393 research outputs found
Tri-critical behavior in rupture induced by disorder
We discover a qualitatively new behavior for systems where the load transfer
has limiting stress amplification as in real fiber composites. We find that the
disorder is a relevant field leading to tri--criticality, separating a
first-order regime where rupture occurs without significant precursors from a
second-order regime where the macroscopic elastic coefficient exhibit power law
behavior. Our results are based on analytical analysis of fiber bundle models
and numerical simulations of a two-dimensional tensorial spring-block system in
which stick-slip motion and fracture compete.Comment: Revtex, 10 pages, 4 figures available upon reques
The International Cocoa Genome Sequencing Consortium (ICGS): a coordinated strategy to sequence and analyse Theobroma cacao genome [Draft]
A Study of the Day - Night Effect for the Super - Kamiokande Detector: I. Time Averaged Solar Neutrino Survival Probability
This is the first of two articles aimed at providing comprehensive
predictions for the day-night (D-N) effect for the Super-Kamiokande detector in
the case of the MSW \nu_e \to \numt transition solution of the solar neutrino
problem. The one-year averaged probability of survival of the solar \nue
crossing the Earth mantle, the core, the inner 2/3 of the core, and the (core +
mantle) is calculated with high precision (better than 1%) using the elliptical
orbit approximation (EOA) to describe the Earth motion around the Sun. Results
for the survival probability in the indicated cases are obtained for a large
set of values of the MSW transition parameters and
from the ``conservative'' regions of the MSW solution,
derived by taking into account possible relatively large uncertainties in the
values of the B and Be neutrino fluxes. Our results show that the
one-year averaged D-N asymmetry in the survival probability for
neutrinos crossing the Earth core can be, in the case of , larger than the asymmetry in the probability for (only mantle
crossing + core crossing) neutrinos by a factor of up to six. The enhancement
is larger in the case of neutrinos crossing the inner 2/3 of the core. This
indicates that the Super-Kamiokande experiment might be able to test the
region of the MSW solution of the solar neutrino
problem by performing selective D-N asymmetry measurements.Comment: LaTeX2e - 18 Text Pages + 21 figures = 39 Pages. - Figures in PS +
text file sk1b14.tex requires two auxiliary files (included
Rocky Planetesimals as the Origin of Metals in DZ Stars
{Abridged}. An analysis of the calcium and hydrogen abundances, Galactic
positions and kinematics of 146 DZ stars from the Sloan Digital Sky Survey
demonstrates that interaction with the interstellar medium cannot account for
their externally polluted atmospheres. The calcium-to-hydrogen ratios for the
37 DZA stars are dominated by super-solar values, as are the lower limits for
the remaining 109 DZ stars. All together their metal-contaminated convective
envelopes contain 10^{20+-2} g of calcium, commensurate with the masses of
calcium inferred for large asteroids. It is probable that these stars are
contaminated by circumstellar matter; the rocky remains of terrestrial
planetary systems. In this picture, two predictions emerge: 1) at least 3.5% of
all main sequence A- and F-type stars build terrestrial planets; and 2) the DZA
stars are externally polluted by both metals and hydrogen, and hence constrain
the frequency and mass of water-rich, extrasolar planetesimals.Comment: Accepted to MNRA
Dragon-kings: mechanisms, statistical methods and empirical evidence
This introductory article presents the special Discussion and Debate volume
"From black swans to dragon-kings, is there life beyond power laws?" published
in Eur. Phys. J. Special Topics in May 2012. We summarize and put in
perspective the contributions into three main themes: (i) mechanisms for
dragon-kings, (ii) detection of dragon-kings and statistical tests and (iii)
empirical evidence in a large variety of natural and social systems. Overall,
we are pleased to witness significant advances both in the introduction and
clarification of underlying mechanisms and in the development of novel
efficient tests that demonstrate clear evidence for the presence of
dragon-kings in many systems. However, this positive view should be balanced by
the fact that this remains a very delicate and difficult field, if only due to
the scarcity of data as well as the extraordinary important implications with
respect to hazard assessment, risk control and predictability.Comment: 20 page
Scale relativity and fractal space-time: theory and applications
In the first part of this contribution, we review the development of the
theory of scale relativity and its geometric framework constructed in terms of
a fractal and nondifferentiable continuous space-time. This theory leads (i) to
a generalization of possible physically relevant fractal laws, written as
partial differential equation acting in the space of scales, and (ii) to a new
geometric foundation of quantum mechanics and gauge field theories and their
possible generalisations. In the second part, we discuss some examples of
application of the theory to various sciences, in particular in cases when the
theoretical predictions have been validated by new or updated observational and
experimental data. This includes predictions in physics and cosmology (value of
the QCD coupling and of the cosmological constant), to astrophysics and
gravitational structure formation (distances of extrasolar planets to their
