Rival and Zaguia showed that the antichain cutsets of a finite Boolean
lattice are exactly the level sets. We show that a similar characterization of
antichain cutsets holds for any strongly connected poset of locally finite
height. As a corollary, we get such a characterization for semimodular
lattices, supersolvable lattices, Bruhat orders, locally shellable lattices,
and many more. We also consider a generalization to strongly connected
hypergraphs having finite edges.Comment: 12 pages; v2 contains minor fixes for publicatio