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Abstract 

 

This thesis aims to present a solution to the correspondence problem for the registration 

of wide-baseline images taken from uncalibrated cameras. We propose an affine 

invariant descriptor that combines the geometry and photometry of the scene to find 

correspondences between both views. The geometric affine invariant component of the 

descriptor is based on the affine arc-length metric, whereas the photometry is analysed 

by invariant colour moments. A graph structure represents the spatial distribution of the 

primitive features; i.e. nodes correspond to detected high-curvature points, whereas arcs 

represent connectivities by extracted contours. After matching, we refine the search for 

correspondences by using a maximum likelihood robust algorithm. We have evaluated 

the system over synthetic and real data. The method is endemic to propagation of errors 

introduced by approximations in the system. 
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Chapter 1 – Introduction 

 

1.1 Background 

 

In the registration of images taken from different points of views with uncalibrated 

cameras (no information on the camera parameters), there are two principal areas of 

interest: narrow-baseline registration for small separation between viewpoints and 

wide-baseline registration for broad angles between camera locations. The narrow-

baseline case is very similar to the binocular human vision. Both views are similar and 

correspondences in both images can be even detected along a single spatial dimension 

in certain instances. The complexity of the geometric transformation between the 

images is lessened and consequently smaller degrees of occlusion occur. However, the 

narrower the angle between the sources the less accurate to recover depth. Wide-

baseline registration is the subject of investigation in this thesis. The registration of 

images when the two cameras are wide apart can result in strong geometric and 

photometric differences that make the solution to the correspondence problem much 

harder. Therefore, that implies coping with scenarios where there are considerable 

translations between the camera centres, rotations of the cameras including rotations of 

the image about the principal axes of the camera and significant changes in the intrinsic 

camera parameters (i.e. focal length, location of the image centre in the image, effective 

size of the pixel and coefficient of distortion) [89]. The case of different types of 

cameras can introduce a different presence of noise added during the acquisition 

process, the previous changing geometric conditions and possibly frames taken at 

different times, produce a variation of the illumination conditions for quite disparate 

views. Moreover, several pixels in one image may match one single pixel in the other 

image as a result of different scales in wide-baseline situations. No doubt, the wide-

baseline case implies greater difficulty for optimal registration, due to these difficulties 

in solving the correspondence problem. Both views may have fewer common elements 

and hence partial occlusions and depth discontinuities are more likely to occur. 

Therefore, image deformations cannot be approximated by simple transformations. In 

contrast to the narrow-baseline case, wide-baseline registration provides a much less 

uncertain recovery of the 3D scene. 
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The work in this thesis is concerned with the registration of 2D stereo images from 

uncalibrated cameras for wide-baseline scenarios. The setting can be indoor or outdoor 

visible images, containing man-made objects or natural scenes. As a by-product of not 

having knowledge of the nature of the scene, the projective transformation that can 

better model the projection from the 3D scene to the image plane is also unknown. For 

example, the 3D-to-2D projection for aircraft images can be modelled by an 

orthographic projectivity, whereas other imagery generally has stronger perspective 

effects. Therefore, the only information available is the pixel values of the images. The 

system should be able to register the images by finding correspondences in both images. 

The solution to the correspondence problem is difficult when the two cameras are wide 

apart since strong photometric and geometric distortions occur. 

 

The ample, existing literature mainly covers three different approaches for the 

description of the information that the images contain based on: a) the detection of 

geometric features, b) the analysis of the appearance of the image pixels or c) a 

combination of both approaches. Scenes containing human-made artefacts will embody 

objects with well-distinguishable geometric characteristics. The description of the 

geometry of the scene may be therefore a good approach for these type of images. 

Likewise, highly textured images of natural scenes or even camouflage may not exhibit 

sufficient geometric support and the analysis of the photometry in the image is 

preferred. Methods that combine geometry and photometry claim to combine and 

exploit the best of both disciplines. That is something that seems sensible according to 

the nature of the images. Despite that in the last years some methods have displayed a 

quite reliable performance [83,5], there is no common framework to image registration 

and the success is still dependent on the friendliness of the image towards each method. 

 

Notwithstanding, there is a common strategy or methodology [131] that most of the 

registration techniques share: 

 

- Feature detection. This consists of the extraction of significant features from the 

images. These features can be corners, edges, intersections, contours, regions, 

saliencies, etc. Control points are representations of these features, being for 

instance the termination of edges, high curvature points, centres of gravity of 

regions or others. Many of these features will be detected in both images, some 

will not. Therefore, the selection of features to look for in the scene plays a 
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determining role to carry out a successful registration since it will lay the 

foundation for the following steps of the process. 

 

- Feature matching. Once features have been found in both images, the problem is 

formulated as identifying their counterparts. To this end, feature descriptors, 

similarity measures and ways to disambiguate matches are used. Pairs of 

detected features have suffered the aforementioned changes (geometry, 

photometry, noisy pixels…), and so the descriptors and measurements of 

similarity must be flexible and consistent for the right discrimination between 

correct and false matches.  

 

- Transformation model. The matching function applied to the sensed image that 

best maps its counterpart to the reference image must be estimated. The 

parameters of this objective function are usually iteratively computed until a 

maximum (or minimum) of this function is achieved. 

 

- Image re-sampling and transformation. This final step is based on an 

improvement of the accuracy and the mapping of every pixel of the sensed 

image into the reference image by means of the transformation model. 

 

1.2 Contributions  

 

We propose a method for registration of wide baseline images from a pair of 

uncalibrated cameras. Our approach consists in the description of the properties of the 

image views by means of geometric and photometric invariants. We trim the 

information in the image to regions nearby contours that lie over highly informative 

points. These geometric regions are defined by an affine arc-length metric and extracted 

along the contours. The difficulty of working with contours is that these can be partially 

detected, susceptible to occlusions and assigned a different label at junctions. The 

usefulness of the affine arc-length metric in our system is subordinated to finding 

contours that are reliably extracted in both images, i.e. both endpoints are corresponding 

points and thus the affine arc-length is an invariant under a local affinity. We propose a 

strategy to overcome the weaknesses of contour detection and the affine metric by 

extracting view-point reliable, high-curvature points that lie over contours or in their 

proximity. The information - contours and high-curvature points - is organised in a 
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graph structure, where the edges are contours and the nodes are the high-curvature 

points. We use the affine arc-length metric along contour segments to define an affine 

invariant geometric descriptor. This descriptor defines affine invariant regions where to 

analyse the photometry, which is incorporated to the descriptor. 

 

The system attains advantage over other methods in the sense that it can be adapted to 

work with different photometric descriptors over the affine geometric regions defined. 

For instance, it can be expanded to multi-modal applications as long as the contour 

maps are accurately detected. 

 

We make use of robust iterative methods to discern consistently counterpart 

correspondences within the dense feature space of invariant descriptors. An important 

property of the method relies on the fact that each descriptor encapsulates two points of 

interest (the two end-points that delimit the contour segment where to extract the 

information along). The advantages of that approach are that either reduces the 

computational load of the RANSAC-based algorithm since the number of iterations 

required to convergence is drastically reduced or expands the power of the algorithm to 

deal with larger proportions of outliers at the same cost. 

 

 

1.3 Thesis structure  

 

The thesis is organised in the following way: 

 

Chapter 2 is split in two parts. The first one is a compound of brief definitions, concepts 

and state of the art in image registration techniques. The second part narrows down 

image registration to the wide-baseline case. The literature is wide, and the most 

significant works on feature extraction, descriptors, invariance and robust estimation of 

matching parameters are presented. 

 

Chapter 3 shows methodologies and practical examples on the extraction of geometric 

features. Edges are extended to contours by using vicinity, orientation and good 

continuation criteria. Points of interest are also defined, that together with contour maps, 

are reorganised in the form of a graph where edges are contours connecting points of 

interest. We also extract geometric regions around contours for photometric support. 
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Chapter 4 deals with the analysis of affine invariance over geometric contours and over 

photometric patches. The affine arc-length and the affine invariant colour moments are 

analysed. We describe how we define the descriptors and perform some matching 

experiments based on distance among descriptors. We also include a study on error 

analysis. 

 

Chapter 5 describes robust methods to identifying and rejecting outliers from the set of 

correspondences given by the descriptors defined in Chapter 4. 

 

Chapter 6 gathers final conclusions and future work. 
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Chapter 2 – A review of image registration and wide-baseline matching  

 

This chapter discusses briefly basic definitions of image formation concepts and 

transformations in this context, 2D image projections from the 3D world to the image 

plane and transformations that approximate one image to the other one for the stereo 

case. After that, we start a brief review on image registration methods according to a 

classification based on the common steps involved in registration processes. Finally the 

last section narrows down image registration to the wide-baseline case, where the state 

of the art is thoroughly covered. 

 

2.1 Registration of images 

 

Image registration is a pre-processing step for mapping two images of the same setting 

which are taken from different points of view, sensors or over a period of time. 

According to these imaging conditions, there will be respectively a multi-view, multi-

modal or multi-temporal analysis of the image data. Figure 1.1 represents two stereo 

images of an indoor scene. The images have been taken from different points of view 

and there is also a change in the photometric conditions. 

 

 

        

Figure 1.1. Stereo images of a scene in the registration problem. 
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The input for the registration process can be pixel values, features or higher-level 

decisions (objects) extracted from the images. As stated before, the final objective is the 

alignment of the two (or more) images of a scene, the sensed and the reference images, 

into a common framework or co-ordinate system by finding a correspondence function. 

 

Although there are some methods that rely on the manual extraction of control points; 

the work herein, as the vast majority of the current works, is centred in the automatic 

registration of images from uncalibrated cameras. 

 

Registration techniques have been widely used for many years in different research 

areas such as [13]: 

 

- Computer Vision and Pattern Recognition: for tasks in automatic object 

recognition, segmentation, shape recovery, motion analysis, stereopsis and 

character recognition. 

 

- Cartography: for reconstructing our three-dimensional world by finding control 

points in images. 

 
- Medical Image Analysis: for clinical diagnosis and to monitor the evolution of 

illnesses, especially to gather information from different sensors such as CT 

(computed tomography) which is a specialised X-ray technique, MRS (magnetic 

resonance spectroscopy), MRI (magnetic resonance imaging), ultrasound, 

SPECT (single photon emission computed tomography), PET (positron emission 

tomography), NMR (nuclear magnetic resonance), etc. 

 

- Satellite and airborne imagery: for civilian and military intelligence uses such as 

agriculture, meteorology, oceanography, geology, earth resource and 

environmental issues among others. 
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2.1.1 Basic definitions 

 
If I1 and I2 are 2D arrays representing two intensity images, the mapping between them 

is given by [13]: 

))),(((),( 12 yxfIgyxI =     (2.1)  

  

where g is a 1D intensity transformation and f is a 2D geometric or spatial 

transformation: 

),()','( yxfyx =     (2.2)  

 

Consequently, neglecting the intensity transformation and focusing only on the 

geometric transformation suffered, which is a major difficulty in registration, this can be 

expressed as a two single-valued functions fx and fy: 

 

)),(),,((),( 12 yxfyxfIyxI yx=    (2.3)  

 

the mapping in equation (2.3) according to equation (2.2) can be expressed as: 

 

)','(),( 12 yxIyxI =      (2.4)  

   

2.1.2 Domain of transformations 

2.1.2.1 Geometric distortions 
 

In our context, there must be considered the estimation of the image transformations 

according to two different cases: 3D-to-2D camera projections from a 3-dimensional 

point in the space to a 2-dimensional point in the image plane and 2D-to-2D planar 

homographies, i.e. projections of local planar patches in the image can be approximated 

by a transformation.  

 

3D-to-2D camera projections. This kind of projection deals with the mapping of every 

point (x,y,w)T in the 3D space onto the corresponding point (x’,y’)T  in the image plane. 

The function that maps 3D to 2D points is the camera. The simplest model of a camera 

is the widely used pinhole camera model, also referred as perspective model [109,36]. 

From a geometric point of view, the perspective model of a camera defines the focal 
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length as the distance between the pinhole (O), the co-ordinate origin of the camera 

frame, to the (virtual) image plane along the optical axis (Z). The optical axis is the axis 

which has its origin in the pinhole and is perpendicular to the image plane (Π). The 

intersection of the optical axis with the image plane is called the image centre or 

principal point. The 2D point p is the image of the 3D point P, i.e. p=[x,y,z]T and 

P=[X,Y,Z]T. The camera frame characterises the following equations of perspective 

projections: 

 

Z

Y
fy

Z

X
fx

=

=
     (2.5) 

 

The perspective projection does not preserve a one-to-one size map between the image 

of the object and the real object. Indeed, objects further away are represented smaller 

than closer ones.  

 

There are other approximations that may be applied in our case, notably the affine 

projection models. One of these is the weak-perspective camera model, appropriate 

when the relative distance δZ between two objects along the depth coordinate Z (optical 

axis) is very small compared with the distance Z’ from the scene objects to the camera 

frame. Typically, δZ < Z’/20. The weak-perspective model can be approximated from 

the full projection model as: 

 

Y
Z

f

Z

Y
fy

X
Z

f

Z

X
fx

'

'

≈=

≈=
    (2.6) 

 

Another affine model is the orthographic projection, which supposes that the camera is 

always in a far and constant distance from the scene, the focal length f→∞ and then also 

Z’→∞ being f/Z’=1  and having all the light rays parallel to the optical axis (figure 2.2).  

 

x = X 
   (2.7) 

y = Y 
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For a more detailed information on cameral models we refer to [36,54]. 

 

 

 

 

Figure 2.2. Perspective and orthographic projections (from reference [50]). 

 

 

2D homographies  
 
 
The two-dimensional homography refers to the mapping between 2D images or patches. 

Given a point p=(x,y)T  in the plane of an image, the corresponding point (x’,y’)T in the 

other image is found by estimating the 2D projective transformation T : P2
→P

2. 

 The 3x3 general transformation matrix T [124] can represent most of the basic 

geometric transformations that may occur between any two 2D images (translation, 

rotation, scaling, shearing, reflection and perspective). The mapping expressed in term 

of homogeneous coordinates is given by: 

















=
















z

y

x

T

z

y

x

'

'

'

                                                    (2.8) 

Increasing distance from camera 
 

Increasing focal length 

Orthographic 
Projection Perspective 
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


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aa

aa

aa

a

a

a

T                                                  (2.9)  

In equation (2.8), the third dimension could be neglected since the locations of the 

cameras with respect to the world reference frame are unknown and we are dealing with 

2D-2D projections, i.e. (x’,y’,1)’ = T (x,y,w)’. 

Decomposing equation (2.9) we have: 









=

22

12

21

11

 

 

a

a

a

a
Ts      (2.10)  

   

the sub-matrix of T, Ts, represents scaling, shearing and rotation in equation (2.9). 

Translation in T is due to [a13 a23]
T and perspective transformation is defined by [a31 

a32]. Finally, a33 sets the scaling. 

 

There can be different sorts of more complex matching transformations defining the 

spatial transformations or displacements that images undergo [54,124,114]. These 

distortions in the images are usually combinations of some basic transformations. Their 

definitions are as follows: 

  

- Isometries take place when the origins and basis vectors of both coordinate 

systems are not the same. They are a combination of single transformations such 

as translation, rotation and mirror reflection: 

 


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   (2.11) 

   

being φ the rotation angle, [t x,ty]
T the translation vector and ε=±1. When ε=-1, 

the mirror effect occurs.  
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Ignoring the reflection, it has three degrees of freedom (φ, tx,and ty) and 

invariants are length, angle between lines and area. 

 

- Similarity transformations extend the previous transformation to isotropic 

scaling s: 
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This transformation has got four degrees freedom. Ratios of length and angles 

between lines are preserved. 

 

- Affine transformations map at any dimension straight lines to straight lines 

maintaining parallelism. Every affine transformation is a decomposition of a 

linear matrix transformation and a simple translation. 
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It has six degrees of freedom, relating to parameters a11…a22 and tx, ty. It is the 

most commonly used transformation since it allows the overlay of images taken 

from the same angle of view but from different positions as well as skew. 

Invariants are parallelism, ratios of length of parallel lines ratios of areas and 

centroids. 

 

- Projective or perspective transformations map straight lines onto straight lines in 

the other image, but parallelism is not usually preserved. 
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Nine independent parameters define this transformation ai,j, i,j=1,2,3. Projective 

transformations take place when [a31 a32]  is non-zero. Affine transformations are 

thus a particular case of projective transformations when [a31 a32]   is zero. 

 

The transformation matrix can be normalized so that a33=1, having then 

equation (2.14) eight degrees of freedom and allowing planar quadrilateral-to-

quadrilateral mapping. The most characteristic invariant is the cross-ratio of four 

collinear points.  

 

- Bilinear transformations are similar to projective transformations. Horizontal 

and vertical straight lines are mapped onto straight lines but lines of any other 

direction will be transformed to curves. 

 

xybybxbby

xyayaxaax

3210

3210

'

'

+++=
+++=

    (2.15) 

 

This transformation is defined by eight independent parameters (ai,bi), i=0,1,2,3. 

 It copes with the problem of non-planar quadrilaterals.  

 

In R3, since bilinear transformations are generated from affine transformations 

the cross-ratio of four points is an invariant under bilinear transformations.  

 

- Curved transformations may map any straight line onto a curve in the other 

image. Therefore, they are also called elastic or non-linear transformations: 

 

...'

...'
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2
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ybxybxbybxbby
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It can consider the following division of transformations: those applied to planar 

mappings (affine and perspective) and those that allow non-planar mappings (bilinear 

and curved transformation). 

 

The domain of transformations depends on whether the image transformation involves 

defects on the whole image or just part of it. Hence the change of one parameter in 
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global matching transformations will affect the entire image, whereas local matching 

transformations will only change part of the image. Local matching considers images as 

a composition of patches. It is usually suitable for medical and aerial applications, 

where the images go through some local deformations. 

 

Transformations can also be classified according to the accuracy required. Interpolating 

functions map exactly the control points of the sensed image to those of the reference 

image; while approximation functions take into account certain trade-offs between 

accuracy and other constraints required [131]. 

 

2.1.2.2 Photometric distortions 
 

Photometric distortions are due to variations in the photometry of the scene that are 

related to changes in the illuminant, to the geometry and reflectance properties of the 

surface [56] and the sensors used. Reflection models differentiate between diffuse and 

specular surfaces. Models can be complex but often diffuse surfaces are considered as 

Lambertian. Generally the camera and the illumination source are far away from the 

objects of interest within the scene. Therefore, it is normally assumed the existence of 

planar surfaces or even a whole image where the light arrives with the same orientation. 

A change in the illumination colour corresponds to different scaling of the RGB values 

over Lambertian surfaces, whereas a change on the position of the illuminant results in 

an equal scaling of all RGB bands [43]. We can consider three different models of 

photometric distortion for RGB images: 
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b) Scaling plus offset: 
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c) Affine: 
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Indoor images can be approximated by the first two models, whereas an affine 

approximation can be a valid model for outdoor images [82]. However, non-linear 

photometric distortions generally occur in reflective surfaces or when sensors saturate 

being that instance more difficult to model.  

 
Figure 2.3 shows an input image and transformed versions undergoing combinations of 

affine geometric transformations with scaled photometric transformations. 

 

 

2.1.3 Review of existing research 

 

This section presents a very brief overview of image registration techniques. The 

organization of the discussion is based on [13] and the comprehensive survey compiled 

by Zitová and Flusser [131], which is an excellent source of references. 

  

The feature space can be defined as the overall data representation available in the 

image to undertake the registration process. These data can be complex features 

extracted on the image but also intensity distributions. The kind of data to search is 

dependent on the sort of transformations suffered by the images as well as the nature of 

the imagery and the content of the scene to solve the correspondence problem. 

 

The methods are classified according to the aforementioned common steps for 

registration described in Section 1.1 and according to whether the approaches are based 

on intensity (area-based methods) or features (feature-based methods). In this section 

we are discussing only a few of the approaches that we consider most relevant for us. 

Consequently, we refer to the taxonomies above for further information over 

registration methods. 
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Figure 2.3. Photometry and geometry distortions. a) Original image, b) 20º rotation, 

c) [0.1 0.1] shear, d) [0.3 0.3] shear, e) [0.9 0.9] scale, [0.1 0.1] shear, [0.7 0.65 0.75] 

RGB scaling type D, f) [0.9 0.9] scale, [0.1 0.1] shear, [0.4 0.4 0.4] RGB scaling type D, 

g) [0.9 0.9] scale, [0.2 0.2] shear, [0.6 0.55 0.65] RGB scaling type D and h) 20º 

rotation, [0.1 0.1] shear, [0.6 0.6 0.6] RGB scaling type D. 
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Figure 2.4. Image registration methodology. 

 
 
2.1.3.1 Area-based methods 
 

Many images do not have readily identifiable features and for this reason area-based 

methods are preferred. There is no initial step for the detection of features since these 

appearance-based methods rely on intensity distributions within a region of an image. 

These methods perform the two first steps of registration, the extraction of information 

and the posterior matching itself, in a common step by fusing both. 

 

They usually consist of opening a window to define the area to work in. The restrictions 

of early area-based methods were: first, most of them are only invariant to translation, a 

simple rotation between the two images will provoke an impossibility of registration; 

and second, windows covering smooth and non-distinguishable areas cause the failure 

of area-based methods. 

 

The main families of area-based methods are presented in figure 2.5. Herein, we discuss 

upon methods based on mutual information and salient features, since we consider them 

more relevant to the wide-baseline case. 
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Figure 2.5. Classification of area-based methods. 

 

 

Mutual Information (MI) methods.  Mutual information comes from the discipline of 

Information Theory and is a recent technique used in image registration. There have 

been very promising approaches in the field of multi-modal registration, such that these 

methods are at the forefront of current research. Theoretically, the mutual information 

can be expressed with respect to a set of coordinates, x, as a relation of marginal, 

conditional and joint entropies h(·) [9]: 
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where v(T(x)) is part of the target data which should be registered with a model u(x) and 

T is the transformation or pose which links the model and image co-ordinate frames. In 

the expression above, the marginal entropy ( ))(( xTvh  gives a measurement of the 

degree of prediction of the target data (random variable). The lower the entropy, the 

more likely the variable to be predicted. The higher the entropy means the higher the 

degree of uncertainty. The conditional entropy ( ))()(( xuxTvh  is a measurement of the 

uncertainty left in the target data after the model is observed. Therefore, the difference 

is the information that one variable gives about the other. 

 

The entropies of one and two random variables are given by expressions (2.21) and 

(2.22), respectively: 
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∫−= dyypypyh ))(ln()()(     (2.21) 

∫−= dzdyyzpyzpyzh )),(ln(),(),(    (2.22)  

  

with p the probability of a variable (e.g. probability density function of the image). 

 

The work of Viola and Wells [117] has been very influential although it was not the 

first to make use of methods derived from information theory. They used a 

maximisation of the mutual information, both to align two different MRI images of the 

same object and to align an object model and an image. This allowed them to register 

separate MR images and to find object pose by registering 3D object models to real 

scenes. In the latter case, they assumed that the image was a derivable function of the 

model e.g. they presumed Lambertian surfaces and the existence of a consistency 

measure between intensity and normal of the model when the two images are aligned. 

Other approaches for mutual information are in [80,63,87]. See [2] for mutual 

information for feature selection over characteristics of edges such as location, strength 

and orientation; edges and junctions in [74], registration of images by combining 

gradients in [107], over neighbourhoods [92] or a comparison to a new gradient-based 

measure [51]. 

 

Saliency Operators. This set of operators extracts unpredictable characteristics of the 

geometric properties of the image regions with the aim of estimating feature descriptors 

to solve the matching problem. Kovesi [61] worked with phase congruency to perform a 

saliency measure of edges and, achieved multi-scale analysis by using wavelets in [62]. 

In [123], close boundaries were extracted by connecting contours in terms of saliency 

over proximity and curvature. Gal and Cohen [41] presented salient-based descriptors of 

local surfaces. We will focus on the strategy proposed by Kadir and Brady [57]. They 

considered the saliency concept as a probabilistic measure calculated over a local multi-

scale analysis [55]. Their implementation is invariant to rotation, scaling, some 

photometric changes and translation as well as robust to noise, viewpoint change and 

intensity scaling. Kadir et al. in [64] expanded the salient algorithm to attain invariance 

against affine transformation by defining adjustable ellipses at different scales instead of 

circular patches. The scale parameter s is replaced by the three coefficients that define 

the ellipse: the major axis s/sqrt(ρ), the minor axis s·sqrt(s) and the orientation of the 

ellipse θ. The parameter ρ is the axes ratio. The adjustment of the parameters of the 
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ellipse is performed in an adaptive way by means of iterations, according to the strategy 

used in [4,81] and developed by  Lindeberg and Gårding in [66].  

 

The unpredictability of the images is analysed by means of the Shannon entropy over a 

range of scales HD(s). Therefore, the algorithm extracts circular patches at different 

scales around image pixels as samples to work with. The definition of entropy is defined 

by: 

 

( ) ∫−≅ dIxsIpxsIpsH D ),,(log),,( 2   (2.23)  

  

being p(I,s,x) the probability density function of the intensity I for the point x at scale s. 

 

This probability density function can be approximated by means of a grey-value local 

histogram. Peaked histograms involve that the pixel information can be predicted since 

the intensity values lie within a reduced intensity range. At the other hand, spread out 

histograms show that the probability of finding the value of each pixel tend to be similar 

for all the pixels in the image, i.e. in a flat histogram all pixels have the same 

probability. A peaked histogram is considered very informative while a flat one not. 

However, this definition of saliency by means of entropy declares highly salient regions 

of the image with spread out histogram. Therefore, the salient descriptor is a measure of 

the difficulty that an intensity-based descriptor would have. If saliency is a degree of 

unpredictability, salient regions will not be easily available by a prior model 

description. 

 

A set of scales sp where the entropy measure peaks is selected according to: 
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where the first equality defines a stationary point but does not reveal a local maximum, 

minimum or point of inflexion. The second derivative yields the maximum. 

 

After histogramming, all spatial information in the image is lost. Therefore, any order of 

the pixels within the sampling window gives the same entropy value. However, that 
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does not happen at different scales as the sampling windows do not cope with the same 

number of pixels. Indeed, the sampling windows are subsets of the largest one. 

 

Referring again to the unpredictability aspect of the saliency concept, the reader may 

think that the method is highly dependent of noise. To avoid this dependence the inter-

scale saliency constraint, WD, is introduced. 

 

( ) ∫≅ dIxsIp
s

sxsWD ),,(,
δ
δ

    (2.25)  

 

The inter-scale saliency measures the changes of the probability density function and its 

entropy with the variation of scale. In the discrete case, WD(s,x) is calculated between 

the scale at which entropy peaks s and s-1. 

 

The final definition of saliency YD(sp,x) is the product of the maximum entropy HD(s) by 

the inter-saliency measure WD(s) at the scale which the entropy is maximum. 

 

( ) ( ) ( )xsWxsHxsY pDpDpD ,,, ⋅≅    (2.26)  

  

Therefore, the inter-scale saliency measure should be maximised to obtain a high 

saliency measure. 

 

We have performed some experiments for extraction of the salient features as in [57]. 

The first pair of images defines a scene with two vehicles in a car park, where the 

vehicle of interest (Land Rover) changes its position 45° within the setting. The images 

form part of a set taken with a visible camera within a short period of time between 

snapshots (apparently similar photometric conditions) and are courtesy of BAE 

SYSTEMS. The second pair of images has been taken by the author with a digital 

camera at a lower resolution. This scene is challenging since many changes take place 

in the setting. The object of interest, a civilian car, remains static but there is a wide 

change in the position of the camera, besides remarkable photometric conditions occur, 

considerable occlusions take place and new objects appear in the scene (for instance, a 

four-wheel drive vehicle). The last pair of images has been taken by a camera in the 

medium infrared band. These are high-resolution pictures of a Land Rover (toy) 
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changing its position. The saliency detector is applied to every pixel in the image, with 

the support of a defined, surrounding region. 

