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Summary

High-drag states produced in stratified flow over a 2D ridge and an axisymmetric mountain are
investigated using a linear, hydrostatic, analytical model. A wind profile is assumed where the background
velocity is constant up to a height z1 and then decreases linearly, and the internal gravity wave solutions
are calculated exactly. In flow over a 2D ridge, the normalised surface drag is given by a closed-form
analytical expression, while in flow over an axisymmetric mountain it is given by an expression involving
a simple 1D integral. The drag is found to depend on two dimensionless parameters: a dimensionless
height formed with z1, and the Richardson number in the shear layer, Ri. The drag oscillates as z1

increases, with a period of half the hydrostatic vertical wavelength of the gravity waves. The amplitude
of this modulation increases as Ri decreases. This behaviour is due to wave reflection at z1. Drag
maxima correspond to constructive interference of the upward propagating and downward propagating
waves in the region z < z1, while drag minima correspond to destructive interference. The reflection
coefficient at the interface z = z1 increases as Ri decreases. The critical level, zc, plays no role in the
drag amplification. A preliminary numerical treatment of nonlinear effects is presented, where zc appears
to become more relevant, and flow over a 2D ridge qualitatively changes its character. But these effects,
and their connection with linear theory, still need to be better understood.

Keywords: Mountain waves, High-drag states, Linear theory

1. Introduction

A substantial amount of the literature devoted to the study of orographic
gravity waves in the atmosphere deals with the problem of resonant flows,
high-drag states and downslope windstorms. This is presumably due to the
severe effects that these flows have on local weather and on gravity wave drag.
Downslope windstorms may increase the value of the drag exerted by the wind
on a mountain ridge by one order of magnitude relative to the leading-order,
linear estimate (Bacmeister and Pierrehumbert 1988). The impact of such states
on the globally integrated drag, and hence on the deceleration of the global
atmospheric circulation, may be large. For the purpose of parameterising gravity
wave drag in large-scale numerical models, it is therefore useful to understand
what determines the onset of high-drag states. Since these states arise in flow over
mountains of relatively high amplitude, the physical mechanisms responsible for
them are thought to be intrinsically nonlinear. As a consequence, most of the
studies addressing this problem have been numerical (Clark and Farley 1984,
Peltier and Clark 1983, Clark and Peltier 1984, Bacmeister and Pierrehumbert
1988, Miranda and Valente 1997). However, our understanding of these physical
mechanisms is still incomplete. Simplified models are usually helpful in providing
insight into these mechanisms, despite often having unrealistically restrictive
assumptions. They isolate individual physical processes, and enable a more
exhaustive exploration of the parameter space.

Conceptual models have been proposed to explain the existence of high-
drag states and downslope windstorms. One of them, developed by Clark and
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Peltier (1984) claims that the reflection of gravity waves at environmental
or self-induced critical levels in strongly nonlinear flows leads to a resonance
process. Clark and Peltier’s model gives the heights for which a critical level
produces high-drag states (with a periodicity of half the hydrostatic vertical
wavelength), but does not specify the magnitude of the drag or its variation
between high-drag states. Additionally, the assumption of reflection of the waves
is not solidly founded. Another model, developed by Smith (1985), is based on
a hydraulic analogy, and explains high-drag states as a result of the existence of
the equivalent of a hydraulic jump in the flow. The model does not solve the flow
equations in the whole domain and uses relatively crude assumptions. Unlike
Clark and Peltier’s model, Smith’s model correctly predicts the periodicity of
one hydrostatic wavelength for the critical level heights that produce high-drag
states. It also gives an indication of the drag magnitude based on a simplified
momentum budget. However, the upper boundary condition applied to Long’s
equation is somewhat arbitrary and the model does not predict the variation of
the drag between high-drag states.

Smith’s theory has been supported by the subsequent numerical simulations
of Bacmeister and Pierrehumbert (1988) using environmental critical levels, which
also raised some new issues. For example, these authors found that high-drag
states may exist even for mountains of small dimensionless height, but their
steady state takes a longer time to be attained. In this case, the phase of the
reflection from the critical level is also different from that predicted by Smith
(1985). There is some controversy regarding the role played by the Richardson
number at the critical level in the establishment of high-drag states. Scinocca and
Peltier (1991) claimed that the onset of these states is delayed or even prevented
for relatively low Ri. Additionally, these authors questioned the importance
of the resonance shift introduced by Smith, whereby the height of the critical
levels leading to resonance increases as the dimensionless height of the mountain
increases. These claims have been criticised by Durran (1992), who proved the
existence of a resonance shift in nonlinear calculations using Long’s equation. In
these calculations, a critical level was not present, but resonance conditions were
produced by considering a two layer atmosphere, with different Brunt-Väisälä
frequencies in each layer. More recently, Miranda and Valente (1997) addressed
the case of flow with an environmental critical level over an axisymmetric
mountain, showing that in this 3D configuration, the resonant drag enhancement
and resonance shift are reduced relative to the 2D case, and the flow is closer to
linear. They also found that the periodicity of the high-drag states as a function
of the height of the critical level is of one half the hydrostatic vertical wavelength,
in agreement with Clark and Peltier’s (1984) arguments. These results suggest
that some interesting insights into these processes can be obtained using linear
theory.

Indeed, explanations for downslope windstorms based on the variation of the
wind and static stability with height have been sought in the framework of linear
theory. Using multiple-layer models, Klemp and Lilly (1975) and Peltier and
Clark (1979), explored the flow configurations that maximise the surface wind.
But their studies were not focused on the surface drag. Using a related approach,
Wang and Lin (1999a, 1999b), following Lindzen and Tung (1976), studied the
effects of wave ducting by shear layers for a wide range of Richardson numbers.
They suggested that the heights where the wind velocity has a discontinuity in its
first derivative may be more important than the height of the critical level. They
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argued that this might partially explain the phenomenon that was perceived by
previous authors as resonance shift. They also stressed the role of the Richardson
number in the shear layer as a key parameter of the flow, with an importance
much beyond that of delaying the onset of high-drag states.

