Two-dimensional spin systems in PECVD-grown diamond with tunable density and long coherence for enhanced quantum sensing and simulation

Abstract

Systems of spins engineered with tunable density and reduced dimensionality enable a number of advancements in quantum sensing and simulation. Defects in diamond, such as nitrogen-vacancy (NV) centers and substitutional nitrogen (P1 centers), are particularly promising solid-state platforms to explore. However, the ability to controllably create coherent, two-dimensional spin systems and characterize their properties, such as density, depth confinement, and coherence is an outstanding materials challenge. We present a refined approach to engineer dense (≳\gtrsim1 ppm⋅\cdotnm), 2D nitrogen and NV layers in diamond using delta-doping during plasma-enhanced chemical vapor deposition (PECVD) epitaxial growth. We employ both traditional materials techniques, e.g. secondary ion mass spectrometry (SIMS), alongside NV spin decoherence-based measurements to characterize the density and dimensionality of the P1 and NV layers. We find P1 densities of 5-10 ppm⋅\cdotnm, NV densities between 1 and 3.5 ppm⋅\cdotnm tuned via electron irradiation dosage, and depth confinement of the spin layer down to 1.6 nm. We also observe high (up to 42%\%) conversion of P1 to NV centers and reproducibly long NV coherence times, dominated by dipolar interactions with the engineered P1 and NV spin baths

    Similar works

    Full text

    thumbnail-image

    Available Versions