 

 

Visible imagery (I) 

 

Figure 2.6 shows the setting composed of two visible grey-level images. The size of the 

pictures is 800x600 pixels. The camera remains static, only the object of interest shifts 

its position 45°. Between the two frames, some photometric variations occur as it can be 

appreciated in the reflectance of light over the civilian car. In figure 2.7 the top plots 

represent the 3D maps of the intensity values of the pixels in the images. The next two 

figures below denote the entropy map of both images. This entropy is the maximum 

entropy HD(s) extracted over the multi-scale analysis performed at every pixel. Notice 

how geometric objects exhibit values of entropy higher than the background. Likewise, 

the morphologies of the background can be better distinguished by the human eye when 

applying the false-colour map of the entropy measure than in the original images. The 

next pair of figures represents the scale selected at every point of the image, i.e. the 

scale within the given set which shows higher entropy. The predefined set of scales is 

composed by five different circular scales of radius 2, 4, 6, 8 and 10 pixels. The figures 

clearly illustrate that the system prefers large scales, as it is usually more likely to find a 

wide diversity of pixel values and then, higher entropy. Table 2.1 shows the percentage 

of use of every scale. 

 

SCALE 

(pixels) 

0 degrees 

(%) 

45 degrees 

(%) 

2 0.33 0.21 

4 1.62 1.55 

6 4.86 5.05 

8 7.57 7.27 

10 85.62 85.91 

 

Table 2.1. Percentage of the use of every scale in the images.  
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The inter-scale saliency measure WD(s,x) (equation 2.25) is depicted in the next pair of 

figures. It gives a dimension of the change of the pdf and the entropy with the scale. It is 

calculated between the scale at which the entropy registers a maximum and the previous 

scale. This measure is a sort of evaluation of the self-dissimilarity of the local region in 

the space of scales. That gives rise to a more robust performance in the sense that self-

similar regions will not be extracted, reducing therefore the possibility of false matches. 

The inter-scale saliency weights the entropy to produce the final descriptor, the saliency 

measure YD(sp,x) given by equation 2.26. As can be seen in the final result, high values 

of saliency are common in the same features of both images. That can be understood as 

the saliency operator can be able to extract distinguished features in stereo images, 

performing thus the necessary basis in feature extraction to carry out the matching 

between the two images. Nevertheless, these salient features should be combined with 

some kind of geometric support or a descriptor that allows the extraction of some other 

parameters to define a descriptor vector.  

 

 

    

 

Figure 2.6. Car setting. 
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Figure 2.7. Extraction of saliencies of an outdoor scene. a) and b) Image intensity 

values; c) and d) maximum entropy within the given scales; e) and f) scale at which 

entropy peaks; g) and h) inter-scale saliency measure; i) and j) saliency measure,  
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Visible imagery (II) 

 

In this case, the scene under study portrays another example of visible imagery with a 

more difficult layout. The two images exhibit considerable changes in lighting 

conditions and point of view, as well as occlusions occur and new objects appear in the 

scene (see figure 2.8). The pictures were taken at Heriot-Watt University with a 

commercial digital camera. The distance from the camera to the object of interest is 

around 30 metres for the left-hand side picture and 50 metres for the other one. The 

resolution of the images is 320x240 pixels.  

 

Examining the results in figure 2.9, the results are very different from the ones obtained 

for the previous imagery. The blob-wise features obtained are more palpable in this set 

of images. Notwithstanding, these blobs are inherent to the algorithm and a 

consequence of the isotropic way the scales are defined (circles). Their major 

prominence is due to the lower resolution of the images and the profiles we are coping 

with (see that the image intensities in the graphs are very discontinuous). These effects 

are more outstanding in the right-hand side picture, where the scene is hardly 

recognized. Despite the blob effect, the left-hand side picture still depicts the main 

objects in the setting. The object of interest is identified as a high-entropy value blob 

but keeping a perceptible shape of the vehicle.  

 

      

 

Figure 2.8. Complex wide-baseline setting. 
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Figure 2.9. Extraction of saliencies in visible images of a complex scene.  a) and b) 

image intensity values; c) and d) maximum entropy within the given scales; e) and f) 

scale at which entropy peaks; g) and h) inter-scale saliency measure; i) and j) saliency 

measure . 
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Regarding the scale maps, the excessive abundance of white regions or maximum scales 

in these figures comes to confirm that as much texture or wider variation of pixel levels 

in the image patterns there exist, the highest entropy is found within the largest window 

(maximum scale). 

 

SCALE 

(pixels) 

Left image 

(%) 

Right image 

(%) 

2 0.01 0.00 

4 0.77 0.11 

6 4.61 0.50 

8 8.35 1.69 

10 86.26 97.70 

 

Table 2.2. Percentage of the use of every scale in the images.  

 

The inter-scale saliency measures present a similar behaviour than their counterpart 

entropies, maybe even more blurred. The regions in the scene can still be distinguished 

in the figure at the left side, but the visual information is almost missed in the other one. 

The saliency measures improve slightly these intermediate steps but this is a 

complicated, low resolution image  

 

 

Infrared imagery 

 

The pair of toy images of the Land Rover in figure 2.10 is taken in the medium infrared 

with a resolution of 421x337 pixels. The object of interest is presented in high-

resolution and there is neither background nor other objects in the scene. By having a 

look at the infrared images, different materials in the vehicle present different grey 

tones, such as the door, the wheels, the glasses, etc. The entropy map reflects high 

entropy values at the lines which define the figure. This behaviour is similar to the 

visible one and it is described in figure 2.11. The scale map presents a bigger 

predominance of smaller scales in the background but little presence on the object of 

interest. Thus, the behaviour is similar to previous examples. The inter-scale saliency 

measure (WD) also defines the lines of the vehicle resulting in a saliency map which 

stresses the outlines of the figures. Figure 2.12 shows the results obtained after 
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modifying the scales of the window function. The left image corresponds to window 

functions of twice the size used in the example above, i.e. radii of 4, 8, 12, 16 and 20 

pixels. The saliency map obtained presents a more blurred result than the one with 

smaller scales. Furthermore, the saliency measure ranges up to double values than the 

previous ones.  

 

 

 

Figure 2.10. Wide-baseline image of a toy landrover. 

 

 

 

Extraction of saliencies over seed points 

 

The previous part embraced the saliency analysis according to a pixel-wise approach. 

Every pixel in the image was evaluated. That has the inconvenience of the weaknesses 

of correlation-based method which are sensible to photometric and scale changes. 

Basing the saliency measure on geometric features makes the system stronger against 

spatial transformations. Figure 2.13 shows a short example of the performance of this 

process together with some results on saliencies on regions around anchor points. 
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Figure 2.11. Extraction of saliencies in infrared images. a) and b) image intensity 

values; c) and d) maximum entropy within the given scales; e) and f) scale at which 

entropy peaks; g) and h) inter-scale saliency measure; i) and j) saliency measure.  
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Figure 2.12. Comparison of saliency maps for different set of scales for the window 

functions. The possible window sizes in the image at the left-hand side are double than 

the ones in the other image. 

 

 

 

                        a)                                           b)                                           c)   

 

                        d)                                            e)                                           f)   

Figure 2.13. Different-scale saliencies over seed points. a) Original image, b) extraction 

of Canny edges, c) Harris corners found, d) corners detected over Canny edges, e) 

scales at which the entropy is maximum and f) saliency values for each seed point 

 

 

2.1.3.2 Feature-based methods 

 

These consist of the extraction of distinctive, detectable and scattered features such as 

regions, lines and points of interest over the pictures by means of invariant feature 
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detectors. Hence, feature-based methods are preferred when the image has distinctive 

objects, features or details to be detected. A proper detection is of vital importance. 

 

Feature extraction 

 

Region features are closed-boundary regions, e.g. forests, lakes, ponds, buildings, 

shadows, etc. which are usually detected by segmentation methods and can be 

represented for instance by their centre of gravity. The centre of gravity has the property 

of being invariant to rotation, scaling and skewing. The co-ordinates of the centre of 

gravity are also rather stable against random noise and grey-level variations. Region 

features have also been studied in a multi-scale hierarchy using invariant 

neighbourhoods around points of interest [124]. This particular case based on the 

invariant properties of the images will be developed in depth in the next section. 

 

Line features are line segments, contours of objects, roads, etc, usually described by 

end-line and mid-line points. Typically one uses an edge operator, such as the Canny 

edge detector [17] followed by a contour tracking process. Finally, point features 

include corners, T-junctions, and Y-junctions as well as any other salient points in the 

scene [102]. Examples of points of interest are road crossings, line intersections, 

centroids of regions, local extrema, high-curvature points and so on. 

 

Schmid et al. [102] conducted an evaluation study of the performance of detectors of 

interest points based on repeatability and information content criteria. The most 

extensively used methods for the detection of points of interest have been the Harris 

detector [52] and SUSAN (Smallest Univalue Segment Assimilating Nucleus) [96].  

 

In the Harris-Stephens corner detector [52] the first step is to apply a Gaussian to 

smooth the image in order to reduce the image noise and prevent false corner detection. 

That is done over images containing the square image derivatives.  

 

From the following moments matrix (gradients) of a grey-level intensity function I(x.y): 
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    (2.27) 

 

it can be found if a point is a corner by calculating the two eigenvalues of the moments 

matrix M. If the eigenvalues have large values, therefore a small motion at any direction 

will produce a considerable change in the grey-level value, specifying a corner is lying 

at this spatial co-ordinate. 

 

The corner strength response function is defined by: 

 

2)(det traceMkMR −=     (2.28) 

 

with k=0.04 as a value proposed by Harris. 

 

Corners are given by local maxima of R. A threshold can be set in order to reduce the 

number of corners if required or to order corners according to significance. By means of 

a quadratic approximation of a neighbourhood of local maxima, sub-pixel accuracy can 

be obtained. 

 

Feature matching 

 

 

 

Figure 2.14  . Classification of feature-based matching. 
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Methods using invariant descriptors. Invariant descriptors characterise sparse features 

which do not change under a given photometric or geometric image deformation with 

the purpose of solving the correspondence problem. To consider a geometric instance, if 

we have a segment line its length will not change under a translation or rotation but it 

will under other transformations. For example, a circle under an affinity will be 

transformed into an ellipse. In the photometric case, the transformation will rely on 

extrinsic and intrinsic parameters of the cameras and the lighting conditions. Therefore, 

it is fundamental to know the kind of transformation the images will undergo and the set 

of features to work with in order to find descriptors invariant to this transformation. 

There is a vast group of methods based on the application of moment invariants to 

closed-boundary regions as well as many other describing image features or 

combinations of them. We refer once more to [131] for wider information and also to 

Section 2.2 where some methods based on invariant descriptors and focused on our 

practical case will be broached in depth. 

 

 
2.1.3.3 Transformation of the model 
 
 
Once the features have been extracted and their counterparts found, the mapping 

function which establishes the correspondence should be estimated. As mentioned 

before, the choice of the function relies on the image transformation; with the 

acquisition of the images and the registration accuracy in mind. Optimization 

techniques aim at finding a (minimum) maximum of an objective function which 

estimates the (dis-)similarity measure between two templates. The difficulty of the 

problem depends on the number of degrees of freedom of the transformation suffered by 

the image, as well as the complexity of the transformation function, i.e. the existence of 

multiple local minima or maxima.  

 
 
2.1.3.4 Image re-sampling and evaluation 
 

We have two images, each with a different coordinate system and a transformation that 

maps both coordinate systems. If the images need to be aligned, due to the discrete 

nature of images, the transformation of the input image onto the output image will entail 

the creation of new pixel locations. Therefore, image re-sampling comprises two steps: 



 34 

the conversion of the image from the discrete to the continuous domain and the 

sampling at the new spatial positions. 

 

The procedure consists of applying an inverse transformation to the pixels in the 

transformed coordinate system, generating the resampling grid. Next, the input image is 

converted onto the continuous domain with the aid of an interpolation function and then 

sampled at the resampling grid locations. Hence, interpolation and sampling determine 

the intensity value at a given position in between discrete samples. The infinite 

bandwidth of the discrete pixels of the image is limited to a finite bandwidth by the 

interpolator. There are many interpolation methods and the right choice depends on the 

accuracy desired and the computational cost that can be afforded. For some insight into 

the main interpolation kernels (nearest neighbour, linear interpolation, cubic 

convolution, cubic splines, sinc functions and exponential filters) we address to [124]. 

Re-sampling is useful for example for mosaicing, however it is not always needed as it 

is the case of the estimation of rigid transformations. 

 

The evaluation part is related to the assessment of the accuracy of the registration 

process. Errors may take place and will accumulate during the features extraction phase 

(localization error), the matching of features (matching error) and the mapping 

(alignment error). 

 

2.2 Wide-baseline registration 

 
This section surveys different methods for single image modality, wide-baseline image 

matching. A variety of methods are presented. A good number of them share the 

common approach of extracting interest points and defining invariant regions in the 

surroundings. The use of local features is a matter of robustness, i.e. the system 

performs better when occlusions occur, when other objects present in the image divert 

the attention from the object of interest and when there exist changes in the background. 

Moreover, local region detection leads to a better chance of dealing with planar 

surfaces, which makes correspondence and transformation much simpler. Figure 2.15 

illustrates a wide-baseline scene, where rotations, translations, scale changes and 

photometric variations take place. As a result of the wide baseline, the views exhibit 

occlusions and new objects occur. Figure 2.16 illustrates the basic blocks of the image 

registration process with some possible methods. 
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Figure 2.15. Wide-baseline scene. Significant changes in the viewpoint and 

photometric conditions. Moreover, new objects and occlusions take place in the scene. 

 

2.2.1 Extraction of features 

 

The vast majority of wide-baseline stereo algorithms [116,108,4,100,133,32,105] 

discussed herein use an intensity-based approach extracting geometric features, 

following the influential paper of Schmid and Mohr [101]. They seek to combine the 

virtues of feature detection and appearance modelling, i.e. geometric invariance based 

on the former and photometric invariance based on the latter approach. In a nutshell, 

they use the advantages of appearance-based methods but their system is stronger to 

spatial transformations due to the geometrical constraints which are imposed. The 

invariance does reduce the scope of the correspondence problem. 
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Figure 2.16. Wide-baseline blocks and methodologies. 

 

The implementation of the extraction of the affinely invariant regions comprises the 

definition of the local regions around anchor points or landmarks. Both geometric and 

intensity-based methods have that in common. They search for anchor points which 

should be easily detected, produce stable invariant regions and most important, comply 

with the repeatability criterion (reliability on detecting the same anchor points with a 

strong independence on the changes in the imaging conditions). The selection of these 

points also avoids the analysis of every pixel and trims the complexity of the problem. 

The Harris-Stephen corner points1 [52] are suggested as seed points by 

[101,116,108,4,133,32,69,110,105] and local intensity extrema by [108,110,116]. A 

study of the comparison of the performance of different methods can be found in [102]. 

This study reveals that the Harris corner detector provided better performance due to its 

                                                           
1 For simplicity, the Harris-Stephens corner may be mentioned just as Harris corner in the text 
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repeatability under different transformations robust against rotations, translations and 

photometric changes) and high information content (or distinctiveness content, 

important for grey-value-based algorithms) than other detectors. The detection of Harris 

corners is generally carried out in a multi-scale fashion (scale-spatial Harris features). 

For the multi-scale Harris approach, there are two scale parameters: t which denotes the 

local scale at which the derivatives are calculated, and σ which is the integration scale in 

the second moment matrix. Baumberg [4] used t proportional to σ in his multi-scale 

wide-baseline approach. Local intensity extrema, however, cannot be located as 

accurately as Harris corners but can resist geometric change and any monotonic 

transformation of intensity levels. Besides, they do not usually lie near the border of 

objects, accomplishing better the planar constraint than Harris corner points. 

 

Once these methods have found anchor points, many rely on other features. Fraundorfer 

and Bischof [32] started from Harris corners as anchor points and proposed a matching 

algorithm based on multi-scale salient operators introduced by Kadir and Brady [57,58] 

which are centred on the maximum entropy of features for saliency, scale and content 

description of image aspects (for an improved version of Kadir and Brady saliency 

detector refer to [100]). After extracting the Harris corners and the salient regions 

(circles with a defined diameter around these corners), sub-salient regions within the 

initially detected salient regions are obtained. The employment of sub-salient regions 

offers a deeper accuracy than salient regions, which also yields even better description 

than local interest points. In fact, salient features are the ones deemed to be difficult to 

be misclassified. The utilization of Harris corners instead of grey-level values as in [57] 

is reasonable for their aforesaid better geometric and photometric robustness. The 

authors also propose the combination of different descriptors as a matter of extraction of 

more information from the regions of the scene, for instance Gabor texture features. 

Saliencies in images are also estimated in [120] by means of a statistical analysis using 

the image histogram as a measure of the probability density function. In [108,110,116] 

the region extraction commences not only with the finding of the Harris corner points 

but also with the detection of the existing edges in the neighbourhood, performed by the 

Canny edge detector. Tell and Carlsson [105] extracted Harris corner points but did not 

define a region around them but formed pairs of interest points in order to trace a 

segment line between them and read the intensity profile along the line. They stated that 

points which are far away from each other are very likely to not accomplish the 

planarity constraint (the points are not co-planar). However, points which are too close 
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must have a lack of intensity information content along the line segment that matches 

them. Therefore, a threshold on distance value is fixed to determine the possible pairs of 

corners.  

 

Pritchett and Zisserman [89] extracted four-line bounded regions to compute local 

planar homographies that restrict the search for correspondences. They match the 

parallelograms by exhaustive search and generate putative corner matches from those 

local homographies. Two strategies are defined: either consider only matches consistent 

with a single image transformation (global) or search for matches consistent with local 

homographies and use these homographies to search further matches. Matas et al. [79] 

introduced the novel concept of Maximally Stable Extremal Regions (MSER). These 

regions are invariant to affine transformations, are stable and allow multi-scale 

detection. The set of all extremal regions is of complexity O(nlog(log(n))), with n the 

number of pixels. Intensity pixels are classified in order by their intensity value. 

Furthermore, a list with the group of connected components defines the detection of 

distinguished regions which have distinctive, invariant and stable properties. Then the 

maximally stable extremal regions are computed on the intensity image. Maximally 

stable extremal regions are produced by storing each connected component according to 

their intensity values. Components are merged, mixing the pixels of both components 

results in another set larger due to the combination of groups. At last, intensity levels 

which are local minima are selected as thresholds. It generally generates many small 

regions in order to be robust to occlusions and favour planarity of features. Some 

variations of MSER are [35] to work with colour and an expansion to affinities in [75]. 

 

Something worthy of note is the definition of a suitable local invariant region or 

window function. Once the region for calculating invariants in the reference image is 

calculated its affinely-invariant region (i.e. deformed) counterpart in the other image 

must be found in order to be able to describe invariants under the appropriate area to 

work in. Indeed, these regions must take into account the image transformation that the 

scene undergoes due to the different viewpoint. Small measurement regions have the 

advantage of better planarity but are less discriminative. Therefore, measurement 

regions must be relatively big but take into account the trade-off between discrimination 

and taking parts of the background absolutely different to the ones of interest. These 

measurement regions can be selected in a multi-scale way, i.e. the distinguished regions 

and scales of them are used to have discrimination of large regions and the planarity of 
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small ones. In [108] and [4] it is pointed out that these regions must be deformable 

somehow in order to cover the same area in both views.  That is related to the concept 

of affine Gaussian scale-space developed by Lindeberg and Gårding [66] and [68]. We 

present some of the basic steps in their automatic scale detection. Let us consider the 

second moment descriptor µL: 
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with L(.;Σ) the affine Gaussian scale-space representation of an image (.) and the co-

variance matrix Σ. Σs and Σt are the covariance of σ and t respectively. g(x;Σ) is the 

Gaussian kernel, 
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The use of these “affine Gaussian scale-space” elliptical windows can be used with 

associated covariance matrices producing affine scale-space to be generated by a 

linearly transformed elliptical Gaussian kernel instead of the conventional scale space 

which is usually generated by convolution with a rotationally symmetric Gaussian. The 

covariance matrices are adjusted iteratively and the second moment matrices (image 

descriptors) result invariant under affine transformation. 
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Then the square root of the second moment matrix ML is used to transform the local 

image (equation (2.32)) and for the other image (equation (2.33)): 
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Lindeberg showed that under a linear transformation of image coordinates B, the 

following property for affine scale-space second moment matrices occurs: 
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For the normalized case:  
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with I the 2x2 identity matrix. 

 

The transformation between 'LI and '
RI  is a rotation B’: 
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The process is iterated until the second moment matrix converges to the identity matrix 

I. Then there is a normalization for lighting changes. Finally, the effects of the rotation 

are cancelled by using rotation invariants. 

 

Dufournaud et al. [27] presented a novel approach to attempt the matching of two 

images at different resolutions, up to a 6-scale factor, where the high-resolution image is 

a small region of the low-resolution one. The high-resolution image is tackled by means 

of a scale-space interpretation, while the low-resolution one is not represented at 

different scales. The method detects interest points in both images and proposes for this 

purpose an improved version of the Harris corners detector, which is scale-space 

adapted for the wide scale factor between the images. Therefore, the matching lies in a 

one-to-many correspondence problem. 

 

Lowe [72] proposed extrema over scale space filtered by difference of Gaussian (DoG) 

filters. The image is convolved with Gaussian filters at different scales and points of 

interest are detected as extrema within neighbourhoods of current and consecutive lower 

and higher scale. [73] improved the location of the interest points by finding the 

interpolation of the maximum when other extrema lie in the proximity. Then applying 

some thresholding low contrast extrema are rejected and the interpolated extremum kept 

as a feature. Still, the system also achieves better stability by suppressing features which 

are not well located but present high edge responses. Finally, the features attain 

invariance to rotation from dominant gradient orientations.  In the next subsection we 
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complete the SIFT detector with its descriptor vector, which allows strong resistance to 

variations of illumination and affine transformations. 

 

Forssén and Lowe [34] developed an affine invariant descriptor by computing SIFT 

over MSERs detected at the different scales of an image pyramid. The multi-resolution 

MSER attains higher scale invariance and contributes to the descriptor with robustness 

to illumination changes and local occlusions and the SIFT acts as a shape descriptor of 

the MSER. Nearby features are grouped in order to provide more prominence to 

features that repeatedly appear over many images of a dataset. The authors admit that it 

does not outperform SIFT over planar images but it does over 3D scenes. Obdrzadek 

and Matas [75] built Local Affine Frames (LAF) from MSERs. MSERs stem from local 

shapes in the image and from them there can be extracted geometric primitives that can 

constrain the six degrees of freedom that define an affinity. These geometric primitives 

are centre of gravity, curvature, covariance matrix of the region, directions, etc. and 

combinations of them define the LAF. Next a geometrical normalization of the region 

of measurement is performed from the change of every local affine frame with respect 

to the canonical reference system. The region is also normalized in photometry. The 

matching is performed by Euclidean distance between regions. The descriptor is affine 

invariant to geometric and photometric transformations. In [22], geometric hashing is 

used to matching LAFs. 

 

Also inspired by SIFT, Bay et al. [5] used an approximation of the determinant of the 

Hessian as a detector of points of interest at different scales in their SURF (Speed Up 

Robust Features) descriptor. The Gaussian filters of the Hessian matrix are 

approximated by box filters, increasing the speed of the calculations and still achieving 

analogous results. The points of interest originate from non-maximum suppression over 

multi-scale neighbourhoods of the determinant of the Hessian matrix. The authors 

compare the repeatability of their detector with others, such as difference of Gaussians 

(DoG), the detector of SIFT and the Harris- and Hessian-Laplace detectors giving a 

better or at least comparable performance for the experiments run. 

 

For a complete and recent reference upon local features extraction and descriptors see 

[65]. 

 



 42 

2.2.2 Feature descriptors and invariance 

 

There are no general invariants when working with 2D image points obtained from 3D 

scene points - geometric invariance is almost always restricted to 2D rotations and 

translations of planar objects; for instance circles become ellipses under affine 

transformations. Thus, [116] considers that many 3D objects can be approximated in a 

local way by means of planar surface patches in order to use the 2D invariants on the 

local scale selected. A similar approach was considered by [4], asserting that smooth 

surfaces can be locally approximated by planar surfaces. However, local regions on or 

near borders and occlusions do not fulfil the planarity constraint. Therefore they 

consider 2D invariants as “quasi-invariants” when dealing with 3D objects. This latter 

assumption [7] permits the use of a variety of invariants for planar objects: moment 

invariants, algebraic invariants, differential and semi-differential invariants, Fourier 

invariants, reflectance ratios, Gaussian derivatives, etc. 

 

Differential illumination invariants are used in [101], describing each interest point by a 

nine-dimensional rotation invariant vector of local characteristics. The Gaussian 

derivatives in the neighbourhood of the interest point allow invariance against rigid 

transformations between images. The set of derivatives is given by: 
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where ik ∈ {x1,x2} and the parameter σ denotes the smoothness effect of the Gaussian 

and also has to do with the next multi-scale approach step. 

 

The set of invariants is calculated up to third order. The nine elements of the vector are 

computed according to: 
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with ε12=- ε21=1 and ε11= ε22=0. 

 

So after that, a multi-scale approach is undertaken in order to be also insensitive to scale 

changes: 
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In the multi-scale approach derivatives are described according to: 
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where 
21...iiG are the Gaussian derivatives. In a discrete approximation, the size of the 

Gaussian and processing window are changed; scale quantization is a necessary 

condition for working with several scales. Therefore, the vector of invariant features is 

finally computed over several circular neighbourhoods of different sizes around the 

point of interest. However, Mohr’s approach is not invariant to some general 

transformations, e.g. an affine transformation. Although this method is not wholly 

invariant it is worth mentioning since it set a strategy followed by other authors. 

 

Zisserman and Schaffalitzky [133] stated that for viewpoint and photometric changes in 

a scene it suffices to reach an invariance of the description tools to geometric and 

photometric affine transformations of the geometry and intensity values of the image, 

respectively. Affine invariance has been pursued by [116,108,79,4,89,133,76,110] and 

[105], the last one even aiming at some projective distortions. Of these, [116,108,4,133] 
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used descriptors based on second moment matrices. Van Gool et al.  [116] looked for 

geometrical invariance by bounding a region defined by two edges in the 

neighbourhood of a corner. There exist two cases according to the nature of the edges:  

 

Curved edges. Starting from the Harris corner point and the two neighbour edges, two 

affinely invariant parameters l1 and l2 are defined using an arbitrary curve parameter 

(affine curve arc length, for instance) and the first derivatives of the edge e1 and e2 with 

respect to the curve parameter.     

 

( )∫ −= iiiiii dssppspabsl )()()1(      2,1=i    (2.42)  

 

From the corner p, the two points move along the edges describing a parallelogram 

region Ω(l), with l referring to l1=l2  when a point in one edge e1(l1) is affinely 

invariant to the one in the other edge e2(l2). Region Ω(l) where a given function(s) 

reaches its extrema in an invariant way for geometrical and photometrical variations is 

evaluated and searched. These are the functions: 
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The functions utilized are composed of two factors, a ratio of two areas, one of which 

depends on the centre of gravity weighted with intensity values of the local region, and 

an expression of moments up to the second order. 

 

Straight edges. If the edges are straight (quite common), l = 0 and the method explained 

before cannot be applied. Then, the local extrema is sought in a 2D space with two 
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arbitrary parameters as co-ordinates, s1 and s2, for the two edges instead of the invariant 

parameter l. The two functions f2(Ω) and f3(Ω) are combined and the intersections of 

their two valleys selected to define the invariant region.  

 

For objects with a lack of texture, the use of the above functions may fail due to the 

difficulty of the extraction of extrema. In this case, local extremum of f4(Ω) is searched: 
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where Dx and Dy  are pixel differences and (x,y) co-ordinates on the straight edges. 

 

A drawback is the possible difficulty of finding the same edges in the other image, for 

these can be non-connected, interrupted or connected differently. The intensity-based 

method which follows endeavours to compensate for this. 

 

Photometric invariance takes into account changes in the lighting conditions of the 

different views of the scene. For their case, Van Gool and Tuytelaars prefer using a 

photometric invariant based on generalised colour moments, although the method can 

work with gray scale images, to obtain colour information in the neighbourhood 

extracted according to the aforementioned local region extraction, which should be 

more or less planar. 