Grimshaw and Smyth (1986) suggested that high-drag states may begin with
linear resonance, and Wang and Lin (1999a) found that, when the Richardson
number is above 0.25, the influence of what goes on above a critical level is very
limited. So, in this study a very simple linear model is proposed, which may help
to elucidate how the high-drag states are initiated. It considers a wind profile that
is constant up to a certain level, and above decreases linearly, reaching a critical
level. Although analogous (in fact slightly more complicated) wind profiles were
used in the studies of Lindzen and Tung (1976) and Wang and Lin (1999a,1999b),
among others, the main focus of these authors was not on the surface drag, and
analytical expressions for this quantity in resonant flows have not been derived.
In this study, the surface drag is calculated, and found to be given, for flow over a
ridge, by a closed analytical formula that depends on two parameters: the height
of the level where the first derivative of the wind profile is discontinuous and
the Richardson number in the shear layer above. The present approach is similar
to that of Leutbecher (2001), where, however, the more familiar problem of an
environment with discontinuities in the Brunt-Väisälä frequency was investigated.

This paper is organised as follows: section 2 presents the theoretical model,
in section 3 the results from this model are compared with numerical simulations,
and the flow structure is analysed. In section 4 the main conclusions are presented.

2. Linear flow with a critical level

In this study, inviscid, non-rotating and hydrostatic flow over an isolated
mountain is considered. For typical windspeeds, and provided that conditions for
the occurrence of lee waves are absent, this is a valid approximation for mountains
with horizontal scales considerably larger than 1km and smaller than 100km.
These are the scales that need to be parameterised in global circulation models.
Additionally, the flow is assumed to be linear, which typically is acceptable
for mountains much lower than 1000m. Since the mountains that satisfy this
condition produce a relatively small fraction of the globally integrated drag, this
assumption is made mainly for mathematical convenience. Nevertheless, even
when this and the other assumptions are not formally satisfied, one hopes that
the physical processes associated with the simplified situations where they apply
carry over to more general situations.

It is also assumed that the static stability, expressed by the Brunt-Väisälä
frequency of the flow, N , is constant. The purpose of this is to isolate the effect
of the vertical wind shear on mountain waves. From the fundamental equations
of fluid mechanics subject to the Boussinesq approximation and to the above
assumptions, a single equation may be derived for the vertical velocity pertur-
bation associated with the internal gravity waves generated by the mountain.
Taking Fourier transforms of the flow perturbations (which may be done if they
decay to zero sufficiently fast away from the mountain), the Fourier transform
of the vertical velocity perturbation, ŵ, satisfies, in a stationary situation, the
Taylor-Goldstein equation (Sawyer 1962):

ŵ′′ +
[

N2k2
12

(Uk1 + V k2)2
− U ′′k1 + V ′′k2

Uk1 + V k2

]
ŵ = 0. (1)
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Here the primes denote differentiation with respect to z, (U, V ) is the background
or unperturbed wind (assumed to depend only on z), (k1, k2) is the horizontal
wavenumber vector of the internal gravity waves described by (1) and N =
[(g/θ0)dθ0/dz]1/2 is the Brunt-Väisälä frequency of the flow. In this expression,
g is the acceleration of gravity, θ0 is the background or unperturbed potential
temperature (also assumed to depend only on z) and k12 = (k2

1 + k2
2)

1/2 is the
magnitude of the horizontal wavenumber.

The background flow is considered to be:

U =

{
U0 if z 6 z1

U0

(
zc−z
zc−z1

)
if z > z1,

(2)

V = 0, (3)

where U0 is the windspeed at the surface, z1 is the height where the first derivative
of the background velocity has a discontinuity and zc is the critical level (where
U = 0). This wind profile, which near the ground is constant and then decreases
linearly, is similar to the profiles used by Lindzen and Tung (1976), Miranda
and Valente (1997) and Wang and Lin (1999a, 1999b) up to the critical level.
At the critical level height, or some distance above, those authors assumed the
windspeed to become again constant.

The present wind profile is also approximately similar, in a qualitative sense,
to the hyperbolic-tangent profiles considered in the studies of Bacmeister and
Pierrehumbert (1988) and Scinocca and Peltier (1991). Both profiles possess
a zone of approximately constant velocity and a zone of maximum negative
curvature (which in the present case is infinite), topped by a critical level. It
will be seen next that, for the range of Richardson numbers considered here,
what goes on above the critical level has little influence on what goes on below,
so that the difference between the present wind profile and those used in the
previous studies mentioned above is not very relevant.

For the velocity profile (2)-(3), the solution to (1) in the region 0 < z < z1 is:

ŵ = α(k1, k2)e
i

Nk12
U0k1

z + β(k1, k2)e
−i

Nk12
U0k1

z
, (4)

where α and β are functions to be determined. The first term corresponds to
a wave whose energy propagates upward and the second term to a wave whose
energy propagates downward. These two terms must be considered because wave
reflection may occur at z1. In the region z > z1, the solution to (1) is (cf. Grubĭsić
and Smolarkiewicz 1997):

ŵ = γ(k1, k2)
(

zc − z

zc − z1

)1/2−iµsgn(k1)

, (5)

where γ is another function to be determined, µ = (Ri k2
12/k2

1 − 1/4)1/2, and Ri
is the Richardson number of the flow, defined here as Ri = N2(zc − z1)2/U2

0 . In
(5) it is implicitly assumed that Ri > 1/4, which is the necessary condition for
hydrodynamic stability of the flow (Miles 1961), and also that the wave energy
propagates upward. This is consistent with previous treatments using a backward
linear velocity profile (Smith 1986, Grubĭsić and Smolarkiewicz 1997) and is also
intuitively correct for a wind that remains linear up to infinity: in the linear
approximation and for Ri > 1/4, the critical level does not reflect any wave energy
but only absorbs it.
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In most of what follows, only Ri > 0.5 will be considered. According to
Grubĭsić and Smolarkiewicz (1997), the attenuation of the wave amplitude as
it passes through the critical level is exp[−π(Ri k2

12/k2
1 − 1/4)1/2]. So, a lower

bound for this attenuation when Ri = 0.5 is 0.20. Having in mind that, in order
to influence the flow below the critical level, a wave component has to cross it
upward and then downward, and in the second process it undergoes a further
attenuation of the same magnitude, this wave component should have 0.04 of
its initial amplitude. This shows that what happens above the critical level is
essentially irrelevant for this range of Ri, and justifies the use of a two-layer
model. These arguments are also consistent with the results of Wang and Lin
(1999a). They note that the characteristics of their third uppermost layer (where
the wind is again constant) have little impact on the reflection and transmission
coefficients for Ri larger than O(1) (see their Figs. 9 and 11).

