5 research outputs found

    大规模加载孔预埋件精确定位安装技术

    No full text
    针对加载孔预埋件数量众多,预埋件定位精度要求高,且结构内部布置了大量用于定位预埋件的型钢骨架,同时还布置有受力用预应力筋束及非预应力筋网,纵横交错,施工难度大问题。采用新型施工工艺,在预埋件固定、预埋件位置调节两方面做了创新改进,确保预埋件施工精确;同时,结合BIM技术进行施工模拟,有效规避钢骨架、预埋件、结构钢筋的碰撞,优化施工方案

    大型无粘结预应力型钢混凝土反力墙施工技术

    No full text
    主要介绍大型无粘结预应力型钢混凝土反力墙施工技术,运用BIM技术对反力墙结构中复杂的钢骨架、预埋件、预应力筋束、普通钢筋进行优化布置、深化设计、施工模拟及可视化交底。通过设置预埋件支撑钢架及可调式双螺母螺栓,安装固定预埋件,使预埋件位置易于调节,精度易于控制。研究墙内水平、竖直双向双层无粘结预应力筋束张拉方案,采用合理的模板及自密实混凝土浇筑技术,确保反力墙表面平整度、垂直度满足高精度要求

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore