133,838 research outputs found

    Activation energy in particle suspensions

    Get PDF
    Assuming that the molar activation energy in a fluid is interpreted as a measure of the potential energy barrier required for the molecular movement [1], the viscosity of a fluid depends on the actual size of the molecules, and the presence of solid particles in a suspension increases the dissipation of energy when the system flows, therefore it is expected that the viscosity of the suspension is higher than that of the pure solvent at a given temperature. The dependence of the viscosity of some silica/glycol suspensions with the temperature can be fitted using an empirical function analogous to the Arrhenius equation, ln⁡η=E/RT-ln⁡C, where η is the viscosity, C is a system-dependent constant, E is the molar activation energy for the viscous flow, T is the absolute temperature and R is the gas universal constant. When the temperature of the suspension decreases two effects are observed. First, larger aggregates of particles are formed due to the reduction of the thermal agitation and, second, the number of links among the molecules of the liquid phase increases. These two effects give place to a higher increase in the viscosity with the temperature compared to the pure solvent. Assuming that a higher viscosity value is due to a smaller free volume available for the molecular movement, and taking into account that the free suspension volume is limited only to the liquid fraction [2], it should be expected that the viscosity of the suspension is less sensitive to temperature than that of the pure solvent. In this work the dependence on the temperature of the viscosity values of the silica/glycol suspensions is compared to that of the liquid media. The results have shown a lower activation energy when the solid volume fraction increases, which has been explained with a scheme that assumes that the particle links are less sensitive to thermal energy absorption than the joining bonds among the solvent molecules. Our conclusion is that, for a given mechanical energy applied to the system, the thermal energy absorbed by the system is mainly used in the rupture of bonds between the solvent molecules. This study can be useful to understand the mechanisms that govern the differences in the activation energy values found between samples of foods, in which many factors are connected with sample composition [3]. [1] Briscoe B, Luckham P, Zhu S. Rheological properties of poly (ethylene oxide) aqueous solutions. J Appl Polym Sci 70 (1998) 419-429. [2] Shenoy AV. Rheology of filled polymer systems. Kluwer Acad Pub, 1999, The Netherlands. [3] Alvarez MD, Canet W. Time-independent and time-dependent rheological characterization of vegetable-based infant purees. J Food Eng 114 (2013) 449-464.Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tech

    A phase transition in a system driven by coloured noise

    Get PDF
    For a system driven by coloured noise, we investigate the activation energy of escape, and the dynamics during the escape. We have performed analogue experiments to measure the change in activation energy as the power spectrum of the noise varies. An adiabatic approach based on path integral theory allows us to calculate analytically the critical value at which a phase transition in the activation energy occurs

    Analytic Expression for Magnetic Activation Energy

    Get PDF
    We theoretically investigate the magnetic activation energy of permanent magnets. Practically, it is widely used in a phenomenological form as FB(Hext)=FB0(1Hext/H0)n,\mathcal{F}_\mathrm{B}(H_\mathrm{ext})=\mathcal{F}_\mathrm{B}^0\left(1-H_\mathrm{ext}/H_0\right)^n, where FB0\mathcal{F}_\mathrm{B}^0 is the activation energy in the absence of an external magnetic field HextH_\mathrm{ext}, nn is a real parameter, and H0H_0 is defined by the equation FB(H0)=0\mathcal{F}_\mathrm{B}(H_0)=0. We derive the general and direct expressions for these phenomenological parameters under the restriction of uniform rotation of magnetization and on the basis of the perturbative theory with respect to HextH_\mathrm{ext}. Further,we apply our results to Nd2_2Fe14_{14}B magnets and confirm the validity of the proposed method by comparing with the Monte Carlo calculations.Comment: 8 pages, 2 figure

    Microscopic theory of the activated behavior of the quantized Hall effect

    Full text link
    The thermally activated behavior of the gate defined narrow Hall bars is studied by analyzing the existence of the incompressible strips within a Hartree-type approximation. We perform self-consistent calculations considering the linear response regime, supported by a local conductivity model. We investigate the variation of the activation energy depending on the width of samples in the range of 2d[110]μm2d\sim [1-10] \mu m. We show that the largest activation energy of high-mobility narrow samples, is at the low field edge of Hall filling factor 2 plateau (exceeding half of the cyclotron energy), whereas for relatively wide samples the higher activation energy is obtained at the high field edge of Hall plateau. In contrast to the single-particle theories based on the localization of electronic states, we found that the activation energy is almost independent of the properties of the density of states.Comment: 8 pages, 4 figure

