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Abstract

This thesis aims to present a solution to the spoedence problem for the registration
of wide-baseline images taken from uncalibrated exasn We propose an affine
invariant descriptor that combines the geometry phdtometry of the scene to find
correspondences between both views. The geomdfine envariant component of the
descriptor is based on the affine arc-length metvitereas the photometry is analysed
by invariant colour moments. A graph structure espnts the spatial distribution of the
primitive featuresij.e. nodes correspond to detected high-curvature poiftsreas arcs
represent connectivities by extracted contourserAftatching, we refine the search for
correspondences by using a maximum likelihood roblgorithm. We have evaluated
the system over synthetic and real data. The matheddemic to propagation of errors
introduced by approximations in the system.
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Chapter 1 — Introduction

1.1 Background

In the registration of images taken from differgutints of views with uncalibrated
cameras (no information on the camera parametéms)e are two principal areas of
interest: narrow-baselineregistration for small separation between viewisiand
wide-baselineregistration for broad angles between camera ilmtsit The narrow-
baseline case is very similar to the binocular huwiaion. Both views are similar and
correspondences in both images can be even detalctegl a single spatial dimension
in certain instances. The complexity of the geoimetransformation between the
images is lessened and consequently smaller degfeexlusion occur. However, the
narrower the angle between the sources the leagradecto recover depth. Wide-
baseline registration is the subject of investwatin this thesis. The registration of
images when the two cameras are wide apart carit nesstrong geometric and
photometric differences that make the solutiontte torrespondence problem much
harder. Therefore, that implies coping with scessnwhere there are considerable
translations between the camera centres, rotatibttee cameras including rotations of
the image about the principal axes of the camedasanificant changes in the intrinsic
camera parametersq. focal length, location of the image centre in ithage, effective
size of the pixel and coefficient of distortion)9]8 The case of different types of
cameras can introduce a different presence of nadsed during the acquisition
process, the previous changing geometric condit@and possibly frames taken at
different times, produce a variation of the illumiion conditions for quite disparate
views. Moreover, several pixels in one image maycmane single pixel in the other
image as a result of different scales in wide-basesituations. No doubt, the wide-
baseline case implies greater difficulty for optimegistration, due to these difficulties
in solving the correspondence problem. Both vievey imave fewer common elements
and hence partial occlusions and depth discontasuiare more likely to occur.
Therefore, image deformations cannot be approxidnbtesimple transformations. In
contrast to the narrow-baseline case, wide-baseggestration provides a much less

uncertain recovery of the 3D scene.



The work in this thesis is concerned with the regigon of 2D stereo images from

uncalibrated cameras for wide-baseline scenaribs.sEtting can be indoor or outdoor
visible images, containing man-made objects ormaatcenes. As a by-product of not
having knowledge of the nature of the scene, tlogeptive transformation that can

better model the projection from the 3D scene ®ithage plane is also unknown. For
example, the 3D-to-2D projection for aircraft imagean be modelled by an

orthographic projectivity, whereas other imagennegyally has stronger perspective
effects. Therefore, the only information availatldghe pixel values of the images. The
system should be able to register the images laynigncorrespondences in both images.
The solution to the correspondence problem isatiffiwhen the two cameras are wide
apart since strong photometric and geometric distts occur.

The ample, existing literature mainly covers thrééferent approaches for the
description of the information that the images aontbased ona) the detection of
geometric featuresh) the analysis of the appearance of the image pigels) a
combination of both approaches. Scenes containingah-made artefacts will embody
objects with well-distinguishable geometric chaeaistics. The description of the
geometry of the scene may be therefore a good agppréor these type of images.
Likewise, highly textured images of natural sceaesven camouflage may not exhibit
sufficient geometric support and the analysis af fphotometry in the image is
preferred. Methods that combine geometry and phetigmclaim to combine and
exploit the best of both disciplines. That is sdmreg that seems sensible according to
the nature of the images. Despite that in theyaats some methods have displayed a
quite reliable performance [83,5], there is no cannramework to image registration

and the success is still dependent orfiileadlinessof the image towards each method.

Notwithstanding, there is a common strategy or watlogy [131] that most of the

registration techniques share:

- Feature detection. This consists of the extraafosignificant features from the
images. These features can be corners, edgessedtens, contours, regions,
saliencies, etc. Control points are representatadnthese features, being for
instance the termination of edges, high curvatwiatp, centres of gravity of
regions or others. Many of these features will beected in both images, some
will not. Therefore, the selection of features ¢tmK for in the scene plays a



determining role to carry out a successful regismasince it will lay the

foundation for the following steps of the process.

- Feature matching. Once features have been foubdtimimages, the problem is
formulated as identifying their counterparts. Taestlend, feature descriptors,
similarity measures and ways to disambiguate matdme used. Pairs of
detected features have suffered the aforementiockeahges (geometry,
photometry, noisy pixels...), and so the descriptar&l measurements of
similarity must be flexible and consistent for thght discrimination between
correct and false matches.

- Transformation model. The matching function appliedhe sensed image that
best maps its counterpart to the reference imagst rba estimated. The
parameters of this objective function are usuaiyatively computed until a

maximum (or minimum) of this function is achieved.

- Image re-sampling and transformation. This finaépstis based on an
improvement of the accuracy and the mapping of yeypéexel of the sensed

image into the reference image by means of thefmamation model.

1.2 Contributions

We propose a method for registration of wide baselimages from a pair of
uncalibrated cameras. Our approach consists imlékeription of the properties of the
image views by means of geometric and photometnxariants. We trim the
information in the image to regions nearby contadinat lie over highly informative
points. These geometric regions are defined byffarearc-length metric and extracted
along the contours. The difficulty of working witontours is that these can be partially
detected, susceptible to occlusions and assignddfexent label at junctions. The
usefulness of the affine arc-length metric in oystem is subordinated to finding
contours that are reliably extracted in both imagesboth endpoints are corresponding
points and thus the affine arc-length is an invdriander a local affinity. We propose a
strategy to overcome the weaknesses of contouctdwieand the affine metric by
extracting view-point reliable, high-curvature pisirthat lie over contours or in their

proximity. The information - contours and high-catwre points - is organised in a
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graph structure, where the edges are contours landades are the high-curvature
points. We use the affine arc-length metric aloogteur segments to define an affine
invariant geometric descriptor. This descriptorinies affine invariant regions where to

analyse the photometry, which is incorporated &déscriptor.