stars, of Kuiper belt objects, value of solar and solar-like star cycles), to
sciences of life (log-periodic law for species punctuated evolution, human
development and society evolution), to Earth sciences (log-periodic
deceleration of the rate of California earthquakes and of Sichuan earthquake
replicas, critical law for the arctic sea ice extent) and tentative
applications to system biology.Comment: 63 pages, 14 figures. In : First International Conference on the
Evolution and Development of the Universe,8th - 9th October 2008, Paris,
Franc
The composition of a disrupted extrasolar planetesimal at SDSS J0845+2257 (Ton 345)
We present a detailed study of the metal-polluted DB white dwarf SDSS J0845+2257 (Ton 345). Using high-resolution Hubble Space Telescope/Cosmic Origins Spectrograph and Very Large Telescope spectroscopy, we have detected hydrogen and 11 metals in the atmosphere of the white dwarf. The origin of these metals is almost certainly the circumstellar disc of dusty and gaseous debris from a tidally disrupted planetesimal, accreting at a rate of 1.6 × 1010 g s−1. Studying the chemical abundances of the accreted material demonstrates that the planetesimal had a composition similar to the Earth, dominated by rocky silicates and metallic iron, with a low water content. The mass of metals within the convection zone of the white dwarf corresponds to an asteroid of at least ∼130–170 km in diameter, although the presence of ongoing accretion from the debris disc implies that the planetesimal was probably larger than this. While a previous abundance study of the accreted material has shown an anomalously high mass fraction of carbon (15 per cent) compared to the bulk Earth, our independent analysis results in a carbon abundance of just 2.5 per cent. Enhanced abundances of core material (Fe, Ni) suggest that the accreted object may have lost a portion of its mantle, possibly due to stellar wind stripping in the asymptotic giant branch. Time series spectroscopy reveals variable emission from the orbiting gaseous disc, demonstrating that the evolved planetary system at SDSS J0845+2257 is dynamically active
Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases
Grapevine is one of the most important economic crops yielding berries, wine products as well as derivates. However, due to the large array of pathogens inducing diseases on this plant, considerable
amounts of pesticides—with possible negative impact on the environment and health—have been used and are currently used in viticulture. To avoid negative impacts of such products and to ensure product quality, a substantial fraction of pesticides needs to be replaced in the near future. One solution can be related to the use of beneficial bacteria inhabiting the rhizo- and/or the endosphere of plants. These biocontrol bacteria and their secondary metabolites can reduce directly or indirectly pathogen diseases by affecting pathogen performance by antibiosis, competition for niches and nutrients, interference with pathogen signaling or by stimulation of host plant defenses. Due to the large demand for biocontrol of grapevine diseases, such biopesticides, their modes of actions and putative consequences of their uses need to be described. Moreover, the current knowledge on new strains from the rhizo- and endosphere and their metabolites that can be used on grapevine plants to counteract pathogen attack needs to be discussed. This is in particular with regard to the control of root rot, grey mould, trunk diseases, powdery and downy mildews, pierce’s disease, grapevine yellows as well as crown gall. Future prospects on specific beneficial microbes and their secondary metabolites that can be used as elicitors of plant defenses and/or as biocontrol agents with potential use in a more sustainable viticulture will be further discussed
Quantifying garnet-melt trace element partitioning using lattice-strain theory: New crystal-chemical and thermodynamic constraints
Many geochemical models of major igneous differentiation events on the Earth, the Moon, and Mars invoke the presence of garnet or its high-pressure majoritic equivalent as a residual phase, based on its ability to fractionate critical trace element pairs (Lu/Hf, U/Th, heavy REE/light REE). As a result, quantitative descriptions of mid-ocean ridge and hot spot magmatism, and lunar, martian, and terrestrial magma oceans require knowledge of garnet-melt partition coefficients over a wide range of conditions. In this contribution, we present new crystal-chemical and thermodynamic constraints on the partitioning of rare earth elements (REE), Y and Sc between garnet and anhydrous silicate melt as a function of pressure (P), temperature (T), and composition (X). Our approach is based on the interpretation of experimentally determined values of partition coefficients D using lattice-strain theory. In this and a companion paper (Draper and van Westrenen this issue) we derive new predictive equations for the ideal ionic radius of the dodecahedral garnet X-site,
Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe
Seismic tomography and the isotope geochemistry of Cenozoic volcanic rocks suggest the existence of a large, sheet-like region of upwelling in the upper mantle which extends from the eastern Atlantic Ocean to central Europe and the western Mediterranean. A belt of extension and rifting in the latter two areas appears to lie above the intersection of the centre of the upwelling region with the base of the lithosphere. Lead, strontium and neodymium isotope data for all three regions converge on a restricted composition, inferred to be that of the upwelling mantle
- …
