56 research outputs found

    Identification of novel cyanoacrylate monomers for use in nanoparticle drug delivery systems prepared by miniemulsion polymerisation – A multistep screening approach

    Get PDF
    Poly (alkyl cyanoacrylate) (PACA) polymeric nanoparticles (NPs) are promising drug carriers in drug delivery. However, the selection of commercially available alkyl cyanoacrylate (ACA) monomers is limited, because most monomers were designed for use in medical and industrial glues and later repurposed for drug encapsulation. This study therefore aimed to seek out novel ACA materials for use in NP systems using a toxicity led screening approach. A multistep strategy, including cytotoxicity screening of alcohols as degradation products of PACA (44 alcohols), NPs (14 polymers), and a final in vivo study (2 polymers) gave poly (2-ethylhexyl cyanoacrylate) PEHCA as a promising novel PACA candidate. For the first time, this work presents cytotoxicity data on several novel ACAs, PEHCA in vivo toxicity data, and miniemulsion polymerisation-based encapsulation of the cabazitaxel and NR688 in novel PACA candidates. Furthermore, several of the ACA candidates were compatible with a wider selection of lipophilic active pharmaceutical ingredients (APIs) versus commercially available controls. Combined, this work demonstrates the potential benefits of expanding the array of available ACA materials in drug delivery. Novel ACAs have the potential to encapsulate a wider range of APIs in miniemulsion polymerisation processes and may also broaden PACA applicability in other fields.publishedVersio

    Biodistribution of Poly(alkyl cyanoacrylate) Nanoparticles in Mice and Effect on Tumor Infiltration of Macrophages into a Patient-Derived Breast Cancer Xenograft

    Get PDF
    We have investigated the biodistribution and tumor macrophage infiltration after intravenous injection of the poly(alkyl cyanoacrylate) nanoparticles (NPs): PEBCA (poly(2-ethyl-butyl cyanoacrylate), PBCA (poly(n-butyl cyanoacrylate), and POCA (poly(octyl cyanoacrylate), in mice. These NPs are structurally similar, have similar PEGylation, and have previously been shown to give large variations in cellular responses in vitro. The PEBCA NPs had the highest uptake both in the patient-derived breast cancer xenograft MAS98.12 and in lymph nodes, and therefore, they are the most promising of these NPs for delivery of cancer drugs. High-resolution magic angle spinning magnetic resonance (HR MAS MR) spectroscopy did not reveal any differences in the metabolic profiles of tumors following injection of the NPs, but the PEBCA NPs resulted in higher tumor infiltration of the anti-tumorigenic M1 macrophages than obtained with the two other NPs. The PEBCA NPs also increased the ratio of M1/M2 (anti-tumorigenic/pro-tumorigenic) macrophages in the tumors, suggesting that these NPs might be used both as a vehicle for drug delivery and to modulate the immune response in favor of enhanced therapeutic effects

    Формы и системы оплаты труда работникам предприятия (на примере ОАО «Гомельхлебпром» филиал «Мозырский хлебозавод»)

    Get PDF
    Ligands for identifying protein aggregates are of great interest as such deposits are the pathological hallmark of a wide range of severe diseases including Alzheimers and Parkinsons disease. Here we report the synthesis of an azide functionalized fluorescent pentameric oligothiophene that can be utilized as a ligand for multimodal detection of disease-associated protein aggregates. The azide functionalization allows for attachment of the ligand to a surface by conventional click chemistry without disturbing selective interaction with protein aggregates and the oligothiophene-aggregate interaction can be detected by fluorescence or surface plasmon resonance. In addition, a methodology where the oligothiophene ligand is employed as a capturing molecule selective for aggregated proteins in combination with an antibody detecting a distinct peptide/protein is also presented. We foresee that this methodology will offer the possibility to create a variety of multiplex sensing systems for sensitive and selective detection of protein aggregates, the pathological hallmarks of several neurodegenerative diseases.Funding Agencies|Swedish Foundation for Strategic Research; Ehrling Persson Foundation; ERC Starting Independent Researcher grant (Project: MUMID)</p