The system attains advantage over other methotleisense that it can be adapted to
work with different photometric descriptors oveetaffine geometric regions defined.
For instance, it can be expanded to multi-modalliegions as long as the contour

maps are accurately detected.

We make use of robust iterative methods to disceomsistently counterpart
correspondences within the dense feature spacavafiant descriptors. An important
property of the method relies on the fact that edetcriptor encapsulates two points of
interest (the two end-points that delimit the comt@egment where to extract the
information along). The advantages of that approach that either reduces the
computational load of the RANSAC-based algorithmcsi the number of iterations
required to convergence is drastically reducedxpaeds the power of the algorithm to

deal with larger proportions of outliers at the sarost.

1.3 Thesis structure

The thesis is organised in the following way:

Chapter 2 is split in two parts. The first one isompound of brief definitions, concepts
and state of the art in image registration techesqurhe second part narrows down
image registration to the wide-baseline case. Titegature is wide, and the most
significant works on feature extraction, descriptonvariance and robust estimation of

matching parameters are presented.

Chapter 3 shows methodologies and practical exanpiethe extraction of geometric
features. Edges are extended to contours by usicigity, orientation and good

continuation criteria. Points of interest are alefined, that together with contour maps,
are reorganised in the form of a graph where edgesontours connecting points of

interest. We also extract geometric regions araamdours for photometric support.

4



Chapter 4 deals with the analysis of affine invac&over geometric contours and over
photometric patches. The affine arc-length andaffiae invariant colour moments are
analysed. We describe how we define the descripgos perform some matching
experiments based on distance among descriptorsal$éeinclude a study on error

analysis.

Chapter 5 describes robust methods to identifymd) r@jecting outliers from the set of

correspondences given by the descriptors defin€&hapter.

Chapter 6 gathers final conclusions and future work



Chapter 2 — A review of image registration and widébaseline matching

This chapter discusses briefly basic definitionsimfige formation concepts and
transformations in this contexX2D image projections from th@D world to the image
plane and transformations that approximate one éraghe other one for the stereo
case. After that, we start a brief review on imaggistration methods according to a
classification based on the common steps involae@gistration processes. Finally the
last section narrows down image registration towide-baseline case, where the state
of the art is thoroughly covered.

2.1 Registration of images

Image registration is a pre-processing step forpimgptwo images of the same setting
which are taken from different points of view, semrssor over a period of time.
According to these imaging conditions, there wal fespectively a multi-view, multi-
modal or multi-temporal analysis of the image d&igure 1.1 represents two stereo
images of an indoor scene. The images have been fadm different points of view

and there is also a change in the photometric tiondi

Figure 1.1. Stereo images of a scene in the ragstrproblem.



The input for the registration process can be puales, features or higher-level
decisions (objects) extracted from the images.taed before, the final objective is the
alignment of the two (or more) images of a scehe,sensed and the reference images,

into a common framework or co-ordinate system hglifig a correspondence function.

Although there are some methods that rely on theuadaextraction of control points;
the work herein, as the vast majority of the curmearks, is centred in the automatic

registration of images from uncalibrated cameras.

Registration techniques have been widely used fanyryears in different research
areas such as [13]:

- Computer Vision and Pattern Recognition: for tasks automatic object
recognition, segmentation, shape recovery, motioalysis, stereopsis and

character recognition.

- Cartography: for reconstructing our three-dimenaiamorld by finding control

points in images.

- Medical Image Analysis: for clinical diagnosis atedmonitor the evolution of
illnesses, especially to gather information fronffedent sensors such as CT
(computed tomography) which is a specialised Xtemphnique, MRS (magnetic
resonance spectroscopy), MRI (magnetic resonancagimg), ultrasound,
SPECT (single photon emission computed tomogragtty], (positron emission

tomography), NMR (nuclear magnetic resonance), etc.

- Satellite and airborne imagery: for civilian anditary intelligence uses such as
agriculture, meteorology, oceanography, geology,rthearesource and

environmental issues among others.



2.1.1 Basic definitions

If I, andl, are 2D arrays representing two intensity imadesntapping between them
Is given by [13]:

(% y) =9(1,.(f(x.y))) (2.1)

where g is a 1D intensity transformation anidis a 2D geometric or spatial

transformation:
(X, y)=f(xy) (2.2)

Consequently, neglecting the intensity transforamatiand focusing only on the
geometric transformation suffered, which is a mdjffrculty in registration, this can be

expressed as a two single-valued functirsdf:

(% y) = (.6 ), f, (%) (2.3)

the mapping in equation (2.3) according to equaf@B) can be expressed as:

(% y) =1.(X,Y) (2.4)

2.1.2 Domain of transformations

2.1.2.1 Geometric distortions

In our context, there must be considered the ettmaf the image transformations
according to two different cases: 3D-to-2D camemgetions from a 3-dimensional
point in the space to a 2-dimensional point in ithage plane and 2D-to-2D planar
homographies,e. projections of local planar patches in the image loe approximated

by a transformation.