The Taylor-Goldstein equation (1) is subject to 3 boundary conditions, which
determine the three unknown functions α, β and γ. The first condition states that
the wind is tangential to the ground at the surface:

ŵ(z = 0) = iU0k1η̂, (6)

where η̂ is the Fourier transform of the terrain elevation, η(x, y). The second
boundary condition states that the normal velocity at the (perturbed) interface
existing at z ≈ z1 is continuous. Since, from (2), the background wind is con-
tinuous at z = z1, this amounts to requiring that ŵ be continuous at z1. The
third boundary condition requires that the pressure (or its Fourier transform) be
continuous at z = z1. The Fourier transform of the pressure perturbation is given
by

p̂ = i
ρ0

k2
12

[
(U ′k1 + V ′k2)ŵ − (Uk1 + V k2)ŵ′

]
, (7)

where ρ0 is a reference density (assumed constant). So, this last boundary
condition can also be expressed in terms of ŵ and ŵ′.

When these boundary conditions are applied to (4)-(5), one obtains

α =
U0k1η̂

[
iN k12

k1
+ U0

zc−z1

(
1
2 + iµ

)]
e
−i

Nk12
U0k1

z1

2N k12
k1

cos
(

Nk12
U0k1

z1

)
− 2 U0

zc−z1

(
1
2 + iµ

)
sin

(
Nk12
U0k1

z1

) , (8)

β =
U0k1η̂

[
iN k12

k1
− U0

zc−z1

(
1
2 + iµ

)]
e
i

Nk12
U0k1

z1

2N k12
k1

cos
(

Nk12
U0k1

z1

)
− 2 U0

zc−z1

(
1
2 + iµ

)
sin

(
Nk12
U0k1

z1

) , (9)

γ =
iU0η̂Nk12

N k12
k1

cos
(

Nk12
U0k1

z1

)
− U0

zc−z1

(
1
2 + iµ

)
sin

(
Nk12
U0k1

z1

) . (10)

This totally specifies the solution to the present problem: the other flow variables
may be straightforwardly obtained from ŵ and its vertical derivative, as will be
seen later.

(a) Reflection coefficient
In order to understand the behaviour of the wave solutions, it is useful to

calculate the reflection coefficient at z1. Following Wang and Lin (1999a), this is
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defined as the modulus of the ratio of the amplitude of the downward propagating
and the upward propagating wave in the lower layer. From (8)-(9), it may be
shown that this is

R =
∣∣∣∣
β

α

∣∣∣∣ =




1−
(
1− 1

4Ri
k2
1

k2
12

)1/2

1 +
(
1− 1

4Ri
k2
1

k2
12

)1/2




1/2

. (11)

The reflection coefficient does not depend on the phase of the waves, as shown by
the fact that (11) is independent of z1. However, it depends on the Richardson
number and on the horizontal wavenumber, more exactly on its azimuthal direc-
tion. Generally, it decreases as the Richardson number increases and as k1/k12

decreases, being zero for Ri→∞ or k1/k12 = 0. For Ri = 1/4, and k2/k12 = 0,
R = 1.

This means that a larger fraction of the waves generated by the mountain
is reflected at z = z1 as Ri decreases, which is intuitively correct, since there
is a progressively larger contrast in vertical wind shear between the two layers
considered (in the limit Ri→∞ there is no contrast at all). On the other hand,
only waves with wavenumbers in the direction of the mean flow (k2 = 0) undergo
the maximum amount of reflection possible. Waves perpendicular to this direction
pass through the level z = z1 unmodified (cf. Grubĭsić and Smolarkiewicz 1997).
Therefore, in the linear regime, the dynamical significance of Ri, which Scinocca
and Peltier (1991) wondered about, is that of controlling the intensity of the wave
reflection at z1. (As remarked earlier, the equivalent to z1 for the flow used by
those authors is the location of the maximum in wind profile curvature.) This
behaviour has consequences for the surface drag, as will be seen next.

(b) Gravity wave drag
For the wind profile (2)-(3), the vertical flux of horizontal wave momentum

is constant up to the critical level, in accordance with Eliassen-Palm’s theorem,
and equal in magnitude to the surface pressure drag. It is the divergence of this
flux, in the vicinity of the critical level, that must be parameterised in large-scale
numerical models. However, this study is concerned instead with the total surface
drag.

From (4) and (7), the Fourier transform of the pressure perturbation at the
surface is given by

p̂(z = 0) =
ρ0N

k12
[α(k1, k2)− β(k1, k2)], (12)

which may be calculated using the definitions (8)-(9). The pressure drag, defined
as the integral of the pressure perturbation times the terrain slope integrated
over the whole domain considered, may also be expressed in spectral space as

D = 4π2i

∫ +∞

−∞

∫ +∞

−∞
k1p̂

∗(z = 0)η̂dk1dk2, (13)

where the asterisk denotes complex conjugate. This definition only pertains to the
drag along x, since the y component of the drag is zero for the background flow
and orography chosen in this study. In order to calculate the integrals in (13), it
is necessary to know the form of the Fourier transform of the terrain elevation,
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η̂. However, since the drag for a constant wind in the hydrostatic approximation
is well-known (e.g. Smith 1980, Phillips 1984), this study is concerned primarily
with departures from this value. Therefore, in what follows, D is normalised
by D0, the hydrostatic linear drag for a constant wind. It turns out that the
dimensionless quantity D/D0 does not depend on the detailed shape of the
orography, as long as this is exactly axisymmetric (cf. Teixeira et al. 2004). This
property arises from the the fact that, in hydrostatic flow, the pressure corrections
due to the vertical wind variation do not depend on the wavenumber value, but
only on its azimuthal direction.

Introducing (8)-(9) into (12) and (12) into (13), and adopting the polar
coordinates to calculate the integrals,

k1 = k12 cos θ, k2 = k12 sin θ, (14)

it may be shown that the normalised drag takes the form

D

D0
=

1
π

∫ 2π

0

cos2 θ
(
1− 1

4Ri cos2 θ
)1/2

1− 1
2Ri−1/2 cos θ sin

(
2N

U0 cos θz1

)dθ. (15)

This simple expression is obtained because the integral over the wavenumber
magnitude k12 in (13) may be separated from the integral over θ, and cancels
out when the drag is divided by D0. Additionally, only the imaginary part of p̂
contributes to (15), as is clear from (13) and having in mind that the drag is a
real quantity.

