77 research outputs found
Comparison of various models of Monte Carlo geant 4 code in simulations of prompt gamma production
In this paper, results of simulations of the gamma-ray production in reactions with 70 MeV protons in a target of PMMA are presented. The data obtained by means of two versions of Geant 4 software, 9.3 and 10.01, have shown significant differences in the gamma-ray spectra. The comparison between the calculated spectra and the measured ones has been carried out. The tested versions do not give satisfactory agreement with the experimental result. The reason of the performed verification was the planned application of this simulation toolkit for the preparation of in vivo dosimetry based on the prompt gamma-ray measurements for the proton therapy
Tunnelling Studies of Two-Dimensional States in Semiconductors with Inverted Band Structure: Spin-orbit Splitting, Resonant Broadening
The results of tunnelling studies of the energy spectrum of two-dimensional
(2D) states in a surface quantum well in a semiconductor with inverted band
structure are presented. The energy dependence of quasimomentum of the 2D
states over a wide energy range is obtained from the analysis of tunnelling
conductivity oscillations in a quantizing magnetic field. The spin-orbit
splitting of the energy spectrum of 2D states, due to inversion asymmetry of
the surface quantum well, and the broadening of 2D states at the energies, when
they are in resonance with the heavy hole valence band, are investigated in
structures with different strength of the surface quantum well. A quantitative
analysis is carried out within the framework of the Kane model of the energy
spectrum. The theoretical results are in good agreement with the tunnelling
spectroscopy data.Comment: 29 pages, RevTeX, submitted in Phys.Rev.B. Figures available on
request from [email protected]
Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X
We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100Â ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200Â ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases.EC/H2020/633053/EU/Implementation of activities described in the Roadmap to Fusion during Horizon 2020 through a Joint programme of the members of the EUROfusion consortium/ EUROfusio
- …