101 research outputs found

    Machine Learning Based Analytics for the Significance of Gait Analysis in Monitoring and Managing Lower Extremity Injuries

    Full text link
    This study explored the potential of gait analysis as a tool for assessing post-injury complications, e.g., infection, malunion, or hardware irritation, in patients with lower extremity fractures. The research focused on the proficiency of supervised machine learning models predicting complications using consecutive gait datasets. We identified patients with lower extremity fractures at an academic center. Patients underwent gait analysis with a chest-mounted IMU device. Using software, raw gait data was preprocessed, emphasizing 12 essential gait variables. Machine learning models including XGBoost, Logistic Regression, SVM, LightGBM, and Random Forest were trained, tested, and evaluated. Attention was given to class imbalance, addressed using SMOTE. We introduced a methodology to compute the Rate of Change (ROC) for gait variables, independent of the time difference between gait analyses. XGBoost was the optimal model both before and after applying SMOTE. Prior to SMOTE, the model achieved an average test AUC of 0.90 (95% CI: [0.79, 1.00]) and test accuracy of 86% (95% CI: [75%, 97%]). Feature importance analysis attributed importance to the duration between injury and gait analysis. Data patterns showed early physiological compensations, followed by stabilization phases, emphasizing prompt gait analysis. This study underscores the potential of machine learning, particularly XGBoost, in gait analysis for orthopedic care. Predicting post-injury complications, early gait assessment becomes vital, revealing intervention points. The findings support a shift in orthopedics towards a data-informed approach, enhancing patient outcomes.Comment: 13 pages, 6 figure

    Comparing computer-generated and pathologist-generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays

    Get PDF
    BACKGROUND: Tissue microarrays (TMAs) have become a valuable resource for biomarker expression in translational research. Immunohistochemical (IHC) assessment of TMAs is the principal method for analysing large numbers of patient samples, but manual IHC assessment of TMAs remains a challenging and laborious task. With advances in image analysis, computer-generated analyses of TMAs have the potential to lessen the burden of expert pathologist review. METHODS: In current commercial software computerised oestrogen receptor (ER) scoring relies on tumour localisation in the form of hand-drawn annotations. In this study, tumour localisation for ER scoring was evaluated comparing computer-generated segmentation masks with those of two specialist breast pathologists. Automatically and manually obtained segmentation masks were used to obtain IHC scores for thirty-two ER-stained invasive breast cancer TMA samples using FDA-approved IHC scoring software. RESULTS: Although pixel-level comparisons showed lower agreement between automated and manual segmentation masks (κ=0.81) than between pathologists' masks (κ=0.91), this had little impact on computed IHC scores (Allred; [Image: see text]=0.91, Quickscore; [Image: see text]=0.92). CONCLUSIONS: The proposed automated system provides consistent measurements thus ensuring standardisation, and shows promise for increasing IHC analysis of nuclear staining in TMAs from large clinical trials

    Assessment of algorithms for mitosis detection in breast cancer histopathology images

    Get PDF
    The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic image analysis has been proposed as a potential solution for these issues. In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing subjects, with more than one thousand annotated mitotic figures by multiple observers. Short descriptions and results from the evaluation of eleven methods are presented. The top performing method has an error rate that is comparable to the inter-observer agreement among pathologists

    The battle over Syria's reconstruction

    Get PDF
    Reconstruction is becoming the new battleground in the Syrian conflict—its continuation by other means. It is instrumentalized by the regime as a way to reconsolidate its control over the country and by rival regional and international powers to shape the internal balance of power and establish spheres of influence in the country. The paper examines the Asad regime’s practices, including co-optation of militia leaders via reconstruction concessions and use of reconstruction to clear strategic areas of opposition-dominated urban settlements. The paper then surveys how the geopolitical struggle in Syria has produced an asymmetry as regards reconstruction: those powers that lost the geo-political contest on the ground seek to use geo-economic superiority to reverse the geo-political outcome. Then the impact of proxy wars and spheres of influence in the country on the security context for reconstruction is examined. Finally, the reconstruction initiatives of the various external parties are assessed, including Russia, Iran and Turkey as well as the spoiler role by which the US seeks to obstruct reconstruction that would spell victory in Syria for its Russian and Iranian rivals.PostprintPeer reviewe

    Segmentation of epidermal tissue with histopathological damage in images of haematoxylin and eosin stained human skin.