Several features stand out from this formula. Firstly, the normalised drag
depends on two dimensionless parameters: Ri and Nz1/U0 (not Nzc/U0). The
drag is modulated, oscillating with Nz1/U0 with a period of nearly half the
hydrostatic vertical wavelength, in agreement with the theory of Clark and
Peltier (1984) and the numerical simulations of Miranda and Valente (1997).
The Richardson number in the shear layer determines the amplitude of this
modulation, making it larger for small Ri. This modulation is a manifestation of
the fact that the lower layer in the present model acts like a resonant cavity.
Waves that are generated by the mountain are partially reflected at z = z1,
then totally reflected at the surface (because the wave energy must remain in
the atmosphere), then again partially reflected at z = z1, and so on. Note that
the important height in this process is z1 and not zc, in accordance with the
arguments of Wang and Lin (1999a, 1999b). So the drag modulation can be
attributed totally to the discontinuity in the shear. The irrelevance of reflections
at zc in a linear model like the present one is, of course, not surprising, since
the construction of the corresponding wave solutions automatically rules them
out. In the numerator of (15), Ri also has the effect of generally decreasing the
value of the drag (independently of Nz1/U0). When z1 = 0, the background flow
reduces to that imposed by Grubĭsić and Smolarkiewicz (1997), and consequently
the drag also has the form found by these authors, decreasing as Ri decreases.
When Ri→∞, D/D0 → 1, as would be expected.

A more thorough analysis of the drag behaviour is left for section 3, where
these analytical results are compared with numerical simulations.
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(c) 2D flow
A comparison between the behaviour of the drag in flow over 3D and 2D

mountains is quite relevant, because it has been shown that this behaviour differs
markedly in strongly nonlinear circumstances (Miranda and Valente 1997).

It is straightforward to adapt the previous calculations to flow over a 2D ridge,
for which all the flow variables display 2D symmetry and are given by 1D instead
of 2D Fourier integrals. For this purpose, it is sufficient to set k2 = 0 and note
that, as a consequence, k12 = k1. In that case, µ is redefined as µ = (Ri− 1/4)1/2

and the solutions for ŵ, (4)-(5), as well as the coefficients α, β and γ, (8)-(10),
are modified accordingly. The boundary conditions to apply at z = 0 and z = z1

are the same as in the 3D case.
From the modified definitions of α and β, the reflection coefficient at z = z1

may be derived:

R =
∣∣∣∣
β

α

∣∣∣∣ =

[
1− (

1− 1
4Ri

)1/2

1 +
(
1− 1

4Ri

)1/2

]1/2

. (16)

Due to the absence of wave dispersion, R no longer depends on the horizontal
wavenumber, but only on Ri, and varies between R = 0 for Ri =∞ and R = 1
for Ri = 1/4. Hence for Ri = 1/4 there is total reflection at z = z1. This result is
consistent with Figs. 4 and 11 of Wang and Lin (1999a), but this comparison
should be viewed with caution. For Ri = 1/4, the critical level is perfectly
transparent to gravity waves and thus discontinuities in the derivatives of the
wind profile above must have an impact on the reflection coefficient. This is not
taken into account in the present model. It is also interesting to note that the
reflection coefficient (16) is equal to that in Eq. (32) of Keller (1994), although
the wind profile used by that author was linear in the lower layer and constant
above.

The gravity wave drag must now be defined as a drag per unit width of the
ridge (since the total drag would be infinite). In spectral space, the drag is given
by

D = 2πi

∫ +∞

−∞
k1p̂

∗(z = 0)η̂dk1. (17)

For similar reasons as in the 3D case (the Fourier transform of the correction to
the pressure perturbation does not depend on k1) the expressions involving the
vertical variation of the wind profile may be taken outside the integral. So, when
D is divided by D0 (which now corresponds to the well-known drag per unit
length of uniform hydrostatic flow over a ridge) (Queney 1948, Smith 1986), the
integral cancels out. The expression of the normalised drag D/D0 is thus totally
analytical and independent of the form of η̂:

D

D0
=

(
1− 1

4Ri

)1/2

1− 1
2Ri−1/2 sin

(
2N
U0

z1

) . (18)

This expression shows, even more clearly than (15), the influence of the
resonance process on the drag modulation. The drag maxima now occur exactly
for Nz1/U0 = π/4 + πn, where n is an integer number, and the minima for
Nz1/U0 = 3π/4 + πn. The amplitude of the modulation is controlled by the
Richardson number qualitatively in the same way as in the 3D case, and the
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drag also becomes generally smaller as Ri decreases in the numerator of (18).
When z1 = 0, and the velocity profile is linear down to the surface, (18) reduces
to Eq. (3.17) of Smith (1986). When Ri→ 1/4, the denominator of (18) oscillates
between 2 and 0, making the drag maxima tend to infinity. However, because the
numerator also tends to zero as Ri→ 1/4, the drag minima tend to zero and the
width of the maxima becomes very small. These aspects are discussed in more
detail in section 3(a).

3. Comparison with numerical results

In this section, the analytical model developed above for the calculation of
gravity wave drag is compared with data resulting from simulations of 2D and
3D, nonlinear, non-hydrostatic mesoscale numerical models. Details about the 3D
model, called NH3D, are provided in Miranda (1991) and Miranda and James
(1992), and details about the 2D model, called FLEX, can be found in Argain
(2003). The models are initially run for approximately linear and hydrostatic
conditions, in order to test the drag expressions previously derived. Inviscid
conditions are also considered, and the models are run until a steady state is
attained.

(a) Linear flow over a 2D ridge
The FLEX model is used to simulate flow over a 2D ridge. Many studies

exist of this situation, but generally considering highly nonlinear conditions. A
grid of 150× 200 points, with a spacing of 1708m in the horizontal and 86m in the
vertical, is employed. The drag is averaged over the last third of the integration
time.