3D-to-2D camera projections.This kind of projection deals with the mapping wéry
point (x,y,wY in the 3D space onto the corresponding p6ihy’)" in the image plane.
The function that maps 3D to 2D points is the can&he simplest model of a camera
is the widely usegbinhole camera modgehlso referred aperspective modgL09,36]
From a geometric point of view, the perspective elarf a camera defines the focal
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length as the distance between the pinl{@l¢ the co-ordinate origin of the camera
frame, to the (virtual) image plane along the agtaxis(Z). The optical axis is the axis
which has its origin in the pinhole and is perpentir to the image plan@7). The
intersection of the optical axis with the image nglais called the image centre or
principal point. The 2D poinp is the image of the 3D poirR, i.e. p=[x,y,z]" and
P=[X,Y,Z]". The camera frame characterises the following &ops of perspective

projections:

x
I
—

(2.5)

<
I
N| < NJ| X

The perspective projection does not preserve a@o&e size map between the image
of the object and the real object. Indeed, objéather away are represented smaller

than closer ones.

There are other approximations that may be apphedur case, notably thaffine
projection modelsOne of these is theveak-perspective camera modappropriate
when the relative distanéZ between two objects along the depth coordidateptical
axis) is very small compared with the dista@tdrom the scene objects to the camera
frame. Typically,0Z < Z'/20. The weak-perspective model can be approximataa fr

the full projection model as:

x=f i'X
z (2.6)
f

z

=

f Y

y

N[ < NJ|Xx

Another affine model is therthographic projection, whiclupposes that the camera is
always in a far and constant distance from theescitve focal lengthi—o and then also

Z'—o beingf/Z’=1 and having all the light rays parallel to the ogtiaxis (figure2.2).

b
I
x

2.7)



For a more detailed information on cameral modegeter to [36,54].

»
»

Increasing focal lengtt

»
»

Increasing distance from camera
Orthographic

Perspective Projection

Figure 2.2. Perspective and orthographic projest{@mom reference [50]).

2D homographies

The two-dimensional homography refers to the mappetweer2D images or patches.
Given a poinp=(x,y)' in the plane of an image, the corresponding poiny’)" in the

other image is found by estimating %@ projective transformatiom : P*— #-.

The 3x3 general transformation matriX [124] can represent most of the basic
geometric transformations that may occur between taro 2D images (translation,
rotation, scaling, shearing, reflection and perper The mapping expressed in term

of homogeneous coordinates is given by:

X' X
yI|=T|y (2.8)
z z

10



A &, A
T= a21 a22 a23 Q)Z
85 8, A3

In equation (2.8), the third dimension could beleeigd since the locations of the
cameras with respect to the world reference frammeaiaknown and we are dealing with

2D-2D projectionsi.e. (X,y,1) = T (X,y,w)’.

Decomposing equation (2.9) we have:

T, = (a“ aﬂj (2.10)
81 Ay

the sub-matrix ofT, T represents scaling, shearing and rotation in équg®.9).
Translation inT is due to f43 a3 ' and perspective transformation is defined[&y

as7. Finally, ags sets the scaling.

There can be different sorts of more complex matghransformations defining the
spatial transformations or displacements that irmagedergo [54,124,114]. These
distortions in the images are usually combinatiohsome basic transformations. Their

definitions are as follows:

- Isometries take place when the origins and bastsok® of both coordinate
systems are not the same. They are a combinatisimgle transformations such

as translation, rotation and mirror reflection:

X' gcosp -sing t |(X
y'|=| €sing cosp t |y (2.11)
1 0 0 11

being ¢ the rotation angle[,tx,ty]T the translation vector argk+1. Wheng=-1,

the mirror effect occurs.

11



Ignoring the reflection, it has three degrees aeflom ¢, t,and t,) and

invariants are length, angle between lines and area

Similarity transformations extend the previous $fammation to isotropic

scalings:

X' scosp -—ssing t, |(x
y'|=|ssing scosp t, |y (2.12)
1 0 0 1\1

This transformation has got four degrees freedoatioR of length and angles

between lines are preserved.

Affine transformations map at any dimension straitjhes to straight lines
maintaining parallelism. Every affine transformatics a decomposition of a

linear matrix transformation and a simple tranelati

X a, a, t (X
Y=y ay tly (2.13)
1 0 0O 11

It has six degrees of freedom, relating to parameeg...a, andty, t. It is the

most commonly used transformation since it allones @verlay of images taken
from the same angle of view but from different piosis as well as skew.
Invariants are parallelism, ratios of length ofghl lines ratios of areas and

centroids.

Projective or perspective transformations map gititdines onto straight lines in

the other image, but parallelism is not usuallyspreed.

X) |y &, X
= aZl a22 a23 y (2 ' 14)
1 8 Ap x|\l

12



Nine independent parameters define this transfoomay;, i,j=1,2,3. Projective
transformations take place whig; as;] is non-zero. Affine transformations are
thus a particular case of projective transformatishen[as; agg is zero.

The transformation matrix can be normalized so thatl, having then
equation (2.14) eight degrees of freedom and atigwalanar quadrilateral-to-
guadrilateral mapping. The most characteristic iilawe is the cross-ratio of four

collinear points.

- Bilinear transformations are similar to projectitransformations. Horizontal
and vertical straight lines are mapped onto sttaigks but lines of any other

direction will be transformed to curves.

X'=85 +aX+a,y+aXy

(2.15)
y'=b, +bx+b,y+hb,xy

This transformation is defined by eight indepengerameters,b), i=0,1,2,3.

It copes with the problem of non-planar quadriialte

In R®, since bilinear transformations are generated faffime transformations

the cross-ratio of four points is an invariant unoiénear transformations.

- Curved transformations may map any straight lineo an curve in the other

image. Therefore, they are also called elasticoorlmear transformations:

X'=8, faX+ay+a X +aXxy+ay’ +... (2.16)
y'=by +bx+by +b,x* +b,xy+by? +... '
It can consider the following division of transfaations: those applied to planar
mappings (affine and perspective) and those thatvahon-planar mappings (bilinear

and curved transformation).

The domain of transformations depends on whetheirntage transformation involves
defects on the whole image or just part of it. Hetlze change of one parameter in

13



global matching transformations will affect the immtimage, whereas local matching
transformations will only change part of the imalgecal matching considers images as
a composition of patches. It is usually suitable rfeedical and aerial applications,

where the images go through some local deformations

Transformations can also be classified accordingpeoaccuracy required. Interpolating
functions map exactly the control points of thessehimage to those of the reference
image; while approximation functions take into aatio certain trade-offs between

accuracy and other constraints required [131].

