362,859 research outputs found

    Panel Session Content

    Get PDF
    Space Research Chairman: Dr. Knox Millsaps, University of Florida, P,O, Box 13857 Gainesville, Fla. Co-Chairman: Mr. E. P. Wynne, General Electric Co., 7011 N. Atlantic Ave., Cape Canaveral, Fla. Content: 1. Lighting conditions for a Lunar Landing Mission by V. Hamza of Bellcomm, Inc., Washington, D.C. 2. Experimental Investigation at M-20 of the Longitudinal Aerodynamic Characteristics, Pressure and Heat Transfer Distribution on a 50° Semivertex Angle Sphere-Cone by s. Steinberg and A. R. Flesher of Martin Company, Baltimore, Maryland 3. Solid Propellant Power Systems for Normal and Emergency Space Operations by F. B. Pollard of Aero/Astro Research, Manhattan Beach, California 4. Generalized Dissociating Gas Flow by A, J. Schwalb of Martin Company, Orlando and P. D. Arthur of GENESYS, Univ. of Florida, Cape Canaveral, Fla

    Lincoln - Douglas Tri-Celebration, February 12, 1913

    Get PDF
    Program: 1863 -- Tri-Celebration – 1913 Lincoln Douglas: 50 years of freedom. Auspices of The Lincoln Memorial Association, Jacksonville, Fla. February 12, 1913. Note: page 8, photograph of Miss Eartha M. M. White, President of the Lincoln Memorial Association, Mr. Harry Canty, Vice President, Mr. S. D. McGills, Treasurer, and Mr. C. A. Menton, Secretary (no photograph). Program includes many advertisements for local African American businesses

    Panel Session Content

    Get PDF
    Education Chairman: Dr. M. C. Park, Brevard Junior College, Cocoa, Florida Co-Chairman: Dr. M. C. Park Content: 1. Life Support and Education by A, D, McNair and P, J, Meyer, Bendix Corporation, Life Support Division (Not in Proceedings) 2. Higher Education by President L. C, Muller, Brevard Junior College (Not in Proceedings) 3. Forecasting the Cultural Climate of the 1970\u27s in Brevard County by R, E, Horn, Indialantic, Florida (Not in Proceedings) 4. The Importance of the Humanities in a Science Education by Dean J, E, Miller, Florida Institute of Technology, Melbourne, Fla, (Not in Proceedings) 5. The Continuing Education of Public Officials in the Space Era by H, B, Long, Urban Research Center, Florida State University, Tallahassee 6. Developing Research Capabilities in the High Schools by D, D, Woodbridge, Florida Institute of Technology, Melbourne, Fla, 7. Graduate Teaching by TV: The GENESYS Network of the University of Florida by Dr, P, D, Arthur, GENESYS, Cape Canveral, Florida 8. Speeding New Technology into Advanced Undergraduate & Graduate Engineering Curricula by K, A, McCollum, Oklahoma State University (Not in Proceedings) 9. A Systems Approach to Aerospace Education & Training by E, L, McCollum & W, F, Lowe, Ling-Temco-Vought, Aeronautics Div., Dallas,Texa

    Evidence of viable Helicobacter pylori and other bacteria of public health interest associated with free-living amoeba in lettuce samples by next generation sequencing and other molecular techniques