 

The intensity-based region extraction [110] is dependent on local extrema in intensity as 

the seed points. The rays which emanate from this local extremum are evaluated by 

working with the Euclidean arc length along the ray, the intensity and the intensity 

extremum:  
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The points where the rays reach an extremum are geometrically and photometrically 

affinely invariant. Extrema usually occur when the intensity changes severely along the 
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line. The points are all linked by enclosing an affinely invariant region. An elliptical 

surface surrounding this invariant region is created so that this elliptic region has the 

same moments (up to the second order) as the initial region. The authors doubled the 

elliptic region size, in a heuristic way, to ease the matching process but putting the 

planar restriction at risk.  

 

As a conclusion, the geometry-based methods have problems since they depend on an 

accurate detection of the corners and edges. The intensity-based methods are also 

sensitive to noise in the case of weak extrema. Nevertheless, the experiments of the 

authors showed good performance in spite of the above said difficulty of accurate 

detection of local extrema. In short, finding reliable invariant regions in both images can 

be difficult due to false matches, non-planarity, perspective deformations, occlusions, 

and noise, although the methods are not designed for any special sort of images. 

 

 

Strecha et al. [104] tackled multiple wide-baseline views matching. They extracted 

ellipses using the affine invariant method used in [110]. This way, the affine invariant 

ellipses are defined from Harris corner points and maxima extrema.  The definition of 

this extrema can be compared with the point fingerprints concept [103]. Point 

fingerprints rely on the extraction of geodesic circles around points of interest on real 

range data. The projections of these geodesic circles onto the tangent plane are 2D 

contours which are view invariant. Fingerprints must be discriminative enough so as to 

discern among a big set of features. Coming back to Strecha’s ellipses, these try to 

cover planes although covering more than one as can be seen in the examples of the 

article. The areas of the ellipses are well-defined and also expanded. For example, 

keeping our attention on the first figure on the paper, it can be appreciated that there are 

not ellipses on the cover of the book on the shelf due to the extrema in there is very 

“diffuse” or “prominent” because of the existence of dense letters in the book cover. 

That might be a handicap for using it on sort of images like the ones we have to work 

with. The fact that the extrema does not take place close to the borders avoids 

discontinuities. The system works with colour moments, therefore if the context is 

restricted to gray intensity value images, a more convenient descriptor could be used 

instead. 
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Affinely invariant Fourier descriptors were used by [105] for intensity profiles across 

planar surfaces. Six Fourier coefficients are calculated: 
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where p(i) is the intensity profile and N is its length. As in the previous section, the 

segment between pairs of interest points should lie in the same plane. Every profile is 

normalized to its maximum intensity value in order to achieve affine photometric 

invariance (offset and scaling of profile).The authors declare that the use of affine 

invariance, which can be thought of as a weakness of their method if any other harder 

transformation occurs, is not problematic due to the possible distortions of the image. 

Usually there exist some directions within a plane which suffer only affine 

deformations. The algorithm looks for these affine deformations during the matching 

stage. 

 

A review of classical and modern techniques based primarily on Fourier analysis for the 

problem of geometrical invariance can be found in [125]. They assumed that the nature 

of the invariance group is known a priori. The techniques use integral transforms, 

algebraic moments and neural networks in the invariance problem. Short-time Fourier 

analysis are also used in [3], together with wavelets and spline techniques. Illumination 

and invariance to affine transformations, noise, rigid motion and perspective transform 

is achieved. They state that their method, which works over colour and shape 

information over different scale levels, does not require the use of high-order 

derivatives. Fraundorfer and Bischof [32] worked with salient descriptors that are 

invariant to translation and rotation (calculation by histogram) and scale changes (multi-

scale approach) and also robust to intensity and viewpoint image variations (corners are 

considered photometric invariants). They take into account the possibility of using 

several descriptors, assuming their combination will give more support to better 

discrimination of correct matches. They state that the method is scale invariant (i.e. it 

can work with different image resolutions) and can perform well for changes in 

viewpoint (0° to 40°). Recently, Escalera et al. [30] have extended the work in [57] by 
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combining their gray level entropy based saliency with a measurement of the entropy of 

histograms of orientation of regions. The authors claim that their detector shows a better 

repeatability than other state-of-the-art detectors. 

 

Affine invariant texture descriptors were presented in [133] together with affine 

invariant point descriptors. Although many authors do not consider textures for the 

wide-baseline case since their repetitive pattern may produce many correlation peaks 

during the matching, Chetverikov and Matas [21] defended the convenience of 

dominant texture patterns for matching of regions. However, whether texture is of 

potential use, depends on the nature of the targets. For example, texture is not usually 

present in vehicles (unless camouflaged). We observe solely that texture descriptors do 

not require the finding of any invariant neighbourhood around interest points since it 

works itself with the statistics of the texture in the images. 

 

It is also pertinent to mention the work of Weiss [121], which provided invariants 

related to the physical formation of images taken from different systems: IR, sonar, 

radar, etc. Physical invariants to translation and rotation are calculated by means of 

symmetries in images or in the imaging process (irradiances, energy conservation...), 

and are potentially useful to find correspondence points in the same or in different 

image modalities.  Viola [112] studied sets of local complex features as a whole instead 

of single geometric features. These complex features are learnt from experience with 

model objects. It mentions oriented energy as a pre-processing tool to decrease the 

effect of photometrical and pose changes between different scenes. 

 

The SIFT descriptor [73] expands the scale-rotation invariance of the detected extrema 

to quasi-invariance in changes of viewpoint and illumination. The method rotates the 

spatial coordinates of the region of interest according to the orientation computed in the 

detector, achieving orientation invariance. The magnitude of the gradient inside the 

region is smoothed with a Gaussian to reduce the effect of discontinuities and lower the 

weight of pixels close to the boundaries of the region of interest. The descriptor is 

composed of a 4x4 subdivision of the region, each containing orientation histograms of 

8 bins. Thus the feature space is composed of 128 dimensions. The method is affine 

invariant to photometric changes since scaling the magnitude of the gradient gives scale 

invariance and also due to the fact that the gradient, as result of being pixel differences, 

is invariant itself to offsets in intensity levels. Besides, robustness to non-affine 
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invariant changes in illumination is achieved by giving more importance to gradient 

orientations and thresholding gradient magnitudes. Dorkó and Schmid [26] rely on SIFT 

for their Maximally Stable Local SIFT Description (MSLSD). Their method anchors to 

multi-scale Harris and Laplacian points and find for stable regions by using SIFT. 

Maximal stable regions are found where the change of the descriptor at consecutive 

scales is minimum. The descriptor benefits from the repeatability of the corner detector 

and from the robustness of SIFT to changes of illumination, invariance to rotation and 

noise. 

 

A comparison of the main methods presented above is given in [83]. SURF is a novel 

scale and rotation invariant descriptor by Bay et al. [5] that extracts information inside a 

rectangular region centred at interest points detected by an approximation of the 

Hessian, as mentioned in the previous subsection. The rectangular region is oriented 

according to the output of Haar wavelets along the x and y directions of a circular region 

of a radius proportional to the scale at which the point of interest was detected. The 

descriptor is a 64-element vector, of summations of Haar wavelet responses smoothed 

with a gaussian for spatial robustness. The authors indicate their descriptor has better 

level of performance than GLOH, SIFT and PCA-SIFT for the images they tested, and 

especially surpasses in lower computational time.    

 

2.2.3 Complexity, metrics and robustness of the matching  

 

Vincent and Laganière [113] assessed some different matching strategies for validation 

of constraints established in matching algorithms. These are unicity (for each feature 

point, only the strongest match in the other image is considered), symmetry (the relation 

between matches should be a reciprocal correspondence) and confidence measure (the 

similarity of the matches should be similar to the ones of their neighbours, i.e. both 

features of the match should have a neighbourhood with alike properties). They 

proposed the disparity gradient as a measure of the compatibility between pairs of 

features. Zitová [131] also added invariance (both features of the match should be 

described by the same descriptor), uniqueness (different features should have different 

descriptors, related to symmetry), stability (small deformations of the feature should be 

closely described like the initial feature) and independence (the elements of descriptor 

vector should be independent). 



 50 

 

Complexity. An exhaustive search to compare feature vectors between images, or 

alternatively between an image and a pre-formed database such as a DTM, has 

complexity O(n2) where n is the number of features. Where necessary, features can be 

stored in a data structure such as a kd-tree to perform efficient storage and fast access to 

the matching features, e.g. O(nlogn). This can be very important, for example, when 

searching for corresponding features in large databases of aerial or other photographs, in 

order to perform registration and difference comparison to detect changes in ground 

movement. 

 

A kd-tree is a data structure for storing k-dimensional points. Figure 2.17 shows an 

example of the structure of a kd-tree for the case of the spatial distribution of 3D points. 

The range of the values in each dimension are (xmin,xmax), (ymin,ymax) and (zmin,zmax) in the 

3D case, and with the median as criterion. A first partition is done according whether 

the x, then y and z, co-ordinate is greater than the median. The procedure is iterated 

cyclically, until all the sub-volumes are empty. Therefore, the structure stores the k-

dimensional points in sub-volumes according to the median criterion. 

 

 

Figure 2.17. Kd-tree structure for 3D-space points. 

 

Geometric hashing [32,22] is also used to match feature vectors in data bases. 

 

p ≤ median(x) p > median(x) 

p ≤ median(y) 
 

p > median(y) 
 

p ≤ median(y) p > median(y) 
 

p ≤ median(z) 

p ≤ median(x)/2 p ≤ median(x)/2 
 

p > median(x)/2 

p > median(z) p > median(z) p ≤ median(z) 

p > median(x)/2 
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Metrics. A cost function is generally minimized to estimate the projective 

transformation or homography. The function can be for example the Mahalanobis 

distance or an algebraic distance. The Mahalanobis distance metric is used by [101,116, 

108,4,133,110,105] to assess the similarity of invariant vectors. The expression is given 

by: 

 

)()(),( 1 abababd T
M −Λ−= −    (2.47)  

  

That measure considers random variables with Gaussian distribution as well as their 

covariance matrix Λ to give an estimation for the comparison of the vectors. The square 

of dM is a random variable which follows a χ2 distribution. There is an option to set a 

threshold to dM(b,a) and reject a certain percentage of the matches which are deemed 

false.  

 

In contrast, Matas et al. [79] considered the Mahalanobis distance as not reliable enough 

since a single corrupted data may ruin the match. They believe their mapping is robust 

enough; they gain advantage from the distinctiveness of large regions which are not 

very affected by non-planar constraints and the use of a voting system. Schmid and 

Mohr [101] imposed a geometric constraint to reject possible false matches by 

establishing a threshold of consistency. The geometric constraint used is an algebraic 

distance under a given threshold (equation 2.48). The affine transformation between two 

affinely invariant regions describes an approximation of the projective transformation 

which defines a nine-dimensional space of 3x3 matrices (equation 2.14). The geometric 

constraint is defined as (with δg denoting the threshold): 

 

g

abbaabbaabba

abbaabbaabba

abbaabba

δ≤

























−+−−−

−+−−−

−−−

231121132113231111112121

231222132213231212122222

2313231313132323

det   (2.48)  

 

The metric evaluates the distances between the descriptor vectors encoding distinctive 

characteristics. That generates a confusion matrix of distances between descriptors from 

both images. A voting algorithm [101,116,108,79,4,22,105] was used for selecting 
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tentative correspondences from that confusion matrix. The distance metric, being b and 

a in equations 2.47 and 2.48, the vectors at the reference and sensed image respectively. 

For every model i
AM  for a region A and an invariant descriptor i, the k nearest models 

in the other image i
B j

M (j=1…k) from k regions in the image are found. All the models 

similar to i
AM  are given a vote every time the distance result is below an arbitrary 

threshold. This way, the model which gets the largest number of votes is selected as the 

best one. The experiments in [79] work with 216 invariants and 4 scales, a total of 864 

invariants. The authors assert that the experimentations showed good performance for a 

value of k of 1% of the number of distinctive regions.  

 

Robustness. An initial set of correspondences has been already estimated. 

Notwithstanding, this set is under an approximate (not exact) solution which point-

position errors are assumed to describe a Gaussian distribution. Nevertheless, practical 

situations show the existence of outliers or high-disturbing mismatches which do not 

follow the Gaussian distribution but may follow any other. They should be detected in 

order to compute the homography only with the set of inliers within the set of initial 

correspondences. Robust estimation algorithms such as RANSAC, Least Median of 

Squares (LMS) or M-estimators are used for this purpose. These algorithms are able to 

deal with a large proportion of outliers. 

 

Therefore after voting, some methods opt for the epipolar geometry (Appendix A.3) to 

reduce the scope of the matching problem. Pritchett and Zisserman [89] stated that 

many algorithms which use epipolar geometry with no other support fail in the wide 

view case. The use of homographies allows the definition of a viewpoint invariant 

affinity measure as well as a reduction of the complexity of the search when putative 

corner matches are created. A 3D scene structure, together with the epipolar geometry, 

defines the many local homographies that exist in an image pair. Their algorithm 

generates the homographies between pairs of images and sets of putative 

(parallelogram) matches are verified. The fundamental matrix (representing the epipolar 

geometry) and a consistent set of matches are calculated using RANSAC (RANdom 

Sample Consensus) which selects a subset of these matches which are consistent with 

the homography. Warping by a homography makes cross-correlation geometrically 

invariant. Therefore, putative parallelogram matches are verified by means of the 

projective homography and calculating the cross-correlation of the projectively warped 
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region enclosed by the parallelogram. It is worth mentioning that this approach is highly 

dependent on the geometry of the image scene, since it relies on the existence of well-

defined parallelograms and large planar regions for feature extraction. In [79], some 

randomly selected potential matches are also modelled by correlation techniques using 

the centres of gravity. After the application of RANSAC to these, coarse epipolar 

geometry is estimated. Nevertheless, RANSAC is applied another time in a very narrow 

threshold and finer epipolar geometry utilized once more to the remaining good matches 

after the second application of RANSAC. Baumberg [4] identified potential matches and 

found putative correspondences by means of ambiguity measures. It was argued that the 

number of successful matches is greater than the number of mismatches. The last step in 

the method is also the application of the epipolar constraint to eliminate the few outliers 

still remaining. Fraundorfer and Bischof [32] also extracted the epipolar geometry from 

regions of interest (saliencies). Zisserman and Schaffalitzky [133] verified matches 

using the Lucas-Kanade algorithm and other matches found from the obtained 

homographies. They also apply RANSAC algorithm to select the correct matches for 

the epipolar geometry extraction. 

 

Tell and Carlsson [105] asserted that the sieve of mismatches created by directly 

applying RANSAC and then epipolar geometry could be computationally intensive. So 

the authors propose to establish a consistency constraint in order to reduce the number 

of false matches still remaining. To set this constraint they supposed they knew the 

camera model. Knowing the model of the camera and with a set of interest points, they 

constrained the coordinate points of their counterparts in the other image by applying 

equation (equation 2.51) once they have eliminated camera parameters from the 

epipolar constraint. 

 

They use the scaled orthographic camera model and five points randomly extracted 

from two regions, each one from every image. 
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where a
kx  and b

kx  for k=[1…m] denote the m points extracted for a region A in the 

sensed image and for a region B in the reference one respectively. [.]  is the determinant. 

 

When the points are not mismatches, the data follow the constraint in (2.51). Then a 

counter for every match is increased. The process starts again selecting other five points 

randomly and keeps on iterating. It stops when an average level of increments reaches a 

threshold. With this method they presumed the cancellation of 50% of the outliers. 

 

Finally, RANSAC and the epipolar are estimated for the reduced group of matches. 

Their experimental results were based on 400 corners from each image. Most of the 

time complexity is due to the data structure (kd-tree) used for storing feature vectors. 

The algorithm fails for reflective surfaces – recall it is based on intensity profiles – and 

some curved objects – there is a need for a planarity constraint. However, it carries out 

good behaviour for projective transformations of the image since it works with lines 

between many points allowing therefore the search for not very distorted lines. 

 

Photometric and geometric changes and noise are responsible for mismatches. Some 

kind of constraint should be imposed in order to maintain the affine invariance and 

immune to these undesirable effects. Paying attention to the distribution of the features 

of the profiles [105] in the image by using the covariance matrix of all the                                                                                                                                                            

features, allows some discrimination between vectors. However, it does not work for 

intensity changes. The magnitude of the distribution of a profile feature has some 

relation to the distribution of the feature over the whole image. The variance of the 

features is proportional to the diagonal elements of the covariance matrix of all the 

feature vectors in the image. The proportionality constant allows the distinction between 

feature vectors, being more discriminative for small values. To avoid many matches of 

some feature vectors to others, a normal distribution of the feature vectors is considered 
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and the ones which are close to the mean are discarded for the matching stage for they 

are very likely to have many matches. 

 

2.3 Summary 

 

A brief introduction to 3D-to-2D camera projections has been presented. These are not 

the only projections existent, the two images also undergo deformations between them, 

2D homographies deal with them. 

 

Section 2.1.3 recalls and updates the work in [131], which provides a wide overview of 

general methods for image registration. In this article, the state-of-the-art is organised 

according to the nature of the methods (appearance-based or feature-based) classifying 

them into the stages that are common to all registration tasks. These are: the extraction 

of a feature space, the matching of the descriptors defined by the characteristics detected 

in the raw images and finally, the transformation model used to establish the final 

correspondence. Evaluation of the overall results can be performed to refine the final 

outcome. 

 

Appearance-based methods are generally less complicated to implement, offer a dense 

mapping, which is useful for a smooth reconstruction, and work well with textured 

images. They present the inconvenience of being invariant to small geometric image 

distortions; for instance most of them can only cope with translations, a simple rotation 

prevents satisfactory results. However, despite that descriptors such as correlation ratios 

which similarity measure can only deal with rotations and translation; these have shown 

to perform good results in multi-modal applications. In the same way, very promising 

research based on mutual information methods has been developed in the last years. 

Therefore, these methods can be of great help when implemented together with feature-

based methods; for the latter can offer a better contribution to achieve a coarse-to-finer 

counterpart matches search (reducing the spatial transformation problem) and the 

former contribute to the intensity transformation problem. 

 

Feature-based methods take advantage when the image has distinctive objects, features 

or details to be detected. These methods are more robust to photometric changes in the 

scene and usually have a faster response since they do not have to process the whole 
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image. The methods that use invariant descriptors have centred the attention of many 

authors due to the interest in finding or characterising features on images that do not 

change under certain photometric or geometric transformations. Nonetheless, the full 

knowledge of the transformation is fundamental.  

 

Both the consideration of constraints in the matching and the use of pyramid techniques 

for multi-scale approaches are welcome and highly desired when working with both 

area-based or feature-based methods. The use of optimisation techniques to maximise 

the similarity cost function between two templates is essential. 

 

The second part of this chapter dealt with wide-baseline methods for image registration. 

The following tables show a taxonomy that summarizes some of the most important 

approaches to the correspondence problem for wide-baseline scenarios. The majority of 

methods rely on interest points that can be reliably matched between images. Generally 

this means that they are easily extracted, repeatable, have high information content, and 

if possible are invariant to the relevant geometric and photometric transformations. 

Most methods rely on Harris corners as seed points, as they fulfil many of these criteria, 

at least where there are not significant photometric changes. However, these feature-

based methods themselves are effective when the displacement between frames is small 

and a local window can suffice to finding correspondences. The majority of methods 

look for photometric support, typically around these anchor points, such as intensity 

extrema or intensity profiles. This photometric support is searched within a quasi-planar 

local region (or line segment). This region should again be invariant to the geometric 

and photometric distortions that occur in the images. The definition of this invariant 

area is difficult, yet fundamental. The assumption of planarity to match between images 

is a major limitation. Planarity is very useful because finding region correspondences 

based on planar homographies is much easier. However, many of the most significant 

points in image data occur precisely where this planar constraint is violated.  
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METHOD FEATURES 
DETECTED 

LOCAL/ 
GLOBAL 

DESCRIP-
TOR 

INVARI- 
ANT TO 

MATCHING 
METHOD 

NOVEL 
CONCEPT 

IMAGE OBSERVATIONS 

Van Gool & 
Tuytelaars 

 
[116, 
108] 

Harris 
corners, 
Canny edges 
and local 
intensity 
extrema 

Paralle-
logram 
local 
regions 

Moment 
Invariants 

Affine 
transf., 
occlusions, 
partial 
visibility, 
scene clutter, 
wide baseline 
and 
photometric 
changes 

Mahalanobis, 
cross-
correlation, 
homographies 
and voting 
algorithm 

Local 
affinely 
invariant 
regions 

Wide 
baseline 
3D indoor 
and 
outdoor 
scenes 

Difficulty for finding edges for 
the geometric method 
 
Uncalibrated camera conditions.  
 
Quasi-invariant planar surfaces) 

Schmid & 
Mohr 

 
[101] 

Intensities  
and  
Harris  
corners 

Local 
circular 
neighbo-
urhoods 

Gaussian 
deriva- 
tives 

Occlusions, 
rotations, 
scales and 
viewpoint 

Mahalanobis, 
voting 
algorithm and 
indexing 
techniques 

Definition of 
regions 
around 
anchor points 

Greyscale 
paintings, 
2D, aerial 
and 3D 

Short baseline 
Multi-scale approach 

Matas et al. 
 

[79] 

Extremal 
properties of 
intensities 

Local 
planar 
regions 

Complex 
moments 

Affine 
transf., 
scale(3.5x), 
illumination, 
rotation, 
occlusion and 
translation 

Robust 
similarity 
measure, voting 
system, 
correlation 
techniques, 
RANSAC and 
epipolar geom. 

-Maximally 
Stable 
Extremal 
Regions   
 
-Robust 
Similarity 
Measure 

Wide 
baseline 
3D indoor 
and 
outdoor 
scenes 

Stable and multi-scale detection 
for wide-baseline stereo case 
 
Extended to colour in [35] 

Walker, 
Cootes & 

Taylor 
 

[120] 
 
 
 

Feature 
vectors and 
obtaining of 
saliencies 

Pixel level Probabili-
ty density 
function of 
feature 
vectors 
 
 

 Density of 
feature space 

 Faces Hard calculation 
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METHOD 

 
FEATURES 
DETECTED 

 
LOCAL/ 
GLOBAL 

 
DESCRIP-

TOR 

 
INVARI- 
ANT TO 

 
MATCHING 

METHOD 

 
NOVEL 

CONCEPT 

 
IMAGES 

 
OBSERVATIONS 

Lowe 
 

[72] 
 

Intensity 
extrema over 
scale-space 
by DoG 
filters  

Local Gaussian 
deriva- 
tives 

Scale, 
translation, 
rotation and 
partially 
invariant to 
lighting, 
affine and 
3Ddistortion 

Modification of 
k-d tree 
algorithm 
 
Hough 
transform and 
hash table 

Scale 
invariant 
feature 
transform 

Indoor 
dense 
scene of 
3D objects 

Only partially invariant to 
lighting, affine distortion 
 
Works with a scale space and 
feature vectors 
 
 

Baumberg 
 

[4] 

Harris 
corners 

Local 
regions 
around 
interest 
points 

Second 
moment 
matrices 

Wide-
baseline, 
scaling, 
affine and 
lighting 
changes  

Mahalanobis, 
ambiguity 
measure scores, 
epipolar 
geometry 

Affine 
gaussian 
scale-space 
(Lindeberg et 
al. [66]) 

Objects 
Wide-
baseline 
(15°-65°) 

It fails for wide angle views 
(65°) 
 
It uses an iterative procedure 
[66] for the finding of the 
optimal invariant window 

Zisserman & 
Schaffa-
litzky 

 
[133] 

Harris 
corners 

Local 
invariant 
regions 

Second 
moment 
matrices 

Viewpoint 
and lighting 
affine 
changes, 
scaling 

Mahalanobis, 
Lucas-Kanade 
algorithm, 
homographies, 
RANSAC and 
epipolar 
geometry 
 

 Wide-
baseline 
outdoor 
scenes 
(church) 
 

Extension of Baumberg’s work 
 
Two methods: affine invariant 
point and texture descriptor  

Fraundorfer 
& 

Bischof 
 

[32] 
 
 
 

Harris 
corners and 
saliencies 

Local 
regions 
around 
corners 

Entropy Rotation and 
scale and 
robust to 
intensity and 
viewpoint 
changes 
 

Geometric 
hashing (and 
epipolar 
geometry) 

Sub-salient 
regions 

Outdoor 
images 
(church 
and 
objects) 

Not absolutely (robust) 
invariant to intensity and view-
point  
 
Multi-scale method 
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METHOD FEATURES 
DETECTED 

LOCAL/ 
GLOBAL 

DESCRIP-
TOR 

INVARI- 
ANT TO 

MATCHING 
METHOD 

NOVEL 
CONCEPT 

IMAGES OBSERVATIONS 

Pritchett  
& Zisserman  

 
[89] 

 

4-line 
bounded 
regions 

Local 
planar 
paralle- 
lograms 

 Affine 
transforma- 
tions 

RANSAC and 
homographies 

 Synthetic 
image of a 
house 

Parallelograms and planar 
regions must be present in the 
image 

Tell 
& 

Carlsson 
 

[105] 
 

Harris 
corners and 
intensity 
profiles 

Local 
planar 
regions 

Fourier 
coefficient 

Photometrica
l and affine 
changes -
even some 
projective 
distortions 

Mahalanobis 
distance, voting 
algorithm, 
consistency 
constraint, 
RANSAC and 
epipolar 
geometry 

Consistency 
constraint 
[18] 

Example 
pictures are 
indoor 
objects 

Able to face some projective 
distortions. 
High-computational cost of the 
kd-tree. 
Needs planar surfaces and 
distinctive regions (no constant 
brightness). 
Consistency constraint method. 

Lowe 
 

[73] 
 

SIFT 

Same as [72] 
and 
interpolates 
and 
thresholds 
extrema 

Local Gaussian 
deriva- 
tives 

Same as [72] 
and adds 
robustness to 
non-affine 
light changes 
 

Modification of 
k-d tree 
algorithm 
 
Hough 
transform and 
hash table 

Scale 
Invariant 
Feature 
Transform 

Indoor 
dense 
scene of 
3D objects 
and 
outdoors 

Improves the estability of [72] 
 
Widely used 
 
Achieves highest accuracies. 

Bay et al. 
 

[5] 
 

SURF 

Approxima-
tion of the 
determinant 
of the 
Hessian 

Local 
within 
interest 
point 
neighbourh
ood 

Hessian Invariant to 
scale and 
rotation and 
strong to 
photometric 
changes 
 

Thresholded 
euclidean 
distance 

Approximati
on of the 
Hessian with 
box filters 

- Indoors 
and 
outdoors. 
- Oxford 
sequence 
[86] 

Comparable or even 
outperforms state of the art in 
accuracy and especially in 
speed. 
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METHOD FEATURES 

DETECTED 
LOCAL/ 
GLOBAL 

DESCRIP-
TOR 

INVARI- 
ANT TO 

MATCHING 
METHOD 

NOVEL 
CONCEPT 

IMAGES OBSERVATIONS 

Escalera et 
al.  
 

[30] 

Salient 
regions from 
intensities 
and gradient 
orientations 

Local  Entropy Robust to 
viewpoint 
changes 

Complexity 
score 

Complex 
Salient 
Regions 

Caltech 
database 
[16] and 
outdoors 

Better repeatability under 
changes of scale, rotation, light 
and affinities than Harris, 
Hessian Laplace and gray level 
saliency detectors 

Dorkó & 
Schmid 

 
[26] 

- Harris and 
Laplacian 
points.  
- Maximally 
Stable Local 
SIFT regions 

Local Harris, 
Laplacian 
and  
SIFT 

Affine 
changes of 
viewpoint 
and 
illumination 

Nearest 
neighbour 

Stable region 
based on 
SIFT 

Oxford 
sequence 
[86] 

Better matching and 
repeatability than Harris and 
Laplacian points. 

