14 research outputs found

    Lymphocytes and the Dap12 Adaptor Are Key Regulators of Osteoclast Activation Associated with Gonadal Failure

    Get PDF
    Bone resorption by osteoclasts is necessary to maintain bone homeostasis. Osteoclast differentiation from hematopoietic progenitors and their activation depend on M-CSF and RANKL, but also requires co-stimulatory signals acting through receptors associated with DAP12 and FcRγ adaptors. Dap12 mutant mice (KΔ75) are osteopetrotic due to inactive osteoclasts but, surprisingly, these mice are more sensitive than WT mice to bone loss following an ovariectomy. Because estrogen withdrawal is known to disturb bone mass, at least in part, through lymphocyte interaction, we looked at the role of mature lymphocytes on osteoclastogenesis and bone mass in the absence of functional DAP12. Lymphocytes were found to stimulate an early osteoclast differentiation response from Dap12-deficient progenitors in vitro. In vivo, Rag1-/- mice lacking mature lymphocytes did not exhibit any bone phenotype, but lost their bone mass after ovariectomy like KΔ75 mice. KΔ75;Rag1-/- double mutant female mice exhibited a more severe osteopetrosis than Dap12-deficient animals but lost their bone mass after ovariectomy, like single mutants. These results suggest that both DAP12 and mature lymphocytes act synergistically to maintain bone mass under physiological conditions, while playing similar but not synergistic co-stimulatory roles in protecting bone loss after gonadal failure. Thus, our data support a role for lymphocytes during osteoclast differentiation and suggest that they may function as accessory cells when regular osteoclast function is compromised

    Galectin-1 is required for the regulatory function of B cells

    Get PDF
    Galectin-1 (Gal-1) is required for the development of B cells in the bone marrow (BM), however very little is known about the contribution of Gal-1 to the development of B cell regulatory function. Here, we report an important role for Gal-1 in the induction of B cells regulatory function. Mice deficient of Gal-1 (Gal-1−/−) showed significant loss of Transitional-2 (T2) B cells, previously reported to include IL-10+ regulatory B cells. Gal-1−/− B cells stimulated in vitro via CD40 molecules have impaired IL-10 and Tim-1 expression, the latter reported to be required for IL-10 production in regulatory B cells, and increased TNF-α expression compared to wild type (WT) B cells. Unlike their WT counterparts, T2 and T1 Gal-1−/− B cells did not suppress TNF-α expression by CD4+ T cells activated in vitro with allogenic DCs (allo-DCs), nor were they suppressive in vivo, being unable to delay MHC-class I mismatched skin allograft rejection following adoptive transfer. Moreover, T cells stimulated with allo-DCs show an increase in their survival when co-cultured with Gal-1−/− T2 and MZ B cells compared to WT T2 and MZ B cells. Collectively, these data suggest that Gal-1 contributes to the induction of B cells regulatory function

    Influence of periphyton substrates and rearing density on Liza aurata growth and production in marine nursery ponds

    No full text
    The main objectives of this investigation were to test the effects of (i) the presence of periphyton substrates, (ii) rearing density and (iii) supplemental feeding with dry feed on the growth and production of golden mullet (Liza aurata) juveniles. Twenty-six 1 m2-cages were installed in a French marine pond from April till June 2008. Mullets were stocked in cages with or without substrate at a density of 0, 20, 40 or 60 individuals per cage. Each treatment was carried out in triplicate. In addition, 20 fish were put in three tanks and fed ad libitum with dry feed. The results showed that (i) although mullets were seen to graze on periphyton substrates, their presence did not affect mullet growth and production. In future studies, meshed substrates could be attached on hard structures to improve the efficiency of mullet grazing; (ii) individual growth was higher at low density due to a lower competition for space and food. Production increased with rearing density reflecting that food availability was not limiting in control cages; (iii) growth and net yield of mullets were lower in fed tanks than in natural ponds where food seemed to be more appropriate for wild mullet juveniles and where stress factors were lower. Finally, in contrast to the individual growth rate, the net fish yield in this experiment was greater than that recorded in other extensive and semi-intensive systems. It was equivalent to yields observed in other periphyton-based systems. Periphyton developed on the meshed walls of cages probably increased the natural productivity of the pond. As part of sustainable aquaculture development, the effluents of intensive farms could be exploited to produce periphyton on inflexible substrates and to rear mullet adults, which are more herbivorous than juveniles. This type of integrated system could be developed with other mullet species, such as Chelon labrosus or Mugil cephalus, whose growth rates are higher than L. aurata. Mullet production could be exploited by the sale of fillets and dried ro

    Osteoclast activity modulates B-cell development in the bone marrow

    No full text
    B-cell development is dependent on the interactions between B-cell precursors and bone marrow stromal cells, but the role of osteoclasts (OCLs) in this process remains unknown. B lymphocytopenia is a characteristic of osteopetrosis, suggesting a modulation of B lymphopoiesis by OCL activity. To address this question, we first rescued OCL function in osteopetrotic oc/oc mice by dendritic cell transfer, leading to a restoration of both bone phenotype and B-cell development. To further explore the link between OCL activity and B lymphopoiesis, we induced osteopetrosis in normal mice by injections of zoledronic acid (ZA), an inhibitor of bone resorption. B-cell number decreased specifically in the bone marrow of ZA-treated mice. ZA did not directly affect B-cell differentiation, proliferation and apoptosis, but induced a decrease in the expression of CXCL12 and IL-7 by stromal cells, associated with reduced osteoblastic engagement. Equivalent low osteoblastic engagement in oc/oc mice confirmed that it resulted from the reduced OCL activity rather than from a direct effect of ZA on osteoblasts. These dramatic alterations of the bone microenvironment were disadvantageous for B lymphopoiesis, leading to retention of B-cell progenitors outside of their bone marrow niches in the ZA-induced osteopetrotic model. Altogether, our data revealed that OCLs modulate B-cell development in the bone marrow by controlling the bone microenvironment and the fate of osteoblasts. They provide novel basis for the regulation of the retention of B cells in their niche by OCL activity

    Re-wiring regulatory cell networks in immunity by galectin-glycan interactions

    Get PDF
    Programs that control immune cell homeostasis are orchestrated through the coordinated action of a number of regulatory cell populations, including regulatory T cells, regulatory B cells, myeloid-derived suppressor cells, alternatively-activated macrophages and tolerogenic dendritic cells. These regulatory cell populations can prevent harmful inflammation following completion of protective responses and thwart the development of autoimmune pathology. However, they also have a detrimental role in cancer by favoring escape from immune surveillance. One of the hallmarks of regulatory cells is their remarkable plasticity as they can be positively or negatively modulated by a plethora of cytokines, growth factors and co-stimulatory signals that tailor their differentiation, stability and survival. Here we focus on the emerging roles of galectins, a family of highly conserved glycan-binding proteins in regulating the fate and function of regulatory immune cell populations, both of lymphoid and myeloid origins. Given the broad distribution of circulating and tissue-specific galectins, understanding the relevance of lectin-glycan interactions in shaping regulatory cell compartments will contribute to the design of novel therapeutic strategies aimed at modulating their function in a broad range of immunological disorders.Fil: Blidner, Ada Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Mendez Huergo, Santiago Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Cagnoni, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentin
    corecore