    Full text link
    [EN] Vegetables are one of the sources from which Helicobacter pylori can be acquired. This bacterium infects > 50% of the global population and is a recognized type I human carcinogen. H. pylori enters into the viable but nonculturable state when it is in the environment, and therefore the use of molecular techniques is much convenient for its detection. Free-living amoebae (FLA) are protozoans found in vegetables. They are transmission vehicles for amoeba-resistant bacteria, among which H. pylori is included. The aim of this study is to study the occurrence and viability of H. pylori from lettuce samples, H. pylori internalized into FLA and the microbiome of FLA isolated from these samples. Special focus was pointed to human pathogenic bacteria. H. pylori was not directly detected in any lettuce sample by means of molecular techniques and neither by culture. However, intra-amoebic H. pylori DNA was detected by means of PMA-qPCR in 55% of the samples and viable intra-amoebic H. pylori cells in 25% of the samples by means of DVC-FISH technique. When FLA microbiome was studied, 21 bacterial genera were part of FLA microbiome in all samples. Helicobacter genus was detected as part of the FLA microbiome in two samples. Other bacteria of public health interest such as Aeromonas sp., Arcobacter sp., Legionella sp., Mycobacterium sp., Pseudomonas sp. and Salmonella sp. were detected as part of FLA microbiome along the analysed samples. This study demonstrates for the first time that H. pylori is internalized as well as alive inside FLA isolated from vegetables. Moreover, this study shows that FLA promote H. pylori detection in environmental samples. In addition, as far as we are aware, this is the first study which studies the microbiome of FLA isolated from vegetables. Among the FLA microbiome, bacteria of public health interest were detected, pointing out that FLA are carriers of these pathogens which can reach humans and cause a public health concern.This study has been supported by the Conselleria de Educacion, Investigacion, Cultura y Deporte, of the Community of Valencia, Spain, within the program of support for research under project AICO/2018/273. The author Laura Moreno-Mesonero is the recipient of a technician contract funded by the Consellerfa de Educacion, Investigacion, Cultura y Deporte, of the Community of Valencia, Spain, within the program of support for research under project AICO/2018/273.Moreno-Mesonero, L.; Hortelano, I.; Moreno Trigos, MY.; FerrĂșs PĂ©rez, MA. (2020). Evidence of viable Helicobacter pylori and other bacteria of public health interest associated with free-living amoeba in lettuce samples by next generation sequencing and other molecular techniques. International Journal of Food Microbiology. 318:1-8. https://doi.org/10.1016/j.ijfoodmicro.2019.108477S18318AgustĂ­, G., Codony, F., Fittipaldi, M., Adrados, B., & MoratĂł, J. (2010). Viability Determination of Helicobacter pylori Using Propidium Monoazide Quantitative PCR. Helicobacter, 15(5), 473-476. doi:10.1111/j.1523-5378.2010.00794.xAndersen, A. P., Elliott, D. A., Lawson, M., Barland, P., Hatcher, V. B., & Puszkin, E. G. (1997). Growth and morphological transformations of Helicobacter pylori in broth media. Journal of Clinical Microbiology, 35(11), 2918-2922. doi:10.1128/jcm.35.11.2918-2922.1997Azevedo, N. F., Almeida, C., Cerqueira, L., Dias, S., Keevil, C. W., & Vieira, M. J. (2007). Coccoid Form of Helicobacter pylori as a Morphological Manifestation of Cell Adaptation to the Environment. Applied and Environmental Microbiology, 73(10), 3423-3427. doi:10.1128/aem.00047-07Bai, X., Xi, C., & Wu, J. (2016). Survival of Helicobacter pylori in the wastewater treatment process and the receiving river in Michigan, USA. Journal of Water and Health, 14(4), 692-698. doi:10.2166/wh.2016.259Barker, J., & Brown, M. R. W. (1994). Trojan Horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology, 140(6), 1253-1259. doi:10.1099/00221287-140-6-1253Batra, P., Mathur, P., & Misra, M. C. (2016). Aeromonas spp.: An Emerging Nosocomial Pathogen. Journal of Laboratory Physicians, 8(01), 001-004. doi:10.4103/0974-2727.176234Burstein, D., Amaro, F., Zusman, T., Lifshitz, Z., Cohen, O., Gilbert, J. A., 
