4 research outputs found

    AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders.

    Get PDF
    AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission

    Pharmacokinetics of high-dose tigecycline in critically ill patients with severe infections

    No full text
    Background: In critically ill patients, the use of high tigecycline dosages (HD TGC) (200 mg/day) has been recently increasing but few pharmacokinetic/pharmacodynamic (PK/PD) data are available. We designed a prospective observational study to describe the pharmacokinetic/pharmacodynamic (PK/PD) profile of HD TGC in a cohort of critically ill patients with severe infections. Results: This was a single centre, prospective, observational study that was conducted in the 20-bed mixed ICU of a 1500-bed teaching hospital in Rome, Italy. In all patients admitted to the ICU between 2015 and 2018, who received TGC (200 mg loading dose, then 100 mg q12) for the treatment of documented infections, serial blood samples were collected to measure steady-state TGC concentrations. Moreover, epithelial lining fluid (ELF) concentrations were determined in patients with nosocomial pneumonia. Amongst the 32 non-obese patients included, 11 had a treatment failure, whilst the other 21 subjects successfully eradicated the infection. There were no between-group differences in terms of demographic aspects and main comorbidities. In nosocomial pneumonia, for a target AUC0-24/MIC of 4.5, 75% of the patients would be successfully treated in presence of 0.5 mcg/mL MIC value and all the patients obtained the PK target with MIC 64 0.12 mcg/mL. In intra-abdominal infections (IAI), for a target AUC0-24/MIC of 6.96, at least 50% of the patients would be adequately treated against bacteria with MIC 64 0.5 mcg/mL. Finally, in skin and soft-tissue infections (SSTI), for a target AUC0-24/MIC of 17.9 only 25% of the patients obtained the PK target at MIC values of 0.5 mcg/mL and less than 10% were adequately treated against germs with MIC value 65 1 mcg/mL. HD TGC showed a relevant pulmonary penetration with a median and IQR ELF/plasma ratio (%) of 152.9 [73.5-386.8]. Conclusions: The use of HD TGC is associated with satisfactory plasmatic and pulmonary concentrations for the treatment of severe infections due to fully susceptible bacteria (MIC < 0.5 mcg/mL). Even higher dosages and combination strategies may be suggested in presence of difficult to treat pathogens, especially in case of SSTI and IAI

    Respiratory physiology of COVID-19-induced respiratory failure compared to ARDS of other etiologies

    No full text
    Background: Whether respiratory physiology of COVID-19-induced respiratory failure is different from acute respiratory distress syndrome (ARDS) of other etiologies is unclear. We conducted a single-center study to describe respiratory mechanics and response to positive end-expiratory pressure (PEEP) in COVID-19 ARDS and to compare COVID-19 patients to matched-control subjects with ARDS from other causes. Methods: Thirty consecutive COVID-19 patients admitted to an intensive care unit in Rome, Italy, and fulfilling moderate-to-severe ARDS criteria were enrolled within 24 h from endotracheal intubation. Gas exchange, respiratory mechanics, and ventilatory ratio were measured at PEEP of 15 and 5 cmH2O. A single-breath derecruitment maneuver was performed to assess recruitability. After 1:1 matching based on PaO2/FiO2, FiO2, PEEP, and tidal volume, COVID-19 patients were compared to subjects affected by ARDS of other etiologies who underwent the same procedures in a previous study. Results: Thirty COVID-19 patients were successfully matched with 30 ARDS from other etiologies. At low PEEP, median [25th-75th percentiles] PaO2/FiO2 in the two groups was 119 mmHg [101-142] and 116 mmHg [87-154]. Average compliance (41 ml/cmH2O [32-52] vs. 36 ml/cmH2O [27-42], p = 0.045) and ventilatory ratio (2.1 [1.7-2.3] vs. 1.6 [1.4-2.1], p = 0.032) were slightly higher in COVID-19 patients. Inter-individual variability (ratio of standard deviation to mean) of compliance was 36% in COVID-19 patients and 31% in other ARDS. In COVID-19 patients, PaO2/FiO2 was linearly correlated with respiratory system compliance (r = 0.52 p = 0.003). High PEEP improved PaO2/FiO2 in both cohorts, but more remarkably in COVID-19 patients (p = 0.005). Recruitability was not different between cohorts (p = 0.39) and was highly inter-individually variable (72% in COVID-19 patients and 64% in ARDS from other causes). In COVID-19 patients, recruitability was independent from oxygenation and respiratory mechanics changes due to PEEP. Conclusions: Early after establishment of mechanical ventilation, COVID-19 patients follow ARDS physiology, with compliance reduction related to the degree of hypoxemia, and inter-individually variable respiratory mechanics and recruitability. Physiological differences between ARDS from COVID-19 and other causes appear small

    Overview of the RFX Fusion Science Program

    No full text
    With a program well-balanced among the goal of exploring the fusion potential of the reversed field pinch (RFP) and that of contributing to the solution of key science and technology prob- lems in the roadmap to ITER, the European RFX-mod device has produced a set of high-quality results since the last 2010 Fusion Energy Conference. RFX-mod is a 2 MA RFP, which can also be operated as a tokamak and where advanced confinement states have 3D features studied with stellarator tools. Self-organized equilibria with a single helical axis and improved confinement (SHAx) have been deeply investigated and a more profound understanding of their physics has been achieved. First wall conditioning with Lithium provides a tool to operate RFX at higher density than before, and application of helical magnetic boundary conditions favour stationary SHAx states. The correlation between the quality of helical states and the reduction of magnetic field errors acting as seed of magnetic chaos has been robustly proven. Helical states provide a unique test-bed for numerical codes conceived to deal with 3D effects in all magnetic configura- tions. In particular the stellarator equilibrium codes VMEC and V3FIT have been successfully adapted to reconstruct RFX-mod equilibria with diagnostic input. The border of knowledge has been significantly expanded also in the area of feedback control of MHD stability. Non-linear dynamics of tearing modes and their control has been modelled, allowing for optimization of feedback models. An integrated dynamic model of the RWM control system has been developed integrating the plasma response to multiple RWMs with active and passive conducting structures (CarMa model) and with a complete representation of the control system. RFX has been oper- ated as a tokamak with safety factor kept below 2, with complete active stabilization of the p2, 1q Resistive Wall Mode (RWM). This opens the exploration of a broad and interesting operational range otherwise excluded to standard tokamaks. Control experiments and modelling led to the design of a significant upgrade of the RFX-mod feedback control system to dramatically enhance computing power and reduce system latency. The possibility of producing D-shaped plasmas is being explore
    corecore