Forssén and 
Lowe  

 
[34] 

-MSER 
-SIFT 

Local Multi-
Resolution
MSER and 
SIFT 

Robust to 
illumination, 
occlusions 
and 
invariance of 
MSER and 
SIFT 

Dissimilarity 
score 

Multi-
resolution 
MSER and 
combination 
with SIFT 

- Outdoor 
and indoor 
sequences. 
- Oxford 
sequence 
[86] 
 

MSER improved against scale 
changes 

Obdrzalek 
and Matas 

 
[75] 

-MSER 
-Geometric 
primitives 

Local Local 
Affine 
Frame 
(LAF) 

Affine 
geometric 
and 
photometric 
transformat-
ions 

Similarity 
measure 
(Euclidean 
distance) 

Affine 
frames from 
geometric 
features 

Synthetic, 
indoor and 
outdoor 
sequen- 
ces 

No comparison with main state-
of-the-art methods ([83]). 
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Chapter 3 – Extraction of features 

 

3.1 Introduction 

 

This chapter presents the employed methodology and experimental results for the 

extraction of shape information from images. Figure 3.1 shows the organization of the 

chapter. Contours are built by grouping edges using some perceptual organization rules. 

These contours are labelled in terms of their closeness and curvature, which assists with 

the search of intersections among contours and also, in Appendix A, as a test of 

suitability for the analysis of contours in the frequency domain. The contours are also 

partitioned into straight segments in order to facilitate the task of finding intersections 

among contours from the projection of straight, endpoint segments and, also, in order to 

delimit a ribbon-like region for the analysis of the photometry at both sides of the 

contours. We present some experiments about the extraction of these regions around the 

contours but the method is discarded due to its inherent lower reliability compared to 

the affine invariant approach presented in the next chapter. We also perform a spline 

approximation of contours used to compute metrics in Chapter 4. 

 

 

 

Figure 3.1. Organization of the chapter. 
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A corner map from the original image is also extracted. The data from this map, 

together with the contours and the intersections found, is reorganized in a graph. This 

graph approach, containing the spatial relations between points of interest 

interconnected by contours, is the output of this chapter. The structural information 

which is relevant in the image is preserved in the graph and used in the next chapter to 

define affine invariant regions where to analyse the photometry. 

 

3.2 Contours 

 

This sub section deals with the preliminary step of extracting contour information from 

the input images. It can be argued that the understanding of contours, boundaries or 

shape cognition is inherent to human visual perception for the interpretation, 

classification and/or identification of our surrounding world. By analogy, in Computer 

Vision the use of contours is also very sensible since they provide robustness in 

geometry against changes of the conditions of illumination, in particular because their 

dependence is not directly related. Moreover, the computational complexity is 

drastically reduced as a result of not considering the processing of the totality of the 

pixels of the image or patches of it. This is a significant difference comparing with 

another subfamily of feature-based methods such as region matching - outline plus the 

interior intensity information. When comparing with other primitive features such as 

corners, edges, et cetera, contours also possess the definite advantage that they are 

higher-level entities that conglomerate added informational content. On the other hand, 

boundary information can be sensitive to noise and occlusion. Structural methods treat 

features as composed of sub-features, and can better handle partial occlusions. 

 

3.2.1 Extraction of edges 

 

The  process starts with the detection of edges from the images by using the widely used 

Canny edge detector [17] that extracts discontinuities in image intensities, which are 

likely to correspond to structural parts of the scene. The image is smoothed by 

convolving it with a Gaussian filter in order to reduce the effects of noise and perform a 

multi-scale analysis. The magnitude and direction of the gradient over the smoothed 

data is computed from spatial derivatives: 
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The direction of the gradient Θ is quantized to 0°, 90°, 45° and 135° in order to trace the 

edge within the 8-connected image grid. The detector optimises a thin edge response by 

applying non-maximum suppression over local pixels in the direction of the gradient, 

i.e. a pixel is considered as edge if its magnitude gradient is greater than the gradient in 

the direction perpendicular to its quantised direction of the gradient. 

 

Rather than using a single threshold to discern pixels of higher edge response, the 

algorithm carries out a hysteresis thresholding that is stronger against pixel gradient 

values drifting around a single threshold and causing, therefore, discontinuous 

detections along the edges. Thus if the gradient magnitude is lower than a threshold tlow 

the pixel is discarded as a part of the edge, whereas it is considered as an edge pixel 

when its magnitude is higher than a threshold thigh and also whenever a pixel gradient is 

higher than tlow and is connected to a pixel already deemed as an edge (figure 3.2). 

 

An example and all the internal steps of the detector are shown in the plots of figure 3.3. 

The input image is a grey level image with a resolution of 646x527 pixels. The 

parameter σ of the Gaussian filter is 1 and the hysteresis thresholds are set to 0.025 and 

0.062. There are 144 edges found. Contours are traced to form longer and more reliable 

features. As will be explained in subsequent subsections, according to the gradient and 

direction maps, proximity, continuity and certain distance constraints contours are 

linked with each other to form more significant and informative entities. At the same 

time, short contours, less than a minimum length are discarded. The result is an 

improved version of the Canny edge map. Figure 3.4 shows the contour map after 

tracing and linking contours. 
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Figure 3.2. Hysteresys. 

 

        

 

 

 

 

 

 

 

 

Figure 3.3. Canny edge detection. a) original image, b) magnitude map, c) direction 

map, and d) non-maximum suppression. 

 

 
Figure 3.4. Canny edge map. 

thigh tlow Γ  

non edge 

edge 
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3.2.2 Linking of edges 

 
An edge map extracted from an edge detector does not usually provide by itself 

meaningful information about the structure of the scene. Edges are quite sensitive to 

noise and changes of illumination and can result badly connected in relatively complex 

images. Therefore, edges are generally linked to form higher, more informative entities 

(contours) by using normally some local, systematic, cognitive biases (section 3.2.2.1). 

Other approaches, however, use global techniques to link edges such as the Hough 

transform or graphs [46]. Indeed, we also process a further contour linking by 

organizing the information in a graph structure as it will be presented in section 3.5. 

 

Our procedure for tracing contours of complex shapes is based on the method used in 

[119]. The starting point of each contour is assigned to the strongest point of a 

thresholded gradient magnitude map. The contour is traced by searching for the next 

point with strongest gradient magnitude which is within the 8-pixel neighbourhood and 

which is also within a certain angular marching direction given by the direction of the 

gradient. Once the end is reached the contour is traced back and labelled till reaching 

the starting point where the procedure starts again tracing in the other direction. Figure 

3.5 shows the contour map for the input image from figure 3.4. 

 

 

Figure 3.5.  Linked contours 
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3.2.2.1 Perceptual grouping 
 
We extend the method above by adding some perceptual grouping cues. That leads to 

the cognitive theory of Gestalt. The Theory of Gestalt was developed by Max 

Wertheimer [122] in the 20s of the past century. It is a descriptive theory in modern 

psychology that states that the operation of the human brain aims for global perception 

rather than processing smaller components in isolation. The stimuli are interpreted 

according to perceptual laws that are dependent on each other and are called Gestalt 

laws. 

 

These laws are centred mostly in the visual domain and we will only adjust to a short 

definition incumbent upon our application. The Law of Prägnanz, which generalizes the 

concept, declares that the information perceived is organized in such a way so as to have 

as much simplicity as possible. “Incomplete” images are completed according to how 

we perceive the world. These natural laws about perceptual grouping are: 

 

- The law of proximity. Similar stimuli or elements in the proximity tend to be 

perceived as a unique instance. 

- The law of good continuation. Elements that follow a certain pattern (e.g. 

curvature) are considered as linked. 

- The law of similarity. Elements sharing similar properties (e.g. colour, or 

orientation) can be grouped into a single set. 

- The law of closure. Perception completes figures that are not closed, by adding 

the missing parts. 

 

Early work on perceptual grouping in Computer Vision dates back to [78,128] with 

works on grouping features into larger structures. Lowe [71] proposed a measure of 

significance, which quantifies in terms of proximity, parallelism and collinearity how 

likely straight lines may belong to the structure of the original scene rather than to 

viewpoint projections. More recently Elder [29] performed Bayesian statistical analysis 

over position, length and luminance along a contour based on Gestalt cues for its correct 

extraction. For us, the purpose of organizing in a human-like fashion the information 

that a computer has to process is not to provide the computer a higher, human-like 

ability of abstraction but to organise the data in higher and more meaningful entities. 

For that intention, the perceptual grouping laws can be a tool for grouping contours or 
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form larger clusters to describe in a more discriminative way characteristics in the 

scene. 

 

We present a variation where once an endpoint is reached a search window is opened 

and the endpoints of neighbouring contours in the vicinity are sought. Both 

neighbouring contours are then bridged, by alleviating the threshold restriction during 

the edge detection process, and relabelled thus forming a single and more informative 

entity. When more than one endpoint of neighbouring contours is found, the one 

corresponding to the longest contour is preferred. The principle of proximity is used 

when opening the searching window, whereas good continuation and similarity are 

reflected by the consistency within a certain angle tolerance of consecutive points. In 

terms of proximity and collinearity, the measure of significance proposed by Lowe [71] 

is of importance as a tolerance to accept or reject parts within the structure. The 

significance measure on the basis of proximity of endpoints is the inverse of N: 
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being D a scale-independent density of line segments (set to 1 and not relevant since all 

line segments will be rated by D), r the radius of the searching neighbourhood and l the 

length of the contour. 

 

And on the basis of collinearity the significance is the inverse of E: 
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with θ the angle between both allegedly collinear segments (θ=0 if collinear), s the 

perpendicular distance from the midpoint of the shortest segment to the projection of the 

other segment, g the gap distance between both segments and l1 the shortest segment. 

Figure 3.6 shows the graphical representation of the significance in terms of proximity 

and collinearity. 
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Figure 3.6. Perceptual organization of segments: a) proximity and b) collinearity. 

 

3.2.3 Segmentation of contours 

 

Edge/contour information can be represented by approximations of linear and/or higher 

order splines (Section 3.2.5). In some applications this can be considered as a much 

handier way to deal with the spatial coordinates of the edge features, thereby encoding 

the interconnections of the contour segments. For instance, we make use of 

segmentation of contours in order to define intersections between contours and, also, to 

define a photometric region at both sides along the contours. This is showed in section 

3.3, although this approach is discarded in the final system and the affine invariant 

approach presented in Chapter 4 is preferred. 

 

Rosin and West [93] segmented contours by using combinations of straight lines, 

circular, elliptical and superelliptical arcs, and polynomial curves. They claimed the 

process allows reduction of data (storing only vertex coordinates), it is not dependent of 

any initial parameter and the representation achieves invariance to 2D rigid 

transformations since the segments are normalized by the length of the curve. Their 

method links the two endpoints of the contour and computes the point of maximum 

deviation of the curve with respect to that line linking both endpoints. Each endpoint is 

linked to this point of maximum deviation and the process is repeated to each one of the 

primitives (see figure 3.7). The process iterates by calculating again the maximum 

deviation for every sub feature until it stops due to impossibility to represent the feature. 

All the sub features are stored in a tree structure and assigned a significance value 

measure. According to this, the features primitives are selected by visiting the nodes of 

the tree. The final contour segmentation is shown in figure 3.8. 

r

l 

s 
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Figure 3.7. Recursive curve segmentation. Original contour in blue, final segmentation 

in red. 

 

 

Figure 3.8. Contour segmentation. 

 

For the simplest case of straight segment approximation, the algorithm simply returns 

the endpoints of all the segments. In our case, we require the spatial coordinates of the 

segments of the contours, i.e. the pixels that correspond to a piecewise linear 

approximation (otherwise just keep the points that segment the contours). The simplest 

way of finding the pixels of the segments is simply using the equation of the line and 

then rounding the values. However, a much reliable option from the computer graphics 

literature is the Bresenham’s line drawing algorithm [12]. An example is shown in 

figure 3.9. 
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Figure 3.9. Example of Brenseham’s method. In white original line pixels. In coloured 

dots, pixels coordinates plotted after: rounds (left) and Bresenham’s line drawing 

(right). 

 

3.2.4 Labelling 

 

First of all, let us establish a few definitions: 

 

• A “line” is a contour that is approximated by a single linear segment. 

• A “curve” is a contour that is approximated by multiple linear segments, or by a 

single curved segment, or by a combination of linear and curved segments. 

• A “closed” curve is one in which the start and end point are the same. Note, that 

there may happen the case of loop contours, i.e. a contour that could be 

segmented as a closed contour plus, at least, one adjoined open segment curve. 

 

We are confident that the tie points resulting from the intersections of two straight lines 

can be much more reliable than the intersection between two curves or one straight line 

and one curve.  Therefore, it could be sensible to establish a certain priority order during 

the computation process, or even weight signatures lying on the crossing of straight 

segments. For the case of a contour composed of straight and curvilinear segments, the 

contour segmentation performed before can help to characterise the intersection where 

the interest point lies on according to the order of the spline of the curves that define it. 

Consequently, the curvature of the contours (or the primitives that intersect) is 
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calculated and each point of interest is classified according to the nature of the curves 

that produce it, i.e. a straight line or curved line. 

 

The other issue to be concerned of is whether the contour is closed or open. This is 

related to the use of the Fourier-based matching algorithm developed in Chapter 5, 

where there is a preference in the use of the code on closed contours. That is due to the 

need for periodicity when working in the Fourier domain. Figure 3.10 shows the four 

types of labelling. 

 

 

Figure 3.10. Labelling. a) line, b) curve, c) closed curve and d) loop contour. 

 
 

3.2.5 Approximation by splines 

 
In Chapter 4 we will require the spatial derivatives of the contours detected during the 

feature extraction process in order to compute our affine invariant operator. These 

derivatives can be computed by means of finite differences between samples. However, 

these can be very noisy and unreliable for up to second order derivatives. A better 

approach consists of approximating the contour by splines and computing the 

derivatives of these spline curves after. 

 
Splines are piece-wise polynomial functions that permit a flexible design for shaping 

different curves smoothly. Among the different existing schemes in the literature of 

splines, we will focus on some aspects of our interest. Although the origins of these 

curves date back to the work of Lobachevsky in the nineteenth century, their modern 

conception as a curve approximant is due to the work of Schoenberg [98]. Some years 

after, the recurrence relations promoted by C. de Boor, M. Cox and L. Mansfield meant 

the appearance of more effective algorithms for B-spline calculations [11,33,99]. 

 

Definition. Let S(t) be a parametric curve whose domain is defined in a finite interval [a 

b]  and subdivided by a strictly increasing sequence U=[u 0 ≤ u1 ≤ … ≤ um-1 ≤ um] . These 
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m+1 elements of U are called the knots and the interval [u i ui+1), delimited by each ui 

[ ]bai ∈∆ , is called the knot span. If r successive knots have coincident value, they are 

called knots of multiplicity r, otherwise they are simple. Notice that, therefore, multiple 

knots imply a null knot span. 

 

 

Figure 3.11. Input curve, knots and knot span. 

 

A spline curve S(t) of degree k>0, i.e. order k+1, is composed of piecewise polynomials 

of degree k called B-spline or basic splines. These basic spline functions, [ ]bat ∈∆ , 

are defined by the de Boor-Cox recurrence relations: 
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Nj,k(t) is non-zero in the interval [u j uj+k+1) and vanishes outside of it. A consequence of 

this is that within any knot span [u j uj+1) there are at most k+1 non-zero B-spline 

functions of degree k. The sum of all of these is unity: 
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A linear combination of these B-spline functions forms the spline S(t): 
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where p=[P0,P1,…,Ph-1,Ph]  are the B-spline coefficients of S(t). These coefficients are 

also called control points and represent the points of a control polygon, which defines 

the spline curve. The number of control points is h+1. There exists a relation between h, 

the order of the spline (k) and the number of elements of the knot sequence U, (m+1): 

 

1−−= kmh      (3.4)  

 

The practical scenario is that the number of control points (h+1) is set by choosing h 

according to 1≥≥≥ khn , n being the number of (parameterized) input samples. 

Therefore, the number of elements m of the knot sequence U is given by: 

 

1++= khm      (3.5)  

 

Figure 3.12 illustrates the control polygon of a spline to approximate a sine curve. 

Notice that in this example the spline rather than fitting the input data points 

approximates the virtual curve defined by these. That is due to our requirements of 

implementation. Spline approximation is introduced at the end of this section.  

 

Since the conditions of continuity are given by the difference of the order of the spline 

and the multiplicity of every single knot, that affects the differentiability of the spline 

curve in a given knot. Therefore, a cubic spline (order 4) would have only continuity of 

function for a knot with multiplicity of 3, whereas it would have continuity and first 

derivative in a knot of multiplicity of 2. Likewise, a knot of multiplicity 4 would imply 

no continuity not even in the function. As aforementioned, the knot sequence should be 

non-decreasing. When the first and last knots are simple (multiplicity = 1), the spline 

curve is said to be open as its ends do not match the first and final control points, P0 and 

Pm. However, if we fix the initial and last knots to a multiplicity k+1, i.e. a knot 
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sequence U = [u0 = u1 = … = uk ≤ uk+1 ≤ …≤ um-k-1 ≤ um-k = … = um-1 =  um] , the spline 

curve is clamped and starts and ends at both extremes of the control polygon2. The 

value of u0 and um can be arbitrarily assigned values 0 and 1, respectively, or set to the 

boundary conditions a and b. 

 

Figure 3.12. Example of data approximation by splines. 

 

In any case the m-2k-1, i.e. n-k, remaining central knots can be either chosen equally 

spaced or dependent on the parametric vector of the input data. In the former case the 

definition of the vector for the uniformly spaced method is obvious:  
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Concerning the possible parameterizations of the input data points D0 … Dn, briefly 

these are the expressions of three widely used methods: 

 

- The Chord Length method: 
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2 Multiplicities k+1 produce division by zero in the calculation of B-splines Ni,k(t). As Ni,0(t) can be zero, 
the case 0/0 is considered 0. 
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- The Centripetal method: 
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The interior knots can be the result of an average of the parameters. 
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Despite that the knot vector can be defined as a uniformly spaced sequence or as a 

function of the parametric version of the inputs, e.g. the average, there exists another 

strategy which also involves both the knot sequence and the parametric vector. It is 

called the Universal method or Lim’s method. In that case the parametric vector, 

although also related to the knot sequence, is not needed for the definition of the knot 

sequence. Conversely, the knot sequence is allocated as a uniformly spaced vector 

(multiple knots are respected) and the parameterization is given by distance along the 

input data curve where the n+1 B-spline functions defined by the equally spaced knot 

sequence peak. Searching for the maximum of every B-spline function, although a 1D 

search, can involve a considerable computational effort. Shene [99] states that a few 

samples on each B-spline and assigning the abscise of each maximum to the 

corresponding t can suffice (figure 3.13). Moreover, Lin’s method has proved to be 

affine invariant. Actually, B-splines themselves are also invariant to affine 

transformations. Affinely transformed points can have their curve recovered providing 

the same knot and parametric vectors. Notwithstanding, interpolation/approximation 

methods using parameterizations like chord length or centripetal are not affine invariant 

anymore as they depend on the length of the segment. That is not the case of the 

uniformly spaced method. Even though a simple method, it is invariant as the knot 

sequence is equally spaced and thus the same in both images. Therefore, that invariance 

does require that every input data in one image is the exact affine map of its counterpart 

in the other image. Realistically this affine invariance property does no longer exists 

unless the contour map of the second image is affinely transformed from the contour 
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map in the original image. Therefore, this technique would increase the computational 

load of our system, gaining little or none affine invariance in a practice. 
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Figure 3.13. Universal method. B-splines and parameterization. 

 

 

Splines as approximants. When fitting a spline to every given sample for data 

interpolation, the output can be different than that desired, such as a wiggled outcome 

around the input data. However if we smooth the accuracy requirements, we can permit 

a certain error and perform an approximation. In that case, the curve does not pass 

through every given data point but at a certain distance bounded by an error. The 

restriction of null error at the curve endpoints is kept. Therefore, the curve should track 

the control polygon within a distance. Note that that closeness of the curve to the 

control polygon is dependent on the order of the curve. Lower order curves track closer 

the polygon.  

 

The least-square criterion is widely used as an approximant in the bibliography of 

splines. It consists of finding the control points p=[P0…Ph]  that minimize the sum of 

squares of the deviation between the input data points and the resultant curve: 
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Since we establish as boundary conditions S(t0)=D0 and S(tn)=Dn 
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Hence let us define: 
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and the vector Q and the matrix N: 
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Algorithm  

 

Input: Data points D=[D 0…Dn], new vector to interpolate X 

Output: The spline S(X) 

Procedure: 

- Compute some parameterization t of the data 

- Extract the knot sequence U 

- Calculate the B-splines Nj,k(t) 

- Compute Qi, N(i,j) and Q 

- Obtain the control points P 

- Set the new interpolating sequence and parameterise 

- Calculate B-splines Nj,k(X)  for the previous knot sequence U 

- Compute the spline curve as  ∑
=

⋅=
h

j
kj jpXNXS

0
, )()()(    

 

Figure 3.14 shows a comparison between a parametric spline interpolant and least-

squares spline approximation to contour samples. The figure is a zoom-out  over one of 

the contours in the book scene of figure 3.3. See that the spline oscillates at both sides 

of the least-squares spline solution, being less precise. 

 

 

 

Figure 3.14. Comparison of spline fitting and least-squares approximation. a) Planar 

contour and spline fitting and approximation by least-squares. b) Zoom. 
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Derivative of a spline.  The derivative of a spline S(t) is given by: 
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For a clamped spline, S’(0) and S’(n-1) should be: 
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3.3 Extraction of regions around contours 

 

We are aware that some works have performed registration based on only contours. For 

instance [71] did model matching from contours segmented into straight lines. However 

we consider that the use of only geometric contours cannot suffice for registering wide-

baseline scenarios and we look for further support based on the photometry of the scene. 

Contour maps from dense scenes may contain a plethora of similar contours that 

together with the changes in viewpoint harden the matching. If we add some further 

support to our features such as, ideally, a photometric descriptor invariant to the lighting 

conditions in the scene, the search space of correspondences can diminish considerably. 

Herein, we propose the extraction of photometric information surrounding contours, 

obtaining a ribbon-like patch. Thus, the photometry and the geometry of the contour can 

be combined in order to extract more informative features for the matching process.  

 

To extract a ribbon - a patch around a contour - the first step is to perform a 

segmentation of the contour. The contour segmentation in section 3.2.3 returns the 

endpoints of the feature primitives (segments) of the contour. For every endpoint that 

defines a segment we calculate points at a certain perpendicular distance at both sides of 

the contour. For the case of a single straight segment just computing the point at a 
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certain distance ω in the perpendicular to our segment would suffice. However, two 

consecutive segments will form an angle different to 180º. Then the median of the 

perpendicular vector of the current segment with the perpendicular vector of previous 

and next segments, respectively at both endpoints of the current segment, will delineate 

guide landmarks that track the contour. Figure 3.15 shows a graphical representation. 

 

Figure 3.16 shows a practical example. The contour map of an intensity image is 

depicted in figure 3.16a). The contour that concerns us in this example is highlighted in 

red. The output segments given by the segmentation are marked as blue asterisks. 

 

 

 

Figure 3.15. Schematic of a ribbon. a) Original contour in blue, segmented contour and 

their perpendiculars in other colours, the circles represent the guide landmarks and final 

ribbon in solid black, b) contour and ribbon. 

 

2ω 

(a) 

(b) 
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The red circles are the guide landmarks that track the contour at both sides. The ribbon 

is defined by the dotted yellow outline, which links the red-circled-guide landmarks by 

using the Bresenham’s algorithm [12]. Finally, the green circles represent the pixels that 

are taken inside the ribbon to sample homogeneous photometry along the ribbon. 

Intersection of other contours with the contour of interest will segment the ribbon, 

“labelling” different photometric regions.  

 

Notice in figure 3.16a) that the contour also plays the role of a “median strip” inside 

the ribbon, defining what we call the bright region of interest (broi) and the dark region 

of interest (droi), where to extract colour information. Pixel average is used to 

distinguish darker from brighter ribbons. Figure 3.16b) shows the same patch with the 

contour and the outline close area. We start with the first sample inside the internal 

ribbon, shown as a magenta dot, and from this location we make the effect of flooding a 

whole close region. That region is delimited by the outline, the contour of interest and 

any other contour intersecting. Assuming that the contour map is accurately extracted, 

we can say that we are extracting a homogeneous photometric region around one of the 

flanks of the contour under inspection. Figure 3.18a) shows that from the first location a 

whole homogeneous photometric region is filled. Travelling and flooding for next 

samples inside the internal region makes no effect since that region has already been 

filled by the first sample. See in figure 3.18b) that finally one of the samples is located 

in a region still empty and can fill a new region defining another photometric patch 

(figure 3.18c). Figure 3.18d shows the result after performing the same steps for the 

external side of the contour. Internal and external homogeneous photometric regions in 

false colour are shown in the two bottom images. 
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Figure 3.16. Extraction of regions of interest at both sides of contours. a) process of 

extracting region around a contour; and b) final region extracted 
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Figure 3.17. Input image 
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Figure 3.18.  Extraction of homogeneous photometric regions. a), b), c) and e) internal 

flank; d) and f) external flank. 
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Figure 3.19. Histograms. a) Internal and b) external regions. 

 

The histograms corresponding to the internal and external regions are shown in figure 

3.19. Notice that these sub-regions, and consequently the homogeneity of intensities, are 

strongly dependent on the edge detection and contour intersections. As an example, one 

of the contours does not intersect for few pixels the contour under inspection. The 

consequence is that two non-homogeneous intensity regions are not well separated. The 

probability density function in figure 3.19a shows that some pixels are classified as sub-

region 2 while they belong to sub-region 1. 

 

We can organize the extraction of regions in different ways, namely: 

 

i) Extract regions around whole contours and perform some RGB averages, 

entropy, etc. and define a descriptor. Figure 3.20 shows an example of the 

extraction of regions. The drawback is that, although we are adding 

photometric support, the method is still very dependent on the detection of 

the contours, their breaks and occlusions.  

 

ii)  Extract points of interest (corners, etc) that lie over contours. The ribbons at 

both sides of the contour emanate from the point of interest until they are 

intersected by other contours. It is also dependent on the extraction and 

intersection of contours but in a lesser extent than the above mentioned 

strategy since the ribbons are better delimited by points of interest – these 

are presumably more reliable than contour endpoints. 

 

An input image and its transformed version are shown in Figure 3.21. Points 

of interest are extracted by hand in this instance. Figure 3.22 shows a 

conglomerate of plots that represent for each row the ribbon(s) that emanate 
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from each point of interest. The first two columns correspond to the droi and 

broi regions of the original image, whereas the last two columns are the droi 

and broi regions of the transformed image. 

 

The extraction of regions along contours based on ribbons is quite heuristic and will not 

be considered as part of the final system since a most elegant approach is presented in 

the next chapter. The parameter ω is only invariant to translations and rotations. A 

simple change of scale would imply that the regions extracted along corresponding 

contours in both images would not correspond to each other. However, if the contour 

map is able to separate different photometric regions in an efficient way; the overlap of 

the contour map with the ribbon would delimit regions with homogeneous photometry, 

i.e. same photometry although non-corresponding geometric regions. That could be 

valid for images where the photometry of the image can be easily segmented due to 

well-differentiate photometric regions (for instance, images with lighting conditions 

under control and well-distinguishable man-made objects). The region around each 

contour does not invade other photometric regions as far as contours are well extracted, 

no matter the transformation between the images. However, the assumption of being 

able to segment regions of homogenous photometry from contours is weak in complex, 

natural images.  

 

Figure 3.20. Contour and region extraction over a wide-baseline countryside setting. 

Left images: contour map. Right images: region extraction around the longest contour. 
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Figure 3.21. Left, original image and points of interest manually extracted. Right, 

affinely transformed image (0.9 and 0.1 geometric scale and shear, respectively with 

0.7, 0.65 and 0.75  RGB scale) 

 

3.4 Intersection and corner criteria 

 

Intersection. We can define intersections (between open or closed contours) of the kind: 

• Line-Line. This is a point that is (a) the intersection of two infinite lines, (b) 

exists within the image, and (c) is within a radius (i.e. “near” to each finite line 

segment. By definition, lines are “open”. 

• Line-Curve. This is a point that is (a) the intersection of the infinite line and one 

of the curve segments, (b) exists within the image (c) is within a radius.  