    Effect of electron irradiation on vortex dynamics in YBa_2Cu_3O_{7-x} single crystals

    Full text link
    We report on drastic change of vortex dynamics with increase of quenched disorder: for rather weak disorder we found a single vortex creep regime, which we attribute to a Bragg-glass phase, while for enhanced disorder we found an increase of both the depinning current and activation energy with magnetic field, which we attribute to entangled vortex phase. We also found that introduction of additional defects always increases the depinning current, but it increases activation energy only for elastic vortex creep, while it decreases activation energy for plastic vortex creep.Comment: 4 pages, 3 figures, submited to Phys. Rev.

    Relaxation dynamics of Fe55Cr10Mo14C15B6 metallic glass explored by mechanical spectroscopy and calorimetry measurements

    Get PDF
    In this work, the mechanical relaxation dynamics of Fe55Cr10Mo14C15B6 metallic glass is explored by mechanical spectroscopy. The temperature-dependent loss modulus E″(T) shows the features of β relaxation well below glass transition temperature Tg. This β relaxation can be well described in the framework of anelastic theory by a thermal activated process with activation energy of 165 kJ mol−1. Structural relaxation, also known as physical aging, has a large effect on the glass properties. The activation energy spectrum of structural relaxation is characterized by differential scanning calorimetry measuring the heat flow difference between as-quenched and relaxed states. The obtained energy spectrum is well described by a lognormal distribution with maximum probability activation energy of 176 kJ mol−1. The obtained activation energy of structural relaxation is similar to that of β relaxation observed from mechanical spectroscopy. Both values are also close to the Johari–Goldstein β relaxation estimated by the empirical rule Eβ = 26RTg.Peer ReviewedPostprint (author's final draft

    Ignition of thermally sensitive explosives between a contact surface and a shock

    Get PDF
    The dynamics of ignition between a contact surface and a shock wave is investigated using a one-step reaction model with Arrhenius kinetics. Both large activation energy asymptotics and high-resolution finite activation energy numerical simulations are employed. Emphasis is on comparing and contrasting the solutions with those of the ignition process between a piston and a shock, considered previously. The large activation energy asymptotic solutions are found to be qualitatively different from the piston driven shock case, in that thermal runaway first occurs ahead of the contact surface, and both forward and backward moving reaction waves emerge. These waves take the form of quasi-steady weak detonations that may later transition into strong detonation waves. For the finite activation energies considered in the numerical simulations, the results are qualitatively different to the asymptotic predictions in that no backward weak detonation wave forms, and there is only a weak dependence of the evolutionary events on the acoustic impedance of the contact surface. The above conclusions are relevant to gas phase equation of state models. However, when a large polytropic index more representative of condensed phase explosives is used, the large activation energy asymptotic and finite activation energy numerical results are found to be in quantitative agreement

    Theoretical investigation of carbon defects and diffusion in α-quartz

    Get PDF
    The geometries, formation energies, and diffusion barriers of carbon point defects in silica (α-quartz) have been calculated using a charge-self-consistent density-functional based nonorthogonal tight-binding method. It is found that bonded interstitial carbon configurations have significantly lower formation energies (on the order of 5 eV) than substitutionals. The activation energy of atomic C diffusion via trapping and detrapping in interstitial positions is about 2.7 eV. Extraction of a CO molecule requires an activation energy <3.1 eV but the CO molecule can diffuse with an activation energy <0.4 eV. Retrapping in oxygen vacancies is hindered—unlike for O2—by a barrier of about 2 eV

    Exact Activation Energy of Magnetic Single Domain Particles

    Full text link
    I present the exact analytical expression for the activation energy as a function of externally applied magnetic fields for a single--domain magnetic particle with uniaxial anisotropy (Stoner--Wohlfahrt model), and investigate the scaling behavior of the activation energy close to the switching boundary.Comment: published in 2004, posted here for general accessabilit

    The activation energy for GaAs/AlGaAs interdiffusion

    Get PDF
    Copyright 1997 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 82, 4842 (1997) and may be found at
    corecore