110 research outputs found

    Caries detection in panoramic dental x-ray images

    Get PDF
    The detection of dentalcaries,in a preliminar stage are of most importance. There is a long history of dental caries. Over a million years ago, hominids such as Australopithecus suffered from cavities. Archaeological evidence shows that tooth decay is an ancient disease dating far into prehistory. Skulls dating from a million years ago through the Neolithic period show signs of caries. The increase of caries during the Neolithic period may be attributed to the increase of plant foods containing carbohydrates. The beginning of rice cultivation in South Asia is also believed to have caused an increase in caries. DentalCaries,alsoknownasdentaldecayortoothdecay,isdefinedasadisease of the hard tissues of the teeth caused by the action of microorganisms, found in plaque,onfermentablecarbohydrates(principallysugars). Attheindividuallevel, dental caries is a preventable disease. Given its dynamic nature the dental caries disease, once established, can be treated or reversed prior to significant cavitation taking place. There three types of dental caries [59], the first type is the Enamel Caries, that is preceded by the formation of a microbial dental plaque. Secondly the Dentinal Caries which begins with the natural spread of the process along the natural spread of great numbers of the dentinal tubules. Thirdly the Pulpal Caries that corresponds to the root caries or root surface caries. Primary diagnosis involves inspection of all visible tooth surfaces using a good light source, dental mirror and explorer. Dental radiographs (X-rays) may show dental caries before it is otherwise visible, particularly caries between the teeth. Large dental caries are often apparent to the naked eye, but smaller lesions can be difficult to identify. Visual and tactile inspection along with radiographs are employed frequently among dentists. At times, caries may be difficult to detect. Bacteriacanpenetratetheenameltoreachdentin,butthentheoutersurfacemaybe at first site intact. These caries, sometimes referred to as "hidden caries", in the preliminary stage X-ray are the only way to detect them, despite of the visual examinationofthetoothshowntheenamelintactorminimallyperforated. Without X-rays wouldn’t be possible to detect these problems until they had become severe and caused serious damage. [...

    Feature Extraction Methods for Character Recognition

    Get PDF
    Not Include

    Geometric and photometric affine invariant image registration

    Get PDF
    This thesis aims to present a solution to the correspondence problem for the registration of wide-baseline images taken from uncalibrated cameras. We propose an affine invariant descriptor that combines the geometry and photometry of the scene to find correspondences between both views. The geometric affine invariant component of the descriptor is based on the affine arc-length metric, whereas the photometry is analysed by invariant colour moments. A graph structure represents the spatial distribution of the primitive features; i.e. nodes correspond to detected high-curvature points, whereas arcs represent connectivities by extracted contours. After matching, we refine the search for correspondences by using a maximum likelihood robust algorithm. We have evaluated the system over synthetic and real data. The method is endemic to propagation of errors introduced by approximations in the system.BAE SystemsSelex Sensors and Airborne System

    Human-Centric Machine Vision

    Get PDF
    Recently, the algorithms for the processing of the visual information have greatly evolved, providing efficient and effective solutions to cope with the variability and the complexity of real-world environments. These achievements yield to the development of Machine Vision systems that overcome the typical industrial applications, where the environments are controlled and the tasks are very specific, towards the use of innovative solutions to face with everyday needs of people. The Human-Centric Machine Vision can help to solve the problems raised by the needs of our society, e.g. security and safety, health care, medical imaging, and human machine interface. In such applications it is necessary to handle changing, unpredictable and complex situations, and to take care of the presence of humans

    Retinal Fundus Image Analysis for Diagnosis of Glaucoma: A Comprehensive Survey

    Full text link
    © 2016 IEEE. The rapid development of digital imaging and computer vision has increased the potential of using the image processing technologies in ophthalmology. Image processing systems are used in standard clinical practices with the development of medical diagnostic systems. The retinal images provide vital information about the health of the sensory part of the visual system. Retinal diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, Stargardt's disease, and retinopathy of prematurity, can lead to blindness manifest as artifacts in the retinal image. An automated system can be used for offering standardized large-scale screening at a lower cost, which may reduce human errors, provide services to remote areas, as well as free from observer bias and fatigue. Treatment for retinal diseases is available; the challenge lies in finding a cost-effective approach with high sensitivity and specificity that can be applied to large populations in a timely manner to identify those who are at risk at the early stages of the disease. The progress of the glaucoma disease is very often quiet in the early stages. The number of people affected has been increasing and patients are seldom aware of the disease, which can cause delay in the treatment. A review of how computer-aided approaches may be applied in the diagnosis and staging of glaucoma is discussed here. The current status of the computer technology is reviewed, covering localization and segmentation of the optic nerve head, pixel level glaucomatic changes, diagonosis using 3-D data sets, and artificial neural networks for detecting the progression of the glaucoma disease