2.1.2.2 Photometric distortions

Photometric distortions are due to variations ia ghotometry of the scene that are
related to changes in the illuminant, to the geoynand reflectance properties of the
surface [56] and the sensors used. Reflection madiferentiate between diffuse and
specular surfaces. Models can be complex but afifmse surfaces are considered as
Lambertian. Generally the camera and the illumamagource are far away from the
objects of interest within the scene. Thereforés mormally assumed the existence of
planar surfaces or even a whole image where the digives with the same orientation.

A change in the illumination colour correspondglifferent scaling of the RGB values

over Lambertian surfaces, whereas a change onafiggn of the illuminant results in

an equal scaling of all RGB bands [48)e can consider three different models of

photometric distortion for RGB images:

a) Diagonal:
R ss 0 OYR
G=|0 s 0]G (2.17)
B' 0 0 s;\B

b) Scaling plus offset:
R s 0 OY\R) (og
G|=|0 s; 0]|G|+| og (2.18)
B' 0 0 ssA\B) (o
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c) Affine:
RI aRR aRG aRB R OR

Gl = aGR aGG aGB G + 0G (219)
B aBR a‘BG a'BB B OB

Indoor images can be approximated by the first twodels, whereas an affine
approximation can be a valid model for outdoor ieg®{82]. However, non-linear
photometric distortions generally occur in refleetisurfaces or when sensors saturate

being that instance more difficult to model.

Figure2.3shows an input image and transformed versionsrgodey combinations of
affine geometric transformations with scaled phattm transformations.

2.1.3 Review of existing research

This section presents a very brief overview of imaggistration techniques. The
organization of the discussion is based on [13]thedcomprehensive survey compiled
by Zitova and Flusser [131], which is an excellemtrce of references.

The feature space can be defined as the overal m@rresentatiomavailable in the

image to undertake the registration process. Thizda can be complex features
extracted on the image but also intensity distidng. The kind of data to search is
dependent on the sort of transformations suffesethé images as well as the nature of

the imagery and the content of the scene to sblvedrrespondence problem.

The methods are classified according to the afonéimeed common steps for
registration described in Sectidrl and according to whether the approaches are based
on intensity (area-based methods) or featuresuffedtased methods). In this section
we are discussing only a few of the approachesweatonsider most relevant for us.
Consequently, we refer to the taxonomies above ftother information over

registration methods.
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Figure 2.3. Photometry and geometry distortionsa) Original image, b) 20° rotation,
c) [0.1 0.1] shear, d) [0.3 0.3] shear, e) [0.9 8&nle, [0.1 0.1] shear, [0.7 0.65 0.75]
RGB scalingype D f) [0.9 0.9] scale, [0.1 0.1] shear, [0.4 0.4](R&GB scalingtype D

g) [0.9 0.9] scale, [0.2 0.2] shear, [0.6 0.55 D.B&B scalingtype D and h) 20°
rotation, [0.1 0.1] shear, [0.6 0.6 0.6] RGB soghype D
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Figure 2.4. Image registration methodology.

2.1.3.1 Area-based methods

Many images do not have readily identifiable feasuand for this reason area-based
methods are preferred. There is no initial steptlier detection of features since these
appearance-based methods rely on intensity disirits within a region of an image.
These methods perform the two first steps of regjish, the extraction of information

and the posterior matching itself, in a common $tgfusing both.

They usually consist of opening a window to detfime area to work in. The restrictions
of early area-based methods were: first, most@ftlare only invariant to translation, a
simple rotation between the two images will provakeimpossibility of registration;

and second, windows covering smooth and non-disishgble areas cause the failure

of area-based methods.
The main families of area-based methods are predémtfigure2.5. Herein, we discuss

upon methods based on mutual information and sdkatures, since we consider them

more relevant to the wide-baseline case.
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Area-based

methods
Correlation Fourier Mutual Saliency
techniques transform information operators

Figure 2.5. Classification of area-based methods.

Mutual Information (MI) methods. Mutual information comes from the discipline of
Information Theory and is a recetg@chnique used in image registration. There have
been very promising approaches in the field of rmatidal registration, such that these
methods are at the forefront of current researtteofetically, the mutual information
can be expressed with respect to a set of coomtingt as a relation of marginal,

conditional and joint entropid¥-) [9]:

| (V(T (x)),u(x)) = h(v(T (%)) = h{V(T (x)|u(x))
= h(u(x)) - huEYMT (%) (2.20)
= h(u(x)) + h(v(T (X)) = h(u(x), V(T (x)))

wherev(T(x))is part of the target data which should be regestevith a model(x) and
T is the transformation or pose which links the mi@ael image co-ordinate frames. In

the expression above, the marginal entrdp(y(T(x)) gives a measurement of the

degree of prediction of the target data (randomatbé). The lower the entropy, the

more likely the variable to be predicted. The higtiee entropy means the higher the

degree of uncertainty. The conditional entrdp(y(T(x)|u(x)) is a measurement of the

uncertainty left in the target data after the madedbserved. Therefore, the difference
is the information that one variable gives aboetdther.

The entropies of one and two random variables arengby expressions (2.21) and

(2.22), respectively:
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h(y) =={ p(y)In(p(y))dy (2:21)

h(z,y) =~ p(z,y)In(p(z,y))dzdy (2.22)

with p the probability of a variable (e.g. probabilityngéy function of the image).