Figure 1 compares the normalised drag for the flow (2)-(3) (lines) with
numerical simulation data (symbols), for Ri = 2, Ri = 1 and Ri = 0.5. In the
numerical runs, a bell shaped ridge with height h0 = 10m and half-width a = 16km
is used, such that Nh0/U0 = 0.01 and Na/U0 = 16, so the flow is very nearly linear
and hydrostatic. The solid line and the squares correspond to Ri = 2, the dotted
line and the diamonds to Ri = 1 and the dashed line and the circles to Ri = 0.5.

The drag oscillates periodically with Nz1/πU0, having a dimensionless period
of 1, which when expressed in terms of z1 is πU0/N , or half the hydrostatic vertical
wavelength of the gravity waves. The drag maxima are located at Nz1/πU0 =
1/4 + n, where n is an integer, and the drag minima at Nz1/πU0 = 3/4 + n.
The locations of the drag maxima coincide precisely with those obtained for the
‘linear duct modes’ associated with a strong surface response of the flow, by
Wang and Lin (1999b). They differ from the locations of the maxima predicted
by Clark and Peltier (1984), which were expressed in terms of the critical
level height as Nzc/πU0 = 0.5 + n. Wang and Lin (1999a) reconciled these two
results by noting how zc and z1 are related for the simple flow considered here:
Nzc/πU0 = Nz1/πU0 + Ri1/2/π. For example, if Ri = 1 the difference between
the two normalised heights is 0.32, which is relatively close to the value necessary
for them to be consistent (0.25). Admittedly, for Ri = 2.25 (which is used in e.g.
Clark and Peltier 1984), the difference is too large (0.48), but that study used a
hyperbolic-tangent wind profile, where the relation between z1 and zc is harder
to define.

It is interesting to note that, in a model applicable to an atmosphere with
discontinuous N (Leutbecher 2001), the shape of the resonant drag curves is
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Figure 1. Normalised drag as a function of the shear layer height for flow over a 2D ridge. Lines: linear
theory (18), symbols: FLEX numerical model. Solid line and squares: Ri = 2, dotted line and diamonds:

Ri = 1, dashed line and circles: Ri = 0.5.

very similar to that displayed in Fig. 1, but the maxima occur instead at exact
integer values of the dimensionless height of the interface separating the layers
with different N . This similarity is due to the fact that the drag behaviour in
that case also results from constructive or destructive interference of vertically
reflected waves.

In Fig. 1, the amplitude of the drag modulation increases as Ri decreases.
This is consistent with the finding by Wang and Lin (1999b) that the low-
level response of the gravity waves (diagnosed through the velocity perturbation)
strengthens as Ri decreases. However, Wang and Lin did not explicitly calculate
the drag. Through analysis of (18), it can be shown that the maximum and
minimum values of the drag (corresponding, respectively to the peaks and to the
troughs of the lines in Fig. 1) are given, respectively, by

Dmax

D0
=

(
1 + 1

2Ri−1/2

1− 1
2Ri−1/2

)1/2

,
Dmin

D0
=

(
1− 1

2Ri−1/2

1 + 1
2Ri−1/2

)1/2

=
(

Dmax

D0

)−1

.

(19)
These values are plotted in Fig. 2(a) as a function of Ri−1. It can be seen that
Dmax →+∞ and Dmin → 0 as Ri→ 1/4.

While the analytical drag displays a perfectly periodic behaviour in Fig. 1,
the numerical results show a slightly decreasing amplitude of the modulation for
the largest values of Nz1/πU0. This is probably a spurious consequence of the
fact that the momentum flux at high levels takes a long time to attain a steady-
state, or is damped numerically. For this reason, the transmission of the waves
in the lower layer becomes progressively more imperfect as z1 increases. It is also
possible that the wind profile above the critical level has a small influence on the
surface drag for Ri = 0.5 (it was seen in section 2 that the critical level becomes
progressively more transparent to waves as Ri→ 1/4).

Because the numerator of (18) tends to zero when Ri→ 1/4, the width of the
drag maxima becomes progressively smaller relative to the width of the minima
as Ri decreases (the peaks of the curve become narrower than the troughs). This
effect was also verified in the study of Leutbecher (2001). One way to estimate
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Figure 2. (a) Maximum and minimum normalised drag as a function of Ri−1 for flow over a 2D ridge.
(b) Lower and upper limits of the first maximum in Fig. 1 (defined as the heights where the normalised

drag equals 1) as a function of Ri−1.

the width of the maxima is by determining the heights for which the drag takes
the normalised value of 1. These heights, which delimit consecutive maxima and
minima of the drag, are found to be given by the solution to

sin
(

2N

U0
z1

)
= 2Ri1/2

[
1−

(
1− 1

4Ri

)1/2
]

. (20)

As Ri→+∞, the maxima tend to have the same width as the minima, since the
spacing of the roots of (20) becomes uniform.

Figure 2(b) shows the solutions to (20) in the interval [0, 0.5], which corre-
spond to the lateral limits of the first maximum in Fig. 1 (the solution would
repeat itself periodically after Nz1/πU0 = 1). When there is no asymmetry be-
tween peaks and troughs, the limits of the first maximum are at Nz1/πU0 = 0
and Nz1/πU0 = 0.5, respectively. Figure. 2(b) shows that these limits move closer
together as Ri decreases, which signals the narrowing of the maxima. This phe-
nomenon might provide a tentative explanation for the remark by Scinocca and
Peltier (1991) that high-drag states take a long time to be attained or may even
not arise when Ri is relatively small. Since the drag maxima become narrower as
Ri decreases, a finer flow tuning might be required for them to be realised.

The good agreement of the analytical results and the numerical results in Fig.
1 confirms that, for hydrostatic waves of small amplitude, the two parameters that
control the drag are Nz1/πU0 and Ri. This supports the view by Wang and Lin
(1999b) that z1 is a better indicator than zc for the occurrence of high-drag states.
On the other hand, it supports the claim by Scinocca and Peltier (1991) that Ri
(at the critical level) is a key governing parameter of the flow. As remarked
above, Scinocca and Peltier focused on the effect of Ri on the time evolution of
the drag. The present results suggest that a much more important role is played
by Ri (which was hinted at in the studies of Wang and Lin 1999a,1999b): that
of controlling the amplitude of the drag modulation.

