The transport properties of organic light-emitting diodes in which the
emissive layer is composed of conjugated polymers in the liquid-crystalline
phase have been investigated. We have performed simulations of the current
transient response to an illumination pulse via the Monte Carlo approach, and
from the transit times we have extracted the mobility of the charge carriers as
a function of both the electric field and the temperature. The transport
properties of such films are different from their disordered counterparts, with
charge carrier mobilities exhibiting only a weak dependence on both the
electric field and temperature. We show that for spatially ordered polymer
films, this weak dependence arises for thermal energy being comparable to the
energetic disorder, due to the combined effect of the electrostatic and thermal
energies. The inclusion of spatial disorder, on the other hand, does not alter
the qualitative behaviour of the mobility, but results in decreasing its
absolute value.Comment: 9 pages, 8 figures, submitted to Phys. Rev.