133 research outputs found

    Multiple Equilibria in a Single-Column Model of the Tropical Atmosphere

    Full text link
    A single-column model run under the weak temperature gradient approximation, a parameterization of large-scale dynamics appropriate for the tropical atmosphere, is shown to have multiple stable equilibria. Under conditions permitting persistent deep convection, the model has a statistically steady state in which such convection occurs, as well as an extremely dry state in which convection does not occur. Which state is reached depends on the initial moisture profile.Comment: Submitted to Geophysical Research Letter

    Impacts of orography on large-scale atmospheric circulation

    Get PDF
    Some of the largest and most persistent circulation errors in global numerical weather prediction and climate models are attributable to the inadequate representation of the impacts of orography on the atmospheric flow. Existing parametrization approaches attempting to account for unresolved orographic processes, such as turbulent form drag, low-level flow blocking or mountain waves, have been successful to some extent. They capture the basic impacts of the unresolved orography on atmospheric circulation in a qualitatively correct way and have led to significant progress in both numerical weather prediction and climate modelling. These approaches, however, have apparent limitations and inadequacies due to poor observational evidence, insufficient fundamental knowledge and an ambiguous separation between resolved and unresolved orographic scales and between different orographic processes. Numerical weather prediction and climate modelling has advanced to a stage where these inadequacies have become critical and hamper progress by limiting predictive skill on a wide range of spatial and temporal scales. More physically-based approaches are needed to quantify the relative importance of apparently disparate orographic processes and to account for their combined effects in a rational and accurate way in numerical models. We argue that, thanks to recent advances, significant progress can be made by combining theoretical approaches with observations, inverse modelling techniques and high-resolution and idealized numerical simulations

    Observed and Modeled Mountain Waves from the Surface to the Mesosphere Near the Drake Passage

    Get PDF
    Four state-of-the-science numerical weather prediction (NWP) models were used to perform mountain wave- (MW) resolving hind-casts over the Drake Passage of a 10-day period in 2010 with numerous observed MW cases. The Integrated Forecast System (IFS) and the Icosahedral Nonhydrostatic (ICON) model were run at Δx ≈ 9 and 13 km globally. TheWeather Research and Forecasting (WRF) model and the Met Office Unified Model (UM) were both configured with a Δx = 3 km regional domain. All domains had tops near 1 Pa (z ≈ 80 km). These deep domains allowed quantitative validation against Atmospheric InfraRed Sounder (AIRS) observations, accounting for observation time, viewing geometry, and radiative transfer. All models reproduced observed middle-atmosphere MWs with remarkable skill. Increased horizontal resolution improved validations. Still, all models underrepresented observed MW amplitudes, even after accounting for model effective resolution and instrument noise, suggesting even at Δx ≈ 3 km resolution, small-scale MWs are under-resolved and/or over-diffused. MWdrag parameterizations are still necessary in NWP models at current operational resolutions of Δx ≈ 10 km. Upper GW sponge layers in the operationally configured models significantly, artificially reduced MW amplitudes in the upper stratosphere and mesosphere. In the IFS, parameterized GW drags partly compensated this deficiency, but still, total drags were ≈ 6 time smaller than that resolved at Δx ≈ 3 km. Meridionally propagating MWs significantly enhance zonal drag over the Drake Passage. Interestingly, drag associated with meridional fluxes of zonal momentum (i.e. u'v') were important; not accounting for these terms results in a drag in the wrong direction at and below the polar night jet

    The PreVOCA experiment: modeling the lower troposphere in the Southeast Pacific

    Get PDF
    The Preliminary VOCALS Model Assessment (PreVOCA) aims to assess contemporary atmospheric modeling of the subtropical South East Pacific, with a particular focus on the clouds and the marine boundary layer (MBL). Models results from fourteen modeling centers were collected including operational forecast models, regional models, and global climate models for the month of October 2006. Forecast models and global climate models produced daily forecasts, while most regional models were run continuously during the study period, initialized and forced at the boundaries with global model analyses. Results are compared in the region from 40° S to the equator and from 110° W to 70° W, corresponding to the Pacific coast of South America. Mean-monthly model surface winds agree well with QuikSCAT observed winds and models agree fairly well on mean weak large-scale subsidence in the region next to the coast. However they have greatly differing geographic patterns of mean cloud fraction with only a few models agreeing well with MODIS observations. Most models also underestimate the MBL depth by several hundred meters in the eastern part of the study region. The diurnal cycle of liquid water path is underestimated by most models at the 85° W 20° S stratus buoy site compared with satellite, consistent with previous modeling studies. The low cloud fraction is also underestimated during all parts of the diurnal cycle compared to surface-based climatologies. Most models qualitatively capture the MBL deepening around 15 October 2006 at the stratus buoy, associated with colder air at 700 hPa

