32 research outputs found
Pseudo Trained YOLO R_CNN Model for Weapon Detection with a Real-Time Kaggle Dataset
The Recurrent Convolutional Neural Networks (RCNN) based deep learning models has been classified image patterns and deep features through layer architecture. In this world every country doesn’t encouraging violence, so that indirectly nations prohibiting usages of weapons to common people. This study proposes a novel YoLo Faster R-CNN based weapon detection algorithm for unusual weapon object detection. The proposed YoLo V3 R-CNN computer vision application can rapidly find weapons carried by people and highlighted through bounding-box-intimation. The work plan of this research is divided into two stages, at 1st stage pre-processing has been called to Faster R-CNN segmentation. The 2nd stage has been training the dataset as well as extracting 8-features (image_id, detection score, pixels-intensity, resolution, Aspect-ratio, PSNR, CC, SSIM) into .csv file. The labeling can be performed to RCNN-YoLo method such that getting real-time objects detection (Unusual things). The Confusion matrix has been generating performance measures in terms of accuracy 97.12%, SSIM 0.99, sensitivity 97.23%, and throughput 94.23% had been attained which are outperformance methodology
Pseudo Trained YOLO R_CNN Model for Weapon Detection with a Real-Time Kaggle Dataset
The Recurrent Convolutional Neural Networks (RCNN) based deep learning models has been classified image patterns and deep features through layer architecture. In this world every country doesn’t encouraging violence, so that indirectly nations prohibiting usages of weapons to common people. This study proposes a novel YoLo Faster R-CNN based weapon detection algorithm for unusual weapon object detection. The proposed YoLo V3 R-CNN computer vision application can rapidly find weapons carried by people and highlighted through bounding-box-intimation. The work plan of this research is divided into two stages, at 1st stage pre-processing has been called to Faster R-CNN segmentation. The 2nd stage has been training the dataset as well as extracting 8-features (image_id, detection score, pixels-intensity, resolution, Aspect-ratio, PSNR, CC, SSIM) into .csv file. The labeling can be performed to RCNN-YoLo method such that getting real-time objects detection (Unusual things). The Confusion matrix has been generating performance measures in terms of accuracy 97.12%, SSIM 0.99, sensitivity 97.23%, and throughput 94.23% had been attained which are outperformance methodology
Relativistic Mean Field Approach and the Pseudo-Spin Symmetry
Based on the Relativistic Mean Field (RMF) approach the existence of the
broken pseudo-spin symmetry is investigated. Both spherical RMF and constrained
deformed RMF calculations are carried out employing realistic Lagrangian
parameters for spherical and for deformed sample nuclei. The quasi - degenerate
pseudo-spin doublets are confirmed to exist near the fermi surface for both
spherical and deformed nuclei.Comment: 9 pages RevTex, 4 p.s figures, to appear in Phys. Rev. C as R.
Violation of pseudospin symmetry in nucleon-nucleus scattering: exact relations
An exact determination of the size of the pseudospin symmetry violating part
of the nucleon-nucleus scattering amplitude from scattering observables is
presented. The approximation recently used by Ginocchio turns out to
underestimate the violation of pseudospin symmetry. Nevertheless the conclusion
of a modestly broken pseudospin symmetry in proton-208Pb scattering at
EL=800MeV remains valid.Comment: 8 pages, 2 figure
Inter-band B(E2) transition strengths in odd-mass heavy deformed nuclei
Inter-band B(E2) transition strengths between different normal parity bands
in 163Dy and 165Er are described using the pseudo-SU(3) model. The Hamiltonian
includes Nilsson single-particle energies, quadrupole-quadrupole and pairing
interactions with fixed, parametrized strengths, and three extra rotor terms
used to fine tune the energy spectra. In addition to inter-band transitions,
the energy spectra and the ground state intra-band B(E2) strengths are
reported. The results show the pseudo-SU(3) shell model to be a powerful
microscopic theory for a description of the normal parity sector in heavy
deformed odd-A nuclei.Comment: 4 figures, 2 table
The pseudo-spin symmetry in Zr and Sn isotopes from the proton drip line to the neutron drip line
Based on the Relativistic continuum Hartree-Bogoliubov (RCHB) theory, the
pseudo-spin approximation in exotic nuclei is investigated in Zr and Sn
isotopes from the proton drip line to the neutron drip line. The quality of the
pseudo-spin approximation is shown to be connected with the competition between
the centrifugal barrier (CB) and the pseudo-spin orbital potential (PSOP). The
PSOP depends on the derivative of the difference between the scalar and vector
potentials . If , the pseudo-spin symmetry is exact. The
pseudo-spin symmetry is found to be a good approximation for normal nuclei and
to become much better for exotic nuclei with highly diffuse potential, which
have . The energy splitting of the pseudo-spin partners is
smaller for orbitals near the Fermi surface (even in the continuum) than the
deeply bound orbitals. The lower components of the Dirac wave functions for the
pseudo-spin partners are very similar and almost equal in magnitude.Comment: 22 pages, 9figure
Spin-rotor Interpretation of Identical Bands and Quantized Alignment in Superdeformed A 190 Nuclei
The ``identical'' bands in superdeformed mercury, thallium, and lead nuclei
are interpreted as examples of orbital angular momentum rotors with the weak
spin-orbit coupling of pseudo- symmetries and supersymmetries.Comment: 15 pages, revtex 3.0, 7 figures available upon request from
[email protected]
Shell model description of normal parity bands in odd-mass heavy deformed nuclei
The low-energy spectra and B(E2) electromagnetic transition strengths of
159Eu, 159Tb and 159Dy are described using the pseudo SU(3) model. Normal
parity bands are built as linear combinations of SU(3) states, which are the
direct product of SU(3) proton and neutron states with pseudo spin zero (for
even number of nucleons) and pseudo spin 1/2 (for odd number of nucleons). Each
of the many-particle states have a well-defined particle number and total
angular momentum. The Hamiltonian includes spherical Nilsson single-particle
energies, the quadrupole-quadrupole and pairing interactions, as well as three
rotor terms which are diagonal in the SU(3) basis. The pseudo SU(3) model is
shown to be a powerful tool to describe odd-mass heavy deformed nuclei.Comment: 11 pages, 2 figures, Accepted to be published in Phys. Rev.
Partial Dynamical Symmetries
This overview focuses on the notion of partial dynamical symmetry (PDS), for
which a prescribed symmetry is obeyed by a subset of solvable eigenstates, but
is not shared by the Hamiltonian. General algorithms are presented to identify
interactions, of a given order, with such intermediate-symmetry structure.
Explicit bosonic and fermionic Hamiltonians with PDS are constructed in the
framework of models based on spectrum generating algebras. PDSs of various
types are shown to be relevant to nuclear spectroscopy, quantum phase
transitions and systems with mixed chaotic and regular dynamics.Comment: 74 pages, 22 figures, published version, Progress in Particle and
Nuclear Physic