• Curve-Curve: this is a point that is (a) the intersection of a segment on one curve 

with a segment on another curve, (b) exists within the image (c) is within a 

radius.  

 

There exists the restriction that the projection of an end segment of a contour can never 

originate an intersection if it intersects itself previously. 

 

We find intersections with other contours by opening over both endpoints a circular 

window where to search for a neighbour contour to intersect. That is implemented in the 

way described in figure 3.6 for perceptual group based on circular proximity. Figure 

3.23 and 3.24 illustrate the process and restrictions imposed. Notice that for this 

illustrative example, the dimensions of the window have been magnified making them 

proportional to the length of the contour, with the only aim of easing the visualization of 

the circular regions. Figure 3.25 shows the propagation of the contours and the 

intersections found in the image. 
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Figure 3.22. Extraction of regions around points of interest of a wide-baseline objects 

scene. The original images and points of interest were presented in Figure 3.21. Odd 

columns are droi’s whereas even columns are broi’s. 



 87 

1

2

3 45 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24
25

26 27

28

29

30 31
32

33

34

35 36

37

38

39

40

4142

43

44

45

46
47

48

49

50

51

52

53

54 55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81
82

83

84

85

86

87

88

89

90

9192 93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114
115

116

117

118

119

120

121

122

123

124

125

126

127
128

129

130

131
132

133

134

135136

137

138

139

140

141

142

143

144

1  28

2  38

3  5

5  1

6  4

7  17  1

11   1

11   3

13  55

14   4

14   4

19  101

22  132

28  61

29  98

35  13235  29

37  34

42  10

44  51

45  29

51  88

52   4

52   5
59   5

59  38

60  25

63   2

70   2
74  44

74  63

75   2

76  117

80  116

83  11585   2
91  93

91  83
92  15

97   4

101   55
101   19

102   37

105   39

109   66

118   29127   65

132   35
133   22

135   15

137    3137    1
139    5

139    5

142   59

143   45

 

Figure 3.23. Contour map with windows where to search for intersections between two 

contours. Intersections found are numbered in white in the image by the number of two 

contours that intersect. 

 

 

 

Figure 3.24. Search for intersections. Close-up of the intersection map. Intersection pair 

30-32 is removed after as there is a restriction that a contour cannot intersect another 

contour if previously it intersects itself. 

 

 

Rather than only finding intersections by propagating end-segments we could have also 

considered intersections at the connection of contours segments with ad-hoc constraints 

based on the angle formed by the junction and normalized lengths of the segments 

involved. However, changes of views will degenerate these as points of interest since 

these intersections are only invariant up to rigid transformations. The number of points 

of interest would also increase severely losing therefore the discriminative power 
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presumed to the definition attached to a point of interest. So this alternative was not 

considered. 

 

Corners. Corner detectors show many responses in highly textured images due to the 

rapid local intensity variation they are defined from. Therefore corners lose their ability 

to discriminate as we can see in figure 3.26. We discard the common association corner 

= Harris corner and consider a “corner” or ‘point of interest’ as a point of high 

curvature on a single open or closed contour. Scenes with man-made objects contain 

structural elements that can be described by contours and corners lying over them 

(figure 3.27). 
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Figure 3.25. Contour propagation to search for intersections. a) The green crosses 

indicate the propagation of each contour endpoint to search for neighbour contours; b) 

intersection map. 

 

 

Figure 3.26. Harris-Stephens-Noble corner over a highly textured image. Smoothing 

Gaussian of 1.5 pixels width. 



 89 

 

 

Figure 3.27. Corner points detected by the Harris-Stephens-Noble operator that lie on 

extended contours. 

 

3.5 Graphs 
 
 
We are proposing a combinatorial extraction of the information along the contours 

connecting every pair of points of interest in the form of a graph, which will indeed 

increment considerably the processing time, but will especially strengthen the reliability 

of the primitive features for our scenario. The search space is reduced by including 

ancillary heuristic constraints; otherwise the combinatorics could become unwieldy. 

 

We introduce some basic definitions in graph theory [24]. A graph G(V,A) is a pair of 

sets V and A where the elements of the set V are called vertices or nodes and the 

elements of A are called arcs. The nodes contain information about the structures and 

the arcs the relationships between the structures. If there exist the connections α=(v,w) 

and β=(w,v) and α=β → (u,w)=(w,v) the arcs are considered in both directions and the 

graph is called a non-directed graph. A node w is adjacent to another node v if and only 

if there exists an arc that links both nodes. A path in a graph is a sequence of nodes 

p={v1, v2, ..., vn } | (vi, vi+1) ∈ A ∈∀i  [1,n[, which length is the number of arcs that the 

path contains or the number of vertices minus one. A path is simple when all its vertices 

are different, or at the most, only the first and last are the same. A non-directed graph is 

connected when there is a path connecting any pair of nodes of the graph, i.e. all the 

nodes are connected.  

 

Our basic features, contours and points of interest, can be organised in the form of a 

graph. The search of paths between contour-connected points of interest can provide a 

better performance against noise and viewpoint variability. Points of interest prove that 
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can be a quite reliable support in the wide-base case whereas contours are exposed to 

partial extractions, occlusions and different labelling at junctions. 

 

In our system, the arcs will represent contours which overlap or lie within a certain 

proximity to a Harris corner, and the nodes will be virtual representations of Harris 

corners over or in the proximity of contours, intersections as defined in section 3.4 and 

the endpoints of the contours represented by arcs. We differentiate between processing 

or active nodes (Harris corners) and auxiliary nodes (intersections and endpoints). The 

former gives rise to processing arcs, which are the paths from where to extract the 

information that will define descriptors, whereas auxiliary nodes play the role of 

connectivity. That choice is consistent with the fact that we consider high-curvature 

points more reliable than contour endpoints or projective intersections between 

contours. 

 

Contours and points of interest (corners and intersections) have been extracted, and data 

structures contain spatial information about the contours in the proximity of each point 

of interest and about the closest sample in the contour to that point of interest. The 

information is reorganised so as to have for each contour the points of interest 

associated with them, that way contours with no points of interest as well as corners 

without contours within its vicinity are discarded. The nodes are expanded by searching 

for its connections, i.e. the equivalent of the parent and the successors in a tree structure. 

We consider connectivities of a node with: a) next and previous nodes along the contour 

and b) other nodes in other contours associated to the same point of interest. After 

expansion the nodes are visited using a Depth First Search (DFS) algorithm. The DFS 

algorithm returns the sequence of visit of nodes within each connected graph, providing 

paths between any two nodes of the graph. The shortest path is the one with minimum 

distance in number of nodes and where loops within the path are sieved. The process 

can result in a single or multiply connected graphs depending on whether all points of 

interest are interconnected or not. 

 

Let us carry out a simple example to illustrate the idea. Figure 3.28 is our input image 

and figure 3.29 represents the corresponding graph. Four different contours, represented 

in different colours, have been extracted. Also, grey, orange and white-filled stars 

represent allegedly extracted (manually defined) Harris corners, intersections and 

endpoints respectively. The yellow boxes at the right hand side of the stars symbolize 
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the nodes associated with that point of interest. To avoid confusion nodes are listed by 

letters in the colour of the contour they belong to, whereas interest points by numbers. 

In that figure, there are a couple of particular cases. First let us examine the point of 

interest number 9, a Harris corner. 

 

 
 

Figure 3.28. Sample image. 
 
 
 
 

 
 

Figure 3.29. Graph. 
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This point of interest does not lie over a contour but it has red and blue contours within 

its vicinity. Nodes j and e are thus created. Node j will contain the closest sample to the 

poi in the red contour and node e will contain the closest counterpart in the blue 

contour. Therefore node j is connected to k and i and node e to d and f. Since nodes j 

and e are associated to the same poi, both are also connected and therefore permit a 

virtual path between the red and blue contours.  A second case is the green contour. It is 

not connected to any other contour. However, by projecting its endpoints within a 

predefined distance (projection of end segment of a contour for intersection of contours) 

it gets in touch with the black and blue contours generating nodes n and r and t and d, 

respectively. As these are intersections, they will not be active nodes but will work only 

as connections between contours. Starting from node a, the DFS algorithm gives the 

following order of visits D = {a, b, c, d, e, f, g, f, e, j, i, h, i, j, k, j, e, d, t, s, r, n, o, p, q, 

p, o, n, m, l, m, n, r, s, t, d, c, b, a}. Sequence D gives all the possible paths between all 

these connected nodes. As an example, the two active nodes c and i can be linked by the 

path p1={i, j, k, j, e, d, t, s, r, n, o, p, q, p, o, n, m, l, m, n, r, s, t, d, c}, but the shorter 

path p2={ c, d, e, f, g, f, e, j, i}  is the one naturally preferred. Still, notice that this path 

is not simple and the shortest path is the one resulting after removing the loop that exists 

inside the p2: p3={c, d, e, j, i}. The procedure that builds the graph and processes the 

information between points of interest to define descriptors is shown in pseudo-code in 

the next page.  

 

A demonstration of the method over real stereo images is shown in figures 3.30 to 3.34. 

This image dataset is comprised of indoor and outdoor scenes. Images in figures 3.33 

and 3.34 are a reference for many authors [83]. Contours and points of interest are 

detected as explained in previous sections. The information is organised in the graphs 

displayed in the figures, where yellow nodes are active nodes (POIs) and white nodes 

are auxiliary nodes (intersections and contour endpoints) that can interconnect nodes in 

different contours. The spatial coordinates of the path in between active nodes defines 

the ground information to build an invariant descriptor in the next chapter. Therefore, 

there exist as many descriptors as combinatorics among active nodes.    
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Input:  

- Landmarks: 

o Corners over/nearby contours (POIs – active nodes) 

o Intersections (auxiliary nodes) 

- Contour spatial information (arcs) 

Output:  

- Descriptors for pairs of POIs 

Process: 

FOR every contour 

 Find the landmarks in their proximity 

IF no landmark 

  Continue 

 END 

 FOR every landmark 

  Find the closest sample to that landmark in the contour 

  IF POI 

   Node is active 

  ELSE 

   Node is auxiliary 

  END 

Store landmark as a node, function (active/auxiliary), closest contour 

sample and contour number 

END 

Store endpoints of the contour as auxiliary nodes 

Store landmarks, function (active/auxiliary), closest sample and contour number 

END 

 

%Expansion of nodes 

FOR each node u 

 Search for consecutive and previous nodes in the same contour 

  

%Search for neighbouring nodes in other contours around the landmark 

 IF the landmark has neighbour contours 

  FOR every neighbour contour 

   Find sample in the other contour associated to the landmark 
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Identify to which node it corresponds and store the node as a 

connection 

  END 

 END 

END 

 

%Build graph 

FOR each node u 

 IF already visited 

  Continue 

END 

 

Do DFS visit and store graph 

Search for redundant nodes that correspond to the same landmark 

Delete these nodes from the list of nodes to process in the graph 

Delete nodes that are intersections from the list of nodes to process but maintain 

them in the list of connections between nodes 

END 

 

%Compute descriptor  

FOR each graph 

 Compute all combinations between active nodes taken two at a time 

 FOR each combination 

             Find shortest path 

� Find minimum distance (in number of nodes) 

e.g.: c d e f g f e j i h 

� Sieve loops in the path 

e.g.: c d e f g f e j i h 

  Do not consider intermediate contours along the same contour 

Extract spatial information along the path (to compute invariant 

descriptor in the next chapter) 

  Save descriptor 

END 

END  

RETURN 
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Figure 3.30. Book stereo scene. a-b) Contours and corners; c-d) Output graph. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.31. Antenna stereo scene. a-b) Contours and corners; c-d) Output graph. 
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Figure 3.32. Countryside stereo scene. a-b) Contours and corners; c-d) Output graph 
 
 

 
Figure 3.33. Graffiti stereo scene. a-b) Contours and corners; c-d) Output graph. 
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Figure 3.34. Valbonne stereo scene. a-b) Contours and corners; c-d) Output graph. 
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3.6 Summary 

 

We have presented different methods for the extraction of morphological and 

photometric information from images. The extraction of features is a preliminary step of 

principal importance for the success of further scene analysis. The accuracy views 

during the extraction, the amount of features and their consistency across views will 

define the complexity and the feasibility of the method. 

 

Extended contours were found in the images by using maps of magnitude and direction 

gradients. The resultant edges were extended to contours by assembling edges within a 

neighbourhood given proximity, continuation and similarity. We have also presented a 

contour segmentation technique functional for finding projective intersection between 

contours and for articulating flank regions at both sides of the contours where to analyse 

the photometry. These regions have a high dependence on the extraction and 

intersections of contours and on the photometric nature of the image to define 

homogeneous photometric regions at both sides of the contours. Two alternatives were 

anticipated: regions along whole contours and regions emanating from points of interest 

and delimited by contour intersections. Any of the proposed methods proved reliable 

enough for the wide-baseline case. A better and also more expensive choice was the 

rearrangement of points of interest and contours in the form of a graph. The 

combinatorics of all the paths delimited by points of interest interconnected by contours 

are preferred as signatures and regions to extract photometric information alongside. 

Since corners prove good repeatability and good behaviour under viewpoint and 

photometric changes proclaim the employ of a graph articulated by corners and 

intersections as an interesting alternative to tackle the unreliability in the extraction of 

contours given noise, breaks and the tracing of other contours at intersections. 
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Chapter 4 – The affine invariant descriptor 

 

4.1 Introduction 

 

The variability of the objects viewed under different viewpoints and illumination 

conditions can be solved in three ways: a) by searching from an a-priori camera model 

the whole space of transformations and align the transformed and reference image; b) 

by using image normalization of scale, rotation, contrast, etc. or c) by constructing 

invariant functions. The first approach is obviously not viable due to computational 

burden. The second alternative is sometimes included as a pre-processing stage inside a 

more-efficient process when there is information from a model that permits 

normalization. However, invariance is a better solution that is achievable for planar 

objects and there exists a large literature. 

 

Methods that use invariant descriptors characterise features which do not change under 

a given photometric or geometric image deformation with the purpose of finding 

counterpart landmarks (points of interest, regions…) in both images to solve the 

correspondence problem. Simple examples of geometric invariance can be a segment 

line, which length does not change under a translation or rotation in the plane but it does 

under other 2D transformations; or a circle, that under an affine transformation will be 

distorted in to an ellipse. In the photometric case, the transformation will rely on 

extrinsic and intrinsic parameters of the cameras and the lighting conditions. Therefore, 

it is fundamental to know the kind of transformation that the images will undergo and 

the set of features to work with in order to find descriptors invariant to this geometric 

transformation, which is usually affine or projective.  

 

Projective invariants from points and lines have been developed from the theory of 

geometric algebra [8]: the 1D cross-ratio as the basic projective invariant (from four 

points in a line) and its bi- and tri-dimensional generalisations (five points in a plane 

and six points in 3D space, respectively); as well as 3D invariants for the stereo case 

(six non-coplanar corresponding points, given the fundamental matrix F) and for the 

three-view scenario (components of the trilinear tensor from lines and planes). 
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Shape descriptors such as Fourier descriptors and Elliptic Fourier descriptors have been 

widely used in the literature, but are generally restricted to close contours. Other 

popular feature descriptors over two dimensional functions are Fourier Mellin 

descriptors [1,23], Zernike moments [106,60] and pseudo-Zernike moments [14]. 

However, the pioneering work on moment invariants (absolute orthogonal moment 

invariants) by Hu [53] has been used extensively over throughout the years. These 

moments based on algebraic invariants were invariant to similarity transformations. The 

concerned reader can find individual modifications and improvements of Hu’s moments 

in [77,6,67,90]. Also Flusser and Suk [37] presented complex moment invariants to 

affine transformations and, lately, Flusser and Zitová [39] combined and expanded the 

invariance to contrast and to convolution with a centrally symmetric point-spread 

function (blur effect). Mindru et al. [82] presented generalised colour moments, 

descriptors that compute affine invariant moments on shape and colour bands. 

 

Excluding the last method, most of the bibliography aforementioned is related to 

intensity images. Doubtless the use of colour [95] can contribute with further 

information but at the same time colour is very sensible to the scene illuminant. 

Therefore, raw colour features are not reliable per se in image recognition. This 

dependency on the illumination should be removed and some other stronger to 

illumination models such as CIE LUV can be preferred rather than the traditional RGB 

model. Although out of our scope, other colour representations are based on 

histogramming. Nevertheless, this option has the drawback of losing the spatial 

information of the patterns. 

 

4.2 Affine geometric invariance 

4.2.1 The affine frame 
 

An area-preserving affine transformation bxAy
rrr += , is characterized by a translation 

vector b
r

 and a matrix A being SL(2,R), i.e. the group of all real 2x2 matrices with 

determinant one that preserve oriented area [44,85]. Starting from a Frenet frame where 

the area enclosed by two vectors {e1  e2} is the unit area, we search for an oblique 

system of coordinates defined by two vectors {a1  a2}. These vectors delimit a 

parallelogram of unit area, thus having an area preserving frame under affinities. This 

frame can be defined over every point of a curve Γ(t)=(x(t),y(t))T Є R2, which is at least 
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a two times differentiable planar curve. The vector a1 can be the tangent vector at a 

given point of the curve, whereas a2 should be defined so as to enclose an oblique frame 

of unit area. Therefore, the determinant )(),( 21 tata  should be one. The setting is: 

 

 

Figure 4.1. Euclidean and affine frames (from [44]) 

 

 

If )(tΓ&  and )(tΓ&&  are respectively the first and second derivatives of the curve Γ at the 

parameter t, these vectors {a1  a2} that determine a unit area are given by: 

 

)()(),()(

)()(),()(

2

1

2

2

1

1

tttta

tttta

ΓΓΓ=

ΓΓΓ=

−

−

&&&&&

&&&&

     (4.1) 

 

4.2.2 The affine arc-length metric 
 
 
The basic concepts on affine differential geometry introduced above lead us to the 

definition of the affine arc-length expression.  

 

As we need the parallelogram created by the oblique frame {a1  a2}  to be of unit area, 

the curve Γ is reparameterised to a new parameter σ – always assuming the condition 

0)(),( ≠ΓΓ tt &&& . 

 

e1 

e2 

a2 

a1 

Γ(t) 

x 

y 
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Therefore the expression of the arc-length parameterisation σ is as follows: 

∫ ΓΓ=
b

tdytdxtytxtytxt
00

3 )()())(),(('')),(),((')(σ    (4.3) 

and the normalized version: 

 
)max(

)(
)(

σ
σσ t

tN =      (4.4) 

 

which is an absolute invariant. However it needs both endpoints of the curve to be 

known. 

 

By performing several affine transformations to the original contour we can compute a 

parameter analysis of the affine invariant metric as shown in the next figure. However, 

although the normalized affine arc-length is an absolute invariant, it cannot cope with 

partial contour matching, i.e. the contours should correspond exactly to each other, 

unless a partial (and exact) segmentation of corresponding parts of the contours is 

known.  

 

In order to evaluate the performance of the affine arc-length the next sequences (figure 

4.2) show a real image and its affinely transformed counterpart. The contour maps are 

extracted in both images and a few contours highlighted as examples. Four synthetic 

curves have also been superimposed on the images to add to the test: a circle, a 

parabola, a ellipse and a sine-exponential function described by z(x(t),y(t)) with 

x(t)=a*sin(t) and y(t)=b*exp(t). Figure 4.3 presents the affine arc-length σ(t) of these 

curves, where t is the centripetal distance along the curve. The distance along the curve 

is normalized to 1.  At a first glance, the affine arc-length could be used to distinguish 

between some corresponding curves. However, despite the reduced set of curves of this 

example we see that some of them have similar behaviour. 
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We will see in the next sub-section that there exists a linear relation between the affine 

arc-length of two affinely transformed curves. This linear relation, which gives an 

estimation of the transformation undertaken, is not evident in figure 4.3. That is due to 

the fact that the x-coordinate of the plot represents the centripetal distance along the 

curve. This metric is not invariant under affine transformations, thus the property of 

geometric invariance up to a linear relation of the affine arc-length is not evident in this 

representation. Figure 4.4 represents the ratio of corresponding affine arc-length curves 

to the third power, which is a measure of the transformation between the curves. Notice 

that the ratios for the ground truth (synthetic curves) overlap each other giving a single 

measure of the transformation between all them. For the real contours, which are 

extracted independently, the results are less satisfactory since there is no sample-to-

sample contour correspondence between views. 
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Figure 4.2. Original and affinely transformed images with contour map. Highlighted, 

selection of real contours and synthetic curves under study. 
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Figure 4.3. Affine arc-length 
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Figure 4.4. Ratios of affine arc-length. 

 

Figure 4.5a presents an instance of a synthetic image where a contour and a point of 

interest has been extracted. Figure 4.6b shows an instance of the same image 

transformed by an affinity. The other figures show the affine arc length and normalised 

affine arc length under a wide range of transformations. Notice how the affine arc 

length is invariant up to scale, whereas the normalised affine arc length is an absolute 

invariant for the whole range of affine transformations. 
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Figure 4.5. Affine and normalized arc-length parameter analysis. a) and b) Input contour 

and affine-transformed contour, point of interest marked with a black circle and 

endpoints of the contour in blue and yellow circles c) and e) affine arc-length for the 

original and transformed contours. d) and f) normalized affine arc-length for the original 

and transformed contour. 

 
 

4.2.3 The affine invariant area 
 

We assume again that we have a curve ΓA(t) that is transformed to a curve ΓB(t) by an 

affine transformation M. Then ΓA(t) and ΓB(t) are reparameterised as ΓA(σA(t)) and  

ΓB(σB(t)), respectively. Recall that the parameter σ defines an oblique frame of unit area 

at every point of the curve. We pursue that these parallelogram instead of covering a 

unit area in the second image it should enclose the area that corresponds to the unit 
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frame in the first image. Evidently, the effect of the affine transformation M is reflected 

in the transformed image by a scaling of the corresponding area [49]: 

 

M
ation transformbefore area

sformationafter tran area =    (4.5) 

   

with M a 3x3 matrix: 










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





=
100

2221

1211

y

x

tmm

tmm

M      (4.6) 

 

where the determinant is m11m22-m12m21, as m11 and m22 correspond to scaling in xy 

coordinates and m12 and m21 to shear. Consequently, scaling does shape the new area of 

the parallelogram whereas shearing can only affect it. 

 

From equations (4.1) and (4.5), two corresponding areas can be extracted by scaling the 

parallelogram defined by the vector a1B and a2B to ã1B and ã2B: 

 

Maaaa BBBB ⋅= 2121 ,~,~     (4.7) 

 

The relation between the two affine arc length metrics in both corresponding curves ΓA 

and ΓB is as follows: 

3

3
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)()(,
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)(
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tdytdxMaa

t

t
t

t

BB

t

t

BB

A

B =

⋅

=

∫

∫

σ
σ

  (4.8) 

   

Therefore we show that there is a linear relationship between the affine arc-length of 

two corresponding curves. So far, by computing the affine arc length of a curve and its 

transformed version we can estimate the transformation undergone M. However, we 

approach that fact the other way around: instead of extracting the transformation 

between the two curves, we can scale the vectors {a1  a2}  in the second image by the 

relation given in equation (4.8) and extract corresponding patches in both images. 

 

Consequently, from the two equations above: 
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Example.  The following example illustrates the idea. For easiness we choose a circle. 

A curve ΓA that describes a circle is expressed in parametric form: 

 

)sin(

)cos(

θ
θ

⋅=
⋅=

ry

rx
     (4.10) 

where: 

r

l=θ       (4.11) 

being l the length of the circle and r its radius. 

 

From equation (4.1): 
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    (4.12) 

 

and the area defined by these two vectors is one: 

 

1)(cos)(sin, 22
21 =+= θθaa    (4.13) 

 

If we apply now an affine transformation M to ΓA, we have the ellipse ΓB 

 

)sin(

)cos(

θ
θ

⋅=
⋅=

by

ax
     (4.14) 

 

where a and b are the semi-major and semi–minor axis, respectively. The determinant 

of the area defined by a1 and a2 over ΓB is also 1. 

 

As the ellipse is obtained by applying an affine transformation M with expression: 
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with kx, ky representing the scale in xy coordinates; sx, sy the shear and tx, ty the 

translation, although not relevant. The new area in the second image is given by: 
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However, the parameters of the transformation (kx, ky, sx and sy) are unknown. The 

computation of the affine arc-length over the circle and the (transformed) ellipse gives 

an estimation of the transformation M which scales a1B a2B according to equation 4.8. 

 

Figure 4.6 shows the example of the input circle and transformed ellipse. The top plots 

show the extraction of a unit area from a given point t of the circle and the 

corresponding one in the ellipse. The central plots are the affine arc length along both 

curves (see the linearity between them) and the normalized version, which is an absolute 

invariant. The bottom plots are the extraction of the unit area in the input curve and the 

affine-arc-length scaled extraction of equivalent region of ratio M.  

 

Figure 4.7 illustrates better the same example by overlapping circles of different radius 

over a background, input image. Both the background image and the circles are affinely 

transformed. The affine arc length is computed over both curves and the invariant area 

defined by vectors a1 and a2 and the counterpart given by equation (4.8) are shown for 

the first sample of the contour. In figure 4.7a) vectors a1 and a2 are coloured in red and 

green, respectively. Figure 4.7b) shows the effect of computing the affine invariant 

vectors over every sample of the circle. The tips of vectors a1 and a2 are linked resulting 

in affine invariant regions at both sides of the contour. 
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Figure 4.6. Affine-arclength-based method to extract corresponding areas. a) original 

curve (circle) and extraction of unit area by vectors a1 and a2 ; b) affinely transformed 

circle (ellipse) and extraction of unit area by vectors a1 and a2; c) affine arclength of the 

circle and ellipse; d) normalized affine arclength of the circle and ellipse e) same as a) 

and f) corresponding area defined by BB aa 21
~,~ . 
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Figure 4.7. Affine invariant regions over two affinely transformed background 

images.  a) Affine arc-length vectors enclosing corresponding areas and b) affine 

invariant regions by linking tips of invariant vectors. 
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4.3 Affine photometric invariance 

4.3.1 Hu’s moment invariants 
 
Hu [53] presented a set of moments invariant to rotation, translation and changes in 

scale for planar geometry based in algebraic invariants. The ordinary moments of order 

p+q of a continuous function f(x,y) are defined by: 

 

∫ ∫
+∞

∞−

+∞

∞−

= dxdyyxfyxm qpf
pq ),()(   0),(),( >⇒∀ ∫ ∫

+∞

∞−
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∞−

dxdyyxfyxf  (4.9) 

 

The central moments )( f
pqµ  are expressions of the ordinary moments that can deal with 

translation in the image: 
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the geometric centre of gravity of the function f(x,y) that define the central moments. 

 

 

 

The normalized central moments, which can be invariant to changes in scale, are 

defined from the central moments: 

γµ
µ

η
00

)(
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f
pqf

pq =   
2

2++= qpγ    (4.12) 

 

By combining orders of normalized central moments Hu generated six absolute 

orthogonal invariants and one shear orthogonal invariant of the second and third order. 

We do not present the expressions of the moments but refer to [53]. 
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4.3.2 Generalised colour moments 

 
Mindru et al. [82] present a set of moments that preserves invariance up to affine 

geometric and photometric transformations of the image. These are the generalised 

colour moments, which are computed from a slight variation of the ordinary moments 

of Hu by incorporating the three (RGB) colour bands: 

 

[ ] [ ] [ ]∫ ∫= dxdyyxByxGyxRyxM cbaqpabc
pq ),(),(),(   (4.13) 

 

In this expression, p+q denote again the order of the moment and abc indicates the 

degree of the moment, i.e. each of the powers applied to the colour bands individually. 

As a matter of robustness, moments are computed for low orders and degrees. Hence, 

considering moments up to the first order and second degree, the possible generalised 

colour moments and their descriptive features are: a) moments of order pq and degree 0 

([a,b,c]=000) represent the pq-shape moments, b) moments of degree 1 only consider 

one band and exclude the two others being the descriptor computed over intensities of 

the selected band, c) likewise moments of degree 2 combine two bands and reject the 

one left, and d) finally moments of order 0 (p=q=0) neglect pixel spatial information.  

