292 research outputs found

    Thermal and mechanical properties of recycled poly(Lactic acid)

    Get PDF
    Biodegradable polymers have experienced increased attention in recent years because of their wide range of applications in biomedical, packaging and agriculture fields. PLA, poly(lactic acid), is a linear aliphatic biodegradable thermoplastic polyester, with good mechanical properties, thermal stability, processability and low environmental impact, widely used as an alternative to conventional polymers. PLA products can be recycled after use either by remelting and reprocessing the material, or by hydrolysis to basic lactic acid [1]. The object of this communication is the study of the possible variation in physical properties induced by sub sequent reprocessing cycles of PLA

    Comparison of engagement and emotional responses of older and younger adults interacting with 3D cultural heritage artefacts on personal devices

    Get PDF
    The availability of advanced software and less expensive hardware allows museums to preserve and share artefacts digitally. As a result, museums are frequently making their collections accessible online as interactive, 3D models. This could lead to the unique situation of viewing the digital artefact before the physical artefact. Experiencing artefacts digitally outside of the museum on personal devices may affect the user's ability to emotionally connect to the artefacts. This study examines how two target populations of young adults (18–21 years) and the elderly (65 years and older) responded to seeing cultural heritage artefacts in three different modalities: augmented reality on a tablet, 3D models on a laptop, and then physical artefacts. Specifically, the time spent, enjoyment, and emotional responses were analysed. Results revealed that regardless of age, the digital modalities were enjoyable and encouraged emotional responses. Seeing the physical artefacts after the digital ones did not lessen their enjoyment or emotions felt. These findings aim to provide an insight into the effectiveness of 3D artefacts viewed on personal devices and artefacts shown outside of the museum for encouraging emotional responses from older and younger people

    Pahenu1 is a mouse model for tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency and promotes analysis of the pharmacological chaperone mechanism in vivo

    Get PDF
    The recent approval of sapropterin dihydrochloride, the synthetic form of 6[R]-l-erythro-5,6,7,8-tetrahydrobiopterin (BH4), for the treatment of phenylketonuria (PKU) as the first pharmacological chaperone drug initiated a paradigm change in the treatment of monogenetic diseases. Symptomatic treatment is now replaced by a causal pharmacological therapy correcting misfolding of the defective phenylalanine hydroxylase (PAH) in numerous patients. Here, we disclose BH4 responsiveness in Pahenu1, a mouse model for PAH deficiency. Loss of function resulted from loss of PAH, a consequence of misfolding, aggregation, and accelerated degradation of the enzyme. BH4 attenuated this triad by conformational stabilization augmenting the effective PAH concentration. This led to the rescue of the biochemical phenotype and enzyme function in vivo. Combined in vitro and in vivo analyses revealed a selective pharmaceutical action of BH4 confined to the pathological metabolic state. Our data provide new molecular-level insights into the mechanisms underlying protein misfolding with loss of function and support a general model of pharmacological chaperone-induced stabilization of protein conformation to correct this intracellular phenotype. Pahenu1 will be essential for pharmaceutical drug optimization and to design individually tailored therapie

    Two-dimensional spin systems in PECVD-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation

    Full text link
    Systems of spins engineered with tunable density and reduced dimensionality enable a number of advancements in quantum sensing and simulation. Defects in diamond, such as nitrogen-vacancy (NV) centers and substitutional nitrogen (P1 centers), are particularly promising solid-state platforms to explore. However, the ability to controllably create coherent, two-dimensional spin systems and characterize their properties, such as density, depth confinement, and coherence is an outstanding materials challenge. We present a refined approach to engineer dense (≳\gtrsim1 ppm⋅\cdotnm), 2D nitrogen and NV layers in diamond using delta-doping during plasma-enhanced chemical vapor deposition (PECVD) epitaxial growth. We employ both traditional materials techniques, e.g. secondary ion mass spectrometry (SIMS), alongside NV spin decoherence-based measurements to characterize the density and dimensionality of the P1 and NV layers. We find P1 densities of 5-10 ppm⋅\cdotnm, NV densities between 1 and 3.5 ppm⋅\cdotnm tuned via electron irradiation dosage, and depth confinement of the spin layer down to 1.6 nm. We also observe high (up to 42%\%) conversion of P1 to NV centers and reproducibly long NV coherence times, dominated by dipolar interactions with the engineered P1 and NV spin baths

    Characterization of cleavage events in the multifunctional cilium adhesin Mhp684 (P146) reveals a mechanism by which mycoplasma hyopneumoniae regulates surface topography

