2,286 research outputs found
Prayer and subjective well-being: An examination of six different types of prayer
Participants (N = 430) were recruited online and completed a measure of six prayer types (adoration, confession, thanksgiving, supplication, reception, and obligatory prayer). Measures of subjective well-being (self-esteem, optimism, meaning in life, satisfaction with life) were also administered. Three forms of prayer (adoration, thanksgiving, reception) had consistently positive relations with well-being measures, whereas the other three forms of prayer had negative or null relations with the well-being measures. The prayer types having positive effects appear to be less ego-focused, and more focused on God, whereas the negative types have an opposite nature. These results highlight the role of psychological meaning as a part of the process whereby prayer impacts psychological well-being
Prayer and subjective well-being: An examination of six different types of prayer
Participants (N = 430) were recruited online and completed a measure of six prayer types (adoration, confession, thanksgiving, supplication, reception, and obligatory prayer). Measures of subjective well-being (self-esteem, optimism, meaning in life, satisfaction with life) were also administered. Three forms of prayer (adoration, thanksgiving, reception) had consistently positive relations with well-being measures, whereas the other three forms of prayer had negative or null relations with the well-being measures. The prayer types having positive effects appear to be less ego-focused, and more focused on God, whereas the negative types have an opposite nature. These results highlight the role of psychological meaning as a part of the process whereby prayer impacts psychological well-being
Prayer and subjective well-being: An examination of six different types of prayer
Participants (N = 430) were recruited online and completed a measure of six prayer types (adoration, confession, thanksgiving, supplication, reception, and obligatory prayer). Measures of subjective well-being (self-esteem, optimism, meaning in life, satisfaction with life) were also administered. Three forms of prayer (adoration, thanksgiving, reception) had consistently positive relations with well-being measures, whereas the other three forms of prayer had negative or null relations with the well-being measures. The prayer types having positive effects appear to be less ego-focused, and more focused on God, whereas the negative types have an opposite nature. These results highlight the role of psychological meaning as a part of the process whereby prayer impacts psychological well-being
Long-Tailed Trapping Times and Levy Flights in a Self-Organized Critical Granular System
We present a continuous time random walk model for the scale-invariant
transport found in a self-organized critical rice pile [Christensen et al.,
Phys. Rev. Lett. 77, 107 (1996)]. From our analytical results it is shown that
the dynamics of the experiment can be explained in terms of L\'evy flights for
the grains and a long-tailed distribution of trapping times. Scaling relations
for the exponents of these distributions are obtained. The predicted
microscopic behavior is confirmed by means of a cellular automaton model.Comment: 4 pages, RevTex, includes 3 PostScript figures, submitted to Phys.
Rev. Let
Transport Properties of Highly Aligned Polymer Light-Emitting-Diodes
We investigate hole transport in polymer light-emitting-diodes in which the
emissive layer is made of liquid-crystalline polymer chains aligned
perpendicular to the direction of transport. Calculations of the current as a
function of time via a random-walk model show excellent qualitative agreement
with experiments conducted on electroluminescent polyfluorene demonstrating
non-dispersive hole transport. The current exhibits a constant plateau as the
charge carriers move with a time-independent drift velocity, followed by a long
tail when they reach the collecting electrode. Variation of the parameters
within the model allows the investigation of the transition from non-dispersive
to dispersive transport in highly aligned polymers. It turns out that large
inter-chain hopping is required for non-dispersive hole transport and that
structural disorder obstructs the propagation of holes through the polymer
film.Comment: 4 pages, 5 figure
Let me Google that for you:a time series analysis of seasonality in internet search trends for terms related to foot and ankle pain
BACKGROUND: The analysis of internet search traffic may present the opportunity to gain insights into general trends and patterns in information seeking behaviour related to medical conditions at a population level. For prevalent and widespread problems such as foot and ankle pain, this information has the potential to improve our understanding of seasonality and trends within these conditions and their treatments, and may act as a useful proxy for their true incidence/prevalence characteristics. This study aimed to explore seasonal effects, general trends and relative popularity of internet search terms related to foot and ankle pain over the past decade. METHODS: We used the Google Trends tool to obtain relative search engine traffic for terms relating to foot and ankle pain and common treatments from Google search and affiliated pages for major northern and southern hemisphere English speaking nations. Analysis of overall trends