(b) Flow structure
Some insight into the reasons for the observed drag behaviour may be

obtained by analysing the associated velocity field. This is done here using
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the same analytical model that was developed above to calculate the drag.
Vertical cross-sections displaying the normalised streamwise (along x) velocity
perturbation, u/(Nh0), and the total potential temperature, θ0 + Θ, are plotted
next. u is obtained by taking the inverse Fourier transform of û using an FFT
algorithm (Press et al. 1992). û is given by

û = i
ŵ′

k1
, (21)

which results from the conservation of mass (in 2D), and may be calculated
from (4)-(5) and (8)-(10). The total potential temperature, which is the sum of
the background potential temperature and the corresponding perturbation, Θ,
can be calculated using the buoyancy perturbation, b = gΘ/θ0. The buoyancy
perturbation is given by the inverse Fourier transform of

b̂ = i
N2ŵ

Uk1
, (22)

which results from the heat balance equation. In Fig. 3, b has been amplified
consistent with a dimensionless mountain height of Nh0/U0 = 0.5 in order to
facilitate the flow visualisation. Lines of constant total potential temperature
(sometimes called isentropes) correspond to streamlines, since the flow is assumed
to be adiabatic.

A bell-shaped ridge given by

η =
h0

1 + (x/a)2
(23)

is assumed to be the obstacle that generates the waves.
Figure 3(a) corresponds to a case of no resonance where Ri =∞, Fig. 3(b)

to a case where there is maximum resonant drag enhancement (Nz1/πU0 = 2.25
and Ri = 0.5 – third peak of the dashed line in Fig. 1), and Fig. 3(c) to a case
where there is maximum resonant drag reduction (Nz1/πU0 = 2.75 and Ri = 0.5
– third trough of the dashed line in Fig. 1).

In Fig. 3(a), the typical structure of linear, hydrostatic internal gravity waves
can be seen, with phase lines sloping in the upwind direction, and the disturbance
confined above the mountain. The flow resembles that of the classical solution of
Queney (cf. Fig. 6 of Wurtele et al. 1996 and Fig. 2 of Peltier and Clark 1979).
u has a maximum on the downwind slope of the ridge, which corresponds to
a minimum of p (in fact, in a constant-wind layer, the normalised streamwise
velocity and pressure have the same value but opposite signs). The isentropes
display at the surface a slight asymmetry relative to the ridge, which corresponds
to a normalised drag of ≈ 1. Due to linearisation, the surface streamline does not
exactly coincide with the terrain elevation profile.

Figure 3(b) shows that, in the on-resonance case, u is much larger than in
the no-resonance case. The u dipole at the surface, with negative values upwind
and positive values downwind of the mountain, is considerably stronger. Due to
constructive interference of the upward and downward-propagating waves, the u
maxima and minima now possess two lobes, which reinforce the anti-symmetry
of u relative to the mountain. The isentropes clearly possess a much stronger
asymmetry than in the no-resonance case, reflecting the fact that the normalised
drag is ≈ 2.5. Although showing a somewhat smaller deflection, the isentrope
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Figure 3. Vertical cross-sections of the normalised streamwise velocity perturbation, u/(Nh0), (shaded
contours) and total potential temperature – assuming Nh0/U0 = 0.5 to facilitate visualization – (thick
solid lines), from linear theory. Isentrope spacing: 1K. (a) Ri =∞, (b) Ri = 0.5 and Nz1/πU0 = 2.25,

(c) Ri = 0.5 and Nz1/πU0 = 2.75. In (b) and (c) the upper limit of the domain is the critical level.

configuration in Fig. 3(b) clearly resembles that associated with high-drag states
in Fig. 5 of Bacmeister and Pierrehumbert (1988). The isentropes are not only
visibly much closer together on the downwind side of the mountain, but they also
have a larger slope throughout the flow, indicating that wave breaking is more
likely than in the no-resonance case, even far from the critical level.

In Fig. 3(c) it can be seen that, in the off-resonance case, u is weaker and more
symmetric relative to the mountain than in the no-resonance case. This leads to
a weaker pressure perturbation, that generates a dimensionless drag ≈ 0.5. The
isentropes are less deflected than either in the no-resonance or the on-resonance
case. The flow is therefore farther from breaking conditions, and the asymmetry
of the isentropes near the surface is very small. This is consistent with the low
observed drag, and also with Fig. 6 of Bacmeister and Pierrehumbert (1988),
where a low-drag state is illustrated.

Since sometimes it is not easy to distinguish whether a given flow is charac-
terised by wave absorption or reflection at a certain level, Fig. 3 gives hints as
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to what qualitative features of the flow one should look for in the u field when
reflection does exist.

(c) 3D flow over an axisymmetric mountain
In this section, the NH3D model is run for flow over an axisymmetric

mountain, in order to test the corresponding analytical drag expression derived
before, (15). The domain of integration consists of 65× 65× 200 gridpoints, with
a horizontal spacing of 4km. The vertical coordinate is a pressure-based sigma
coordinate, with grid spacing between 38m at the surface and 90m near the
top of the domain. The drag is averaged over the final third of the integration
time. Once again, very nearly hydrostatic and linear conditions are considered
(Nh0/U0 = 0.01 and Na/U0 = 16), so as to focus only on wind profile effects.

Figure 4 shows results of the NH3D model (symbols) compared with results
from (15) (lines). The normalised drag oscillates with Nz1/πU0, as in the 2D
case, but the drag curves are now not strictly periodic: the amplitude of the
drag modulation decreases as Nz1/πU0 increases and the period is not exactly,
but only approximately, of πU0/N . As pointed out by Leutbecher (2001), who
treated analogous 2D and 3D situations, these differences in behaviour are due to
the fact that 3D gravity waves are dispersive (the vertical wavenumber depends
on the azimuthal direction of the horizontal wavenumber). For this reason, the
drag modulation is also generally of lower amplitude than in the 2D case, and
the drag maxima do not tend to infinity when Ri→ 1/4. This happens because
the singularity in the denominator of (15) is integrable. Additionally, there is a
slight asymmetry of the drag modulation curves, with a relatively slow rise to the
maxima and a relatively faster fall to the minima for high Nz1/πU0, especially
at Ri = 0.5. A similar effect was observed in the results of Leutbecher (2001).