    Get PDF
    Mycoplasma hyopneumoniae causes enormous economic losses to swine production worldwide by colonizing the ciliated epithelium in the porcine respiratory tract, resulting in widespread damage to the mucociliary escalator, prolonged inflammation, reduced weight gain, and secondary infections. Protein Mhp684 (P146) comprises 1,317 amino acids, and while the N-terminal 400 residues display significant sequence identity to the archetype cilium adhesin P97, the remainder of the molecule is novel and displays unusual motifs. Proteome analysis shows that P146 preprotein is endogenously cleaved into three major fragments identified here as P50P146, P40P146, and P85P146 that reside on the cell surface. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) identified a semitryptic peptide that delineated a major cleavage site in Mhp684. Cleavage occurred at the phenylalanine residue within sequence 672ATEF2QQ677, consistent with a cleavage motif resembling S/T-X-F2XD/E recently identified in Mhp683 and other P97/P102 family members. Biotinylated surface proteins recovered by avidin chromatography and separated by two-dimensional gel electrophoresis (2-D GE) showed that more-extensive endoproteolytic cleavage of P146 occurs. Recombinant fragments F1P146-F3P146 that mimic P50P146, P40P146, and P85P146 were constructed and shown to bind porcine epithelial cilia and biotinylated heparin with physiologically relevant affinity. Recombinant versions of F3P146 generated from M. hyopneumoniae strain J and 232 sequences strongly bind porcine plasminogen, and the removal of their respective C-terminal lysine and arginine residues significantly reduces this interaction. These data reveal that P146 is an extensively processed, multifunctional adhesin of M. hyopneumoniae. Extensive cleavage coupled with variable cleavage efficiency provides a mechanism by which M. hyopneumoniae regulates protein topography

    Nanomechanical sensing using spins in diamond

    Full text link
    Nanomechanical sensors and quantum nanosensors are two rapidly developing technologies that have diverse interdisciplinary applications in biological and chemical analysis and microscopy. For example, nanomechanical sensors based upon nanoelectromechanical systems (NEMS) have demonstrated chip-scale mass spectrometry capable of detecting single macromolecules, such as proteins. Quantum nanosensors based upon electron spins of negatively-charged nitrogen-vacancy (NV) centers in diamond have demonstrated diverse modes of nanometrology, including single molecule magnetic resonance spectroscopy. Here, we report the first step towards combining these two complementary technologies in the form of diamond nanomechanical structures containing NV centers. We establish the principles for nanomechanical sensing using such nano-spin-mechanical sensors (NSMS) and assess their potential for mass spectrometry and force microscopy. We predict that NSMS are able to provide unprecedented AC force images of cellular biomechanics and to, not only detect the mass of a single macromolecule, but also image its distribution. When combined with the other nanometrology modes of the NV center, NSMS potentially offer unparalleled analytical power at the nanoscale.Comment: Errors in the stress susceptibility parameters present in the original arXiv version have been correcte

    Diamond Surface Functionalization via Visible Light-Driven C-H Activation for Nanoscale Quantum Sensing

    Full text link
    Nitrogen-vacancy centers in diamond are a promising platform for nanoscale nuclear magnetic resonance sensing. Despite significant progress towards using NV centers to detect and localize nuclear spins down to the single spin level, NV-based spectroscopy of individual, intact, arbitrary target molecules remains elusive. NV molecular sensing requires that target molecules are immobilized within a few nanometers of NV centers with long spin coherence time. The inert nature of diamond typically requires harsh functionalization techniques such as thermal annealing or plasma processing, limiting the scope of functional groups that can be attached to the surface. Solution-phase chemical methods can be more readily generalized to install diverse functional groups, but they have not been widely explored for single-crystal diamond surfaces. Moreover, realizing shallow NV centers with long spin coherence times requires highly ordered single-crystal surfaces, and solution-phase functionalization has not yet been shown to be compatible with such demanding conditions. In this work, we report a versatile strategy to directly functionalize C-H bonds on single-crystal diamond surfaces under ambient conditions using visible light. This functionalization method is compatible with charge stable NV centers within 10 nm of the surface with spin coherence times comparable to the state of the art. As a proof of principle, we use shallow ensembles of NV centers to detect nuclear spins from functional groups attached to the surface. Our approach to surface functionalization based on visible light-driven C-H bond activation opens the door to deploying NV centers as a broad tool for chemical sensing and single-molecule spectroscopy
    • …
    corecore