6 research outputs found

    Copper coordination polymers from cavitand ligands: hierarchical spaces from cage and capsule motifs, and other topologies

    Get PDF
    The cyclotriveratrylene-type ligands (±)-tris(iso-nicotinoyl)cyclotriguaiacylene L1 (±)-tris(4-pyridylmethyl)cyclotriguaiacylene L2 and (±)-tris{4-(4-pyridyl)benzyl}cyclotriguaiacylene L3 all feature 4-pyridyl donor groups and all form coordination polymers with CuI and/or CuII cations that show a remarkable range of framework topologies and structures. Complex [CuI4CuII1.5(L1)3(CN)6]·CN·n(DMF) 1 features a novel 3,4-connected framework of cyano-linked hexagonal metallo-cages. In complexes [Cu3(L2)4(H2O)3]·6(OTf)·n(DMSO) 2 and [Cu2(L3)2Br2(H2O)(DMSO)]·2Br·n(DMSO) 3 capsule-like metallo-cryptophane motifs are formed which linked through their metal vertices into a hexagonal 2D network of (43.123)(42.122) topology or a coordination chain. Complex [Cu2(L1)2(OTf)2(NMP)2(H2O)2]·2(OTf)·2NMP 4 has an interpenetrating 2D 3,4-connected framework of (4.62.8)(62.8)(4.62.82) topology with tubular channels. Complex [Cu(L1)(NCMe)]·BF4·2(CH3CN)·H2O 5 features a 2D network of 63 topology while the CuII analogue [Cu2(L1)2(NMP)(H2O)]·4BF4·12NMP·1.5H2O 6 has an interpenetrating (10,3)-b type structure and complex [Cu2(L2)2Br3(DMSO)]·Br·n(DMSO) 7 has a 2D network of 4.82 topology. Strategies for formation of coordination polymers with hierarchical spaces emerge in this work and complex 2 is shown to absorb fullerene-C60 through soaking the crystals in a toluene solution

    Preparation and Dielectric Characterization of P(VDF-TrFE) Copolymer-Based Composites Containing Metal-Formate Frameworks

    No full text
    We report the synthesis and dielectric characterization of novel polyvinylidene fluoride-trifluoroethylene P(VDF-TrFE) composite films containing [(CH3)2NH2][Mg(HCOO)3] (DMAMg) and [NH4][Zn(HCOO)3] (AmZn) dense metal-organic frameworks (MOFs). The optical camera and Raman microscopies are used to map the distribution of the MOF fillers in the prepared films. The dielectric spectroscopy experiments of the DMAMg/P(VDF-TrFE) composite performed in a broad temperature range demonstrate rich dielectric behavior originating from the dipolar dynamics of the (CH3)2NH2+ molecular cations and glassy behavior of the copolymer matrix. An anomalous behavior of the complex dielectric permittivity is also observed because of the structural phase transition of DMAMg fillers. The dielectric properties of the AmZn/P(VDF-TrFE) composite film are mainly determined by the dipolar glass relaxation of the P(VDF-TrFE) polymer. The frequency-dependent dielectric spectra of both composites allow us to characterize the observed dipolar relaxation processes. The (CH3)2NH2+ cation dynamics follows the Arrhenius law, whereas the glassy behavior of P(VDF-TrFE) is described by the Vogel-Fulcher equation. For both composites, we observe a significant increase of the dielectric permittivity compared with the P(VDF-TrFE) film without MOF fillers.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.ChemE/Catalysis Engineerin
    corecore