14 research outputs found

    Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest

    Get PDF
    Wood decomposition releases almost as much CO2 to the atmosphere as does fossil-fuel combustion, so the factors regulating wood decomposition can affect global carbon cycling. We used metabarcoding to estimate the fungal species diversities of naturally colonized decomposing wood in subtropical China and, for the first time, compared them to concurrent measures of CO2 emissions. Wood hosting more diverse fungal communities emitted less CO2, with Shannon diversity explaining 26 to 44% of emissions variation. Community analysis supports a ‘pure diversity’ effect of fungi on decomposition rates and thus suggests that interference competition is an underlying mechanism. Our findings extend the results of published experiments using low-diversity, laboratory-inoculated wood to a high-diversity, natural system. We hypothesize that high levels of saprotrophic fungal biodiversity could be providing globally important ecosystem services by maintaining dead-wood habitats and by slowing the atmospheric contribution of CO2 from the world’s stock of decomposing wood. However, large-scale surveys and controlled experimental tests in natural settings will be needed to test this hypothesis

    Chemical composition of leaf litter (mean ±1 SEM).

    No full text
    <p>Abbreviations: percent dry mass (% DM), percent acetyl-bromide-soluble lignin (% ABSL), conditioning type (CT).</p><p>Different lowercase letters indicate significant differences (<i>P</i><0.05) between CO<sub>2</sub> treatments for each tree species × CT combination.</p

    Effects of CO<sub>2</sub> treatment on feeding responses of each invertebrate species.

    No full text
    <p>The mean litter consumption (±1 SE) of each invertebrate species is shown for (A) alder and (B) birch in the choice test, and (C) alder and (D) birch in the no-choice test. Asterisks indicate significant differences between CO<sub>2</sub> treatments within each invertebrate species (***<i>P</i><0.001). Species are arranged by habitat of origin: aquatic species are <i>Asellus aquaticus</i> (Aa), <i>Gammarus pulex</i> (Gp), <i>Odontocerum albicorne</i> (Oa) and <i>Sericostoma personatum</i> (Sp); terrestrial species are <i>Blaniulus guttulatus</i> (Bg), <i>Oniscus asellus</i> (On), <i>Porcellio scaber</i> (Ps) and <i>Tachypodoiulus niger</i> (Tn).</p

    Impacts of the invader giant reed (Arundo donax) on riparian habitats and ground arthropod communities

    No full text
    Riparian areas have experienced long-term anthropogenic impacts including the effects of plant introductions. In this study, 27 plots were surveyed across three Mediterranean rivers in north-eastern Spain to explore the effects of the invader giant reed (Arundo donax) on riparian habitat features and the diversity, trophic structure, body size, and abundances of epigeal and hypogeal arthropods in riparian areas. Using pitfall traps and Berlese funnels, this study detected a significant increase in collembola abundance and a decrease in the abundance, body size and diversity of macro-arthropods at order and family levels in invaded plots compared to native stands. Invaded and un-invaded areas also differed in the taxonomical structure of arthropod assemblies but not in trophic guild proportions. However, the fact that arthropods were smaller in A. donax soils, together with the absence of particular taxa within each trophic guild or even an entire trophic group (parasitoids), suggests that food-web alterations in invaded areas cannot be discarded. Habitat features also differed between invaded and un-invaded areas with the poorest herbaceous understory and the largest leaf litter deposition and soil carbon stock observed in A. donax plots. The type of vegetation in riparian areas followed by the total native plant species richness were identified as major causal factors to changes in the abundance, diversity and composition of macro-arthropods. However, our analyses also showed that some alterations related to A. donax invasion were inconsistent across rivers, suggesting that A. donax effects may be context dependent. In conclusion, this study highlights an impoverishment of native flora and arthropod fauna in A. donax soils, and suggests major changes in riparian food webs if A. donax displaces native riparian vegetatio

    Bis-naphthopyrone pigments protect filamentous ascomycetes from a wide range of predators

    No full text
    It is thought that fungi protect themselves from predation by the production of compounds that are toxic to soil-dwelling animals. Here, we show that a nontoxic pigment, the bisnaphthopyrone aurofusarin, protects Fusarium fungi from a wide range of animal predators. We find that springtails (primitive hexapods), woodlice (crustaceans), and mealworms (insects) prefer feeding on fungi with disrupted aurofusarin synthesis, and mealworms and springtails are repelled by wheat flour amended with the fungal bis-naphthopyrones aurofusarin, viomellein, or xanthomegnin. Predation stimulates aurofusarin synthesis in several Fusarium species and viomellein synthesis in Aspergillus ochraceus. Aurofusarin displays low toxicity in mealworms, springtails, isopods, Drosophila, and insect cells, contradicting the common view that fungal defence metabolites are toxic. Our results indicate that bisnaphthopyrones are defence compounds that protect filamentous ascomycetes from predators through a mechanism that does not involve toxicity.National Natural Science Foundation of China/[21876152]//ChinaChina Scholarship Concil///ChinaMinistry for Science and Culture of Lower Saxony///GermanyGerman Academic Exchange Service///GermanyGerman Research Foundation/[DFG IRTG 2172]//GermanyUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Agroalimentarias::Centro para Investigaciones en Granos y Semillas (CIGRAS
    corecore