 Segal, G. (2016). Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nature Genetics, 48(2), 167-175. doi:10.1038/ng.3481Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., 
 Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. doi:10.1038/nmeth.f.303CELLINI, L., ROBUFFO, I., CAMPLI, E., BARTOLOMEO, S., TARABORELLI, T., & DAINELLI, B. (1998). Recovery ofHelicobacter pyloriATCC43504 from a viable but not culturable state: regrowth or resuscitation? APMIS, 106(1-6), 571-579. doi:10.1111/j.1699-0463.1998.tb01386.xCengiz, A., Harmis, N., & Stapleton, F. (2000). Co-incubation of Acanthamoeba castellanii with strains of Pseudomonas aeruginosa alters the survival of amoeba. Clinical and Experimental Ophthalmology, 28(3), 191-193. doi:10.1046/j.1442-9071.2000.00291.xChavatte, N., Lambrecht, E., Van Damme, I., Sabbe, K., & Houf, K. (2016). Abundance, diversity and community composition of free-living protozoa on vegetable sprouts. Food Microbiology, 55, 55-63. doi:10.1016/j.fm.2015.11.013Comeau, A. M., Douglas, G. M., & Langille, M. G. I. (2017). Microbiome Helper: a Custom and Streamlined Workflow for Microbiome Research. mSystems, 2(1). doi:10.1128/msystems.00127-16Delafont, V., Brouke, A., Bouchon, D., Moulin, L., & HĂ©chard, Y. (2013). Microbiome of free-living amoebae isolated from drinking water. Water Research, 47(19), 6958-6965. doi:10.1016/j.watres.2013.07.047Di Rienzi, S. C., Sharon, I., Wrighton, K. C., Koren, O., Hug, L. A., Thomas, B. C., 
 Ley, R. E. (2013). The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife, 2. doi:10.7554/elife.01102Ferreira, S., LuĂ­s, Â., Oleastro, M., Pereira, L., & Domingues, F. C. (2019). A meta-analytic perspective on Arcobacter spp. antibiotic resistance. Journal of Global Antimicrobial Resistance, 16, 130-139. doi:10.1016/j.jgar.2018.12.018Gaze, W. H., Burroughs, N., Gallagher, M. P., & Wellington, E. M. H. (2003). Interactions between Salmonella typhimurium and Acanthamoeba polyphaga , and Observation of a New Mode of Intracellular Growth within Contractile Vacuoles. Microbial Ecology, 46(3), 358-369. doi:10.1007/s00248-003-1001-3Gellatly, S. L., & Hancock, R. E. W. (2013). Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathogens and Disease, 67(3), 159-173. doi:10.1111/2049-632x.12033Ghenghesh, K. S., Ghenghesh, K. S., Ahmed, S. F., El-Khalek, R. A., Al-Gendy, A., & Klena, J. (2008). Aeromonas-Associated Infections in Developing Countries. Journal of Infection in Developing Countries, 2(2), 81. doi:10.3855/t2.2.81Gourabathini, P., Brandl, M. T., Redding, K. S., Gunderson, J. H., & Berk, S. G. (2008). Interactions between Food-Borne Pathogens and Protozoa Isolated from Lettuce and Spinach. Applied and Environmental Microbiology, 74(8), 2518-2525. doi:10.1128/aem.02709-07Hooi, J. K. Y., Lai, W. Y., Ng, W. K., Suen, M. M. Y., Underwood, F. E., Tanyingoh, D., 
 Ng, S. C. (2017). Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology, 153(2), 420-429. doi:10.1053/j.gastro.2017.04.022Hsueh, T.-Y., & Gibson, K. E. (2015). Transfer of Acanthamoeba spp. to fresh produce from water and environmental surfaces. Letters in Applied Microbiology, 61(2), 192-198. doi:10.1111/lam.12445Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., 
 Banfield, J. F. (2016). A new view of the tree of life. Nature Microbiology, 1(5). doi:10.1038/nmicrobiol.2016.48Huse, S. M., Dethlefsen, L., Huber, J. A., Mark Welch, D., Relman, D. A., & Sogin, M. L. (2008). Correction: Exploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable Tag Sequencing. PLoS Genetics, 4(12). doi:10.1371/annotation/3d8a6578-ce56-45aa-bc71-05078355b851Iovieno, A., Ledee, D. R., Miller, D., & Alfonso, E. C. (2010). Detection of Bacterial Endosymbionts in Clinical Acanthamoeba Isolates. Ophthalmology, 117(3), 445-452.e3. doi:10.1016/j.ophtha.2009.08.033Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., & Glöckner, F. O. (2012). