13 research outputs found
The Game Analysis of Government Subsidies in Low Carbon Economy
随着世界经济的发展,环境问题越来越受到国际社会的关注。低碳经济是缓解矛盾的有效措施,我国政府相继颁布了一些推行低碳经济的相关政策,对低碳企业给予补贴扶持。通过归纳各国促进低碳经济的有效政策,对低碳经济中政府、企业、消费者进行博弈分析,对调研数据进行实证研究,旨在提出低碳经济中政府补贴应该偏重于消费者的观点。With the development of the world economy,the changes of environment attract the attention of international society.Low carbon economy is an effective measure to alleviate contradictions.Chinese government has enacted out some low-carbon economy related policies,such as subsidy for low carbon enterprise.In this paper,I summarize the effective policies to promote low carbon economy formulated by the developed countries;analyze the government,enterprises and consumers in low carbon economy through Game theory;empirically analyze the investigation data;put forward a new comment that government subsidies should focus on the consumers.教育部大学生创新性实验计划;项目编号:XMU20090
Automatic Registration of Urban Laser Point Cloud with Aerial Image Data Based on Straight-Lines
Studies and Progresses on Hole Metallization in High-Density Interconnected Printed Circuit Boards
孔金属化互连是印制电路板(PCB)高密度集成的核心制程之一,化学镀铜和电子电镀铜是实现孔金属化的关键技术。本文介绍HDI-PCB的概念和制作流程;综述化学镀铜和电子电镀铜孔金属化互连的研究和进展,包括溶液组成和操作条件的影响,添加剂及其相互作用机理,以及盲孔填充和通孔孔壁加厚机制;展望高密度互连印制电路板电子电镀基础研究及新技术发展方向。Printed circuit boards (PCBs) are almost the core components of all electronic systems. With the rapid development of sciences and technologies, PCBs are gradually developing in the direction of multi-layer, thin and high-density wiring due to the functionalization, miniaturization, lightweight and high reliability of electronic products, as well as the widespread popularization of the subminiature package such as chip scale package (CSP) and ball grid array (BGA). Therefore, High-density interconnected printed circuit boards (HDI-PCBs) arise. Hole metallization is one of the core technologies in HDI-PCBs and includes two processes composed of conductive treatment and electron electroplating. Electroless copper plating, as one of the conductive treatment methods, not only can deposit a copper layer with excellent conductivity and adhesion, but also has more reliable process maturity. However, reducing agent formaldehyde harms human health and environment. As a relatively eco-friendly and cheap reducing agent, hypophosphite is expected to replace formaldehyde in the process of the electroless copper plating if the copper deposition rate and the coating quality can be improved. Electron copper electroplating is closely related to the electrical properties of the electronic products. With the increase of PCBs integration, the diameters of holes decrease and the aspect ratios increase, which makes blind microvia and through hole more difficult to realize the superfilling and conformal thickening, respectively. For the superfilling of blind microvia, there are some mature models. But for the conformal thickening of through hole, there is no applicable theoretical guidance, and therefore, more studies are needed. It is very important to find suitable and novel additives besides the improvement of plating conditions for electron copper electroplating. In acidic sulfate copper electron electroplating process, although there are lots of studies on the additives, the interaction mechanism of the additives still needs to be further revealed, which not only contributes to understand the molecular mechanism of various additives, but also provides theoretical basis and guidance for the design and development of novel and efficient additives. In addition, the research and development of weakly alkaline and neutral electron copper electroplating process are also important for hole metallization of HDI-PCB. This paper firstly describes the concept of HDI-PCB, and then reviews recent studies and progresses on the electroless copper plating and acidic sulfate copper electron electroplating processes, which involves the effects of bath composition and operating conditions, the interactive mechanism of additives, and the filling and thickening mechanisms of the holes. Finally, the future directions towards basic research and novel electron electroplating development are highlighted.国家自然科学基金项目(21972118)通讯作者:杨防祖,孙世刚E-mail:[email protected];[email protected]:Fang-ZuYang,Shi-GangSunE-mail:[email protected];[email protected]厦门大学化学化工学院,固体表面物理化学国家重点实验室,福建 厦门 361005College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, Fujian Chin
Prediction of Energy Resolution in the JUNO Experiment
International audienceThis paper presents the energy resolution study in the JUNO experiment, incorporating the latest knowledge acquired during the detector construction phase. The determination of neutrino mass ordering in JUNO requires an exceptional energy resolution better than 3% at 1 MeV. To achieve this ambitious goal, significant efforts have been undertaken in the design and production of the key components of the JUNO detector. Various factors affecting the detection of inverse beta decay signals have an impact on the energy resolution, extending beyond the statistical fluctuations of the detected number of photons, such as the properties of liquid scintillator, performance of photomultiplier tubes, and the energy reconstruction algorithm. To account for these effects, a full JUNO simulation and reconstruction approach is employed. This enables the modeling of all relevant effects and the evaluation of associated inputs to accurately estimate the energy resolution. The study reveals an energy resolution of 2.95% at 1 MeV. Furthermore, the study assesses the contribution of major effects to the overall energy resolution budget. This analysis serves as a reference for interpreting future measurements of energy resolution during JUNO data taking. Moreover, it provides a guideline in comprehending the energy resolution characteristics of liquid scintillator-based detectors
JUNO Sensitivity on Proton Decay Searches
The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is years, competitive with the current best limits on the proton lifetime in this channel
Measurement of integrated luminosity of data collected at 3.773 GeV by BESIII from 2021 to 2024*
JUNO sensitivity on proton decay p → ν K + searches*
The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via is 36.9% ± 4.9% with a background level of events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