The work of Viola and Wells [117] has been verylueftial although it was not the
first to make use of methods derived from informatitheory. They used a
maximisation of the mutual information, both togalitwo different MRI images of the
same object and to align an object model and agemahis allowed them to register
separate MR images and to find object pose by texgig 3D object models to real
scenes. In the latter case, they assumed thathgei was a derivable function of the
model e.g. they presumed Lambertian surfaces aadetistence of aonsistency
measure between intensity and normal of the modelnvthe two images are aligned.
Other approaches for mutual information are in §8(87]. See [2] for mutual
information for feature selection over characterssof edges such as location, strength
and orientation; edges and junctions in [74], regi®n of images by combining
gradients in [107], over neighbourhoods [92] oroanparison to a new gradient-based

measure [51].

Saliency Operators.This set of operators extracts unpredictable chariatcs of the
geometric properties of the image regions withaime of estimating feature descriptors
to solve the matching problem. Kovesi [61] workeithvphase congruency to perform a
saliency measure of edges and, achieved multi-scallysis by using wavelets in [62].
In [123], close boundaries were extracted by cotimgaontours in terms of saliency
over proximity and curvature. Gal and Cohen [4Hsgnted salient-based descriptors of
local surfaces. We will focus on the strategy psmgabby Kadir and Brady [57]. They
considered the saliency concept as a probabihistiasure calculated over a local multi-
scale analysis [55]. Their implementation is ingati to rotation, scaling, some
photometric changes and translation as well asstotaunoise, viewpoint change and
intensity scaling. Kadiet al. in [64] expanded the salient algorithm to attaiwairiance
against affine transformation by defining adjustagllipses at different scales instead of
circular patches. The scale parametés replaced by the three coefficients that define
the ellipse: the major axis/sqrtp), the minor axiss-sqrt(s)and the orientation of the

ellipse 0. The parametep is the axes ratio. The adjustment of the parametetbeof
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ellipse is performed in an adaptive way by meansegdtions, according to the strategy
used in [4,81] and developed by Lindeberg and i@grith [66].

The unpredictability of the images is analysed Bans of the Shannon entropy over a
range of scale$lp(s). Therefore, the algorithm extracts circular pasclae different

scales around image pixels as samples to work With.definition of entropy is defined

by:
HD(S)D—I p(l,s,%)log, p(l,s,x)dl (2.23)

beingp(l,s,x)the probability density function of the intensitfor the pointx at scales.

This probability density function can be approxiethby means of a grey-value local
histogram. Peaked histograms involve that the pndekmation can be predicted since
the intensity values lie within a reduced intensapge. At the other hand, spread out
histograms show that the probability of finding tredue of each pixel tend to be similar
for all the pixels in the image,e. in a flat histogram all pixels have the same
probability. A peaked histogram is considered viafprmative while a flat one not.

However, this definition of saliency by means ofrepy declares highly salient regions
of the image with spread out histogram. Thereftive salient descriptor is a measure of
the difficulty that an intensity-based descriptoould have. If saliency is a degree of
unpredictability, salient regions will not be egsihvailable by a prior model

description.

A set of scales, where the entropy measure peaks is selected angdli

s, D{s:aHD(S’X) -9 Ho(sX) <o} (2.24)
& &

where the first equality defines a stationary pbiat does not reveal a local maximum,

minimum or point of inflexion. The second derivaiyields the maximum.

After histogramming, all spatial information in theage is lost. Therefore, any order of

the pixels within the sampling window gives the saentropy value. However, that
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does not happen at different scales as the sampimdpws do not cope with the same

number of pixels. Indeed, the sampling windowssattgsets of the largest one.
Referring again to the unpredictability aspect il saliency concept, the reader may

think that the method is highly dependent of noiseavoid this dependence timer-
scale saliencgonstraint\Wp, is introduced.

W, (s,x) Os

c_fs‘ p(l,s,x)dl (2.25)

The inter-scale saliency measures the change® gfrtdbability density function and its
entropy with the variation of scale. In the diserease\Wp(s,x)is calculated between
the scale at which entropy peakands-1

The final definition of saliencYp(s,X) is the product of the maximum entrody(s) by

the inter-saliency measuveé)(s) at the scale which the entropy is maximum.
YD(sp,x)DHD(sp,x)END (sp,x) (2.26)

Therefore, the inter-scale saliency measure shbeldnaximised to obtain a high

saliency measure.

We have performed some experiments for extractfohe salient features as in [57].
The first pair of images defines a scene with tvehigles in a car park, where the
vehicle of interest (Land Rover) changes its posifi5° within the setting. The images
form part of a set taken with a visible camera iith short period of time between
snapshots (apparently similar photometric cond#jomand are courtesy of BAE
SYSTEMS. The second pair of images has been takethd author with a digital
camera at a lower resolution. This scene is chagilhgnsince many changes take place
in the setting. The object of interest, a civiliear, remains static but there is a wide
change in the position of the camera, besides taabbe photometric conditions occur,
considerable occlusions take place and new obgaear in the scene (for instance, a
four-wheel drive vehicle). The last pair of imadess been taken by a camera in the

medium infrared band. These are high-resolutiortupgs of a Land Rover (toy)
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changing its position. The saliency detector isliagpto every pixel in the image, with

the support of a defined, surrounding region.

Visible imagery (1)

Figure2.6 shows the setting composed of two visible greyll@wages. The size of the
pictures is800x600pixels. The camera remains static, only the obpéehterest shifts
its position45°. Between the two frames, some photometric vanatmccur as it can be
appreciated in the reflectance of light over thalian car. In figure2.7 the top plots
represent th@8D maps of the intensity values of the pixels inithages. The next two
figures below denote the entropy map of both imagéss entropy is the maximum
entropyHp(s) extracted over the multi-scale analysis perforraedvery pixel. Notice
how geometric objects exhibit values of entropyhkeigthan the background. Likewise,
the morphologies of the background can be bettindiuished by the human eye when
applying the false-colour map of the entropy meaghan in the original images. The
next pair of figures represents the scale seleateglvery point of the imagege. the
scale within the given set which shows higher gatrd’ he predefined set of scales is
composed by five different circular scales of radtu4, 6, 8 and10 pixels. The figures
clearly illustrate that the system prefers largaes; as it is usually more likely to find a
wide diversity of pixel values and then, higherrepy. Table2.1 shows the percentage

of use of every scale.