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research, 41(1), e1-e1. doi:10.1093/nar/gks808Kopylova, E., NoĂ©, L., & Touzet, H. (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics, 28(24), 3211-3217. doi:10.1093/bioinformatics/bts611KUROKAWA, M., NUICINA, M., NAKANISHI, H., TOMITA, S., TAMURA, T., & SHIMOYAMA, T. (1999). Resuscitation from the Viable but Nonculturable State of Helicobacter pylori. Journal of the Japanese Association for Infectious Diseases, 73(1), 15-19. doi:10.11150/kansenshogakuzasshi1970.73.15Del Mar LleĂČ, M., Benedetti, D., Tafi, M. C., Signoretto, C., & Canepari, P. (2007). Inhibition of the resuscitation from the viable but non-culturable state in Enterococcus faecalis. Environmental Microbiology, 9(9), 2313-2320. doi:10.1111/j.1462-2920.2007.01345.xLyczak, J. B., Cannon, C. L., & Pier, G. B. (2000). Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist1*Address for correspondence: Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA. Microbes and Infection, 2(9), 1051-1060. doi:10.1016/s1286-4579(00)01259-4LYNCH, M. F., TAUXE, R. V., & HEDBERG, C. W. (2009). The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiology and Infection, 137(3), 307-315. doi:10.1017/s0950268808001969Marshall, B. (2002). Helicobacter pylori: 20 years on. Clinical Medicine, 2(2), 147-152. doi:10.7861/clinmedicine.2-2-147JosĂ© Maschio, V., Corção, G., & Rott, M. B. (2015). IDENTIFICATION OF Pseudomonas spp. AS AMOEBA-RESISTANT MICROORGANISMS IN ISOLATES OF Acanthamoeba. Revista do Instituto de Medicina Tropical de SĂŁo Paulo, 57(1), 81-83. doi:10.1590/s0036-46652015000100012McLean, J. S., Lombardo, M.-J., Badger, J. H., Edlund, A., Novotny, M., Yee-Greenbaum, J., 
 Lasken, R. S. (2013). Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proceedings of the National Academy of Sciences, 110(26), E2390-E2399. doi:10.1073/pnas.1219809110Medina, G., Flores-Martin, S., Fonseca, B., Otth, C., & Fernandez, H. (2014). Mechanisms associated with phagocytosis of Arcobacter butzleri by Acanthamoeba castellanii. Parasitology Research, 113(5), 1933-1942. doi:10.1007/s00436-014-3842-8Moreno, Y., FerrĂșs, M. A., Alonso, J. L., JimĂ©nez, A., & HernĂĄndez, J. (2003). Use of fluorescent in situ hybridization to evidence the presence of Helicobacter pylori in water. Water Research, 37(9), 2251-2256. doi:10.1016/s0043-1354(02)00624-3Moreno, Y., Moreno-Mesonero, L., & GarcĂ­a-HernĂĄndez, J. (2019). DVC-FISH to identify potentially pathogenic Legionella inside free-living amoebae from water sources. Environmental Research, 176, 108521. doi:10.1016/j.envres.2019.06.002Moreno-Mesonero, L., Moreno, Y., Alonso, J. L., & FerrĂșs, M. A. (2016). DVC-FISH and PMA-qPCR techniques to assess the survival of Helicobacter pylori inside Acanthamoeba castellanii. Research in Microbiology, 167(1), 29-34. doi:10.1016/j.resmic.2015.08.002Moreno-Mesonero, L., Moreno, Y., Alonso, J. L., & FerrĂșs, M. A. (2017). Detection of viableHelicobacter pyloriinside free-living amoebae in wastewater and drinking water samples from Eastern Spain. Environmental Microbiology, 19(10), 4103-4112. doi:10.1111/1462-2920.13856Ng, C. G., Loke, M. F., Goh, K. L., Vadivelu, J., & Ho, B. (2017). Biofilm formation enhances Helicobacter pylori survivability in vegetables. Food Microbiology, 62, 68-76. doi:10.1016/j.fm.2016.10.010Nilsson, H.-O., Blom, J., Al-Soud, W. A., Ljungh, A., Andersen, L. P., & Wadström, T. (2002). Effect of Cold Starvation, Acid Stress, and Nutrients on Metabolic Activity of Helicobacter pylori. Applied and Environmental Microbiology, 68(1), 11-19. doi:10.1128/aem.68.1.11-19.2002Olofsson, J., Axelsson-Olsson, D., Brudin, L., Olsen, B., & Ellström, P. (2013). Campylobacter jejuni Actively Invades the Amoeba Acanthamoeba polyphaga and Survives within Non Digestive Vacuoles. PLoS ONE, 8(11), e78873. doi:10.1371/journal.pone.0078873Percival, S. L., & Thomas, J. G. (2009). Transmission of Helicobacter pylori and the role of water and biofilms. Journal of Water and Health, 7(3), 469-477. doi:10.2166/wh.2009.070Piqueres, P., Moreno, Y., Alonso, J. L., & FerrĂșs, M. A. (2006). A combination of direct viable count and fluorescent in situ hybridization for estimating Helicobacter pylori cell viability. Research in Microbiology, 157(4), 345-349. doi:10.1016/j.resmic.2005.09.003Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., 
 Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 41(D1), D590-D596. doi:10.1093/nar/gks1219Rahman, M., Abd, H., Romling, U., Sandstrom, G., & Möllby, R. (2008). Aeromonas–Acanthamoeba interaction and early shift to a viable but nonculturable state of Aeromonas by Acanthamoeba. Journal of Applied Microbiology, 104(5), 1449-1457. doi:10.1111/j.1365-2672.2007.03687.xRichards, C. L., Buchholz, B. J., Ford, T. E., Broadaway, S. C., Pyle, B. H., & Camper, A. K. (2011). Optimizing the growth of stressed Helicobacter pylori. Journal of Microbiological Methods, 84(2), 174-182. doi:10.1016/j.mimet.2010.11.015Rinke, C., Schwientek, P., Sczyrba, A., Ivanova, N. N., Anderson, I. J., Cheng, J.-F., 
 Woyke, T. (2013). Insights into the phylogeny and coding potential of microbial dark matter. Nature, 499(7459), 431-437. doi:10.1038/nature12352Rognes, T., Flouri, T., Nichols, B., Quince, C., & MahĂ©, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584. doi:10.7717/peerj.2584Samba-Louaka, A., Robino, E., Cochard, T., Branger, M., Delafont, V., Aucher, W., 
 HĂ©chard, Y. (2018). Environmental Mycobacterium avium subsp. paratuberculosis Hosted by Free-Living Amoebae. Frontiers in Cellular and Infection Microbiology, 8. doi:10.3389/fcimb.2018.00028Santiago, P., Moreno, Y., & FerrĂșs, M. A. (2015). Identification of ViableHelicobacter pyloriin Drinking Water Supplies by Cultural and Molecular Techniques. Helicobacter, 20(4), 252-259. doi:10.1111/hel.12205Sarem, M., & Corti, R. (2016). Rol de las formas cocoides de Helicobacter pylori en la infecciĂłn y la recrudescencia. GastroenterologĂ­a y HepatologĂ­a, 39(1), 28-35. doi:10.1016/j.gastrohep.2015.04.009Signoretto, C., del Mar Lleò, M., Tafi, M. C., & Canepari, P. (2000). Cell Wall Chemical Composition of Enterococcus faecalis in the Viable but Nonculturable State. Applied and Environmental Microbiology, 66(5), 1953-1959. doi:10.1128/aem.66.5.1953-1959.2000Tezcan-Merdol, D., Ljungström, M., Winiecka-Krusnell, J., Linder, E., Engstrand, L., & Rhen, M. (2004). Uptake and Replication of Salmonella enterica in Acanthamoeba rhysodes. Applied and Environmental Microbiology, 70(6), 3706-3714. doi:10.1128/aem.70.6.3706-3714.2004Thomas, V., Loret, J.-F., Jousset, M., & Greub, G. (2008). Biodiversity of amoebae and amoebae-resisting bacteria in a drinking water treatment plant. Environmental Microbiology, 10(10), 2728-2745. doi:10.1111/j.1462-2920.2008.01693.xVaerewijck, M. J. M., Sabbe, K., BarĂ©, J., & Houf, K. (2011). Occurrence and diversity of free-living protozoa on butterhead lettuce. International Journal of Food Microbiology, 147(2), 105-111. doi:10.1016/j.ijfoodmicro.2011.03.015Waite, D. W., Vanwonterghem, I., Rinke, C., Parks, D. H., Zhang, Y., Takai, K., 
 Hugenholtz, P. (2017). Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.). Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00682White, C. I., Birtles, R. J., Wigley, P., & Jones, P. H. (2010). Mycobacterium avium subspecies paratuberculosis in free-living amoebae isolated from fields not used for grazing. Veterinary Record, 166(13), 401-402. doi:10.1136/vr.b4797Winiecka-Krusnell, J., Wreiber, K., Euler, A. von, Engstrand, L., & Linder, E. (2002). Free-living Amoebae Promote Growth and Survival of Helicobacter pylori. Scandinavian Journal of Infectious Diseases, 34(4), 253-256. doi:10.1080/00365540110080052Wu, D., Hugenholtz, P., Mavromatis, K., Pukall, R., Dalin, E., Ivanova, N. N., 
 Eisen, J. A. (2009). A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature, 462(7276), 1056-1060. doi:10.1038/nature08656Yahaghi, E., Khamesipour, F., Mashayekhi, F., Safarpoor Dehkordi, F., Sakhaei, M. H., Masoudimanesh, M., & Khameneie, M. K. (2014). Helicobacter pyloriin Vegetables and Salads: Genotyping and Antimicrobial Resistance Properties. BioMed Research International, 2014, 1-11. doi:10.1155/2014/757941Yeoh, Y. K., Sekiguchi, Y., Parks, D. H., & Hugenholtz, P. (2015). Comparative Genomics of Candidate Phylum TM6 Suggests That Parasitism Is Widespread and Ancestral in This Lineage. Molecular Biology and Evolution, 33(4), 915-927. doi:10.1093/molbev/msv281Yousuf, F. A., Siddiqui, R., & Khan, N. A. (2013). Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila. Parasites & Vectors, 6(1). doi:10.1186/1756-3305-6-169Zhang, Y., & Sievert, S. M. (2014). Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria. Frontiers in Microbiology, 5. doi:10.3389/fmicb.2014.00110Zhang, J., Kobert, K., Flouri, T., & Stamatakis, A. (2013). PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics, 30(5), 614-620. doi:10.1093/bioinformatics/btt59

