3 research outputs found

    Comparison of cluster analysis and the deconvolution method on hand motor task experimental data of functional magnetic resonance imaging in healthy adults

    No full text
    目的:探讨运动学习的脑功能活动,比较聚类与多重线性回归统计方法的处理效果。方法:观察对象为2003-08选自北京农业大学二年级大学生。15名健康志愿者参加了实验,其中男10名,女5名,年龄19~21岁,均为中文版标准问卷确定的右利手,对手指运动磁共振数据采用聚类方法和反卷积的处理方法,分别对同一数据进行统计处理。结果:纳入大学生15名,1名被试因在扫描时头动幅度过大,其数据被剔除,共14名大学生的数据进入结果分析中。聚类方法与反卷积的多重线性回归处理方法得到的激活位置图是一致的。聚类得到的激活图分类清晰,便于发现脑区的多种功能活动。多重线性回归激活图有大量重叠,分类不清晰,但是激活区域的强度变化清晰。结论:根据研究的目的不同,可以选择聚类或反卷积统计方法,但是聚类的依据有待进一步完善

    Primary Motor Cortex Is Not a Single Function Unit———Clustering Results from fMRI Experiment Data

    No full text
    本实验采用功能磁共振为实验仪器,被试进行运动准备和运动执行两种作业活动,实验设计为延时序列运动任务。在对实验数据进行预处理,反卷积,标准化处理后,采用欧式距离公式进行聚类统计,统计结果显示,M1区不仅具有运动执行和运动准备的功能,还发现其他功能区域的激活,不是单纯的运动执行功能,这一区域与三种活动有关

    Aripiprazole versus other atypical antipsychotics for schizophrenia

    No full text
    BACKGROUND: In most western industrialised countries, second generation (atypical) antipsychotics are recommended as first line drug treatments for people with schizophrenia. In this review we specifically examine how the efficacy and tolerability of one such agent - aripiprazole - differs from that of other comparable second generation antipsychotics. OBJECTIVES: To evaluate the effects of aripiprazole compared with other atypical antipsychotics for people with schizophrenia and schizophrenia-like psychoses. SEARCH METHODS: We searched the Cochrane Schizophrenia Group Trials Register (November 2011), inspected references of all identified studies for further trials, and contacted relevant pharmaceutical companies, drug approval agencies and authors of trials for additional information. SELECTION CRITERIA: We included all randomised clinical trials (RCTs) comparing aripiprazole (oral) with oral and parenteral forms of amisulpride, clozapine, olanzapine, quetiapine, risperidone, sertindole, ziprasidone or zotepine for people with schizophrenia or schizophrenia-like psychoses. DATA COLLECTION AND ANALYSIS: We extracted data independently. For dichotomous data we calculated risk ratios (RR) and their 95% confidence intervals (CI) on an intention-to-treat basis based on a random-effects model. Where possible, we calculated illustrative comparative risks for primary outcomes. For continuous data, we calculated mean differences (MD), again based on a random-effects model. We assessed risk of bias for each included study. MAIN RESULTS: We included 12 trials involving 6389 patients. Aripiprazole was compared to olanzapine, risperidone and ziprasidone. All trials were sponsored by an interested drug manufacturer. The overall number of participants leaving studies early was 30% to 40%, limiting validity (no differences between groups).When compared with olanzapine no differences were apparent for global state (no clinically important change: n = 703, 1 RCT, RR short-term 1.00 95% CI 0.81 to 1.22; n = 317, 1 RCT, RR medium-term 1.08 95% CI 0.95 to 1.22) but mental state tended to favour olanzapine (n = 1360, 3 RCTs, MD total Positive and Negative Syndrome Scale (PANSS) 4.68 95% CI 2.21 to 7.16). There was no significant difference in extrapyramidal symptoms (n = 529, 2 RCTs, RR 0.99 95% CI 0.62 to 1.59) but fewer in the aripiprazole group had increased cholesterol levels (n = 223, 1 RCT, RR 0.32 95% CI 0.19 to 0.54) or weight gain of 7% or more of total body weight (n = 1095, 3 RCTs, RR 0.39 95% CI 0.28 to 0.54).When compared with risperidone, aripiprazole showed no advantage in terms of global state (n = 384, 2 RCTs, RR no important improvement 1.14 95% CI 0.81 to 1.60) or mental state (n = 372, 2 RCTs, MD total PANSS 1.50 95% CI -2.96 to 5.96).One study compared aripiprazole with ziprasidone (n = 247) and both the groups reported similar change in the global state (n = 247, 1 RCT, MD average change in Clinical Global Impression-Severity (CGI-S) score -0.03 95% CI -0.28 to 0.22) and mental state (n = 247, 1 RCT, MD change PANSS -3.00 95% CI -7.29 to 1.29).When compared with any one of several new generation antipsychotic drugs the aripiprazole group showed improvement in global state in energy (n = 523, 1 RCT, RR 0.69 95% CI 0.56 to 0.84), mood (n = 523, 1 RCT, RR 0.77 95% CI 0.65 to 0.92), negative symptoms (n = 523, 1 RCT, RR 0.82 95% CI 0.68 to 0.99), somnolence (n = 523, 1 RCT, RR 0.80 95% CI 0.69 to 0.93) and weight gain (n = 523, 1 RCT, RR 0.84 95% CI 0.76 to 0.94). Significantly more people given aripiprazole reported symptoms of nausea (n = 2881, 3 RCTs, RR 3.13 95% CI 2.12 to 4.61) but weight gain (7% or more of total body weight) was less common in people allocated aripiprazole (n = 330, 1 RCT, RR 0.35 95% CI 0.19 to 0.64). Aripiprazole may have value in aggression but data are limited. This will be the focus of another review. AUTHORS' CONCLUSIONS: Information on all comparisons are of limited quality, are incomplete and problematic to apply clinically. Aripiprazole is an antipsychotic drug with a variant but not absent adverse effect profile. Long-term data are sparse and there is considerable scope for another update of this review as new data emerges from the many Chinese studies as well as from ongoing larger, independent pragmatic trials
    corecore