SCALE O degrees 45 degrees

(pixels) (%) (%)
2 0.33 0.21
4 1.62 1.55
6 4.86 5.05
8 7.57 7.27
10 85.62 85.91

Table 2.1. Percentage of the use of every scaleiimages.
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The inter-scale saliency measwig(s,x) (equation2.25 is depicted in the next pair of
figures. It gives a dimension of the change ofgtieand the entropy with the scale. It is
calculated between the scale at which the entregigters a maximum and the previous
scale. This measure is a sort of evaluation os#iedissimilarity of the local region in
the space of scales. That gives rise to a morestgimrformance in the sense that self-
similar regions will not be extracted, reducingréfere the possibility of false matches.
The inter-scale saliency weights the entropy talpoe the final descriptor, the saliency
measureYp(sy,X) given by equatior2.26 As can be seen in the final result, high values
of saliency are common in the same features of im#ges. That can be understood as
the saliency operator can be able to extract @jsighed features in stereo images,
performing thus the necessary basis in featureaetkdn to carry out the matching
between the two images. Nevertheless, these sddiatures should be combined with
some kind of geometric support or a descriptor #tlatvs the extraction of some other

parameters to define a descriptor vector.

Figure 2.6. Car setting.
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Inter-scale saliency measure (W)
, T

Figure 2.7. Extraction of saliencies of an outdgoene. a) and b) Image intensity
values; ¢) and d) maximum entropy within the gismales; e) and f) scale at which

entropy peaks; g) and h) inter-scale saliency nreaguand j) saliency measure,
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Visible imagery (1)

In this case, the scene under study portrays anettemple of visible imagery with a
more difficult layout. The two images exhibit comeiable changes in lighting
conditions and point of view, as well as occlusionsur and new objects appear in the
scene (see figur@.8). The pictures were taken at Heriot-Watt Universitith a
commercial digital camera. The distance from theexa to the object of interest is
around30 metres for the left-hand side picture a@f@metres for the other one. The

resolution of the images 820x240pixels.

Examining the results in figur29, the results are very different from the ones ioleth
for the previous imagery. The blob-wise featuretaimied are more palpable in this set
of images. Notwithstanding, these blobs are interen the algorithm and a
consequence of the isotropic way the scales arénatkf(circles). Their major
prominence is due to the lower resolution of theages and the profiles we are coping
with (see that the image intensities in the gragmesvery discontinuous). These effects
are more outstanding in the right-hand side pictubere the scene is hardly
recognized. Despite the blob effect, the left-hamde picture still depicts the main
objects in the setting. The object of interestdientified as a high-entropy value blob

but keeping a perceptible shape of the vehicle.

Figure 2.8. Complex wide-baseline setting.
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Maximum Entropy (Hdmax)

Figure 2.9. Extraction of saliencies in visible mea of a complex scene. a) and b)
image intensity values; c¢) and d) maximum entrophiw the given scales; e) and f)
scale at which entropy peaks; g) and h) inter-ssaleency measure; i) and j) saliency

measure .
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Regarding the scale maps, the excessive abundémdete regions or maximum scales
in these figures comes to confirm that as muchutexor wider variation of pixel levels
in the image patterns there exist, the highesopwtrs found within the largest window

(maximum scale).

SCALE Leftimage Rightimage

(pixels) (%) (%)
2 0.01 0.00
4 0.77 0.11
6 4.61 0.50
8 8.35 1.69
10 86.26 97.70

Table 2.2. Percentage of the use of every scaleiimages.

The inter-scale saliency measures present a si@haviour than their counterpart
entropies, maybe even more blurred. The regiorntkdrscene can still be distinguished
in the figure at the left side, but the visual imf@tion is almost missed in the other one.
The saliency measures improve slightly these ingeliate steps but this is a

complicated, low resolution image

Infrared imagery

The pair of toy images of the Land Rover in figdr&0Ois taken in the medium infrared
with a resolution 0f421x337 pixels. The object of interest is presented inhhig
resolution and there is neither background nor rotigects in the scene. By having a
look at the infrared images, different materialstie vehicle present different grey
tones, such as the door, the wheels, the glastesTlge entropy map reflects high
entropy values at the lines which define the figurhis behaviour is similar to the
visible one and it is described in figu21l The scale map presents a bigger
predominance of smaller scales in the backgrourtditte presence on the object of
interest. Thus, the behaviour is similar to pregi@xamples. The inter-scale saliency
measure \(\rb) also defines the lines of the vehicle resultingai saliency map which
stresses the outlines of the figures. Fig@r&2 shows the results obtained after

27



modifying the scales of the window function. Thé& lenage corresponds to window
functions of twice the size used in the examplevabie. radii of 4, 8, 12, 16 and20
pixels. The saliency map obtained presents a mhneed result than the one with
smaller scales. Furthermore, the saliency measurges up to double values than the

previous ones.

Figure 2.10. Wide-baseline image of a toy landrover

Extraction of saliencies over seed points

The previous part embraced the saliency analysisrdmg to a pixel-wise approach.
Every pixel in the image was evaluated. That hasirtkonvenience of the weaknesses
of correlation-based method which are sensible hotgmetric and scale changes.
Basing the saliency measure on geometric featuasdsesthe system stronger against
spatial transformations. Figu&13shows a short example of the performance of this

process together with some results on salienciesgons around anchor points.
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Figure 2.11. Extraction of saliencies in infraredages. a) and b) image intensity
values; ¢) and d) maximum entropy within the gismales; e) and f) scale at which

entropy peaks; g) and h) inter-scale saliency nreaguand j) saliency measure.
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Figure 2.12. Comparison of saliency maps for déiferset of scales for the window

functions. The possible window sizes in the imagtha left-hand side are double than

the ones in the other image.