    Designing thiophene-based fluorescent probes for the study of neurodegenerative protein aggregation diseases : From test tube to in vivo experiments

    No full text
    Protein aggregation is an event related to numerous neurodegenerative diseases, such as Alzhemier’s disease and prion diseases. However little is known as to how and why the aggregates form and furthermore, the toxic specie may not be the mature fibril but an on route or off route specie towards mature aggregates. During this project molecular probes were synthesized that may shed some light to these questions. The probes are thiophene based and the technique used for detection was mainly fluorescence. It was shown that the previously established thiophene based in vitro staining technique is valid ex vivo and in vivo. This would not have been possible without the synthesis of a variety of functionalized polymeric thiophene based probes; their in vitro and ex vivo staining properties were taken into consideration when the design of the small oligomeric probes were decided upon. These probes were shown to spectrally distinguish different types of amyloid, pass the bloodbrain barrier within minutes and specifically and selectively stain protein aggregates in the brains of mice

    Flodpärlmussla, Resultat från inventeringarna 1996-2005

    No full text
    I denna rapport redovisas de insatser som gjorts för att kartlägga Jämtlands läns bestånd av flodpärlmussla (Margaritifera margaritifera). En kartläggning av historiska bestånd har gjorts, mestadels baserad på litteraturstudier. I rapporten redovisas resultaten från det inventeringsarbete som utförts av Länsstyrelsen i Jämtlands län åren 1996-2005. Resultaten presenteras i form av kartor, figurer och tabeller där beståndens geografiska lokalisering, storlek och reproduktionsstatus redovisas. Länet har idag 53 lokaler med bestånd av flodpärlmussla. I 30 stycken av dessa bestånd förekommer reproduktion men i över hälften (18st) är reproduktionen svag. 12 av bestånden har ett uppskattat individantal på över 10000 individer. Jämtland har i dagsläget Sveriges största bestånd av flodpärlmussla. I Storån, norr om Hammerdal, har antalet individer beräknats till 4,5 miljoner. En mer omfattande analys av läget för flodpärlmusslan i länet kommer att göras då inventeringsmaterialet datalagts i större omfattning och då ytterligare miljödata finns sammanställda. Slutsatserna pekar på vikten av att ytterligare miljödata tillgängliggörs för att möjliggöra en fördjupad analys av musselbeståndens och omgivningsparametrarnas status. Slutligen presenteras hur Länsstyrelsens arbete med flodpärlmussla kommer att fortskrida under 2006, med bl a utformning av ett miljöövervakningsprogram och planering av skyddsåtgärder.Regionala inventeringsrapporter import från MDP 2015-05</p

    Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model

    Get PDF
    The treatment of brain diseases is hindered by the blood-brain barrier (BBB) preventing most drugs from entering the brain. Focused ultrasound (FUS) with microbubbles can open the BBB safely and reversibly. Systemic drug injection might induce toxicity, but encapsulation into nanoparticles reduces accumulation in normal tissue. Here we used a novel platform based on poly(2-ethyl-butyl cyanoacrylate) nanoparticle-stabilized microbubbles to permeabilize the BBB in a melanoma brain metastasis model. With a dual-frequency ultrasound transducer generating FUS at 1.1 MHz and 7.8 MHz, we opened the BBB using nanoparticle-microbubbles and low-frequency FUS, and applied high-frequency FUS to generate acoustic radiation force and push nanoparticles through the extracellular matrix. Using confocal microscopy and image analysis, we quantified nanoparticle extravasation and distribution in the brain parenchyma. We also evaluated haemorrhage, as well as the expression of P-glycoprotein, a key BBB component. FUS and microbubbles distributed nanoparticles in the brain parenchyma, and the distribution depended on the extent of BBB opening. The results from acoustic radiation force were not conclusive, but in a few animals some effect could be detected. P-glycoprotein was not significantly altered immediately after sonication. In summary, FUS with our nanoparticle-stabilized microbubbles can achieve accumulation and displacement of nanoparticles in the brain parenchyma.publishedVersio

