49 research outputs found

    Longitudinal analysis of blood DNA methylation identifies mechanisms of response to tumor necrosis factor inhibitor therapy in rheumatoid arthritis

    Full text link
    Rheumatoid arthritis (RA) is a chronic, immune-mediated inflammatory disease of the joints that has been associated with variation in the peripheral blood methylome. In this study, we aim to identify epigenetic variation that is associated with the response to tumor necrosis factor inhibitor (TNFi) therapy.Peripheral blood genome-wide DNA methylation profiles were analyzed in a discovery cohort of 62 RA patients at baseline and at week 12 of TNFi therapy. DNA methylation of individual CpG sites and enrichment of biological pathways were evaluated for their association with drug response. Using a novel cell deconvolution approach, altered DNA methylation associated with TNFi response was also tested in the six main immune cell types in blood. Validation of the results was performed in an independent longitudinal cohort of 60 RA patients.Treatment with TNFi was associated with significant longitudinal peripheral blood methylation changes in biological pathways related to RA (FDR<0.05). 139 biological functions were modified by therapy, with methylation levels changing systematically towards a signature similar to that of healthy controls. Differences in the methylation profile of T cell activation and differentiation, GTPase-mediated signaling, and actin filament organization pathways were associated with the clinical response to therapy. Cell type deconvolution analysis identified CpG sites in CD4+T, NK, neutrophils and monocytes that were significantly associated with the response to TNFi.Our results show that treatment with TNFi restores homeostatic blood methylation in RA. The clinical response to TNFi is associated to methylation variation in specific biological pathways, and it involves cells from both the innate and adaptive immune systems.The Instituto de Salud Carlos III.Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved

    Prognostic Impact of Nutritional Status After Transcatheter Edge-to-Edge Mitral Valve Repair: The MIVNUT Registry

    Full text link
    Background Malnutrition is associated with poor prognosis in several cardiovascular diseases. However, its prognostic impact in patients undergoing transcatheter edge-to-edge mitral valve repair (TEER) is not well known. This study sought to assess the prevalence, clinical associations, and prognostic consequences of malnutrition in patients undergoing TEER. Methods and Results A total of 892 patients undergoing TEER from the international MIVNUT (Mitral Valve Repair and Nutritional Status) registry were studied. Malnutrition status was assessed with the Controlling Nutritional Status score. The association of nutritional status with mortality was analyzed with multivariable Cox regression models, whereas the association with heart failure admission was assessed by Fine-Gray models, with death as a competing risk. According to the Controlling Nutritional Status score, 74.4% of patients with TEER had any degree of malnutrition at the time of TEER (75.1% in patients with body mass index <25?kg/m2, 72.1% in those with body mass index ?25?kg/m2). However, only 20% had moderate-severe malnutrition. TEER was successful in most of patients (94.2%). During a median follow-up of 1.6?years (interquartile range, 0.6-3.0), 267 (29.9%) patients died and 256 patients (28.7%) were admitted for heart failure after TEER. Compared with normal nutritional status moderate-severe malnutrition resulted a strong predictor of mortality (adjusted hazard ratio [HR], 2.1 [95% CI, 1.1-2.4]; P<0.001) and heart failure admission (adjusted subdistribution HR, 1.6 [95% CI, 1.1-2.4]; P=0.015). Conclusions Malnutrition is common among patients submitted to TEER, and moderate-severe malnutrition is strongly associated with increased mortality and heart failure readmission. Assessment of nutritional status in these patients may help to improve risk stratification

    HLA-B*08 identified as the most associated MHC locus for anti-carbamylated protein antibody-positive/anti-CCP-negative rheumatoid arthritis

    Get PDF
    Objective: Previously, only the HLA-DRB1 alleles have been assessed in rheumatoid arthritis (RA). The aim of the present study was to identify the key major histocompatibility complex (MHC) susceptibility factors showing a significant association with anti-carbamylated protein antibody-positive (anti-CarP+) RA. Methods: Analyses were restricted to RA patients who were anti-cyclic citrullinated peptide antibody negative (anti-CCP-), because the anti-CCP status dominated the results otherwise. Therefore, we studied samples from 1,821 anti-CCP- RA patients and 6,821 population controls from Spain, Sweden, and the Netherlands. The genotypes for ~8,000 MHC biallelic variants were assessed by dense genotyping and imputation. Their association with the anti-CarP status in RA patients was tested with logistic regression and combined with inverse-variance meta-analysis. Significance of the associations was assessed according to a study-specific threshold of P < 2.0 × 10-5 . Results: The HLA-B*08 allele and its correlated amino acid variant Asp-9 showed a significant association with anti-CarP+/anti-CCP- RA (P < 3.78 × 10-7 ; I2 = 0). This association was specific when assessed relative to 3 comparator groups: population controls, anti-CarP-/anti-CCP- RA patients, and anti-CCP- RA patients who were positive for other anti-citrullinated protein antibodies. Based on these findings, anti-CarP+/anti-CCP- RA patients could be separated from other antibody-defined subsets of RA patients in whom an association with the HLA-B*08 allele has been previously demonstrated. No other MHC variant remained associated with anti-CarP+/anti-CCP- RA after accounting for the presence of the HLA-B*08 allele. Specifically, the reported association of HLA-DRB1*03 was observed at a level comparable to that reported previously, but it was attributable to linkage disequilibrium. Conclusion: These results identify HLA-B*08 carrying Asp-9 as the MHC locus showing the strongest association with anti-CarP+/anti-CCP- RA. This knowledge may help clarify the role of the HLA in susceptibility to specific subsets of RA, by shaping the spectrum of RA autoantibodies. © 2020, American College of Rheumatology

