Department of Hematology
          were studied for genetic relatedness by randomly amplified polymorphic DNA
          (RAPD) analysis. This was repeated with A. fumigatus isolates
          contaminating culture media in the microbiology laboratory. The density of
          the conidia of nonpathogenic fungi in the outside air showed a seasonal
          variation: higher densities were measured during the summer, while lower
          densities were determined during the fall and winter. Hardly any variation
          was found in the numbers of Aspergillus conidia. We found decreasing
          numbers of conidia when comparing air from outside the hospital to that
          inside the hospital and when comparing open areas within the hospital to
          the closed department of hematology. The increase in the number of
          patients with invasive aspergillosis could not be explained by an increase
          in the number of Aspergillus conidia in the outside air. The short-term
          presence of A. flavus can only be explained by the presence of a point
          source, which was probably patient related. Genotyping A. fumigatus
          isolates from the department of hematology showed that clonally related
          isolates were persistently present for more than 1 year. Clinical isolates
          of A. fumigatus obtained during the outbreak period were different from
          these persistent clones. A. fumigatus isolates contaminating culture media
          were all genotypically identical, indicating a causative point source.
          Kn
One-step microwave synthesis of palladium-carbon nanotubes hybrids with improved catalytic performance
7 páginas, 7 figuras, 3 tablas.-- El pdf del artículo es la versión pre-print.A fast and easy one-step linker-free approach for the synthesis of palladium nanoparticle/multiwall carbon nanotube (Pd-NP/MWCNT)hybrid materials is described using microwave irradiation for the  effective decomposition of Pd2dba3 complex in the presence of MWCNTs. High loadings of Pd nanoparticles (up to 40 wt.%) having sizes  between 3 and 5 nm are deposited on the surface of MWCNTs within a time of only 2 minutess. The Pd-NP/MWCNT materials serve as efficient catalysts in C-C coupling as well as in hydrogenation reactions, all characterized by high conversion rates using a small amount of catalysts, high turnover frequency values and good recyclbility.Financial support from the Spanish Ministerio de Ciencia e
Innovación (MICINN) and the European Regional Development
Fund (ERDF) under projects CTQ2008-01784 and
MAT2007-66927-C02-01, and the Gobierno de Aragón (DGAPI086-
08) is gratefully acknowledged. M.C. thanks MICINN
for her Grant No. BES-2008-003503.Peer reviewe
- …