    Biological image analysis

    Get PDF
    In biological research images are extensively used to monitor growth, dynamics and changes in biological specimen, such as cells or plants. Many of these images are used solely for observation or are manually annotated by an expert. In this dissertation we discuss several methods to automate the annotating and analysis of bio-images. Two large clusters of methods have been investigated and developed. A first set of methods focuses on the automatic delineation of relevant objects in bio-images, such as individual cells in microscopic images. Since these methods should be useful for many different applications, e.g. to detect and delineate different objects (cells, plants, leafs, ...) in different types of images (different types of microscopes, regular colour photographs, ...), the methods should be easy to adjust. Therefore we developed a methodology relying on probability theory, where all required parameters can easily be estimated by a biologist, without requiring any knowledge on the techniques used in the actual software. A second cluster of investigated techniques focuses on the analysis of shapes. By defining new features that describe shapes, we are able to automatically classify shapes, retrieve similar shapes from a database and even analyse how an object deforms through time

    Design and Development of Robotic Part Assembly System under Vision Guidance

    Get PDF
    Robots are widely used for part assembly across manufacturing industries to attain high productivity through automation. The automated mechanical part assembly system contributes a major share in production process. An appropriate vision guided robotic assembly system further minimizes the lead time and improve quality of the end product by suitable object detection methods and robot control strategies. An approach is made for the development of robotic part assembly system with the aid of industrial vision system. This approach is accomplished mainly in three phases. The first phase of research is mainly focused on feature extraction and object detection techniques. A hybrid edge detection method is developed by combining both fuzzy inference rule and wavelet transformation. The performance of this edge detector is quantitatively analysed and compared with widely used edge detectors like Canny, Sobel, Prewitt, mathematical morphology based, Robert, Laplacian of Gaussian and wavelet transformation based. A comparative study is performed for choosing a suitable corner detection method. The corner detection technique used in the study are curvature scale space, Wang-Brady and Harris method. The successful implementation of vision guided robotic system is dependent on the system configuration like eye-in-hand or eye-to-hand. In this configuration, there may be a case that the captured images of the parts is corrupted by geometric transformation such as scaling, rotation, translation and blurring due to camera or robot motion. Considering such issue, an image reconstruction method is proposed by using orthogonal Zernike moment invariants. The suggested method uses a selection process of moment order to reconstruct the affected image. This enables the object detection method efficient. In the second phase, the proposed system is developed by integrating the vision system and robot system. The proposed feature extraction and object detection methods are tested and found efficient for the purpose. In the third stage, robot navigation based on visual feedback are proposed. In the control scheme, general moment invariants, Legendre moment and Zernike moment invariants are used. The selection of best combination of visual features are performed by measuring the hamming distance between all possible combinations of visual features. This results in finding the best combination that makes the image based visual servoing control efficient. An indirect method is employed in determining the moment invariants for Legendre moment and Zernike moment. These moments are used as they are robust to noise. The control laws, based on these three global feature of image, perform efficiently to navigate the robot in the desire environment

    Towards the early detection of melanoma by automating the measurement of asymmetry, border irregularity, color variegation, and diameter in dermoscopy images

    Get PDF
    The incidence of melanoma, the most aggressive form of skin cancer, has increased more than many other cancers in recent years. The aim of this thesis is to develop objective measures and automated methods to evaluate the ABCD (Asymmetry, Border irregularity, Color variegation, and Diameter) rule features in dermoscopy images, a popular method that provides a simple means for appraisal of pigmented lesions that might require further investigation by a specialist. However, research gaps in evaluating those features have been encountered in literature. To extract skin lesions, two segmentation approaches that are robust to inherent dermoscopic image problems have been proposed, and showed to outperform other approaches used in literature. Measures for finding asymmetry and border irregularity have been developed. The asymmetry measure describes invariant features, provides a compactness representation of the image, and captures discriminative properties of skin lesions. The border irregularity measure, which is preceded by a border detection step carried out by a novel edge detection algorithm that represents the image in terms of fuzzy concepts, is rotation invariant, characterizes the complexity of the shape associated with the border, and robust to noise. To automate the measures, classification methods that are based on ensemble learning and which take the ambiguity of data into consideration have been proposed. Color variegation was evaluated by determining the suspicious colors of melanoma from a generated color palette for the image, and the diameter of the skin lesion was measured using a shape descriptor that was eventually represented in millimeters. The work developed in the thesis reflects the automatic dermoscopic image analysis standard pipeline, and a computer-aided diagnosis system (CAD) for the automatic detection and objective evaluation of the ABCD rule features. It can be used as an objective bedside tool serving as a diagnostic adjunct in the clinical assessment of skin lesions
    corecore