Although wave dispersion now explains a part of the decay of the amplitude
of the modulation as Nz1/πU0 increases, there is, as in the 2D case, an excessive
dispersive decay in the numerical data which should be attributed to the fact
that the momentum flux probably was spuriously damped at the higher levels of
the domain.

The maxima of the drag in the numerical runs occur for slightly smaller
values of Nz1/πU0 than in the analytical formula. (An analogous effect, albeit
in the opposite direction and of much smaller magnitude is visible in Fig. 1 for
the 2D case). It is possible that this is due to the limited vertical resolution
of the numerical model. This is consistent with the observation that this shift
increases as Nz1/πU0 increases, since the vertical resolution of the NH3D model
becomes coarser (the vertical spacing of the grid levels becomes larger) as the
height increases.

These results show that, in the linear regime, the main differences between
resonance in flow over a 2D ridge and over an axisymmetric mountain are the
relatively smaller magnitude of the high-drag states in the latter case and the fact
that their amplitude decays as Nz1/πU0 increases. The first aspect is noticeable
in Fig. 6(a) of Miranda and Valente (1997) (for a nonlinear flow regime) while
the accuracy of existing numerical simulations is insufficient to be sure about
the second aspect. Figure 5 of Clark and Peltier (1984) and Fig. 2 of Bacmeister
and Pierrehumbert (1988) certainly suggest (for nonlinear conditions) that the
amplitude of consecutive drag maxima is constant in 2D flow, but more tests are
needed. At this point, one important question arises: what features of linear flow
are retained in more realistic, nonlinear circumstances?
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Figure 4. Normalised drag as a function of the shear layer height for flow over an axisymmetric
mountain. Lines: linear theory (15), symbols: NH3D numerical model. Solid line and squares: Ri = 2,

dotted line and diamonds: Ri = 1, dashed line and circles: Ri = 0.5.

(d) Nonlinear effects
The numerical simulations of Miranda and Valente (1997) showed that, in the

nonlinear regime, the drag amplification produced in flow over an axisymmetric
mountain is more modest than in flow over a 2D ridge. The drag maxima have
a spacing of half rather than one hydrostatic vertical wavelength and there
is also considerably less resonance shift. The flow appears to be more linear
and qualitatively consistent with Clark and Peltier’s (1984) resonance theory.
Since the previous linear results suggest much smaller differences, it would be
interesting to explore the transition between linear and nonlinear high-drag
regimes. This section will not attempt more than a preliminary step in that
direction.

The FLEX and NH3D numerical models were run for the same Richardson
numbers as previously, but using Nh0/U0 = 0.5. This dimensionless mountain
height, while probably insufficient for wave breaking in the constant-wind layer,
is sufficient for the flow to take a distinctly nonlinear character.

Figures 5(a,b) show results for flow over a ridge and Figs. 5(c,d) for flow over
an axisymmetric mountain. In Figs. 5(a,c) the usual scaling for the horizontal
axis, involving z1, is used, and the vertical lines correspond to the locations
of maxima predicted from the present linear model: Nz1/πU0 = 0.25 + n for
2D flow and Nz1/πU0 ≈ 0.20 + n for 3D flow (where n is an integer). In Figs.
5(b,d), the scaling used by most previous authors, involving zc, is adopted. In
Fig. 5(b), the vertical lines correspond to the locations of the drag maxima from
Clark and Peltier’s (1984) and Smith’s (1985) theories: respectively Nzc/πU0 =
0.5 + n and Nzc/πU0 ≈ 1.1 + 2n (for Nh0/U0 = 0.5). In Fig. 5(d), the vertical
lines result from the 3D equivalent of Clark and Peltier’s theory: Nzc/πU0 ≈
0.25 + n (Nzc/πU0 = 1.25 corresponds to the first steepening level in flow over
an axisymmetric mountain, as observed in Fig. A1 of Miranda and Valente 1997).

Figure 5 shows that, in the nonlinear regime, the dependence of the drag on
Ri becomes much weaker, although the amplitude of the modulation still increases
as Ri decreases. This was noted previously (with fewer data to back it) by
Bacmeister and Pierrehumbert (1988). However, some of this reduced sensitivity
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Figure 5. Normalised drag as a function of shear layer height or critical level height for Nh0/U0 = 0.5,
from numerical simulations. Squares: Ri = 2, circles: Ri = 1, triangles: Ri = 0.5, vertical lines: predicted
locations of the maxima. (a) 2D ridge, dotted lines: linear theory, (b) 2D ridge, dotted lines: Clark and
Peltier (1984), dashed line: Smith (1985), (c) axisymmtric mountain, dotted lines: linear theory, (d)

axisymmetric mountain, dotted lines: analogy with Clark and Peltier (1984).

is relative, since the drag modulation is of considerably larger amplitude than in
the linear regime. Indeed, the dependence of the drag on Nz1/πU0 (or Nzc/πU0)
is stronger, especially in flow over a ridge (see Figs. 5(a,b)) and especially for
the first drag maximum. Although in Figs. 5(a,b) the drag curves collapse better
using Nz1/πU0 as the horizontal-axis variable, the locations of the maxima are
not in agreement with the present model nor with Clark and Peltier’s model
(cf. Fig. 2 of Bacmeister and Pierrehumbert 1988). For the Nh0/U0 used here,
a smaller second maximum between the first and third maxima still exists. The
larger maxima drift slightly to the right as Ri decreases when scaled by z1 but
drift somewhat to the left when scaled by zc, which indicates that the key height
is somewhere in between z1 and zc. The first maximum has a very steep forward
slope, indicating that the transition from a high to a low drag state happens very
suddenly. This appears to be an intrinsically nonlinear effect. This maximum is
only predicted adequately by Smith’s theory, supporting the idea that the flow is
then in a hydraulic regime.