and seasonality including summer/winter differences was carried out on these terms. RESULTS: Searches relating to general foot pain were on average 3.4 times more common than those relating to ankle pain, and twice as common as searches relating to heel pain. Distinct seasonal effects were seen in the northern hemisphere, with large increases in search volumes in the summer months compared to winter for foot (p = 0.004, 95 % CI [22.2–32.1]), ankle (p = 0.0078, 95 % CI [20.9–35.5]), and heel pain (p = 0.004, 95 % CI [29.1–45.6]). These seasonal effects were reflected by data from Australia, with the exception of ankle pain. Annual seasonal effects for treatment options were limited to terms related to foot surgery and ankle orthoses (p = 0.031, 95 % CI [3.5–20.9]; p = 0.004, 95 % CI [7.6–25.2] respectively), again increasing in the summer months. CONCLUSIONS: A number of general trends and annual seasonal effects were found in time series internet search data for terms relating to foot and ankle pain. This data may provide insights into these conditions at population levels. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13047-015-0074-9) contains supplementary material, which is available to authorized users
Multiscale Analysis of the Stress State in a Granular Slope in Transition to Failure
By means of contact dynamics simulations, we analyze the stress state in a
granular bed slowly tilted towards its angle of repose. An increasingly large
number of grains are overloaded in the sense that they are found to carry a
stress ratio above the Coulomb yield threshold of the whole packing. Using this
property, we introduce a coarse-graining length scale at which all stress
ratios are below the packing yield threshold. We show that this length
increases with the slope angle and jumps to a length comparable to the depth of
the granular bed at an angle below the angle of repose. This transition
coincides with the onset of dilatation in the packing. We map this transition
into a percolation transition of the overloaded grains, and we argue that in
the presence of long-range correlations above the transition angle, the
granular slope is metastable.Comment: 11 pages, 14 Fig, submitted to PR
Theory of continuum percolation I. General formalism
The theoretical basis of continuum percolation has changed greatly since its
beginning as little more than an analogy with lattice systems. Nevertheless,
there is yet no comprehensive theory of this field. A basis for such a theory
is provided here with the introduction of the Potts fluid, a system of
interacting -state spins which are free to move in the continuum. In the limit, the Potts magnetization, susceptibility and correlation functions
are directly related to the percolation probability, the mean cluster size and
the pair-connectedness, respectively. Through the Hamiltonian formulation of
the Potts fluid, the standard methods of statistical mechanics can therefore be
used in the continuum percolation problem.Comment: 26 pages, Late
Monte-Carlo simulations of the recombination dynamics in porous silicon
A simple lattice model describing the recombination dynamics in visible light
emitting porous Silicon is presented. In the model, each occupied lattice site
represents a Si crystal of nanometer size. The disordered structure of porous
Silicon is modeled by modified random percolation networks in two and three
dimensions. Both correlated (excitons) and uncorrelated electron-hole pairs
have been studied. Radiative and non-radiative processes as well as hopping
between nearest neighbor occupied sites are taken into account. By means of
extensive Monte-Carlo simulations, we show that the recombination dynamics in
porous Silicon is due to a dispersive diffusion of excitons in a disordered
arrangement of interconnected Si quantum dots. The simulated luminescence decay
for the excitons shows a stretched exponential lineshape while for uncorrelated
electron-hole pairs a power law decay is suggested. Our results successfully
account for the recombination dynamics recently observed in the experiments.
The present model is a prototype for a larger class of models describing
diffusion of particles in a complex disordered system.Comment: 33 pages, RevTeX, 19 figures available on request to
[email protected]
Temperature and Field Dependence of the Mobility in Liquid-Crystalline Conjugated Polymer Films
The transport properties of organic light-emitting diodes in which the
emissive layer is composed of conjugated polymers in the liquid-crystalline
phase have been investigated. We have performed simulations of the current
transient response to an illumination pulse via the Monte Carlo approach, and
from the transit times we have extracted the mobility of the charge carriers as
a function of both the electric field and the temperature. The transport
properties of such films are different from their disordered counterparts, with
charge carrier mobilities exhibiting only a weak dependence on both the
electric field and temperature. We show that for spatially ordered polymer
films, this weak dependence arises for thermal energy being comparable to the
energetic disorder, due to the combined effect of the electrostatic and thermal
energies. The inclusion of spatial disorder, on the other hand, does not alter
the qualitative behaviour of the mobility, but results in decreasing its
absolute value.Comment: 9 pages, 8 figures, submitted to Phys. Rev.
- …