42 research outputs found

    Creating an Instrument to Measure Student Response to Instructional Practices

    Full text link
    BackgroundCalls for the reform of education in science, technology, engineering, and mathematics (STEM) have inspired many instructional innovations, some research based. Yet adoption of such instruction has been slow. Research has suggested that students’ response may significantly affect an instructor’s willingness to adopt different types of instruction.PurposeWe created the Student Response to Instructional Practices (StRIP) instrument to measure the effects of several variables on student response to instructional practices. We discuss the step‐by‐step process for creating this instrument.Design/MethodThe development process had six steps: item generation and construct development, validity testing, implementation, exploratory factor analysis, confirmatory factor analysis, and instrument modification and replication. We discuss pilot testing of the initial instrument, construct development, and validation using exploratory and confirmatory factor analyses.ResultsThis process produced 47 items measuring three parts of our framework. Types of instruction separated into four factors (interactive, constructive, active, and passive); strategies for using in‐class activities into two factors (explanation and facilitation); and student responses to instruction into five factors (value, positivity, participation, distraction, and evaluation).ConclusionsWe describe the design process and final results for our instrument, a useful tool for understanding the relationship between type of instruction and students’ response.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136692/1/jee20162_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136692/2/jee20162.pd

    Interdisciplinary Laboratory Course Facilitating Knowledge Integration, Mutualistic Teaming, and Original Discovery

    No full text
    Experiencing the thrill of an original scientific discovery can be transformative to students unsure about becoming a scientist, yet few courses offer authentic research experiences. Increasingly, cutting-edge discoveries require an interdisciplinary approach not offered in current departmental-based courses. Here, we describe a one-semester, learning laboratory course on organismal biomechanics offered at our large research university that enables interdisciplinary teams of students from biology and engineering to grow intellectually, collaborate effectively, and make original discoveries. To attain this goal, we avoid traditional "cookbook" laboratories by training 20 students to use a dozen research stations. Teams of five students rotate to a new station each week where a professor, graduate student, and/or team member assists in the use of equipment, guides students through stages of critical thinking, encourages interdisciplinary collaboration, and moves them toward authentic discovery. Weekly discussion sections that involve the entire class offer exchange of discipline-specific knowledge, advice on experimental design, methods of collecting and analyzing data, a statistics primer, and best practices for writing and presenting scientific papers. The building of skills in concert with weekly guided inquiry facilitates original discovery via a final research project that can be presented at a national meeting or published in a scientific journal
    corecore