4 research outputs found

    Magnetic exchange coupling and Curie temperature of Ni(1+x)MnSb (x=0, 0.25, 0.5, 0.75, 1) from first principles

    Full text link
    We study the dependence of magnetic interactions and Curie temperature in Ni(1+x)MnSb system on the Ni concentration within the framework of the density-functional theory. The calculation of the exchange parameters is based on the super-cell and frozen-magnon approaches. The Curie temperatures, Tc, are calculated within the random-phase approximation. In agreement with experiment we obtain decrease of the Curie temperature with increasing Ni content.Comment: 3 pages, 2 figure

    Role of defects on the electronic and magnetic properties of CrAs/InAs and CrAs/CdSe half-metallic interfaces

    Full text link
    We present an extended study of single impurity atoms at the interface between the half-metallic ferromagnetic zinc-blende CrAs compound and the zinc-blende binary InAs and CdSe semiconductors in the form of very thin multilayers. Contrary to the case of impurities in the perfect bulk CrAs studied in [I. Galanakis and S.G. Pouliasis, J. Magn. Magn. Mat. 321 (2009) 1084] defects at the interfaces do not alter in general the half-metallic character of the perfect systems. The only exception are Void impurities at Cr or In(Cd) sites which lead, due to the lower-dimensionality of the interfaces with respect to the bulk CrAs, to a shift of the pp bands of the nearest neighboring As(Se) atom to higher energies and thus to the loss of the half-metallicity. But Void impurities are Schottky-type and should exhibit high formation energies and thus we expect the interfaces in the case of thin multilayers to exhibit a robust half-metallic character

    Half-metallic ferrimagnetism in the [Sc1−x_{1-x}Vx_x]C and [Sc1−x_{1-x} Vx_x]Si alloys adopting the zinc-blende and wurtzite structures from first-principles

    Full text link
    Employing first-principles calculations we study the structural, electronic and magnetic properties of the [Sc1−x_{1-x}Vx_x]C and [Sc1−x_{1-x}Vx_x]Si alloys. In their equilibrium rocksalt structure all alloys are non-magnetic. The zincblende and wurtzite structures are degenerated with respect to the total energy. For all concentrations the alloys in these lattice structures are half-metallic with the gap located in the spin-down band. The total spin moment follows the Slater-Pauling behavior varying linearly between the -1 μB\mu_B of the perfect ScC and ScSi alloys and the +1 μB\mu_B of the perfect VC and VSi alloys. For the intermediate concentrations V and Sc atoms have antiparallel spin magnetic moments and the compounds are half-metallic ferrimagnets. At the critical concentration, both [Sc0.5_{0.5}V0.5_{0.5}]C and [Sc0.5_{0.5}V0.5_{0.5}]Si alloys present zero total spin-magnetic moment but the C-based alloy shows a semiconducting behavior contrary to the Si-based alloys which is a half-metallic antiferromagnet
    corecore