 

The basic invariant moments are devised as solutions of systems of partial differential 

equations by means of Lie group methods [115]. These cover affine geometric 

invariance combined with scale photometric invariance (Type 1), and with scaling and 

offset photometric variations in the image (Type 2). Types 3 and 4 are related to scaling 

plus offset illumination changes and affine changes, respectively, but no affine 

geometric distortion permitted. We will focus our attention on the first type, as scaling 

photometric invariance can suffice to model the intensity variations of indoor images. 

For the case of outdoor scenes, affine models describe better the changes of 

illumination. However, since the wide baseline case is strongly constrained by 

geometric distortion thus the scaling plus offset photometric model can only be used in 

detriment of affine photometric, model- based invariants. 
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(4.14) 

 

Spq invariants are related to single band analysis, while Dpq are for combinations of two 

out of three bands. The superscript indicates the power(s) to use for the band(s) under 

consideration. Therefore, there should be computed 6 S-invariants (S02 and S12 in R,G 

and B) plus 18 D-invariants as a result of the three possible combinations RG, RB and 

GB. In total, 24 invariants can be reduced to a basis set of 21 invariants. The elements 

discarded are )(3
12

RBD , )(4
12

RGD  and )(4
12

GBD . 

 

Figure 4.8 shows an input image and combinations of geometrical and photometrical 

patches – some extracted over the same area, others not. The basic set of 21 invariant 

moments is computed. Figure 4.9 shows the result for corresponding and non-

corresponding regions. 
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4.4 Descriptor and matching  

 

In Chapter 3 we have discussed the way of extracting ribbons around contours. The 

drawback is that we are not extracting invariant regions and the approach is ad-hoc. 

However, considering that the contour map is accurately detected, patches are extracted 

with an acceptable photometric homogeneity. Starting from a set of points of interest, a 

Harris corner lying on one contour at least, the descriptor is a vector containing the 21 

photometric invariant moments extracted over the patches defined by a ribbon. Thus for 

a point of interest there are two descriptors, one for the brighter ribbon and another for 

the darker side. These ribbons emanate from the point of interest. The Euclidean 

distance among descriptors in both images are computed and that way we can have an 

initial estimation of corresponding contours. 

 

However, the descriptor should combine geometric and photometric properties. In this 

chapter we have defined invariant regions from the affine arc-length distance of 

corresponding contours but it needs to know the counterpart contour. That is sorted out 

by a combinatorial search over features extracted from the graph structure. Affine arc 

length frames are extracted along the contour that links two points of interest. These 

frames define the regions where to analyse the photometry by the generalised colour 

moments descriptor. 
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Figure 4.8. Extraction of patterns to compute the invariant moment signature. a) and b) 

Original image and patch extraction; c) and d) Affinely transformed photometry; e) and 

f) Affinely transformed geometry and scaled transformed photometry; g) non 

corresponding patch; h) non-corresponding patch with different morphology. 
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Figure 4.9. Comparison of two sets of 21 moment invariants resulting from a) two 

corresponding geometric patches with photometry affinely transformed (figure 4.8b) 

and d)); b) two corresponding patches geometrically transformed and scaling of RGB 

bands (figure 4.8b) and f)); c) two non-corresponding patches geometrically and 

photometrically transformed (figure 4.8b) and h)); and d) two non-corresponding 

patches with different morphology. Notice that the values of some moment invariants 

are missing, that is due to the non representation of negative values in logarithmic axis. 

 

 

4.5 Experimental results 

 

Regions along the contour. The proposed algorithm was tested on the real contours 

and synthetic curves over an indoor image already presented (see figure 4.2). The image 

is an RGB image with a resolution of 384x512 pixels. A contour map is created by 

extracting Canny edges. The Gaussian filter σ is 1.35 and hysteresis thresholds are set to 

0.0312 and 0.0781. There were 450 edges found that after linking according to gradient 

and direction maps, proximity, continuity and distance constraints were reduced to 96 

contours of a minimum distance of 30 pixels. Four synthetic curves were overlapped 

over the image, resulting in a set of 100 contours in total. Seven landmark points were 
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selected manually on the reference image. They could have been extracted by looking 

for Harris pixels over contours or in the proximity of contours but for the purpose of the 

experiments this suffices. The original image is applied an affine transformation M, a 

20º rotation, 100 pixels translation in the x-axis, and 0.9 and 0.2 scaling and shear in 

both x- and y-axis respectively. A scale plus offset photometric transformation was also 

applied, scale [0.6 0.6 0.7] and offset [-0.2 -0.2 0.1] in the RGB bands. 

 

From the points of interest we extract homogeneous photometric regions at both sides of 

the contours. These ribbons are delimited by the contour map as explained in Chapter 3.  

Figure 4.10 shows the regions extracted for the points of interest lying over/by the 

synthetic curves. Notice that the extraction of regions is also expanded to the 

neighbouring contours within a certain distance from the point of interest. That is, the 

algorithm starts from the point of interest, opens a small window and search for 

neighbour contours. Ribbons are extracted around the contours where there exists a 

point of interest in the vicinity. The rest of the contour map is only taken under 

consideration for delimiting homogeneous regions. Regions emanating from points of 

interest close to real contours are shown in figure 4.11. Every pair of region is classified 

as ‘darker’ and ‘brighter’ side of the contour, by averaging grey levels. The affine 

photometric invariant moments are computed over these regions for every point of 

interest. Therefore, the point of interest is defined by two vectors of 21 moments for 

each side of the contour(s). We use Euclidean distance to find the proximity among 

descriptors in both images. Tables 4.1 and 4.2 present the results for the points of 

interest lying over the curves under study. We present in green correct matches, in red 

mismatches and in orange the corresponding match. We are analysing here the 

performance of the extraction of homogeneous photometric regions as well as the 

invariance of the descriptor towards geometry and photometry changes. The distance 

matrices allow us to have an initial estimation of corresponding points over contours.  
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Figure 4.10. Homogeneous photometric regions from points of interest lying over 

synthetic curves.  Left) original image and right) transformed image. 
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Figure 4.11. Homogeneous photometric regions from points of interest lying over real 

contours.  Left) original image and right) transformed image. 
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Distance matrix for darker side 
 Circle Parabola Sin-exp Ellipse C1 C2 C3 

Circle 1.7688    3.8602    9.5013    2.0559    3.4642    2.8978    3.9281 
Parabola 3.8940    1.9928    9.5730    4.3539    5.2931    4.8164    5.3342 
Sin-exp 8.6256    8.5970    9.0480    8.6658    9.3747    9.0764    9.8345 
Ellipse 2.4610    4.2999    9.4541    1.5100    2.8824    2.5515    3.6552 

C1 4.4571    4.8553    10.2390    3.0956    1.8963    2.2314    3.7357 
C2 3.3103    4.8553    9.7509    2.3659    2.0661    1.8382    3.4422 
C3 5.4207    6.6489    12.9295    5.5166    5.4581    5.3388    3.8689 

 

Table 4.1. Distance matrix among descriptors based on invariant photometric moments 

for the darker side of the contour. Rows, original image. Columns, transformed image. 

 

 

Distance matrix for brighter side 
 Circle Parabola Sin-exp Ellipse C1 C2 C3 

Circle 2.7144    8.3006    8.9197    4.7941    3.7586    3.6892    6.2086 
Parabola 6.7288    5.9632    6.1622    4.2438    4.8347    4.2472    6.1573 
Sin-exp 5.2813    9.5286    9.7746    6.2698    5.7025    5.5429    8.0059 
Ellipse 7.4692    5.6224    7.6261    3.5196    5.3378    5.0944    6.2336 

C1 5.8041    6.7267    6.6712    4.7079    2.6492    2.9260    3.4681 
C2  5.6476    6.5232    5.5123    3.8103    2.4245    2.1897    3.7451 
C3 8.9412    7.2558    7.8222    7.8230    6.5349    6.6196    3.4455 

 

Table 4.2. Distance matrix among descriptors based on invariant photometric moments 

for the brighter side of the contour. Rows, original image. Columns, transformed image. 

 

 

Affine invariant frames. We compute the affine arc-length frames over the sample 

desk scene with synthetic and real contours independently detected to show with these 

examples how the affine invariant regions (parallelograms) are extracted. We can set up 

a relation between affine arc-length of potential corresponding contours and extract 

invariant regions based on affine arc-length. The contours are reparameterised from 

centripetal to affine arc-length distance. The terms of the affine arc-length in equation 

(4.3), i.e. up to second order derivatives, determinant and integral, are computed in the 

domain of splines. The computations of derivatives in finite differences introduce 

considerable errors. Therefore, a least-median of squares cubic spline approximation is 

a better solution [99]. The ratios of affine arc-lengths of corresponding contours to the 

third power, equation (7), give an estimation of the determinant of the fundamental 

matrix. Table 4.3, shows the results in an exhaustive search for corresponding contours. 
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The determinant of our transformation M is 0.77, which is accurately obtained for 

synthetic curves. For the three real contours, the results are also very accurate (0.7419, 

0.7369 and 0.8542). Figures 4.12 to 4.18 depict extraction of the invariant regions for 

synthetic and real contours. The figures on the left represent the extraction of patches 

defined by the affine invariant vectors over a few contour samples, for a better 

visualisation.  We find acceptable performance of the system over the synthetic curves, 

whereas real contours do not show satisfactory results. Recall that second order 

derivatives are sensitive to noise. Affine curvature could have been a useful invariant 

but its expression contains fourth order derivatives, which rules it out of any practical 

consideration for us.  

 

Affine arc-length ratios 
 Circle Parabola Sin-exp Ellipse C1 C2 C3 

Circle 0.7700    0.0220    0.0199    0.1084    5.2935    6.8597    0.5679 
Parabola 26.9154    0.7700    0.6945    3.7897   185.0361  239.7812   19.8511 
Sin-exp 29.8435    0.8538    0.7700    4.2020   205.1662  265.8672   22.0107 
Ellipse 5.4687    0.1565    0.1411    0.7700    37.5961   48.7194    4.0334 

C1    0.1079    0.0031    0.0028    0.0152    0.7419    0.9614    0.0796 
C2 0.0827    0.0024    0.0021    0.0116    0.5687    0.7369    0.0610 
C3 1.1582    0.0331    0.0299    0.1631    7.9622    10.3179    0.8542 

 

Table 4.3. Affine arc-length ratios of curves in the proximity of points of interest. Rows, 

original image. Columns, transformed image.  

 

 

Figure 4.12. Affine invariant arc-length frames over synthetic curve. Circle. 
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Figure 4.13. Affine invariant arc-length frames over synthetic curve. Parabola. 

 

  

Figure 4.14. Affine invariant arc-length frames over synthetic curve. Sine-exponential. 
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 Figure 4.15. Affine invariant arc-length frames over synthetic curve. Ellipse. 

 

 

 

Figure 4.16. Affine invariant arc-length frames over synthetic a real contour. C1. 
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Figure 4.17. Affine invariant arc-length frames over a real contour. C2. 

  

Figure 4.18. Affine invariant arc-length frames over a real contour. C3. 

 

 

In figure 4.18 we can notice that the length of the vector a1 for some of the samples is of 

considerable magnitude. The inconvenience of this is that the descriptor extract regions 

that are not local. In figure 4.19 we present a simple experiment. In the left figure we 
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plot the initial sequences of the affine invariant frame for samples along the curve. 

Notice how the vectors a1 in red and a2 in green lie at each side of the contour. In the 

right-hand side figure we show the whole sequence along the contour. There is a 

sample, marked by the arrow, where the vectors swing. That occurs at an inflection 

point. At that inflection point the determinant of equation (4.2) is null, the vectors 

overlap and go to infinity in order to describe a planar parallelogram of unit area. Figure 

4.20 shows the value of the determinant of the derivatives along the samples of the 

contour. The original curve is overlap by a rotated version, which means that the 

determinant is invariant to rotations. The determinant of other affine versions of the 

input curve are also displayed. We can see that the zero crossing point of all the curves 

corresponds to a point of null determinant, or null affine curvature. We can discern from 

that that these inflection points are invariant to affine transformations. 
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Figure 4.19. Effect of inflection over the affine invariant frame.. 
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Figure 4.20. Determinant of the derivatives for different transformations. 
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Geometric and Photometric affine invariant approach. We combine the affine 

geometric invariant frame with the generalised colour moments in this section. The 

algorithm is presented in pseudo-code in figure 4.21. Basically, it consists of an 

exhaustive search over the space of spatial descriptors generated in Chapter 3 from the 

graph structure. The search space is reduced by setting certain constraints. For instance, 

we do not take samples when the magnitude of one of the vectors of the affine frame 

exceeds a certain magnitude, since we would not be extracting local regions (see figure 

4.18a). That is caused by the samples where the determinant in equation (4.2) is close to 

zero, points of inflection of null affine curvature. Therefore, we do not consider these 

regions along the contour. Another constraint is to delimit the transformation the system 

can cope with. From equation (4.8), the determinant of the transformation M is a 

function of the ratio of two corresponding affine arc-length distances. If the determinant 

of M is too high or too low, both descriptors could only correspond each other when 

that strong transformation occurs. If we bound the space of possible transformations we 

are also reducing the search space. The re-scaling of the affine frame in image B is 

given by equation (4.9), with the assumption that these two spatial descriptors 

correspond. We define a grid over this re-scaled affine frame and interpolate the 

photometry of the image and apply the generalised colour moments descriptor. We also 

store the normalised affine arc-length of both spatial descriptors. However, despite that 

this measure is expected to be an absolute invariant, results are not so good when 

incorporating this measure in real applications due to the sensitivity to noise. Therefore, 

the only metric used to measure the distance between the two descriptors is the 

Euclidean distance of the natural logarithm of the generalised colour moment vectors. 

The voting algorithm casts votes row- and column-wise over the distance matrix of the 

descriptors. We cast votes only to the best 8 matches along each column of the 

descriptor matrix (votes v = [10 8 6 5 4 3 2 1]). We do the same row-wise and after 

multiply both matrices. The result matrix is weighted by the inverse of the Euclidean 

distance matrix. The potential correspondences are the ones with higher scores. We take 

as a match the pair with maximum score across its column- and row-wise location in the 

confusion matrix. In [5] and previous works referred there, a match is assigned when the 

distance between the pair is lower than 0.7 times the distance of the second best pair. 

However, this measure did not obtain more successful results for our setting. As another 

strategy, the Munkres algorithm has also been used for optimization in the assignment 

process. 
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In: 

- Descriptors with spatial information from graph structures from both images 

Out: 

- Set of correspondences 

Procedure: 

1. FOR every descriptor from image A 

a. Extract affine arc-length σA 

b. Discard samples when the magnitude of the affine vectors exceed a 

predefined threshold 

c. FOR every descriptor from image B 

i. Extract affine arc-length σB 

ii.  Estimate the determinant of the fundamental matrix |M| between 

the pair of contour segments (equation (4.8)) 

iii.  IF (|M|>maxoffset  OR |M|<minoffset) 

CONTINUE – The descriptors can only correspond if a 

strong transformation that is out of consideration occurs 

   END 

iv. Define affine invariant regions in image B (equation (4.7)) 

v. Discard samples when the magnitude of the affine vectors exceed 

a predefined threshold 

vi. Set grid over affine invariant frames in image B 

vii.  Extract photometry over samples in the grid 

viii.  Compute the generalised colour moments 

ix. Compute distance between normalized affine arc-length of both 

descriptors 

END 

d. Set grid over affine invariant frames in image A (equation (4.1)) 

e. Extract photometry over samples in the grid 

f. Compute the generalised colour moments 

g. Compute Euclidean distance between both descriptors 

END 

2. Voting algorithm 

3. Return set of correspondences 

 

Figure 4.21. Geometric and photometric affine invariant algorithm. 
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We perform now experiments on the extraction of affine invariant arc-length frames 

over the images used in Chapter 3 (figures 3.30 to 3.34), i.e. the output to the affine 

invariant system is the graph structure in previous chapter. Since the results in the 

previous experiments were not satisfactory for real contours, we do not use the pair of 

stereo images but a original one and its affinely transformed (homography). The ground 

truth permits us visualise how accurate the matching is. The transformation applied for 

each experiment is summarised in Table 4.4. The results are displayed in the confusion 

matrices of figures 4.22 to 4.26 and the measure of recall, precision and number of 

corresponding regions in figure 4.27 to 4.29. 

 

Homography Rotation Scale Shear Phot_offset Phot_scale 
1 20 1 0 0 1 
2 0 2 0 0 1 
3 0 2 0.1 0 1 
4 0 2 0 0.2 0.7 
5 20 0.75 0.1 0 1 
6 20 0.75 0.3 0 1 
7 20 1.25 0.1 0 1 
8 20 1.25 0.3 0 1 
9 40 0.75 0.1 0 1 
10 40 0.75 0.3 0 1 
11 40 1.25 0.1 0 1 
12 40 1.25 0.3 0 1 

 

Table 4.4. Space of transformations 
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Figure 4.22.Confusion matrices. Book scene. 
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Figure 4.23.Confusion matrices. Antenna scene. 
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Figure 4.24.Confusion matrices. Countryside scene. 
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Figure 4.25.Confusion matrices. Graffiti scene. 
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Figure 4.26.Confusion matrices. Valbonne scene. 
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Figure 4.27.Recall 
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Figure 4.28. Precision 
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Figure 4.29.Number of corresponding regions 
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4.6 Error analysis 

4.6.1 Propagation of errors 

 
The affine arc-length method for the extraction of affine invariant regions was strongly 

dependent on the nature of the curves. The results proved to be satisfactory for synthetic 

curves, whereas rather the opposite for contours from real images. Splines based upon 

least-mean of squares fairly approximate our synthetic curves but present a little, 

practically insignificant errors over real contours. We analyse how these small errors 

propagate through the experimental procedure to a bigger error in the final result. The 

final error is as a by-product of the combination of the uncertainty for each single step 

that leads to the affinely invariant arc-length vectors. 

 

Figure 4.30 shows a diagram with the main steps and how the error propagates. The xy 

coordinates of the curve in image A are applied an affine transformation T to generate 

the xy coordinates of the curve in image B. That curve is approximated by splines, 

introducing an error that propagates throughout the next blocs highlighted in red. In the 

other hand, we also transform the approximation by splines from image A into image B 

by using the same T. The error that propagates in further steps is null. That is due to the 

fact that the input error is zero and no more approximations happen in further steps. 

Therefore, we can consider the blocks highlighted in red as ground truth for the 

evaluation of the propagating error. Next we introduce some basics on the theory of 

error propagation [15].  

 

If x is a function of two variables u and v, x~  its expected value based on ground truth 

variables u~  and v~ , and xi the consequence of each individual measurement ui and vi, 

therefore the variance of x is given by: 
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By expressing the deviations of x as a function of its variables u and v: 
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Figure 4.30. Error propagation across the calculus of affine invariant frames. 

 

 

the variance 2
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and that way it can also be expressed as a function of the variance and covariance of u 

and v: 
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In our particular case our functions under study are the affine arc-length expression σ(t) 

in equation (4.3), and the affine invariant vectors in the transformed image, equations 

(4.1) and (4.9).  

 

If we dissect hierarchically the expression of the affine arc-length, there is a summation, 

a third root and a determinant, which is a subtraction of products of first and second 

order derivatives of the x and y components of the curve. Likewise, the final vectors in 

image B (we do not consider vectors in image A since we assume no error propagation 

in the original image) is the result of a determinant, a product by its derivatives and 

another product with the division of affine arc-lengths to the cube. We analyse the 

propagation of the uncertainties throughout the expressions in figure 4.31.  

 

4.6.2 Experimental results 

 

In figure 4.32 we present an example of the propagation of errors to the affine invariant 

frame. The first image corresponds to the original image, in the second image the 

splines have been transformed from image A and in the bottom image the contour 

coordinates were transformed and these were the seed to the frames. Notice that the 

affine frames in the central image covers corresponding areas to the ones in the first 

image; whereas in the bottom image the parallelograms do not correspond exactly. 

Figures 4.33 to 4.35 show the propagation of errors across the expressions in figure 

4.31. These are calculated for an affine frame of unit area, i.e. r=[1 1]. See in 

expressions S11 and S12 in figure 4.28 that the effect of scaling the affine vectors by r 

implies a multiplication of the error by r2. Figure 4.36 shows the distribution of the 

errors in the affine frame as a function of the determinant of the derivatives of the 

contour for the ground truth (from transformation of splines) and for the measured data 

(from the transformation of xy coordinates). Notice again how samples where the value 

of the determinant is low tend to have higher errors. 
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Figure 4.31. Error propagation across the calculus of affine invariant frames. 
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Figure 4.32. Propagation of error over affine invariant frames (r=[10 80]). a) Original 

image, b)transformed image with spline approximations transformed 1:1 and 

c)transformed image with transformed xy contour coordinates. 
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Figure 4.33. Propagation of the error along the contour for the affine arc length. 
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Figure 4.34. Propagation of the error along the contour for the affine arc-length ratios. 
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Figure 4.35. Propagation of the error along the contour for the affine arc length frames. 
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Figure 4.36. Error in the affine frame as a function of the determinant of the derivatives. 
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4.7 Summary 

 

We have presented two methods for solving the correspondence problem over affinely 

transformed images. The first one consists of the extraction of regions of homogeneous 

photometry around contours. The generalised colour moments are used to describe the 

photometry in the regions and the matching is performed by Euclidean distance between 

descriptors and a voting algorithm. For the sample image containing synthetic and real 

contours the system works well. But this method is ad-hoc, only invariant to rotation 

and translations, and highly dependent on the ability of the contours to extract 

homogeneous photometric regions. So we have performed some tests but we do not 

consider the method valid for our system. 

 

The second method plays a main role in this thesis. We have described affine geometric 

invariant frames along segmented contours from a graph structure that are theoretically 

absolute affine invariants. We have shown how these regions are extracted for synthetic 

and real contours and run experiments in combination with the generalised colour 

moments descriptor over the images used in Chapter 3. We have worked with ground 

truth data, i.e. we have taken one of the images and have affinely transformed it together 

with the high-curvature points and contours. The tests undertaken consisted of several 

single rotations and shears together with translations, and then combinations of all those 

(affinities) including also changes in photometry. We have displayed the results of the 

matchings after applying a voting algorithm in the form of confusion matrices and 

number of true correspondences. The percentages of correct matches are around the 

10%, which implies that the system needs some further support to discern outliers. That 

also suggests that for a viewpoint change scene where the features are also 

independently extracted, the chances of a successful matching even decrease further. 

 

We have analysed the reasons why the affine arc-length frames do not perform in 

practical applications as they do in theory. We have performed an error analysis 

throughout the steps involved in the calculation of the affine invariant frames. The small 

error introduced by the approximation by splines – needed for finding the spatial 

derivatives – propagates throughout the levels being the reason of the malfunction. 

These errors in the affine frame are more significant for the instances where the 

determinant of the first and second order derivatives is lower.  
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That is due to the high magnitude that one of the vectors that define the frame reaches 

against the magnitude of the other.  Therefore, the system is endemic to the accuracy in 

the computation of the derivatives and at the inflection points where the affine curvature 

is null. The latter problem can be easily solved by discarding the samples in the contour 

where the affine curvature (or determinant) is below a certain threshold. The solution to 

the former problem is more complicated, since it implies the propagation of an input 

error that is always inherent to any real-world application. 
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Chapter 5 – Robust estimation from correspondences 

 

5.1 Introduction 

In chapter 4 we defined an affine invariant descriptor which embedded an affine arc-

length distance and photometric moments. The descriptor was defined along contours’ 

spatial coordinates delimited by points of interest.  Consequently, each descriptor paired 

two points of interest and due to the combinatorics of the graph’s approach every point 

of interest was encoded in at least one descriptor. An initial set of putative 

correspondences was computed from a confusion matrix. Now in chapter 5 we 

recapitulate the search of correspondences by strengthening the matching with a robust 

algorithm. It would be desirable that the data residuals in the sample space are 

approximately normally distributed. However, that is not what happens in practice since 

generally there exists outliers or mismatches that cannot be approximated by a normal 

distribution. If these outliers are considered, the transformation between the two images 

will not be estimated correctly. It is necessary to use robust algorithms to identifying 

and discarding the corrupted data.   

 

Some of the robust algorithms are based in non-iterative methods [70,47] but we will 

centre our attention towards iterative methods. There are two options for the estimation 

of the parameters of the transformation between the images: either the minimisation of a 

cost function based on a certain distance metric or the use of the Gold Standard 

algorithm. The chapter starts with these two approaches and follows with the 

presentation of classical methods for the rejection of large sets of outliers. Next the 

whole robust algorithmic approach is presented and we finish with experimental results. 

 

 

5.2 Cost functions 
 

The projective transformation between two images (either the fundamental matrix or a 

projectivity) and its nature (perspective or affine) will define the number of degrees of 

freedom of the transformation and therefore, determine the minimum number of 

correspondences needed to compute that transformation. That is called the minimal 

solution. In the case that a bigger number of samples is considered (over-determined 
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system), if the samples in a real application are disturbed by noise, the projective 

transformation that maps these correspondences may not exist. The problem is reduced 

to be content with the best possible approximation or optimal solution by minimising a 

cost function which parameters are each pair of correspondences xi and xi’  and the 

fundamental matrix F or homography H, i.e. the minimisation of the distance between 

the measured and estimated location of pairs of correspondences.  Some examples of 

cost functions are presented in this thesis as defined in [54]. The cost functions are 

classified in two groups according to the minimisation of: a) an algebraic error, and b) a 

geometric or statistical error. For simplicity the notation is related to the case of 

computing a homography H (x’=Hx), but it is also the same for the fundamental matrix 

F (x’TFx=0) with the difference of computing the distance from the measured 

correspondence to the estimated epipolar line. 

 

5.2.1 Algebraic distance 
 

If we express each pair of correspondences xi and xi’ in homogeneous coordinates, i.e.: 

xi = (ui vi wi)
T and xi’  = (ui’ vi’ wi’)

T, xi’ and Hxi will have the same orientation but may 

have different magnitude up to a scaling factor. The expression can be rearranged in the 

form of the cross product: 

 

xi’ x Hxi = 0     (5.1) 

 

The term Hxi can be written as: 
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Being hjT the j-th row of the homography H. Therefore, the cross product is: 
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Taking into account that hjTxi = xi
T
 h

j, and from equations 5.1 and 5.3: 
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which can be expressed as: 

 

0=Ah       (5.5) 

 

We are interested in finding a non-trivial solution for h that minimizes the error vector 

ε=Ah. The error vector ε is also given by: 

 

∑=
i

iεε      (5.6) 

 

With εi each of the single partial errors from each pair of correspondences and 

homography H. The vector εi is called the algebraic error and its norm is the algebraic 

distance: 
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The advantage of the use of the algebraic distance is that it results in a linear solution to 

the problem and therefore, lower computational cost. The disadvantage is that it does 

not have any geometric meaning and for the case of an affine transformation, the 

algebraic and geometric distance are the same [54].  

 

5.2.2 Geometric distance 
 

The objective is finding the homography Ĥ  that minimises the Euclidean distance d(·) 

between measured (x) and estimated (x̂) locations of correspondences. The errors can 

be computed in three different ways, depending on the degree of accuracy or objectivity 

desired. These are the instances in ascending order: 
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Error in one image. The measurements in the first image are considered with null error 

(or true value,x ). Therefore, the estimated image coordinates are ii xHx =ˆ . The error 

function to minimise the geometric distance is the following square of differences: 

 

( )2'2 ,∑=
i

ii xHxdε      (5.8) 

 

Symmetric transfer error. In most applications it is more sensible to consider that the 

errors occur in both images. Taking into account the backward transformation (H-1), the 

function to minimise is given by: 

 

( ) ( )∑ 
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
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i
iiii HxxdxHxd

2'2'12 ,,ε     (5.9) 

 

Reprojection error. The correspondences in both images are adjusted in order to 

minimise the error. That entails the computation of the estimated true correspondences 

( ix̂ and 'ˆ ix , notice that 'ˆ ix  is not needed since ii xHx ˆˆˆ ' = ) by means of the maximum 

likelihood estimation of the correspondences and the homography, as will be explained 

in section 5.2.3. The cost function for the reprojection error is: 

 

( ) ( )        ∑ 
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
 +=

i
iiii xxdxxd

2''22 ˆ,ˆ,ε    (5.10) 

 

Contrary to the error in one image and the symmetric transfer error, the reprojection 

error adds the 2n parameters of the n correspondences to the parameters of the 

transformation H that are needed to optimise the cost function. The Sampson error [94] 

reduces the parameter space of the reprojection error to the parameters of H. 

