198 research outputs found
Neuroplasticity: Unexpected Consequences of Early Blindness.
A pair of recent studies shows that congenital blindness can have significant consequences for the functioning of the visual system after sight restoration, particularly if that restoration is delayed
Multisensory Processes: A Balancing Act across the Lifespan.
Multisensory processes are fundamental in scaffolding perception, cognition, learning, and behavior. How and when stimuli from different sensory modalities are integrated rather than treated as separate entities is poorly understood. We review how the relative reliance on stimulus characteristics versus learned associations dynamically shapes multisensory processes. We illustrate the dynamism in multisensory function across two timescales: one long term that operates across the lifespan and one short term that operates during the learning of new multisensory relations. In addition, we highlight the importance of task contingencies. We conclude that these highly dynamic multisensory processes, based on the relative weighting of stimulus characteristics and learned associations, provide both stability and flexibility to brain functions over a wide range of temporal scales
Gyrification in relation to cortical thickness in the congenitally blind
Greater cortical gyrification (GY) is linked with enhanced cognitive abilities and is also negatively related to cortical thickness (CT). Individuals who are congenitally blind (CB) exhibits remarkable functional brain plasticity which enables them to perform certain non-visual and cognitive tasks with supranormal abilities. For instance, extensive training using touch and audition enables CB people to develop impressive skills and there is evidence linking these skills to cross-modal activations of primary visual areas. There is a cascade of anatomical, morphometric and functional-connectivity changes in non-visual structures, volumetric reductions in several components of the visual system, and CT is also increased in CB. No study to date has explored GY changes in this population, and no study has explored how variations in CT are related to GY changes in CB. T1-weighted 3D structural magnetic resonance imaging scans were acquired to examine the effects of congenital visual deprivation in cortical structures in a healthy sample of 11 CB individuals (6 male) and 16 age-matched sighted controls (SC) (10 male). In this report, we show for the first time an increase in GY in several brain areas of CB individuals compared to SC, and a negative relationship between GY and CT in the CB brain in several different cortical areas. We discuss the implications of our findings and the contributions of developmental factors and synaptogenesis to the relationship between CT and GY in CB individuals compared to SC. F
Haptic SLAM: An Ideal Observer Model for Bayesian Inference of Object Shape and Hand Pose from Contact Dynamics
Dynamic tactile exploration enables humans to seamlessly estimate the shape of objects and distinguish them from one another in the complete absence of visual information. Such a blind tactile exploration allows integrating information of the hand pose and contacts on the skin to form a coherent representation of the object shape. A principled way to understand the underlying neural computations of human haptic perception is through normative modelling. We propose a Bayesian perceptual model for recursive integration of noisy proprioceptive hand pose with noisy skin–object contacts. The model simultaneously forms an optimal estimate of the true hand pose and a representation of the explored shape in an object–centred coordinate system. A classification algorithm can, thus, be applied in order to distinguish among different objects solely based on the similarity of their representations. This enables the comparison, in real–time, of the shape of an object identified by human subjects with the shape of the same object predicted by our model using motion capture data. Therefore, our work provides a framework for a principled study of human haptic exploration of complex objects
Direct tactile stimulation of dorsal occipito-temporal cortex in a visual agnosic
The human occipito-temporal cortex is preferentially activated by images of objects as opposed to scrambled images [1]. Touching objects (versus textures) also activates this region [2–10]. We used neuropsychological fMRI to probe whether dorsal regions of the lateral occipital cortex (LO) are activated in tactile recognition without mediation through visual recognition. We tested a patient (HJA) with visual agnosia due to bilateral lesions of the ventral occipito-temporal cortex but spared dorsal LO. HJA's recognition of visual objects was impaired [11, 12]. Nevertheless, his tactile recognition was preserved. We measured brain activity while participants viewed and touched objects and textures. There was overlapping activity in regions including LO and cerebellum for both stimuli for control participants, including new regions not before considered bimodal. For HJA, there were overlapping regions in the intact dorsal LO. Within a subset of the regions found in control participants, HJA showed activity only for tactile objects, suggesting that these regions are specifically involved in successful multimodal recognition. Activation of dorsal LO by tactile input is not secondary to visual recognition but can operate directly through tactile input
Multisensory visual–tactile object related network in humans: insights gained using a novel crossmodal adaptation approach
Neuroimaging techniques have provided ample evidence for multisensory integration in humans. However, it is not clear whether this integration occurs at the neuronal level or whether it reflects areal convergence without such integration. To examine this issue as regards visuo-tactile object integration we used the repetition suppression effect, also known as the fMRI-based adaptation paradigm (fMR-A). Under some assumptions, fMR-A can tag specific neuronal populations within an area and investigate their characteristics. This technique has been used extensively in unisensory studies. Here we applied it for the first time to study multisensory integration and identified a network of occipital (LOtv and calcarine sulcus), parietal (aIPS), and prefrontal (precentral sulcus and the insula) areas all showing a clear crossmodal repetition suppression effect. These results provide a crucial first insight into the neuronal basis of visuo-haptic integration of objects in humans and highlight the power of using fMR-A to study multisensory integration using non-invasinve neuroimaging techniques
Investigating human audio-visual object perception with a combination of hypothesis-generating and hypothesis-testing fMRI analysis tools
Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis
Recommended from our members
Imaging patterns of the arterial supply of the prostate gland in adult Ghanaian men
Background
Prostatic arterial embolization (PAE) is a novel procedure in West Africa and Ghana. A thorough understanding of the prostate artery's (PA) anatomy and pattern is required for successful prostatic arterial embolization and to guarantee targeted intervention. This study focuses on prostate arterial supply in adult males, including prevalence, variability, and imaging pattern.
Methodology
A prospective cross-sectional study was conducted, at Euracare Advanced Diagnostics and Heart Centre. Patients who presented for Computed Tomography Angiography of the pelvis were included in the study. A total of 52 males were included and 104 pelvic CT angiography (one for each side) were analyzed, including: prostatic artery diameter, prostatic gland volume and prostate artery branching pattern. The PA branching pattern was classified using de Assis et al. classification.
Result
Thirty-seven (71.15%) men had enlarged prostate volume (>30ml). On each side there was only one prostatic artery and no accessory one was found. Only three types of arterial branching were identified: type I, II,III. The type I artery was the most common origin 58.7% (61/104). PA originating from the anterior division of the internal iliac artery (type II) and the type III is from the internal pudendal artery, accounted for 16.3% (17/104) and 25% (26/104) respectively.
Conclusion
The most frequent type of PA origin was type I followed by type III then II. Knowing the different and most frequent types of anatomy of PA may help standardization and effectiveness of the PAE in developing countries
Benefits of Stimulus Congruency for Multisensory Facilitation of Visual Learning
Background. Studies of perceptual learning have largely focused on unisensory stimuli. However, multisensory interactions are ubiquitous in perception, even at early processing stages, and thus can potentially play a role in learning. Here, we examine the effect of auditory-visual congruency on visual learning. Methodology/Principle Findings. Subjects were trained over five days on a visual motion coherence detection task with either congruent audiovisual, or incongruent audiovisual stimuli. Comparing performance on visual-only trials, we find that training with congruent audiovisual stimuli produces significantly better learning than training with incongruent audiovisual stimuli or with only visual stimuli. Conclusions/ Significance. This advantage from stimulus congruency during training suggests that the benefits of multisensory training may result from audiovisual interactions at a perceptual rather than cognitive level
- …