Canny edges

Scale at which entropy peaks

b)

Comers detected

Saliency measure (rd)

d)

Figure 2.13. Different-scale saliencies over se@dtp. a) Original image, b) extraction

of Canny edges, c) Harris corners found, d) cormtected over Canny edges, e)

scales at which the entropy is maximum and f) saljeralues for each seed point

2.1.3.2 Feature-based methods

These consist of the extraction of distinctive,edtdble and scattered features such as

regions, lines and points of interest over theuysed by means of invariant feature
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detectors. Hence, feature-based methods are @meéferinen the image has distinctive

objects, features or details to be detected. Agardptection is of vital importance.

Feature extraction

Region features are closed-boundary regions, ewgsts, lakes, ponds, buildings,
shadows, etc. which are usually detected by segtient methods and can be
represented for instance by their centre of gravibe centre of gravity has the property
of being invariant to rotation, scaling and skewiiitne co-ordinates of the centre of
gravity are also rather stable against random narse grey-level variations. Region
features have also been studied in a multi-scaleratéhy using invariant

neighbourhoods around points of interest [124].sTharticular case based on the

invariant properties of the images will be develbpedepth in the next section.

Line features are line segments, contours of objeciads, etc, usually described by
end-line and mid-line points. Typically one usesegige operator, such as the Canny
edge detector [17] followed by a contour trackingpgess. Finally, point features
include corners, T-junctions, and Y-junctions adlwe any other salient points in the
scene [102]. Examples of points of interest aredroeossings, line intersections,

centroids of regions, local extrema, high-curvapoats and so on.

Schmidet al. [102] conducted an evaluation study of the perforoe of detectors of

interest points based on repeatability and infoiomatcontent criteria. The most

extensively used methods for the detection of gooftinterest have been the Harris
detector [52] andbUSANSmallest Univalue Segment Assimilating Nugl§6].

In the Harris-Stephens corner detector [52] thset fatep is to apply a Gaussian to
smooth the image in order to reduce the image remseprevent false corner detection.

That is done over images containing the square endagivatives.

From the following moments matrix (gradients) ajray-level intensity functioh(x.y):
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& (33

NEER)

it can be found if a point is a corner by calculgtthe two eigenvalues of the moments

matrix M. If the eigenvalues have large values, therefamall motion at any direction
will produce a considerable change in the greylleatue, specifying a corner is lying

at this spatial co-ordinate.

The corner strength response function is defined by

R=detM -k(traceM)? (2.28)
with k=0.04 as a value proposed by Harris.
Corners are given by local maximaRf A threshold can be set in order to reduce the
number of corners if required or to order cornemoading to significance. By means of
a quadratic approximation of a neighbourhood o&laoaxima, sub-pixel accuracy can

be obtained.

Feature matching

Feature-based

methods
Spatial Invariant Relaxation Pyramids
relations descriptors methods and wavelets

Figure 2.14 .Classification of feature-based matching.
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Methods using invariant descriptors.Invariant descriptors characterise sparse features
which do not change under a given photometric @nggric image deformation with
the purpose of solving the correspondence problentonsider a geometric instance, if
we have a segment line its length will not changden a translation or rotation but it
will under other transformations. For example, &clei under an affinity will be
transformed into an ellipse. In the photometricecabe transformation will rely on
extrinsic and intrinsic parameters of the camerabkthe lighting conditions. Therefore,
it is fundamental to know the kind of transformattbe images will undergo and the set
of features to work with in order to find descritdnvariant to this transformation.
There is a vast group of methods based on thecgpipin of moment invariants to
closed-boundary regions as well as many other db#sgr image features or
combinations of them. We refer once more to [13f]wider information and also to
Section2.2 where some methods based on invariant descriptodsfocused on our

practical case will be broached in depth.

2.1.3.3 Transformation of the model

Once the features have been extracted and themteqarts found, the mapping
function which establishes the correspondence shbel estimated. As mentioned
before, the choice of the function relies on theagm transformation; with the
acquisition of the images and the registration ey in mind. Optimization
techniqgues aim at finding a (minimum) maximum of aljective function which
estimates the (dis-)similarity measure between templates. The difficulty of the
problem depends on the number of degrees of freeddhe transformation suffered by
the image, as well as the complexity of the tramsédion functionj.e. the existence of

multiple local minima or maxima.

2.1.3.4 Image re-sampling and evaluation

We have two images, each with a different coor@irsgstem and a transformation that
maps both coordinate systems. If the images nedgktaligned, due to the discrete
nature of images, the transformation of the inmage onto the output image will entail

the creation of new pixel locations. Therefore, gmaie-sampling comprises two steps:
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the conversion of the image from the discrete te dontinuous domain and the

sampling at the new spatial positions.

The procedure consists of applying an inverse toamsmtion to the pixels in the
transformed coordinate system, generating the nel#agngrid. Next, the input image is
converted onto the continuous domain with the &idnointerpolation function and then
sampled at the resampling grid locations. Henderpolation and sampling determine
the intensity value at a given position in betweadincrete samples. The infinite
bandwidth of the discrete pixels of the image mitied to a finite bandwidth by the
interpolator. There are many interpolation methand the right choice depends on the
accuracy desired and the computational cost thbeaafforded. For some insight into
the main interpolation kernels (nearest neighbolingar interpolation, cubic
convolution, cubic splines, sinc functions and exgattial filters) we address to [124].
Re-sampling is useful for example for mosaicingwéweer it is not always needed as it
is the case of the estimation of rigid transforiordi

The evaluation part is related to the assessmenhefaccuracy of the registration
process. Errors may take place and will accumulateng the features extraction phase
(localization error), the matching of features (omattg error) and the mapping

(alignment error).

