192 research outputs found
Quantum oscillations in Kondo Insulator SmB
In Kondo insulator samarium hexaboride SmB, strong correlation and band
hybridization lead to an insulating gap and a diverging resistance at low
temperature. The resistance divergence ends at about 5 Kelvin, a behavior
recently demonstrated to arise from the surface conductance. However, questions
remain whether and where a topological surface state exists. Quantum
oscillations have not been observed to map the Fermi surface. We solve the
problem by resolving the Landau Level quantization and Fermi surface topology
using torque magnetometry. The observed Fermi surface suggests a two
dimensional surface state on the (101) plane. Furthermore, the tracking of the
Landau Levels in the infinite magnetic field limit points to -1/2, which
indicates a 2D Dirac electronic state
Evidence for a finite-momentum Cooper pair in tricolor d-wave superconducting superlattices
人工超格子によるらせん型超伝導状態の創出とその検出に成功--有限運動量の電子対を持つ超伝導--.京都大学プレスリリース. 2024-05-13.Fermionic superfluidity with a nontrivial Cooper-pairing, beyond the conventional Bardeen-Cooper-Schrieffer state, is a captivating field of study in quantum many-body systems. In particular, the search for superconducting states with finite-momentum pairs has long been a challenge, but establishing its existence has long suffered from the lack of an appropriate probe to reveal its momentum. Recently, it has been proposed that the nonreciprocal electron transport is the most powerful probe for the finite-momentum pairs, because it directly couples to the supercurrents. Here we reveal such a pairing state by the non-reciprocal transport on tricolor superlattices with strong spin-orbit coupling combined with broken inversion-symmetry consisting of atomically thin d-wave superconductor CeCoIn5. We find that while the second-harmonic resistance exhibits a distinct dip anomaly at the low-temperature ()/high-magnetic field () corner in the -plane for applied to the antinodal direction of the d-wave gap, such an anomaly is absent for along the nodal direction. By carefully isolating extrinsic effects due to vortex dynamics, we reveal the presence of a non-reciprocal response originating from intrinsic superconducting properties characterized by finite-momentum pairs. We attribute the high-field state to the helical superconducting state, wherein the phase of the order parameter is spontaneously spatially modulated
Ferromagnetism and conductivity in atomically thin SrRuO3
Atomically thin ferromagnetic and conducting electron systems are highly
desired for spintronics, because they can be controlled with both magnetic and
electric fields. We present (SrRuO3)1-(SrTiO3)5 superlattices and
single-unit-cell-thick SrRuO3 samples that are capped with SrTiO3. We achieve
samples of exceptional quality. In these samples, the electron systems comprise
only a single RuO2 plane. We observe conductivity down to 50 mK, a
ferromagnetic state with a Curie temperature of 25 K, and signals of magnetism
persisting up to approximately 100 K.Comment: The version published at Phys. Rev. X (open access) contains a large
amount of additional material compared to the version published her
Fibrillary glomerulonephritis with small fibrils in a patient with the antiphospholipid antibody syndrome successfully treated with immunosuppressive therapy
10.1186/1471-2369-8-7BMC Nephrology8
Locally Administrated Perindopril Improves Healing in an Ovariectomized Rat Tibial Osteotomy Model
Angiotensin-converting enzyme inhibitors are widely prescribed to regulate blood pressure. High doses of orally administered perindopril have previously been shown to improve fracture healing in a mouse femur fracture model. In this study, perindopril was administered directly to the fracture area with the goal of stimulating fracture repair. Three months after being ovariectomized (OVX), tibial fractures were produced in Sprague–Dawley rats and subsequently stabilized with intramedullary wires. Perindopril (0.4 mg/kg/day) was injected locally at the fractured site for a treatment period of 7 days. Vehicle reagent was used as a control. Callus quality was evaluated at 2 and 4 weeks post-fracture. Compared with the vehicle group, perindopril treatment significantly increased bone formation, increased biomechanical strength, and improved microstructural parameters of the callus. Newly woven bone was arranged more tightly and regularly at 4 weeks post-fracture. The ultimate load increased by 66.1 and 76.9% (p<0.01), and the bone volume over total volume (BV/TV) increased by 29.9% and 24.3% (p<0.01) at 2 and 4 weeks post-fracture, respectively. These findings suggest that local treatment with perindopril could promote fracture healing in ovariectomized rats
Advances in heterometallic ring-opening (co)polymerisation catalysis
Truly sustainable plastics require renewable feedstocks coupled with efficient production and end-of-life degradation/recycling processes. Some of the most useful degradable materials are aliphatic polyesters, polycarbonates and polyamides, which are often prepared via ring-opening (co)polymerisation (RO(CO)P) using an organometallic catalyst. While there has been extensive research into ligand development, heterometallic cooperativity offers an equally promising yet underexplored strategy to improve catalyst performance, as heterometallic catalysts often exhibit significant activity and selectivity enhancements compared to their homometallic counterparts. This review describes advances in heterometallic RO(CO)P catalyst design, highlighting the overarching structure-activity trends and reactivity patterns to inform future catalyst design
Evidence that urocortin is absent from neurons of the Edinger-Westphal nucleus in pigeons
- …