    The Whole Atmosphere Community Climate Model Version 6 (WACCM6)

    Get PDF
    The Whole Atmosphere Community Climate Model version 6 (WACCM6) is a major update of the whole atmosphere modeling capability in the Community Earth System Model (CESM), featuring enhanced physical, chemical and aerosol parameterizations. This work describes WACCM6 and some of the important features of the model. WACCM6 can reproduce many modes of variability and trends in the middle atmosphere, including the Quasi‐Biennial Oscillation, Stratospheric Sudden Warmings and the evolution of Southern Hemisphere springtime ozone depletion over the 20th century. WACCM6 can also reproduce the climate and temperature trends of the 20th century throughout the atmospheric column. The representation of the climate has improved in WACCM6, relative to WACCM4. In addition, there are improvements in high latitude climate variability at the surface and sea ice extent in WACCM6 over the lower top version of the model (CAM6) that come from the extended vertical domain and expanded aerosol chemistry in WACCM6, highlighting the importance of the stratosphere and tropospheric chemistry for high latitude climate variability

    An Evaluation of the Large‐Scale Atmospheric Circulation and Its Variability in CESM2 and Other CMIP Models

    Get PDF
    The Community Earth System Model 2 (CESM2) is the latest Earth System Model developed by the National Center for Atmospheric Research in collaboration with the university community and is significantly advanced in most components compared to its predecessor (CESM1). Here, CESM2's representation of the large‐scale atmospheric circulation and its variability is assessed. Further context is providedthrough comparison to the CESM1 large ensemble and other models from the Coupled Model Intercomparison Project (CMIP5 and CMIP6). This includes an assessment of the representation of jet streams and storm tracks, stationary waves, the global divergent circulation, the annular modes, the North Atlantic Oscillation, and blocking. Compared to CESM1, CESM2 is substantially improved in the representation of the storm tracks, Northern Hemisphere (NH) stationary waves, NH winter blocking and the global divergent circulation. It ranks within the top 10% of CMIP class models in many of these features. Some features of the Southern Hemisphere (SH) circulation have degraded, such as the SH jet strength, stationary waves, and blocking, although the SH jet stream is placed at approximately the correct location. This analysis also highlights systematic deficiencies in these features across the new CMIP6 archive, such as the continued tendency for the SH jet stream to be placed too far equatorward, the North Atlantic westerlies to be too strong over Europe, the storm tracks as measured by low‐level meridional wind variance to be too weak and a lack of blocking in the North Atlantic sector

    Radiative and chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1(WACCM)

    Get PDF
    We present new insights into the evolution and interactions of stratospheric aerosol using an updated version of the Whole Atmosphere Community Climate Model (WACCM). Improved horizontal resolution, dynamics, and chemistry now produce an internally generated quasi-biennial oscillation and significant improvements to stratospheric temperatures and ozone compared to observations. We present a validation of WACCM column ozone and climate calculations against observations. The prognostic treatment of stratospheric sulfate aerosols accurately represents the evolution of stratospheric aerosol optical depth and perturbations to solar and longwave radiation following the June 1991 eruption of Mount Pinatubo. We confirm the inclusion of interactive OH chemistry as an important factor in the formation and initial distribution of aerosol following large inputs of sulfur dioxide (SO2) to the stratosphere. We calculate that depletion of OH levels within the dense SO2 cloud in the first weeks following the Pinatubo eruption significantly prolonged the average initial e-folding decay time for SO2 oxidation to 47 days. Previous observational and model studies showing a 30 day decay time have not accounted for the large (30–55%) losses of SO2 on ash and ice within 7–9 days posteruption and have not correctly accounted for OH depletion. We examine the variability of aerosol evolution in free-running climate simulations due to meteorology, with comparison to simulations nudged with specified dynamics. We assess calculated impacts of volcanic aerosols on ozone loss with comparisons to observations. The completeness of the chemistry, dynamics, and aerosol microphysics in WACCM qualify it for studies of stratospheric sulfate aerosol geoengineering
    • 

    corecore