9 research outputs found

    玉米秸秆快速热解

    No full text
    在不同传热状态下进行了玉米秸秆粉料的热解气化实验,探索了玉米秸秆快速热解制生物油的工艺条件。结果表明:在480℃左右的温度下,实收45%左右的液体产品。采用改进的固体热载体循环流化技术,秸秆粉料也能实现连续高温热解,不用富氧和蒸汽作流化剂,在700℃以上获得了热值大于11MJ/Nm^3的生物煤气

    玉米秸秆快速热解

    No full text
    在不同传热状态下进行了玉米秸秆粉料的热解气化实验,探索了玉米秸秆快速热解制生物油的工艺条件. 结果表明:在480℃左右的温度下,实收45%左右的液体产品. 采用改进的固体热载体循环流化技术,秸秆粉料也能实现连续高温热解,不用富氧和蒸汽作流化剂,在700℃以上获得了热值大于11 MJ/Nm3的生物煤气

    新疆脊椎动物标本生物学资料信息系统

    No full text
    该系统包括新疆脊椎动物五大类的标本资料和生物学资料,建有5个标本库、5个资料库和4个代码库,已存入222种资料信息、251种标本数据及825条动物名录,形成了一个有一定规模的新疆脊椎动物标本、生物学资料的数据实体。系统按常规信息管理系统设计,采用模块化结构,运用多级菜单提供编辑、查询、计算、显示、打印和管理功能,能方便地进行数据的添加、变更、删除;可按中文名称、拉丁文名称和代码进行查询;可按栖息环境、区系分布、标本存放等进行统计并输出结果

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    Prediction of Energy Resolution in the JUNO Experiment

    Get PDF
    International audienceThis paper presents the energy resolution study in the JUNO experiment, incorporating the latest knowledge acquired during the detector construction phase. The determination of neutrino mass ordering in JUNO requires an exceptional energy resolution better than 3% at 1 MeV. To achieve this ambitious goal, significant efforts have been undertaken in the design and production of the key components of the JUNO detector. Various factors affecting the detection of inverse beta decay signals have an impact on the energy resolution, extending beyond the statistical fluctuations of the detected number of photons, such as the properties of liquid scintillator, performance of photomultiplier tubes, and the energy reconstruction algorithm. To account for these effects, a full JUNO simulation and reconstruction approach is employed. This enables the modeling of all relevant effects and the evaluation of associated inputs to accurately estimate the energy resolution. The study reveals an energy resolution of 2.95% at 1 MeV. Furthermore, the study assesses the contribution of major effects to the overall energy resolution budget. This analysis serves as a reference for interpreting future measurements of energy resolution during JUNO data taking. Moreover, it provides a guideline in comprehending the energy resolution characteristics of liquid scintillator-based detectors
    corecore