    Molecular Characterization of Clinical Isolates of Aeromonas Species from Malaysia

    Get PDF
    Background: Aeromonas species are common inhabitants of aquatic environments giving rise to infections in both fish and humans. Identification of aeromonads to the species level is problematic and complex due to their phenotypic and genotypic heterogeneity. Methodology/Principal Findings: Aeromonas hydrophila or Aeromonas sp were genetically re-identified using a combination of previously published methods targeting GCAT, 16S rDNA and rpoD genes. Characterization based on the genus specific GCAT-PCR showed that 94 (96%) of the 98 strains belonged to the genus Aeromonas. Considering the patterns obtained for the 94 isolates with the 16S rDNA-RFLP identification method, 3 clusters were recognised, i.e. A. caviae (61%), A. hydrophila (17%) and an unknown group (22%) with atypical RFLP restriction patterns. However, the phylogenetic tree constructed with the obtained rpoD sequences showed that 47 strains (50%) clustered with the sequence of the type strain of A. aquariorum, 18 (19%) with A. caviae, 16 (17%) with A. hydrophila, 12 (13%) with A. veronii and one strain (1%) with the type strain of A. trota. PCR investigation revealed the presence of 10 virulence genes in the 94 isolates as: lip (91%), exu (87%), ela (86%), alt (79%), ser (77%), fla (74%), aer (72%), act (43%), aexT (24%) and ast (23%). Conclusions/Significance: This study emphasizes the importance of using more than one method for the correct identification of Aeromonas strains. The sequences of the rpoD gene enabled the unambiguous identication of the 9

    A Molecular Study on the Prevalence and Virulence Potential of Aeromonas spp. Recovered from Patients Suffering from Diarrhea in Israel

    Get PDF
    Background: Species of the genus Aeromonas are native inhabitants of aquatic environments and have recently been considered emerging human pathogens. Although the gastrointestinal tract is by far the most common anatomic site from which aeromonads are recovered, their role as etiologic agents of bacterial diarrhea is still disputed. Aeromonas-associated diarrhea is a phenomenon occurring worldwide; however, the exact prevalence of Aeromonas infections on a global scale is unknown. Methodology/Principal Findings: The prevalence and virulence potential of Aeromonas in patients suffering from diarrhea in Israel was studied using molecular methods. 1,033 diarrheal stools were sampled between April and September 2010 and Aeromonas species were identified in 17 (,2%) patients by sequencing the rpoD gene. Aeromonas species identity and abundance was: A. caviae (65%), A. veronii (29%) and Aeromonas taiwanensis (6%). This is the first clinical record of A. taiwanensis as a diarrheal causative since its recent discovery from a wound infection in a patient in Taiwan. Most of the patients (77%) from which Aeromonas species were isolated were negative for any other pathogens. The patients ranged from 1 to 92 years in age. Aeromonas isolates were found to possess different virulence-associated genes: ahpB (88%), pla/ lip/lipH3/apl-1 (71%), act/hlyA/aerA (35%), alt (18%), ast (6%), fla (65%), lafA (41%), TTSS ascV (12%), TTSS ascF-ascG (12%), TTSS-dependent ADP-ribosylating toxins aexU (41%) and aexT (6%) in various combinations. Most of the identified strain

    Shiga Toxin: Expression, Distribution, and Its Role in the Environment

    Get PDF
    In this review, we highlight recent work that has increased our understanding of the production and distribution of Shiga toxin in the environment. Specifically, we review studies that offer an expanded view of environmental reservoirs for Shiga toxin producing microbes in terrestrial and aquatic ecosystems. We then relate the abundance of Shiga toxin in the environment to work that demonstrates that the genetic mechanisms underlying the production of Shiga toxin genes are modified and embellished beyond the classical microbial gene regulatory paradigms in a manner that apparently “fine tunes” the trigger to modulate the amount of toxin produced. Last, we highlight several recent studies examining microbe/protist interactions that postulate an answer to the outstanding question of why microbes might harbor and express Shiga toxin genes in the environment

    Complex Evolutionary History of the Aeromonas veronii Group Revealed by Host Interaction and DNA Sequence Data

    Get PDF
    Aeromonas veronii biovar sobria, Aeromonas veronii biovar veronii, and Aeromonas allosaccharophila are a closely related group of organisms, the Aeromonas veronii Group, that inhabit a wide range of host animals as a symbiont or pathogen. In this study, the ability of various strains to colonize the medicinal leech as a model for beneficial symbiosis and to kill wax worm larvae as a model for virulence was determined. Isolates cultured from the leech out-competed other strains in the leech model, while most strains were virulent in the wax worms. Three housekeeping genes, recA, dnaJ and gyrB, the gene encoding chitinase, chiA, and four loci associated with the type three secretion system, ascV, ascFG, aexT, and aexU were sequenced. The phylogenetic reconstruction failed to produce one consensus tree that was compatible with most of the individual genes. The Approximately Unbiased test and the Genetic Algorithm for Recombination Detection both provided further support for differing evolutionary histories among this group of genes. Two contrasting tests detected recombination within aexU, ascFG, ascV, dnaJ, and gyrB but not in aexT or chiA. Quartet decomposition analysis indicated a complex recent evolutionary history for these strains with a high frequency of horizontal gene transfer between several but not among all strains. In this study we demonstrate that at least for some strains, horizontal gene transfer occurs at a sufficient frequency to blur the signal from vertically inherited genes, despite strains being adapted to distinct niches. Simply increasing the number of genes included in the analysis is unlikely to overcome this challenge in organisms that occupy multiple niches and can exchange DNA between strains specialized to different niches. Instead, the detection of genes critical in the adaptation to specific niches may help to reveal the physiological specialization of these strains
    corecore