    Get PDF
    Background: Digital image analysis has the potential to address issues surrounding traditional histological techniques including a lack of objectivity and high variability, through the application of quantitative analysis. A key initial step in image analysis is the identification of regions of interest. A widely applied methodology is that of segmentation. This paper proposes the application of image analysis techniques to segment skin tissue with varying degrees of histopathological damage. The segmentation of human tissue is challenging as a consequence of the complexity of the tissue structures and inconsistencies in tissue preparation, hence there is a need for a new robust method with the capability to handle the additional challenges materialising from histopathological damage.Methods: A new algorithm has been developed which combines enhanced colour information, created following a transformation to the L*a*b* colourspace, with general image intensity information. A colour normalisation step is included to enhance the algorithm's robustness to variations in the lighting and staining of the input images. The resulting optimised image is subjected to thresholding and the segmentation is fine-tuned using a combination of morphological processing and object classification rules. The segmentation algorithm was tested on 40 digital images of haematoxylin & eosin (H&E) stained skin biopsies. Accuracy, sensitivity and specificity of the algorithmic procedure were assessed through the comparison of the proposed methodology against manual methods.Results: Experimental results show the proposed fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5%. When a simple user interaction step is included, the specificity increases to 98.0%, the sensitivity to 91.0% and the accuracy to 96.8%. The algorithm segments effectively for different severities of tissue damage.Conclusions: Epidermal segmentation is a crucial first step in a range of applications including melanoma detection and the assessment of histopathological damage in skin. The proposed methodology is able to segment the epidermis with different levels of histological damage. The basic method framework could be applied to segmentation of other epithelial tissues

    The significance of tumour microarchitectural features in breast cancer prognosis: a digital image analysis

    Get PDF
    BACKGROUND: As only a minor portion of the information present in histological sections is accessible by eye, recognition and quantification of complex patterns and relationships among constituents relies on digital image analysis. In this study, our working hypothesis was that, with the application of digital image analysis technology, visually unquantifiable breast cancer microarchitectural features can be rigorously assessed and tested as prognostic parameters for invasive breast carcinoma of no special type. METHODS: Digital image analysis was performed using public domain software (ImageJ) on tissue microarrays from a cohort of 696 patients, and validated with a commercial platform (Visiopharm). Quantified features included elements defining tumour microarchitecture, with emphasis on the extent of tumour-stroma interface. The differential prognostic impact of tumour nest microarchitecture in the four immunohistochemical surrogates for molecular classification was analysed. Prognostic parameters included axillary lymph node status, breast cancer-specific survival, and time to distant metastasis. Associations of each feature with prognostic parameters were assessed using logistic regression and Cox proportional models adjusting for age at diagnosis, grade, and tumour size. RESULTS: An arrangement in numerous small nests was associated with axillary lymph node involvement. The association was stronger in luminal tumours (odds ratio (OR) = 1.39, p = 0.003 for a 1-SD increase in nest number, OR = 0.75, p = 0.006 for mean nest area). Nest number was also associated with survival (hazard ratio (HR) = 1.15, p = 0.027), but total nest perimeter was the parameter most significantly associated with survival in luminal tumours (HR = 1.26, p = 0.005). In the relatively small cohort of triple-negative tumours, mean circularity showed association with time to distant metastasis (HR = 1.71, p = 0.027) and survival (HR = 1.8, p = 0.02). CONCLUSIONS: We propose that tumour arrangement in few large nests indicates a decreased metastatic potential. By contrast, organisation in numerous small nests provides the tumour with increased metastatic potential to regional lymph nodes. An outstretched pattern in small nests bestows tumours with a tendency for decreased breast cancer-specific survival. Although further validation studies are required before the argument for routine quantification of microarchitectural features is established, our approach is consistent with the demand for cost-effective methods for triaging breast cancer patients that are more likely to benefit from chemotherapy

    Quantitative metric profiles capture three-dimensional temporospatial architecture to discriminate cellular functional states

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computational analysis of tissue structure reveals sub-visual differences in tissue functional states by extracting quantitative signature features that establish a diagnostic profile. Incomplete and/or inaccurate profiles contribute to misdiagnosis.</p> <p>Methods</p> <p>In order to create more complete tissue structure profiles, we adapted our cell-graph method for extracting quantitative features from histopathology images to now capture temporospatial traits of three-dimensional collagen hydrogel cell cultures. Cell-graphs were proposed to characterize the spatial organization between the cells in tissues by exploiting graph theory wherein the nuclei of the cells constitute the <it>nodes </it>and the approximate adjacency of cells are represented with <it>edges</it>. We chose 11 different cell types representing non-tumorigenic, pre-cancerous, and malignant states from multiple tissue origins.</p> <p>Results</p> <p>We built cell-graphs from the cellular hydrogel images and computed a large set of features describing the structural characteristics captured by the graphs over time. Using three-mode tensor analysis, we identified the five most significant features (metrics) that capture the compactness, clustering, and spatial uniformity of the 3D architectural changes for each cell type throughout the time course. Importantly, four of these metrics are also the discriminative features for our histopathology data from our previous studies.</p> <p>Conclusions</p> <p>Together, these descriptive metrics provide rigorous quantitative representations of image information that other image analysis methods do not. Examining the changes in these five metrics allowed us to easily discriminate between all 11 cell types, whereas differences from visual examination of the images are not as apparent. These results demonstrate that application of the cell-graph technique to 3D image data yields discriminative metrics that have the potential to improve the accuracy of image-based tissue profiles, and thus improve the detection and diagnosis of disease.</p

    Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics

    Full text link
    corecore