 

5.2.3 Statistical error 
 
 
Probabilistic model 
 

With absence of outliers, it can be assumed that the correspondences are affected by 

noise that follows a Gaussian probability distribution with zero mean and variance σ2. 

Hence, the probability density function of each measurement xi is given by: 
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For the case of error in both images, the probability of obtaining the set of 

measurements x  and 'x  given the true homography H and measurements x  is: 
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And the log-likelihood is of the form: 
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and minimises the error function 

 

∑ +=
i

iiii xHxdxxd 2'22 ),(),(ε    (5.14) 

 

The true values ix  and ixH  in the equations above must be estimated (ix̂ and 'ˆ ix ) by 

means of a Maximum Likelihood Estimate (MLE) of the true correspondences.  

 

If we assume now that the errors are not only Gaussian, but there exist outliers, the error 

distribution can be modelled as a mixture distribution of a Gaussian and a uniform 

distribution [111]: 
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where γ  is a mixing parameter indicating the expected proportion of inliers and υ  a 

constant providing some knowledge about the distribution of mismatches. 

 

Equation (5.16) yields the negative log-likelihood for the mixture model: 
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The maximisation of L minimises the error function in equation 5.14. 

 
 
Maximum Likelihood estimation of true correspondences 
 

The Maximum Likelihood of true correspondences in both images (x̂  and 'x̂ ) can be 

obtained from the measured correspondences (x and x’) and the homography (H) or 

fundamental matrix (F) consistent with these correspondences under the assumption 

that the errors follow only a Gaussian distribution. We will restrict to our more practical 

case of computing the fundamental matrix. The two measurements (ix  and ix' ) and the 

fundamental matrix (F) define via triangulation a hyperplane that passes through both 

correspondences and the two camera centres. The intersection of the beams passing 

through each camera centre and respective image correspondence provides the location 

of the point Xi in the 3D-space, whenever Xi does not lie over the baseline linking the 

two camera centres (epipolar geometry, Appendix A). 

 

Therefore, the requirements of the true correspondences are twofold: they should satisfy 

the epipolar constraint 0ˆ'ˆ =TxFx  and they should minimise the sum of squared 

differences in equation (5.10). The geometrical interpretation is straightforward, the 

function to be minimised is the distance between the measurements and the true 

correspondences lying over the epipolar lines. Thus, the solution is reduced to finding 

the closest distance from a point to a line.   

    

 
Expectation Maximization 
 
The Expectation Maximization (EM) algorithm [25] yields maximum likelihood 

estimates of parameters of models with missing data, i.e. there exist the (complete) data 

space Χ  with observed variables X and the (incomplete) data space Υ  with variables Y  

that can only be observed indirectly through X.  

 

The EM algorithm consists of two basic steps: the Expectation (E-) step computes the 

expectation of the maximum likelihood values of the complete data (X ) given only the 
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incomplete data (Y) and the current parameter values of the distribution ( )( pΦ ). Note 

that if all the variables could be directly observed, the log-likelihood of the complete 

data would solve the problem. However, it does exist an incomplete data space Υ  - 

herein the problem! The Maximization (M-) step exploits the maximum likelihood 

estimate of the complete data (X , from the E-step) to compute the log-likelihood of the 

complete data, whose maximization updates the values of the parameters of the distri 

bution ( )1( +Φ p ). The algorithm needs an initial estimate of the incomplete variables and, 

after, both steps iterate until the algorithm converges. The choice of the initial estimate, 

the sort of distributions that models the data and the size of the parameter space will 

affect both the accuracy and time of convergence of the algorithm.  

 

 

 

 

 
 

Figure 5.1. The EM algorithm. 
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5.2.4 Minimisation 
 
We could dedicate a whole section about minimisation of cost function. However that is 

beyond our scope. We will only mention the most commonly used methods for iterative 

optimisation over the parameters of a function [40]. 

  

Direct search methods do not rely on the computation of the gradient of the function to 

minimise. Therefore, they are used when the cost function cannot be differentiated since 

their performance is not the most desirable. Examples are the downhill simplex and the 

amoeba method. Gradient-based methods can be of first (gradient descent) or second 

order (Gauss-Newton). The former does not usually present a good convergence while 

the latter depends on the approximation of a Taylor polynomial to the searching surface. 

Least-squares methods minimise the sum of squared residuals. Gradient based-methods 

can be used in the minimisation. For first order gradient descent the Jacobian is used 

and for Gauss-Newton the Hessian. An intermediate approach is the Levenberg-

Marquardt algorithm [42]. It is considered as the best optimisation method for least-

squares approaches. Levenberg-Marquardt alternates Gradient Descent and Gauss-

Newton depending on the trade-off between the speed of convergence and reliability: it 

uses the Gauss-Newton when the Hessian is robust enough to converge fast to the 

minimum but uses gradient descent when Gauss-Newton finds troubles to converge. We 

use the Levenberg-Marquardt algorithm as a non-linear minimiser of our cost function 

within the Gold Standard algorithm (see next section) for scenes we assume that the 

projection is perspective. 

 
 

5.3 The Gold Standard algorithm 
 

The Gold Standard algorithm serves as a reference of excellence for other algorithms in 

the minimisation of the maximum likelihood cost function. The algorithm varies 

depending on whether the application consists of estimating the homography, 

fundamental matrix or also affine fundamental matrix. Let us explain the procedure of 

the Gold Standard algorithm for the maximum likelihood estimate of the fundamental 

matrix (thus, through minimisation of the geometric error distance in equation 5.10). 

The information available is the set of correspondences (x and x’), whose error can be 

modelled by a normal distribution. An initial fundamental matrix (F̂ ) can be estimated 
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from these correspondences by using the normalized 8-point algorithm. From F̂ , and 

up to a projective transformation, the 3x4 camera matrix (P’) of the right image can be 

determined (providing the camera matrix (P) of the left image, which does not need to 

be computed, only set as a 3x3 identity matrix and a null 3-vector, and be consistent 

thus with F̂  and P’). By triangulation the 3D point Xi is computed from the measured 

correspondences and the estimated fundamental matrix. That 3D point is reprojected to 

the image plane by the two camera matrices producing the maximum likelihood 

estimates x̂  and 'x̂ . The geometric error distance is minimised by a non-linear method 

(Levenberg-Marquardt) that corrects the n 3D-points and the parameters of the right 

hand-side camera. 

 

The number of parameters of the cost function is thus 3n+12, i.e. the number of 3D 

points by the 3 dimensions plus the 12 parameters of the right camera matrix. Despite 

the fact that the parameters of one of the cameras do not need to be adjusted and that the 

projection cameras could be defined up to scale (thus dropping one degree of freedom3),  

the complete parameter space in the minimization is still large and implies a significant 

computational cost.   

 

The Gold Standard algorithm for affine geometry is much simpler. It is reduced to a 

linear minimisation of a cost function which is the sum of distances from sets of 

correspondences to the hyperplane that would fit them according to the affine 

fundamental geometry ( 0ˆ'ˆ =iA
T
i xFx ), where the hyperplane is f=(a,b,c,d,e)T (defined by 

the fundamental matrix, see section 5.6). The function is linearly minimised so as to 

force the hyperplane to pass through the centroid of the points. Then in order to 

minimise the distance from the points to the hyperplane the cost function is minimised 

in terms of the normal to the plane. This last step is solved easily by SVD. 

 

5.4 Robust estimation 
 
 
The mismatches existing within the set of correspondences will degenerate the 

calculated transformation that maps both images. We present the traditional robust 

                                                           
3 A minimal parameterisation is not recommended since it hardens the minimisation surface 
[54].  
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algorithms that deal with big proportions of outliers (>50%) within the putative 

correspondence set.  

 

5.4.1 RANSAC 
 

The RANSAC (RANdom Sample Consensus) algorithm [31] is an iterative algorithm 

that randomly selects subsets of samples, models the parameters of the projectivity for 

that subset and computes a disparity measure over the complete set of samples. If the 

number of samples, which overall disparity to the model is smaller than a distance 

measure t, is larger than a predefined threshold T or the maximum number of iterations 

N is reached, the algorithm stops. Otherwise, it starts steps again selecting a new set of 

random samples. The algorithm discards the subsets containing outliers, since a wrong 

model will score poorly with respect to the threshold T. Therefore, it basically consists 

of a draw of hypothesis and consequent verification. 

 

The disparity measure of RANSAC permits the definition of a set of inliers, which is 

the set of correspondences that approve the consensus threshold t for each iteration: 
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The threshold t is set by considering the distribution of inliers, assuming a normal 

distribution of the location error. The distance error is therefore the result of sums of 

squared Gaussian errors, which results in a 2χ   distribution. The probability that this 

error is lower than a certain threshold leads us to model the threshold t with a 

cumulative chi-squared distribution.  

 

The definition of the minimum number of inliers to accept a subset, T, is a cautious 

estimate of the number of inliers. The set with largest number of inliers is stored and the 

parameters of the model are estimated from that set. 

 

The maximum number of iterations N is set to have a probability p (typically 0.99) that 

at least one of the randomly selected samples does not contain any outlier.  
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( )s)-(1-1log

p)-log(1

ε
=N      (5.18) 

 

being s the number of samples drawn every time and ε  the proportion of outliers. N is 

usually adapted iteratively, i.e. when a subsample which contains a lower proportion of 

outliers than the previous estimate is found (this corresponds to a higher γ that gives rise 

to a higher L in equation (5.16).  

 

The performance of RANSAC is vulnerable to a non-appropriate selection of the 

threshold t. If the threshold is too high wrong samples will be accepted and all the 

inliers (true inliers plus false positives) will contribute with the same weight; whereas 

when the threshold is too low the support may not be sufficient for a good modelling. 

 

5.4.2 MLESAC 
 

The MLESAC (Maximum Likelihood Estimate Sample Consensus) algorithm [111] is a 

variation of RANSAC that improves the performance by choosing a more robust cost 

function. Instead of considering the number of inliers, a maximum likelihood is 

preferred.  

 

Another advance with respect to RANSAC is the weighted contribution of the samples. 

If an error is below the threshold, the error contribution of that inlier is the error itself.  

Whereas if the error is above the threshold, the contribution of the error of that outlier is 

weighted by the threshold: 
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The summation of all ρ’s is the cost function to minimise. The value of t is also selected 

to assure with a 95% of probability that an inlier with an error location following a 

normal distribution is not rejected, i.e. t=1.96σ. 

 

The negative log-likelihood presented in equation (5.16) is minimised. The trouble is 

that we do not know the value of the mixing parameter γ , which is an estimation of the 

proportion of inliers in the distribution. This is the problem of estimating parameters of 
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a model where there is missing data, and the approach to solve it is Expectation 

Maximization.  The initial value of γ  is chosen as an estimate of the samples are inliers 

(estimate of inliers for ground truth experiments in Chapter 4). The E-step of the 

algorithm defines that the probability that a sample iη  is an inlier given the expected 

proportion of inliers is: 

 

( )
oi

i
i pp

p
P

+
== γη 1      (5.20) 

 

With ip  the likelihood that a sample is an inlier given that is an inlier and op  the 

likelihood that a sample is an outlier given that is an outlier. The denominator in 5.20 

represents the error in the sample space, i.e. the mixture distribution of a Gaussian and 

uniform distributions as shown in equation 5.15 for a single sample i. 

 

The M-step consists of a new estimation of the γ  from the estimation in equation 

(5.20): 
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     (5.21) 

 

The algorithm iterates until convergence, generating the set of inliers. This set of inliers 

produce an initial estimate of the transformation that maps both images. That initial 

estimate is optimised by minimising the cost function over that initial estimate and the 

whole sample space.  

 

5.5 Affine epipolar geometry 
 

The epipolar geometry for perspective cameras is presented in Chapter 6. Here we 

introduce the basic expressions we need for our computations. When the scenario can be 

approximated by affine cameras the algorithms are less complicated due to linearity. 

The centres of affine cameras are at infinity and the projection from 3D to 2D is 

parallel. Therefore, the epipolar lines are parallel since by definition all epipolar lines 

meet at the epipole, and this is at infinity. 

 

The affine fundamental matrix has the form: 
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As the matrix has five non-zero entries, it has four degrees of freedom: one for each 

epipole and two for the affinity between the pencil of epipolar lines in each view. The 

epipolar lines have the expressions: 

 

( )T
A edycxbaxFl ++== ,,'    (5.23) 

( )TT
A ebyaxdcxFl ++== ,,    (5.24) 

 

And the epipoles are: 

( )Tcde 0,,−=      (5.25) 

( )Tabe 0,,' −=      (5.26) 

 

5.6 Automated solution to the correspondence problem 
 
Input descriptor. Our descriptor stems from the grouping of pair of points of interest. 

That pairing is a significant advantage when running iterative algorithms in the 

RANSAC’s family. Recall that the number of iterations to guarantee with a probability 

p that a subset of samples is free of outliers was a logarithmic expression (equation 

(5.18)). As a consequence of the pairing we are already reducing the number of samples 

s to a half. For example, for the case of affine cameras approximation we require four 

samples for a minimal solution. By selecting two descriptors in each image we already 

have the four correspondences needed to calculate the affine fundamental matrix 

mapping both images. But the parameter s in equation (5.18) will have a value of 2 

rather than 4. That is due to the fact that if two descriptors correspond (a pair of 

corresponding points in each descriptor that are not coplanar with a pair of points of a 

second descriptor in their respective images), we are assuring at once that a set of two 

points in one image have their correspondence at the endpoints of the counterpart 

descriptor in the other image. That is advantageous in the sense of an improvement of 

speed of processing: the system will require a smaller number of iterations as we can 

see in figure 5.2. But even more interesting, it is a very-welcome enhancement in terms 

of the proportion of outliers that the new layout can cope with. Figure 5.3 shows the 
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relation between the number of inliers inside a distribution that a RANSAC algorithm 

can deal with after N iterations for s=2 and s=4. We can see in the plot that the cost of 

dealing with a proportion of around 70% of inliers (30% of outliers) when selecting 4 

samples is equivalent to dealing with a distribution of 50% of outliers when we only 

have 2 samples to select. The gain is even more advantageous for a greater proportion of 

outliers. Notice that the cost of dealing with a proportion of almost 70% of outliers for 

s=4 is the same as dealing with a proportion of outliers of 90% for s=2. That proves 

that the pairing of data points with our descriptor is especially more powerful when 

larger proportions of mismatches exist, which means that the algorithm can cope with 

more corrupted datasets for the same computational cost. 
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Figure 5.2. Number of iterations as a function of the proportion of inliers and number of 
samples.  
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Figure 5.3. Proportion of inliers for different number of samples and fixed number of 
iterations. 
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Algorithm.  Now we explain how the algorithm proceeds (see pseudo-code at the end). 

We subdivide the whole feature space S into the two input sub-spaces S1 and S2. The 

criterion is that S1 encloses the 50% of the descriptors that received the highest 

similarity scores and S2 the rest. We will refer only to S1 whenever we mention the 

sample space, until a new clarification arises. We first tile the image with the purpose of 

selecting samples (endpoints of descriptors) homogeneously distributed over the whole 

image - that aims at a proper estimation of the fundamental matrix. We divide the image 

into nine quadrants and randomly select features descriptors with the restrictions that no 

more than two samples can be extracted from the same quadrant and if more than one 

sample belongs to the same quadrant the descriptor is only accepted if the quadrant 

contains at least 20% of the whole number of samples. Otherwise the descriptor is 

withdrawn and another one is randomly selected. Same applies if the four selected 

points are coplanar or three of them are collinear, since that would lead to a degenerate 

solution for the affine fundamental matrix.  

 

The character of our features sets up four different combinations of correspondence of 

samples. Let us assume that the two selected features in the first image are fAB and fCD, 

being the sub-index the endpoints that delimit the feature. Their respective putative 

correspondences in the other image are fA’B’ and fC’D’ . Therefore, the four combinations 

of matching are {AA’,BB’,CC’,DD’} , {AB’,BA’,CC’,DD’} , {AA’,BB’,CD’,DC’}  and 

{AB’,BA’,CD’,DC’} . For each of these four possibilities we compute the affine minimal 

solution of the fundamental matrix, Fa. There can be up to three real solutions consistent 

with the data points and all cases should be examined. At this point we test that the 

epipolar lines do not overlap within a minimum distance threshold. If so, the samples 

are rejected and another set is chosen to avoid possible false positives since both 

samples would be represented by identical epipolar lines in the other image. Next we 

calculate the MLE of the true correspondences that minimises the algebraic error 

distance according to the measured correspondences and the affine epipolar geometry 

defined by Fa. That ML is calculated over the whole sample space, S1. As the 

correspondences are arranged in pairs, we find again the dichotomy of finding which is 

the true point correspondence. For example, points G and H from descriptor fGH in one 

image and G’ and H’  from fG’H’ in the other image would give rise to the following two 

functions to minimise: ( ) ( ) ( ) ( )2222
'ˆ''ˆ'ˆˆ HHGGHHGG −+−+−+− or 

( ) ( ) ( ) ( )2222
'ˆ''ˆ'ˆˆ GHHGGHHG −+−+−+− , representing ⋅̂  the maximum likelihood value or 
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true correspondence of that sample. Therefore, the function we need to work with is the 

one that minimises the distance error among the correct true correspondences, i.e.: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 





 −+−−+−+






 −+−−+−

22222222
'ˆ''ˆ','ˆ''ˆ'ˆˆ,ˆˆ GHHGHHGGGHHGHHGG minmin . The 

convergence by Expectation Maximization is implemented as explained in section 5.2.3. 

The distance error is plugged into equation (5.15) to compute the maximum likelihood 

estimation of the proportion of inliers, γ . After convergence, the error distance and γ  

give the negative log-likelihood -L. If that –L is lower than the previous existing 

estimate, the set of inliers, their fundamental matrix and their errors are stored. Finally, 

the number of iterations N of the algorithm is adapted by equation (5.18) and the 

algorithm iterates again selecting a new set of samples. The process is repeated until the 

adapted maximum number of iteration is reached. 

 

After that, another iterative procedure starts until the number of inliers obeys the 

minimised estimation of the fundamental matrix. We deem as inliers these samples for 

which the error distance is below the threshold T. We differ with equation 5.19 in the 

sense that the non-inliers, i.e. error equal or bigger than T, are not included in the 

minimisation process. We also sieve inliers that produce multiple matches, i.e. one 

sample has got within its vicinity more than one epipolar line, only the one with lowest 

error is kept. With the set of inliers we determine the Maximum Likelihood estimate of 

the fundamental matrix by using the Gold Standard algorithm for affine epipolar 

geometry. Affinities imply linearity and that eases the calculus, basically a simple SVD 

provides the affine fundamental matrix from the correspondences. For the case that the 

images we are working with have perspective effects, the process of finding the true 

correspondences consistent with the epipolar geometry gets more complicated as 

explained in section 5.3. We perform the non-linear minimisation with the Levenberg-

Marquardt algorithm. Next, with the ML estimation of the fundamental matrix we 

define epipolar lines and search for further correspondences within the remaining whole 

set of putative correspondences, i.e. S1 + S2 - Sinliers. We find the maximum likelihood of 

the true correspondences and calculate the error for each datum. The algorithm checks 

whether the number of inliers is stable and if not iterates again including new inliers, as 

the new correspondences that accomplish the condition that their error distance is below 

the threshold T.    
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Procedure: Robust estimation of the fundamental matrix 

 

In:   

• Putative correspondences from endpoints of affine invariant descriptors 

Out:   

• ML estimate of the fundamental matrix 

• Correspondences (set of inliers) 

Algorithm: 

1. Tile both images for homogeneous extraction of samples  

2. Repeat for N subsets of samples: 

� Select a random number of n correspondences 

� Check collinearity and coplanarity constraints 

• If violated, select random correspondences again 

� Four each case {AA’,BB’,CC’,DD’} , {AB’,BA’,CC’,DD’} , 

{AA’,BB’,CD’,DC’}  and  {AB’,BA’,CD’,DC’}:  

• Compute fundamental matrix 

• There can exist up to three solutions 

• ML of true correspondences over S1 

• Calculate error for each correspondence 

• Estimate expected proportion of inliers γ  

� Until γ  converges: 

• Compute ( )
oi

i
i pp

p
P

+
== γη 1  

• New estimation of γ  from ( )γη 1=iP  

• If bestγγ > , store parameters 

• Compute negative log-likelihood -L 

• Store best inliers, errors and fundamental matrix when –L<-Lbest 

� Adapt number of iterations N 

3. Until the number of inliers converge 

� Store all (new) correspondences deemed as inliers from S1 

• Threshold constrain: ( )






≥
<=

22

222
2

0 t

t

ε
εεερ  

• Multiple matches constrain – keep minimum error to epipolar line 

� Estimate fundamental matrix from set of inliers 
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• If affine, Gold Standard affine 

• If perspective, Gold Standard in section 5.3 

� Find further correspondences in S1 + S2 - Sinliers over a strip around 

epipolar lines 

� ML estimate of the (new) true correspondences 

� Calculate error for each (new) correspondence 

� Update S1 = S - Sinliers , with S = S1 + S2 

4. END 

 

5.7 Experimental results 
 

We show final results for the robust estimation of correspondences from the invariant 

descriptors between the images and their homographies in Chapter 4. Figures 5.4 to 5.6 

show the recall, precision and number of regions extracted. By referring to table 4.4, we 

can see that the system encountered more difficulties for the instances where the 

transformation combined changes of scale and shear. The system should have been 

strong to these affinities. However the aforementioned propagated errors in the affine 

frames face the evidence of lower performance for strong affine changes. 

We also show an example of the performance of the algorithm over the countryside 

scene under an affinity and changes in the illumination. The location of the 44 ground 

truth correspondences has been added a Gaussian noise of standard deviation 1. Figures 

5.7 and 5.8 show the correspondences and the epipolar lines. Notice that epipolar lines 

nearby can be a source of mismatches when searching for correspondences within an 

epipolar line strip, since their correspondences have other epipolar lines in the 

proximity. Figure 5.9 shows a successful matching of correspondences. 
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Figure 5.4 Recall 
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Figure 5.5 Precision 
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Figure 5.6 Number of corresponding regions 
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Figure 5.7 Correspondences and epipolar lines in the original image. 

 
Figure 5.8 Correspondences and epipolar lines in the transformed image. 

 
Figure 5.9 Matching of correspondences. 
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# matches Success (%) γbest Iterations γ0 

avg std avg std avg std Avg Std 
0.1 8.400 2.998 13.49 8.696 0.250 0.024 61.74 14.82 

0.15 14.300 3.457 20.06 24.849 0.259 0.022 43.45 18.45 

0.2 20.100 16.535 48.82 41.064 0.268 0.045 50.01 19.38 

0.25 26.600 8.947 82.14 4.810 0.332 0.043 31.23 17.49 

0.3 33.800 10.304 93.41 4.364 0.377 0.053 27.77 15.53 

0.4 32.700 9.129 92.94 6.291 0.458 0.059 12.99 4.02 

0.5 35.100 11.070 93.69 10.640 0.536 0.050 8.70 2.91 

0.6 34.300 11.585 95.30 3.378 0.659 0.049 6.72 1.46 

0.7 33.700 12.266 98.88 5.778 0.740 0.057 4.49 1.07 

0.8 29.500 11.335 96.44 5.639 0.886 0.058 2.95 1.12 

0.9 29.800 12.726 98.42 3.759 0.963 0.047 0.52 1.10 

 
Table 5.1. Performance of MLESAC algorithm 

Table 5.1 presents the results of the performance of the MLESAC algorithm over the 

same scene for different values of γ. That is, the set does not contain outliers but the 

initial estimation of our correct potential matches within the set, previous robust 

estimation, is γ. The algorithm was executed 1000 times for each γ. In the table, the 

number of matches is the number of correct (ground truth) matches found from the 

initial set of 44, ‘success’ is the percentage of true inliers found. γbest  is the maximum 

likelihood estimation of inliers obtained by the iterative process of MLESAC previous 

to the search of further correspondences by the optimization and strip about epipolar 

lines stages. 

The result of using the system over a real image is shown in figures 5.10 and 5.11. We 

can see that the system is not able to find the correct whole set of correspondences. In 

figures 5.12 and 5.13 we perform a search of a minimum number of correspondences 

that permits the recovery of the fundamental matrix for a minimum solution. That is 

extracting only the set of best inliers in the iterative MLESAC algorithm – four points 

(two pairs of descriptors) – and not extraction of further correspondences over a strip 

distance from epipolar lines. The search of correspondences is not completely fulfilled 

but we can observe that the correspondence problem degenerates in the search of further 

correspondences when the fundamental matrix of the initial set of correspondences does 

not satisfy the transformation in between both images. 
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Figure 5.10. Matching of correspondences over real images. 
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Figure 5.11. Matching of correspondences over real images. 



 163 

34

32

30

31

93

25

92

85

24 24

23

27

14

5

12

6

75

8

5

9

6

2

1

11

 

 

Figure 5.12. Matching of best set of inliers for a minimal solution. 
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Figure 5.13. Matching of best set of inliers for a minimal solution. 
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5.8 Conclusions 
 
We have implemented the MLSAC algorithm [111], which is able to deal with the high 

proportion of outliers in the sample set of correspondences. Part of the success of the 

MLESAC is the nature of the features that we input. Robust estimators are usually input 

with single point correspondences. Our features consist of pairs of points. If two 

descriptors correspond, that implies that there exist already two corresponding points. 

That permits faster convergence of the algorithm by reducing the number of iterations 

or being able to deal with higher proportions of outliers at the same computational cost. 

The experiments were performed with the synthetic data from the affine invariant 

descriptor in Chapter 4. When using real data, the robust estimator of the parameters of 

the fundamental matrix between the images was not able to find the correct 

correspondences. However, the system proved a satisfactory performance for affinely 

transformed images. That stems from the fact that the computation of the geometric 

descriptor relies on the calculus of derivatives as shown in previous chapter. 
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Chapter 6 – Conclusions 

 

6.1 Discussion 

We have proposed a method that combines an absolute affine geometric invariant with 

an affine invariant photometric descriptor based on moments developed by Mindru et 

al. [82]. The affine geometric invariant is based on the affine arc-length metric. Affine 

invariant parallelograms are extracted along contours. The principal difficulty of this 

kind of approach is that the affine arc-length is very dependent on the adequate 

extraction of the contours and particularly on a right detection of the endpoints of 

segmented contours. Contour maps are not always reliably extracted under change of 

view or illumination: they are sensitive to occlusion, partial detection and different 

labels at junctions. To ameliorate this, we implement two approaches. First, we perform 

perceptual contour grouping that improves the interconnections of the contour map. 

Second, we consider high-curvature points lying over contours that are robust to 

viewpoint and illumination changes. This permits segmentation of the contours into 

more reliable and bounded primitives from which we form the invariants. We organise 

the information in a graph structure: the nodes store the spatial information of the high-

curvature points whereas the edges are the contour segments delimited by the high 

curvature points. We generate a descriptor for each pair of interconnected high-

curvature points. Thus, the system can accommodate the affine arc-length based 

descriptor, and is robust to poorly defined contour detection, since all the possible 

combinatorics of interconnected high-curvature points and different labelling of 

contours are considered. However, the drawback is the inherent computational cost 

associated with a dense search space. 

