5 research outputs found

    A Framework for Efficient N-Way Interaction Testing in Case/Control Studies with Categorical Data

    No full text
    Goal: Most common diseases are influenced by multiple gene interactions and interactions with the environment. Performing an exhaustive search to identify such interactions is computationally expensive and needs to address the multiple testing problem. A four-step framework is proposed for the efficient identification of n-Way interactions. Methods: The framework was applied on a Multiple Sclerosis dataset with 725 subjects and 147 tagging SNPs. The first two steps of the framework are quality control and feature selection. The next step uses clustering and binary encodes the features. The final step performs the n-Way interaction testing. Results: The feature space was reduced to 7 SNPs and using the proposed binary encoding, more 2-SNP and 3-SNP interactions were identified compared to using the initial encoding. Conclusions: The framework selects informative features and with the proposed binary encoding it is able to identify more n-way interactions by increasing the power of the statistical analysis. © 2020 IEEE

    Advancing clinical research by semantically interconnecting aggregated medical data information in a secure context

    Get PDF
    Electronic Health Records (EHRs) contain an increasing wealth of medical information. When combined with molecular level data, they enhance the understanding of the underlying biological mechanisms of diseases, enabling the identification of key prognostic biomarkers to disease and treatment outcomes. However, the European healthcare information space is fragmented due to the lack of legal and technical standards, cost effective platforms, and sustainable business models. There is a clear need for a framework facilitating the efficient and homogenized access to anonymized distributed EHRs, merged from multiple data sources into a single data analysis space. In this paper we present the outcomes of Linked2Safety, a project that proposes a solution to these problems by providing a semantically interconnected approach to sharing aggregate data in the form of data cubes. This approach eliminates the risks associated with sharing pseudoanonymized (and therefore still personal) data while enabling the multi-source, multi-type analysis of health data through a single web based secure access platform. The Linked2Safety system is evaluated by external to the project Medical science analysts, Analytic methodology engineers and Data providers with respect to five specific dimensions of the system (analysis space, linked data space, usability of the system, legal and ethical issues, and value of the system) in this paper. For all five dimensions that were examined, the participants’ perceptions were overwhelmingly positive

    POLLAR: Impact of air POLLution on Asthma and Rhinitis; a European Institute of Innovation and Technology Health (EIT Health) project

    Get PDF
    Allergic rhinitis (AR) is impacted by allergens and air pollution but interactions between air pollution, sleep and allergic diseases are insufficiently understood. POLLAR (Impact of air POLLution on sleep, Asthma and Rhinitis) is a project of the European Institute of Innovation and Technology (EIT Health). It will use a freely-existing application for AR monitoring that has been tested in 23 countries (the Allergy Diary, iOS and Android, 17,000 users, TLR8). The Allergy Diary will be combined with a new tool allowing queries on allergen, pollen (TLR2), sleep quality and disorders (TRL2) as well as existing longitudinal and geolocalized pollution data. Machine learning will be used to assess the relationship between air pollution, sleep and AR comparing polluted and non-polluted areas in 6 EU countries. Data generated in 2018 will be confirmed in 2019 and extended by the individual prospective assessment of pollution (portable sensor, TLR7) in AR. Sleep apnea patients will be used as a demonstrator of sleep disorder that can be modulated in terms of symptoms and severity by air pollution and AR. The geographic information system GIS will map the results. Consequences on quality of life (EQ-5D), asthma, school, work and sleep will be monitored and disseminated towards the population. The impacts of POLLAR will be (1) to propose novel care pathways integrating pollution, sleep and patients' literacy, (2) to study sleep consequences of pollution and its impact on frequent chronic diseases, (3) to improve work productivity, (4) to propose the basis for a sentinel network at the EU level for pollution and allergy, (5) to assess the societal implications of the interaction. MASK paper N°32
    corecore