Looking at Figs. 5(c,d), for flow over an axisymmetric mountain, three clearly
defined (and comparable in size) drag maxima can be seen, although the second
maximum is slightly reduced, especially for Ri = 2. This may be an incipient
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Figure 6. Vertical cross-sections of the normalised streamwise velocity perturbation, u/(Nh0), (shaded
contours) and total potential temperature for Nh0/U0 = 0.5 (thick solid lines), from numerical sim-
ulations. Insentrope spacing: 1K. (a) Ri =∞, (b) Ri = 0.5 and Nz1/πU0 = 2.71, (c) Ri = 0.5 and

Nz1/πU0 = 3.02. Top of the domain as in Figs. 3(a-c).

manifestation of the same process that suppresses this maximum in flow over a
ridge. However, the locations of the maxima (except that of the first one) are in
acceptable agreement with linear estimates based on z1 (the present model). The
first maximum is much larger than the following, and has a steep forward slope,
as in the 2D case. Also here, the maxima drift slightly to the right when scaled
by z1 and to the left when scaled by zc as Ri decreases. The linear prediction
for the location of the first drag maximum would be slightly better if the flow
were assumed to be lifted by an amount equal to the mountain height, but this
procedure seems questionable. Since there is as yet no equivalent of Smith’s theory
for 3D flow, no further theoretical predictions for the locations of the maxima are
available.

Figure 6 shows vertical cross-sections of u/(Nh0) and of the isentropes for
flow over a 2D ridge, for Nh0/U0 = 0.5, calculated with the FLEX numerical
model. The conditions are similar to those considered in Figs. 5(a,b). By analogy
with Fig. 3, a no-resonance case (Fig. 6(a)), an on-resonance case (Fig. 6(b)) and
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an off-resoannce case (Fig. 6(c)) are displayed. Although the on-resonance case
corresponds to the third peak in Fig. 5(a,b), and the off-resonance case to the
following trough, the location of these features in terms of Nz1/πU0 is not the
same as in Fig. 3 due to nonlinear effects.

In Fig. 6(a) it may be seen that the wave structure in the case of no
resonance is quite similar to the structure of the linear wave. But in Fig. 6(b) it
is apparent that high-drag states are strongly modified by nonlinear effects, with
only the downstream lobes of the u minima and maxima intensifying, while the
upstream lobes weaken. Since the minima coincide with stagnation zones, this
might explain why the second drag maximum tends to disappear in Fig. 5(b).
Fig. 6(c) shows that, in the nonlinear low-drag state, the wave propagation is
even more suppressed than in linear conditions, but the differences to Fig. 3 are
smaller.

The previous results seem to confirm the claim by Wang and Lin (1999b)
that linear resonance initiates the high-drag states and that nonlinear processes
then modify these states. Although Wang and Lin have advanced some ideas as
to how this transition occurs, there is still much to be understood about this
phenomenon. Preliminary results (not shown) suggest that, as Nh0/U0 increases,
the amplitude of the drag modulation first increases, and only then do the extrema
start to shift their location.

So, how can linear theory help to explain the qualitative differences existing
between 3D and 2D flow? Since the drag modulation has a larger amplitude in the
2D case due to the absence of wave dispersion, the associated flow perturbations
also have larger amplitude, being forced outside the linear regime in the 2D
case for all the drag maxima and in the 3D case for the first maximum. On the
other hand, since the second and third drag maxima in the 3D case are smaller
due to wave dispersion, the associated flow perturbations are weaker and the
flow remains within the linear regime. Linear theory would also suggest that the
flow becomes more nonlinear as Ri decreases, because the amplitude of the drag
modulation is predicted to increase in that case. This would seem to be consistent
with Fig. 2 of Wang and Lin (1999b), where it is noted that the threshold value
of Nh0/U0 for high-drag states is lowered as Ri decreases. However, because the
dependence of the drag on Ri is much reduced in nonlinear conditions, this effect
is probably weak, and is not clearly confirmed by Fig. 5.

4. Conclusions

In this study, high-drag states have been investigated in stratified flow over
an axisymmetric mountain and a 2D ridge. Using a linear, hydrostatic, analytical
model, it was shown that, for a wind profile that is constant near the ground and
then decreases linearly with height, high-drag states exist even for infinitesimal
dimensionless mountain heights (a possibility considered, but never proved, by
Scinocca and Peltier 1991 and Bacmeister and Pierrehumbert 1988). These are
only high-drag states in a relative sense since the absolute value of the drag
is of course very small (due to the infinitesimal amplitude of the mountains).
However, they give some clues about how high-drag states arise in mountains of
larger amplitude. The model shows that, in the linear regime, the drag normalised
by its value for a constant wind only depends on two dimensionless parameters
of the flow: the dimensionless height of the discontinuity in the first derivative
of the wind velocity, Nz1/πU0, and the Richardson number in the shear layer
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above, Ri. The drag oscillates with the first parameter, having a period (when
expressed in terms of z1) of half the hydrostatic vertical wavelength, πU0/N .
The amplitude of this modulation increases as Ri decreases. For flow over a
2D ridge, the drag maxima are located at Nz1/πU0 = 0.25 + n (where n is an
integer), and their magnitude becomes infinite as Ri→ 1/4. For flow over an
axisymmetric mountain, the maxima occur at slightly lower values of Nz1/πU0,
and decrease in magnitude as Nz1/πU0 increases, attaining finite values for
Ri = 1/4. This behaviour is due to internal gravity wave reflection at z1. High-
drag states are characterised by constructive interference of the upward and
downward propagating waves in the constant-wind layer, while low-drag states
correspond to destructive interference.

Nonlinear numerical simulations show that, for a mountain with a moderate
dimensionless height (Nh0/U0 = 0.5), the amplitude of the drag modulation is
considerably larger than in the linear regime. However, the drag appears to be
much less sensitive to the environmental Richardson number. The locations of
the maxima are also shifted to higher Nz1/πU0 relative to the linear prediction,
with this shift being particularly pronounced in flow over a 2D ridge. In that
case, the location of the first maximum can only be predicted adequately using
Smith’s (1985) theory, suggesting that the flow is in a hydraulic regime. In flow
over an axisymmetric mountain, the purely linear wave regime (with reflection at
z1) is approximately valid and is only inappropriate for the first drag maximum.
This approximate linearity of the flow is also consistent with the fact that the
second drag maximum does not tend to disappear (as in flow over a 2D ridge),
and is attributed here to the existence of wave dispersion.

These results suggest that the important height determining the drag max-
ima changes from z1 (predicted by the present linear model) to zc (predicted
by Smith’s hydraulic model) as Nh0/U0 increases. It would be interesting to
understand how this transition occurs, and what are the underlying physical
processes. That undertaking is left for future studies.
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