    Quantifying Diachronic Variability: The 'Ain Difla rockshelter (Jordan) and the Evolution of Levantine Mousterian Technology

    Get PDF

    The effects of trait emotional intelligence and sociobiographical variables on communicative anxiety and foreign language anxiety among adult multilinguals: A review and empirical investigation

    Get PDF
    This study considered the effects of trait emotional intelligence (trait EI; Petrides & Furnham, 2001) and sociobiographical variables (age, gender, education level, number of languages known, age of onset of acquisition, context of acquisition, frequency of use, socialization, network of interlocutors, self-perceived proficiency) on communicative anxiety (CA) in the first, and foreign language anxiety (FLA) in the second, third, and fourth languages of 464 multilingual individuals, in five different situations (speaking with friends, colleagues, strangers, on the phone, and in public). Data were collected via web-based questionnaires. Participants were divided into three groups based on their trait EI scores (low, average, high). Non-parametric statistical analyses revealed a consistent pattern of results across languages and situations. Higher levels of trait EI corresponded to significantly lower CA/FLA scores. Participants who started learning the L2 and L3 at a younger age also suffered less from FLA. Purely classroom-based language instruction was found to be linked to higher levels of FLA compared to instruction that also involved extracurricular use of the language. The knowledge of more languages, a higher frequency of use, a stronger socialization in a language, a larger network of interlocutors and a higher level of self-perceived proficiency in a language were also linked to lower levels of CA/FLA

    Interim report on the progress of an inventory of artesian wells in Florida: leading to the enforcement of sections 370.051 - 370.54, Florida statues

    Get PDF
    One of the causes of lower artesian pressure, water waste and aquifer contamination is the misuse and insufficient care of artesian wells. In 1953, Senate Bill No. 57, entitled "An Act to Protect and Control the Artesian Waters of the State" (see Appendix) became a law. This law was passed through the efforts exerted by leading members of the Senate and the House of Representatives, who understood the need for a wise and controlled expenditure of our most valuable natural resource. The State Geologist and his authorized representatives were designated by this law to enforce this conservation measure; however, no financial provision was included for the 1953-55 biennium. The proposed program of the Florida Geological Survey for this biennium did not include the funds nor provide any full-time personnel for the enforcement of this statute. As a result, little actual work was accomplished during these two years, although much time was given to planning and discussion of the problem. Realizing that this program could provide additional basic data needed in the analysis of the water-supply problem, the State Geologist sought and was granted by the 1955 Legislature adequate funds with which to activate the first phase of the enforcement of Florida Statute No. 370.051-054. Enumerated below is a summary of the progress made on this investigation as outlined previously: 1. Data have been collected on 967 wildly flowing wells in 22 counties. 2. Chloride determinations have been run on 850 of the 967 wells. 3. Of the 967 wells, 554 have chlorides in excess of the 250 ppm, the upper limit assigned by the State Board of Health for public consumption. 4. Water escapes at the rate of 37, 762 gallons per minute from these 967 wells. This amounts to 54, 377, 280 gallons per day. The investigation is incomplete at this time; therefore, no final conclusions can be reached. However, from data already collected, the following recommendations are proposed: 1. That the present inventory of wildly flowing wells be completed for the entire State. 2. That the current inventory of wildly flowing wells be expanded at the conclusion of the present inventory to include all flowing wells. 3. That a complete statewide inventory program be established and conducted in cooperation with the Ground Water Branchof the U.S. Geological Survey. 4. That the enforcement functions as set down in Sections 370.051/.054, Florida Statutes, be separated from the program to collect water-resource data and that these functions be given to the Water Resources Department, if such is created (to be recommended by the Water Resources Study Commission in a water policy law presented to the 1957 Legislature). 5. That the research phase (well inventory) of the program remain under the direction of the Florida Geological Survey. (PDF contains 204 pages.
    • 

    corecore