Experimental analyses have shown that the area defined by the affine invariant 

parallelogram is very susceptible to input errors. The affine arc-length requires the 

computation of the first and second order spatial derivatives along the contour. We 

approximate the contour with a least-square cubic spline approximation and compute 

the derivatives of the splines.  That is preferred to other alternatives like computing 

finite differences, which are sensitive to noise. However, the small noise that stems 

from the approximation with splines propagates throughout the expressions that define 

the affine arc-length frame resulting in a considerable error at the output. Indeed, in our 
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tests even the computation of the affine invariant frame from one-to-one affinely 

transformed contours results in unsatisfactory performance. In our tests with ground 

truth, we compared the performance of the system when transforming the spatial 

coordinates of the contour with an affinity with the performance when applying the 

same transformation to the spline themselves (figure 4.30). In the former case, the error 

introduced by the splines is minimal but it is propagated, whereas for the latter there is 

no error propagation. We performed experiments with synthetic data where the contours 

were affinely transformed. The matching success of the algorithm was low, although 

further research has been undertaken in the improvement of the voting algorithm. In 

particular its substitution by an iterative Munkres algorithm. However, we have centred 

our efforts upon the descriptor itself rather than on the matching process. The low 

number of true correspondences found for synthetic images restricted the application of 

the system over real viewpoint scenes where the contours are independently extracted. 

In Chapter 5 we have implemented a maximum likelihood estimate RANSAC 

algorithm, MLESAC [111], which is able to deal with the high proportion of outliers in 

the sample set of correspondences. Part of the success of the MLESAC is the nature of 

the features that we input. Robust estimators are usually input with single point 

correspondences. Our feature descriptors are based on pairs of points. So matching the 

descriptors between images implies that there exist two corresponding points. This 

permits faster convergence of the algorithm in comparison with single point-feature 

descriptors by reducing the number of iterations, or enabling the system to deal with a 

higher proportion of outliers at the same computational cost. We have proved that the 

algorithm is able to deal with percentages of outliers of around 90%. This is equivalent 

computationally to the cost of dealing with a proportion of outliers of less than 70% in 

the single-point feature case. These experiments were performed with the synthetic data 

from the affine invariant descriptor in Chapter 4. When using real data, the robust 

estimator of the parameters of the fundamental matrix between the images was not able 

to find correct correspondences due to errors in the extraction of the affine invariant 

frames. 
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6.2 Further work 

The performance over real scenes of the geometric affine invariant frame, which is core 

to our application, is endemic to the propagation of errors. There is a need to investigate 

whether this propagation of error can be mitigated; or whether even if the 

parallelograms are not absolute invariant due to these errors, the descriptor can produce 

more reliable regions; or if not, we need to look at alternatives that are more robust. 

Wide baseline matching has been applied almost exclusively to images of the same 

modality. The system can be expanded potentially to multi-modal applications using for 

instance, mutual information as a photometric descriptor. The incorporation of intensity 

and range data models of image formation can also be assessed for multi-modal 

registration and even fusion. Defining a collection of models, initially for visible and 

infrared imagery, with a different number of characteristic components may be helpful 

in constraining feature search as well as establishing complementary information and 

eliminate interpretation ambiguities between different modes. Therefore, changes in 

illumination, emissivities, reflectance, surface normal o depth would produce a different 

variation of intensities depending on the image mode. The approaches would be 

strongly dependent on the operational scenario, for instance the search for planar 

patches approximations is effective for aerial survey but totally inappropriate for long 

range IR or RF data. 
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Appendix A – Matching contours in image pairs using Fourier 

descriptors 

 

A.1 Introduction 

We study an alternative approach to solve the correspondence problem using 

corresponding contours in a pair of images. The basis for this study is the work by Wu 

and Sheu [127], which described a method to match closed contours in a pair of 

perspective images. As before, contour information is potentially more robust against 

changes in the photometry of the image, and the computational complexity may be 

reduced by limiting the dataset. Boundaries are higher level entities than corners, edges, 

etc. being able to conglomerate much more information that at the same time can be 

constrained by some metrics in order to have a better definition of the entity.  

The method assumes a perspective projection and knowledge of the positions, 

orientations and focal length of the cameras. Hence, the fundamental matrix that relates 

a point in one image to an epipolar line in the other image is known. Contours on either 

image plane can be represented by Fourier series. Then Fourier descriptors are defined 

using the computed epipolar geometry to perform the matching based on a measure of 

similarity. This metric, termed the “spectral distance”, between these two descriptions is 

a measure of the degree of matching between the contours. If this is maximised, then the 

contours are well matched. The authors compute an iterative procedure in the frequency 

domain where sets of slopes and intercepts of the epipolar lines corresponding to each 

contour are used as descriptors. Therefore, it is the difference between these two 

encodings that is minimized. 

 

If the method assumes knowledge of the epipolar geometry then at first sight it is not a 

viable approach to match uncalibrated, wide-baseline images.  There are two 

possibilities: 

 

• The minimum spectral distance is used as a cost function in an optimization 

procedure. The transformation into the Fourier domain might be expected to 

make the computation more robust. 
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• It is used as a hypothesis verification step in an iterative algorithm. Hypotheses 

are generated by random sampling of point sets from extended contours, then the 

minimum spectral distance(s) of the whole contour(s) is (are) used to confirm 

the hypotheses in a robust manner. 

 

A.2 Scene geometry 

 

As depicted in figure A.1, the relative positions and orientations of the two cameras with 

respect to the world coordinate system are known, but the locations of the 3D points in 

the space are unknown. Three tri-dimensional and two bi-dimensional coordinate 

systems are involved. These are, respectively, the world coordinate system, the two 

coordinate systems of the two cameras and the pair of two-dimensional coordinate 

systems of their image projection planes. The second coordinate of the cameras’ 

reference frame corresponds to the dimension of depth. Therefore, image planes ui and 

wi are parallel to the image planes u and w of the i th camera coordinate system at a 

certain depth magnitude which is set by the focal length λi of each camera. L1 and L2 are 

the rays that go through the camera centres and project in perspective a 3D point of the 

world onto the image plane coordinates. 

 

The displacement between the two cameras is: 

 

















=
















−

−

−

21

21

21

cc

cc

cc

cd

cd

cd

zz

yy

xx

z

y

x

     (A.1)  

 

where xci yci zci are the coordinates of the camera centres in world coordinates. 

Therefore, a point into the coordinate system of one camera can be transformed into the 

coordinate system of the other camera by:  
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Figure A.1. The camera geometry. 
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If R1 and R2 are the orientation of the each camera with respect to the world reference 

frame, then Rt and Pt are:  

 

1
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The calculations can be reduced in complexity without loss of generality by simply 

assuming a canonical camera configuration. Hence, let us consider that the basis of all 

coordinates is the camera 1 coordinate system. Consequently, this camera will have its 

camera centre at the origin and look along its v axis. The resulting new coordinates for 

the camera centres Oi and two imaged points from object Γ, Q1 and Q2, are the 

following: 
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where the coefficients λi  denote the focal length of each camera. 

  

A.3 Epipolar Geometry 

 

The epipolar geometry [130,54,36,109] limits the search of the position of points in one 

view of a single scene according to the position of their counterparts in the other view 

by means of epipolar lines which constraint where the points lie. The projective 

geometry between the two images is defined with the support of the internal parameters 

of the camera and the relative pose. It is independent of the scene structure. 

 

The epipolar geometry is represented by a 3x3 matrix, the essential matrix when the 

internal parameters of the camera are available or the fundamental matrix when these 

are unknown.  

 

Considering Ol and Or the optical centres of two cameras and a point P in the 3D space; 

pl and pr are the images of P on the 2D image plane of each camera (figure A.2). The 

epipolar plane Π is defined by the point in the first image pl and the two optical centres. 

The line which intersects Π with the plane of the second camera (πr) is called the 

epipolar line. This constrains the location of the counterpart of pl (pr) to this line. 

Furthermore, for every point plk in the first image describing a plane Πk, there exists a 

point er in the other image, called the epipole, which all the possible k epipolar lines 

pass through by. This is due to the line between the optical centres acts as a pencil for 

all epipolar lines and the epipole lies in the intersection of this joining line between Ol 

and Or. 

 

Assuming pinhole model: 
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Figure A.2. The epipolar geometry. 

 

 

with sl and sr arbitrary scales, Al  and Ar the intrinsic matrices of the cameras, I the 

identity matrix and R and t the rotation and translation of the second camera respect to 

the first. Cancelling sl, sr and P from equation A.6, gives the fundamental equation A.7, 

which says that the corresponding point in the right image lies on the epipolar line: 
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T
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T
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where T is an anti-symmetric matrix defined by t such Tx=t Λ x for all 3D vector x, with 

Λ denoting the cross product. 

 

From the previous equation, it can be extracted the expression of the fundamental 

matrix of the two images: 
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Figure A.3. Epipolar lines over indoor and outdoor wide-baseline scenes.  

 

A.4 Slope- and intercept-based contour matching 

 

Therefore, the search for a point Q2 in the right image is constrained according to the 

given point Q1 in the left image and the epipolar camera geometry. To find the 

relationship between points Q1 and Q2, we refer to the seminal paper by Longuet-

Higgins [70]: 

 

Q2 
T E Q1 = 0     (A.9) 

 

where E is the essential matrix, E = Rt [Pt] x , and [Pt] x denotes the skew-symmetric 

matrix: 
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For uncalibrated cameras, we can use the fundamental rather than the essential matrix.  
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Then 

 Q2 
T F Q1 = 0    (A.10) 

and 

 

l2 = F Q1,   l1 = F T Q2   (A.11) 

 

where l1 and l2  are the epipolar lines corresponding to the given points in image planes 

1 and 2, respectively. Therefore, for two corresponding points Q1 = (u1p  -λ1  w1p) and Q2 

= (u2p  -λ2  w2p), from equation (A.10) we have:  

 

[u2p  -λ2  w2p] F [u1p  -λ1  w1p]
T = 0   (A.12)    

 

where F is the 3x3 fundamental matrix, which is a function of a rigid transformation: 

 

F = Rt
T [Pt] x = Rt

T Kt
T
 = Rt

T (-Kt)     (A.13) 

 

For a given point (u2p , w2p) on image plane 2, the epipolar line l1 on image plane 1 is 

given by equation (A.11) the parametric expression of the line is:  

 

l1 ≡ [a1  b1  c1]
 T = FT[u2p  -λ2  w2p]

T  (A.14) 

 

and, as a line, l1  can be expressed as: 

 

    w1 = η1 u1 + ρ1λ1    (A.15) 

 

the slope and intercept are: 

1

1
1

1

1
1            

a

c

b

c
=−= ρη     (A.16) 

 

Similarly, for a point (u1p, w1p) on image plane 1 the corresponding epipolar line on 

image plane 2 is: 

 

l2 ≡ [a2  b2  c2]
 T = F [u1p  -λ1  w1p]

T   (A.17) 

 

w2 = η2 u2 + ρ2λ2    (A.18) 
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a λρη
c

b

c
=−=     (A.19) 

 

At this stage, we have two epipolar lines, one in each image plane, expressed as 

parametric equations. The equations below show the relationship between the 

parameters of both epipolar lines.  

 

Hence, let [up, vp, wp]
 T be the coordinates of a 3D point in the space, the expressions of 

the 3D-to-2D perspective projections of this point are given by: 

 

















−=
















p

p

P

P

P

w

u

s

w

v

u

1

1

1

1 λ  t

p

p

t

P

P

P

P

w

u

Rs

w

v

u

t +
















−=
















2

2

2

2 λ   (A.20) 

 

where s1 and s2 are the scalar parameters of the perspective projection of each camera.  

 

Inserting the term [u1p  -λ1  w1p]
T from equation (A.17) into equation (A.14) and 

applying equation A.20:  
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Developing analogous steps for the parametric expression of the epipolar line in image 

plane 1 (equation (A.14)) yields the following expression: 
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Thus, the relationship between the parameters is given by: 
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The scalar constant s can be neglected if the parameters [a i bi ci]  are expressed as a 

function of their respective intercepts and slopes as in equations (A.16) and (A.19).  

 

From the relationship among the parameters of corresponding epipolar lines, it can be 

demonstrated that given a point (u2p , w2p)  in image plane 2, the epipolar line on plane 2 

is: 

[u2  -λ2  w2] Rt
T
  F

T [u2p -λ2  w2p]
T = 0           (A.24) 

 

Finally, if (u2p, -λ2,  w2p) and (u1p, -λ1,  w1p) are corresponding points, then the 

expressions of their respective epipolar lines on image plane 2 should be equal, then: 

 

s · Rt
T 

  ·F
T · [u’2p –λ2  w’2p]

T  =  F · [u’1p –λ1  w’1p]
T  (A.25) 

 

The approach is described above for a pair of points, one from each image. When 

matching contours, each contour is treated as a set of connected points, and so each 

contour leads to a set o epipolar lines. At this stage, we could define a procedure to 

match these sets of epipolar lines. This would assume pre-calibration of the cameras’ 

intrinsic and extrinsic parameters, but the measure of similarity between closed contours 

does not depend on knowledge of corresponding points between the images. Further, 

the contours are not constrained to be planar in the 3D space.  

 

Procedure: Match a pair of closed contours, one in each image (spatial domain) 

 

In:   

• Γ1, Γ2,; one closed contour from each image in {xi,yi} form. 

• Rt, Pt a rotation and translation matrix that defines the position of the second 

camera 2 with respect to camera 1. 

• The focal lengths of cameras 1 and 2, λ1 and λ2. 

Out:   
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• DM, a metric defining the similarity between the two contours. 

Algorithm: 

 

1. Compute the fundamental matrix from known camera extrinsic and intrinsic 

parameters (equation (A.13)). 

 

2. Compute the set of epipolar lines in image plane 2, that correspond to the set of 

contour points in image plane 1, using l2=FQ1. Express these in terms of their 

slopes and intercepts, η2 and ρ2. 

 

3. Compute the set of epipolar lines in image plane 1, that correspond to the set of 

contour points in image plane 2, using l1=FTQ2.  

 

4. Knowing, the transformation from image plane 1 to the image plane 2 (Rt and 

Pt) compute the set of transformed epipolar lines in image plane 2, 2l , from the 

set of epipolar lines l1. Express these in terms of their slopes and intercepts, 
2η  

and 2ρ .  

 

5. Compute a distance metric between the two sets of epipolar lines in image plane 

2, using the set of slopes and intercepts {η2, ρ2} arising from the contour in 

image plane 1, and the set of slopes and intercepts {
2η , 2ρ } arising from the 

contour in image plane 2. 

 

However, Wu and Sheu expressed the contours as Fourier series in a spectral domain. 

They claimed that there are two advantages of this approach. First, most of the 

information about shape is contained in the first few coefficients. Hence the matching 

process can be made more efficient than using complete point sets {xi,yi}. Second, the 

process is inherently more noise insensitive in the spectral domain, since higher 

frequency components can be easily truncated. Further, since the comparison is made in 

the spectral domain, the encoding is invariant to the choice of starting point on the 
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contour. For a contour Γ1 in the left image and Γ2 in the right image, the description 

through their Fourier series coefficients is as follows: 
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   (A.26) 

 

where t defines the sample, T the total number of samples around the contour, k the 

harmonic term and ui, ui and λi, the x, depth (focal) and y coordinates of the contour in 

the image plane i respectively. The Fourier series coefficients correspond to the a, b, e 

and f terms.  

 

Thus, the spatial information of the contour is transformed into the frequency domain. 

The slopes (η) and intercepts (ρ) of the epipolar lines on image plane 2 from points 

extracted from image plane 1 are described in that domain using the approach described 

in equations (A.17) to (A.19), computing the same parameters of the epipolar lines on 

image plane 2 but from contour points of image plane 2 by applying equation (A.24).  

That is: 
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with: 
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for the coordinate points in the frequency domain from image plane 1 (left image), and: 
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for the other Fourier description of those points in image plane 2 (right image). 

 

The sets of slopes and intercepts along a contour are periodic, thence: 
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To solve equation (A.30), in which there exist two unknowns but also four other infinite 

terms, an iterative solution is proposed. The algorithm iterates until an approximation 

error δj
bound computed from ηak, ηbk, ρak and ρbk, converges to a minimum, which is 

predefined. Once this minimum has been reached the algorithm terminates and the 

Fourier descriptors for the set of slopes and intercepts of the epipolar lines on image 

plane 2 are defined. Recall that this is performed for the set of epipolar lines on image 

plane 2 calculated from the set of contour points on image plane 1 (equations (A.27) 

and (A.25)) and for the set of epipolar lines on image plane 2 computed from the set of 

contour points in image plane 2 (equations (A.24), (A.27) and (A.29)). 

 

A.5 Minimum spectral distance and fuzzy logic implementation 

 

The next step defines the measure of similarity between corresponding contours in 

different planes by means of a spectral distance, as both are now represented by Fourier 

descriptors of the same set of epipolar lines in the same plane. An additional, claimed 

benefit of application in the frequency domain is that it gains benefit of invariance to the 

position of the starting point on the contour.  
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The spectra of the slopes and intercepts of a contour i in the left image and of another 

contour j in the other image are given by ηiak, ηibk, ρiak, ρibk and ηjak, ηjbk, ρjak, ρjbk , 

respectively. Hence, 
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where 

 

 

 

 

 

SDij  is the spectral distance between descriptors of contours i and j, k is the harmonic 

number, N is the total number of harmonics and α is a factor constrained in the interval 

0 to 1 that weights the relevance of the frequency terms of the descriptor. Thus, the 

value of this parameter α is related to the set of epipolar lines that defines each contour. 

For the case of similar shapes the dc term could acquire greater significance as this 

defines the position, whereas the higher frequency terms are of most interest in defining 

differences in shape of the contours.  

 

An automatic method based on the principles of fuzzy logic [28] has been implemented 

to adjust this weighting factor. This is the degree of matching between contours DMij(α) 

for a certain α: 
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Let l be a number of evenly spaced α’s considered in the interval [0…1]. There will 

exist l different fuzzy sets R(α), containing the degrees of matching DMij(α), that will be 

calculated for each α and enhanced via a fuzzy AND operator (⊗ ). The fuzzy degree of 
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matching,D
~

, enhances the value for good matches and reduces the ones with a low 

degree of match DMij : 
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where Ut is a threshold. The outcome is a table of the degree of matching between m 

contours on image the left image and n contours on the right image, Table A.1. The final 

algorithm is shown below. Also, figure A.4 shows a graphical representation. 
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Table A.1. Degree of matching matrix 

 

 

Procedure: Match a pair of closed contours, one in each image (spectral domain, Wu 

and Sheu) 

In:   

• Γ1, Γ2,; one closed contour from each image in {xi,yi} form 

• N, the number of harmonics used in a Fourier descriptor of each contour 

• δmax, an approximation error for the vibrating slope and intercept representations  

• Rt, Pt a rotation and translation matrix that defines the position of the second 

camera 2 with respect to camera 1. 

• The focal lengths of cameras 1 and 2, λ1 and λ2 



 183 

Out:   

• DM, a metric defining the similarity between the two contours 

 

Algorithm: 

1. Compute the fundamental matrix from known camera extrinsic and intrinsic 

parameters (equation (A.13)). 

2. Compute the (N+1) Fourier series coefficients for contour, Γ1, using equation 

A.26. 

3. Compute the corresponding parameters for the epipolar lines in image plane 2 

using equation (A.28). 

4. Convert this into the spectral set of slope and intercept functions, η2(ω) and 

ρ2(ω) using equation (A.27), that exist within image plane 2.  

5. Expand η2(ω) and ρ2(ω) in Fourier series (ηa0, ηak, ηbk, and ρa0, ρak,, ρbk)  as 

expressed in equation (A.28). Use δmax to determine the number of harmonics. 

6. Compute the Fourier series coefficients for contour, Γ2, using equation (A.27). 

7. Compute the corresponding Fourier series coefficients for the epipolar lines in 

image plane 1, then use the known transformation matrices to compute the 

Fourier series coefficients for the transformed epipolar lines in image plane 2 

using equation (A.29). 

8. Covert this into the spectral set of slope and intercept functions, 
2η (ω) and 

2ρ (ω), that exist within image plane 2. 

9. Expand 
2η (ω) and 2ρ (ω) in Fourier series (

0aη , akη , bkη  and 0bρ , akρ , bkρ ),as 

expressed in equation (A.30). Use also δmax to determine the number of 

harmonics. 

10. Determine the minimum spectral distance between {ηa0, ηak, ηbk, ρa0, ρak,, ρbk} and 

{
0aη , akη , bkη  and 0bρ , akρ , bkρ } (equation (A.31)). 

11. Compute the degree of matching DMij(α) (equation (A.32)) and optimise the 

search for a set of equidistant values of the parameter α by using a fuzzy logic 

approach (equations (A.33) and (A.34)). 
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Figure A.4. Graphic representation of the epipolar lines algorithm. Top figures 

represents the relation between a point Q1 on the left plane and epipolar line I2 in the 

second plane. The blue dashed line is the unknown epipolar line on the left plane of the 

corresponding point of Q1 on the right image (also unknown). The left bottom figure 

represents the relation of the epipolar line on the left plane of Q2 (the potential 

corresponding point of Q1) whereas the right bottom graph shows the relation between 

two epipolar lines. Therefore, the bottom biggest arrow gives a relation for extracting 

from a point Q2 on the right image plane the epipolar line (also on the plane of Q2) of 

the potential pairing point Q1. Finally, the minimum spectral distance metric would 

compare slopes and intercepts of both epipolar lines on the right planes (solid red 

epipolar lines). 

 

 

Using the above procedure, we obtain a minimum spectral distance (MSD), normalized 

in the range 0<=MSD<=1, for each of mn pairs of contours in the two images, where m 

and n are the numbers of contours in the respective images. This can be represented in 

the form of a matrix. To obtain a final consistent labelling, it is necessary to find the 

optimum labelling between the possible pair of contours using the appropriate 
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constraints. Wu and Sheu used a fuzzy logic procedure in which they can prioritise the 

importance of position or shape of the contour using a parameter, α, that weights the 

first (dc) component of the Fourier series with respect to the higher harmonics. 

 

A.6 Experimental results 

 

First, the process will be demonstrated using synthetic data. A simple scene is 

represented by two planar contours in 3D space, instead of creating a complex setting, 

depicted in figure A.5. The camera 1 coordinate system is paced at the world reference 

frame, and camera 2 points toward the scene from a different, only slightly displaced 

position and orientation. 

 

The 3D-to-2D projections of each camera for a perspective CCD projection are shown 

in figures A.6 and A.7.  Note that the intersection of the axial rays (in cyan) with the 

plane of the object sets the origin of coordinates in the projected image. 

 

Figure A.8 shows a representation of the Fourier analysis of the set of spatial 

coordinates corresponding to the largest contour up to an increasing number of 

harmonics. Note that a short number of k harmonics gives a fair approximation to the 

original signal. This is equivalent to smoothing the contour in the spatial domain. 

Figures A.9 and A.10 depict the values of the spectral coefficients of the expansions of 

slopes and intercepts ikη̂ jkη̂ ikρ̂ jkρ̂ (steps 5 and 9 above – equation (A.31)) with N=20 

for the four possible combinations (i,j=1,2) between the two contours in the two images.  

 

 

Figure A.5. 3D scene and camera geometry 
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Figure A.6. 3D scene view from a viewpoint perpendicular to the axial ray of camera 1 
(left),  and CCD projection onto the plane (right). 

 
 
 
 

    

 

Figure A.7.  3D scene view from a viewpoint perpendicular to the axial ray of camera 2 
(left) and CCD projection onto the plane (right). 
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(a)      (b) 

     

(c)      (d) 

     

(e)      (f) 

     

(g)      (h) 

Figure A.8. Recovered contour in the spatial domain by using k harmonics. 

Successively, k=0, 1,2,3,4,5,10,20 
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(a)      (b) 

    

(c)      (d) 

    

(e)      (f) 

    

(g)      (h) 

Figure A.9. Measure of slopes and intercepts of image data extracted from contour i in 

the left image and from contour j in the right image (equation 4.28)  [a-d] / (i,j)={1,1}; 

[e-h] / (i,j)={1,2}: a) and e) slopes ikη̂ jkη̂ . b) and f) respective logarithmic plots. c) and 

g) intercepts ikρ̂ jkρ̂ .  d) and h) respective logarithmic plots. 
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(a)      (b) 

     

(c)      (d) 

     

(e)      (f) 

     

(g) (h) 

Figure A.10. Measure of slopes and intercepts of image data extracted from contour i in 

the left image and from contour j in the right image (equation (A.28))  [a-d] / 

(i,j)={2,1}; [e-h] / (i,j)={2,2}: a) and e) slopes ikη̂ jkη̂ . b) and f) respective logarithmic 

plots. c) and g) intercepts ikρ̂ jkρ̂ .  d) and h) respective logarithmic plots. 
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The degree of matching performed by the current implementation of the algorithm for a 

threshold of Ut = 0.6 is: 

 









=

8947.00

00.9395
)6.0(

~
D  

 

This means that the algorithm identifies that the first contour in the first (left) image 

corresponds to the first contour in the second (right) image,  with a degree of matching 

(DM) of 0.9395. For the second contour in both images, notice that the DM is 0.8947. 

The matching between the pair of first and second contours in the left image with the 

pair of second and first contours in the right image, respectively, are rated with 0. The 

matrix above yields the contour correspondence solution. 

 

However, the satisfaction with the degree of matching obtained is a function of the 

parameter Ut. This parameter was set empirically. Figure A.11 shows the 

correspondence matrix of DM for different values of Ut. Values within the range [0.1-

0.6] show similar results and good performance. However, for higher values of Ut  the 

results are degraded: 
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Figure A.11. Representation of DMij as a function of Ut  (4 possible combinations for 
the case of two contours in each image). Notice that some dots mask others. 
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Thus, the selection of this parameter plays an important role for the final outcome. If a 

fuzzy logic procedure is sensible, and we cant really comment on its efficacy at this 

stage, then the setting of this parameter would have to be set automatically and justified. 

Further, the degree of matching DM (equations (A.31) and (A.32)) is a function of a 

parameter α, which crudely weights position as opposed to shape of the contour.  

 

Finally, figures A.12 and A.13 depict, back in the spatial domain, the two sets of 

epipolar lines in image plane 2 extracted from the spectra of the slopes and intercepts 

computed by the algorithm. In figure A.14 we show the result of applying the algorithm 

to an indoor scene where three close contours have been detected. The algorithm 

satisfactorily rejects non-corresponding contours but there appears one mismatch. 

 

      

Figure A.12. (Left) Epipolar lines on image plane 2 constructed from contour points 

from image plane 2. Notice the epipolar lines are contained on the image plane for a 

focal length f=20. (Right) Zoom. 

 

       

Figure A.13. (Left) Epipolar lines on image plane 2 constructed from contour points 

from image plane 1. Notice the epipolar lines are contained within the image plane for a 

focal length f=20. (Right) Zoom. 
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Figure A.14. Confusion matrix of a real scene. The algorithm is run over the three 

closed contours selected from the scene. 

 

A.7 Summary 

 

We have implemented an algorithm to match closed contours based on the 

fundamentals of epipolar geometry, following the earlier work of Wu and Sheu. We 

have applied it only to synthetic data, and shown that it is successful in identifying 

correspondences between simple contours, provided the epipolar geometry is known. 

Working in the frequency domain, the method has the benefits that it can be less 

sensitive to noise by taking only a determined number of frequency components, and of 

lower complexity than a full Fourier implementation. Further, normalization can 

provide scale invariance, and the algorithm appears to be invariant to starting point on 

the contour since the measure of dissimilarity is based solely on magnitude spectra. 

Invariance against rotation and translation is implicit since the geometry of the camera 

scene is contained in the fundamental matrix.  

 

Examples in the literature typically apply Fourier descriptors to closed contours due to 

the need for periodicity for the Fourier analysis. However, there can be strategies to 

devise periodicity from open contour information. For example, when the two endpoints 

are reliable the travelling-back sequence from the last point to the initial point can be 

added to the original curve string [88]. If the endpoints are not reliable, a threshold 
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measurement based on the curvature extrema of the contour can be used to define 

limiting points. 

 

As described, the method relies on knowledge of the camera intrinsic and extrinsic 

parameters. That may seem contradictory since the objective of the method is the 

matching of contours and, for the usual case of uncalibrated images, this is unknown. 

However, a fundamental matrix may be extracted once an initial set of potential matches 

has been computed, e.g. from some of the methods described in Chapters 2 and 4. The 

procedure could be considered as a robust method to support a pre-computed set of 

putative matches from an image pair that might give a rough estimation of the 

fundamental matrix. Consequently, it may be possible to develop a stark hypothesis (a 

fundamental matrix) and test, or an optimisation procedure. 
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