    Therapeutic Effect of Cabazitaxel and Blood-Brain Barrier opening in a Patient-Derived Glioblastoma Model

    Get PDF
    Treatment of glioblastoma and other diseases in the brain is especially challenging due to the blood-brain barrier, which effectively protects the brain parenchyma. In this study we show for the first time that cabazitaxel, a semi-synthetic derivative of docetaxel can cross the blood-brain barrier and give a significant therapeutic effect in a patient-derived orthotopic model of glioblastoma. We show that the drug crosses the blood-brain barrier more effectively in the tumor than in the healthy brain due to reduced expression of p-glycoprotein efflux pumps in the vasculature of the tumor. Surprisingly, neither ultrasound-mediated blood-brain barrier opening (sonopermeation) nor drug formulation in polymeric nanoparticles could increase either accumulation of the drug in the brain or therapeutic effect. This indicates that for hydrophobic drugs, sonopermeation of the blood brain barrier might not be sufficient to achieve improved drug delivery. Nonetheless, our study shows that cabazitaxel is a promising drug for the treatment of brain tumors.publishedVersio

    Contact-mediated intracellular delivery of hydrophobic drugs from polymeric nanoparticles

    Get PDF
    Encapsulation of drugs in nanoparticles can enhance the accumulation of drugs in tumours, reduce toxicity toward healthy tissue, and improve pharmacokinetics compared to administration of free drug. To achieve efficient delivery and release of drugs at the target site, mechanisms of interaction between the nanoparticles and cells and the mechanism of delivery of the encapsulated drug are crucial to understand. Our aim was to determine the mechanisms for cellular uptake of a fluorescent hydrophobic model drug from poly(butylcyanoacrylate) nanoparticles. Prostate adenocarcinoma cells were incubated with Nile Red-loaded nanoparticles or free Nile Red. Uptake and intracellular distribution were evaluated by flow cytometry and confocal laser scanning microscopy. The nanoparticles mediated a higher intracellular level and more rapid uptake of encapsulated Nile Red compared to model drug administered alone. The main mechanism for delivery was not by endocytosis of nanoparticles but by nanoparticle-cell contact-mediated transfer directly to the cytosol and, to a smaller extent, release of payload from nanoparticles into the medium followed by diffusion into cells. The payload thus avoids entering the endocytic pathway, evading lysosomal degradation and instead gains direct access to intracellular targets. The nanoparticles are promising tools for efficient intracellular delivery of hydrophobic anticancer drugs; therefore, they are clinically relevant for improved cancer therapy

    Effect of ultrasound on the vasculature and extravasation of nanoscale particles imaged in real time

    Get PDF
    Ultrasound and microbubbles have been found to improve the delivery of drugs and nanoparticles to tumor tissue. To obtain new knowledge on the influence of vascular parameters on extravasation and to elucidate the effect of acoustic pressure on extravasation and penetration of nanoscale particles into the extracellular matrix, real-time intravital multiphoton microscopy was performed during sonication of tumors growing in dorsal window chambers. The impact of vessel diameter, vessel structure and blood flow was characterized. Fluorescein isothiocyanate–dextran (2 MDa) was injected to visualize blood vessels. Mechanical indexes (MI) of 0.2–0.8 and in-house-made, nanoparticle-stabilized microbubbles or Sonovue were applied. The rate and extent of penetration into the extracellular matrix increased with increasing MI. However, to achieve extravasation, smaller vessels required MIs (0.8) higher than those of blood vessels with larger diameters. Ultrasound changed the blood flow rate and direction. Interestingly, the majority of extravasations occurred at vessel branching points.publishedVersio
    corecore