2.2 Wide-baseline registration

This section surveys different methods for singk@ge modality, wide-baseline image
matching. A variety of methods are presented. Adgoamber of them share the
common approach of extracting interest points aefinshg invariant regions in the
surroundings. The use of local features is a matferobustnessj.e. the system
performs better when occlusions occur, when otlhgeats present in the image divert
the attention from the object of interest and wtiesre exist changes in the background.
Moreover, local region detection leads to a betteance of dealing with planar
surfaces, which makes correspondence and transiorm@auch simpler. Figur@.15
illustrates a wide-baseline scene, where rotatidremslations, scale changes and
photometric variations take place. As a resulthef wide baseline, the views exhibit
occlusions and new objects occur. Fig@ré6 illustrates the basic blocks of the image

registration process with some possible methods.
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Figure 2.15. Wide-baseline sceneSignificant changes in the viewpoint and
photometric conditions. Moreover, new objects aodwsions take place in the scene.

2.2.1 Extraction of features

The vast majority of wide-baseline stereo algorghifil6,108,4,100,133,32,105]
discussed herein use an intensity-based approattacerg geometric features,
following the influential paper of Schmid and Moli01]. They seek to combine the
virtues of feature detection and appearance modeilie. geometric invariance based
on the former and photometric invariance basedhenldtter approach. In a nutshell,
they use the advantages of appearance-based mdihbdseir system is stronger to
spatial transformations due to the geometrical wamgs which are imposed. The

invariance does reduce the scope of the corresperdeoblem.
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FEATURE EXTRACTION
Corner points
Edges
Regions around interest points
Local Extrema over Scale of Gaussians (DoG)
Maxima Extrema
Saliencies
Intensity profiles

FEATURE DESCRIPTORS
Gaussian Derivatives
Invariant Moments
Entropy
Pdf
Fourier Coefficients

MATCHING (complexity, metrics, robustness)
Indexing of Hashing Techniques
Mahalanobis Metric
Correlation Techniques
Voting Algorithm
Consistency Constraint
Homographies
RANSAC/LMS
Epipolar Geometry

Figure 2.16. Wide-baseline blocks and methodologies

The implementation of the extraction of the affin@hvariant regions comprises the
definition of the local regions around anchor psiot landmarks. Both geometric and
intensity-based methods have that in common. Tle&ych for anchor points which
should be easily detected, produce stable invaregibns and most important, comply
with the repeatability criterion (reliability on t&eting the same anchor points with a
strong independence on the changes in the imagindittons). The selection of these
points also avoids the analysis of every pixel &imds the complexity of the problem.
The Harris-Stephen corner poihts[52] are suggested as seed points by
[101,116,108,4,133,32,69,110,105] and local intgnsixtrema by [108,110,116]. A
study of the comparison of the performance of déifié methods can be found in [102].

This study reveals that the Harris corner detegtovided better performance due to its

! For simplicity, the Harris-Stephens corner mayrientioned just as Harris corner in the text
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repeatability under different transformations rdbagainst rotations, translations and
photometric changes) and high information conteat (istinctiveness content,
important for grey-value-based algorithms) thareottetectors. The detection of Harris
corners is generally carried out in a multi-scashion (scale-spatial Harris features).
For the multi-scale Harris approach, there are deale parameterswhich denotes the
local scale at which the derivatives are calculagé@dic which is the integration scale in
the second moment matrix. Baumberg [4] usemtoportional tos in his multi-scale
wide-baseline approach. Local intensity extremaweéeer, cannot be located as
accurately as Harris corners but can resist gednetrange and any monotonic
transformation of intensity levels. Besides, theyrbt usually lie near the border of
objects, accomplishing better the planar consttagm Harris corner points.

Once these methods have found anchor points, nedyymn other features. Fraundorfer
and Bischof [32] started from Harris corners ashangoints and proposed a matching
algorithm based on multi-scale salient operator®duced by Kadir and Brady [57,58]
which are centred on the maximum entropy of featdioe saliency, scale and content
description of image aspects (for an improved warsof Kadir and Brady saliency
detector refer to [100]). After extracting the Hsrcorners and the salient regions
(circles with a defined diameter around these asjnsub-salient regionsvithin the
initially detected salient regions are obtainede Employment okub-salient regions
offers a deeper accuracy than salient regions, lwhiso yields even better description
than local interest points. In fact, salient featuare the ones deemed to be difficult to
be misclassified. The utilization of Harris cornerstead of grey-level values as in [57]
is reasonable for their aforesaid better geomednd photometric robustness. The
authors also propose the combination of differexstcdptors as a matter of extraction of
more information from the regions of the scene, ifmtance Gabor texture features.
Saliencies in images are also estimated in [120hbgns of a statistical analysis using
the image histogram as a measure of the probabiinsity function. In [108,110,116]
the region extraction commences not only with theihg of the Harris corner points
but also with the detection of the existing edgethe neighbourhood, performed by the
Canny edge detector. Tell and Carlsson [105] etachElarris corner points but did not
define a region around them but formed pairs oérggt points in order to trace a
segment line between them and read the intengitjlgoalong the line. They stated that
points which are far away from each other are Jégly to not accomplish the
planarity constraint (the points are not co-planBiQwever, points which are too close
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must have a lack of intensity information conteloing the line segment that matches
them. Therefore, a threshold on distance valuxésifto determine the possible pairs of

corners.

Pritchett and Zisserman [89] extracted four-lineutaed regions to compute local
planar homographies that restrict the search farespondences. They match the
parallelograms by exhaustive search and generaggiy®icorner matches from those
local homographies. Two strategies are definetieeitonsider only matches consistent
with a single image transformation (global) or séafor matches consistent with local
homographies and use these homographies to seathbrfmatches. Matast al. [79]
introduced the novel concept dfaximally Stable Extremal RegioiMSER). These
regions are invariant to affine transformationse atable and allow multi-scale
detection. The set of all extremal regions is aihptexity O(nlog(log(n))),with n the
number of pixels. Intensity pixels are classifiad order by their intensity value.
Furthermore, a list with the group of connected ponents defines the detection of
distinguished regionsvhich have distinctive, invariant and stable proipsr Then the
maximally stable extremal regions are computed e ihtensity image. Maximally
stable extremal regions are produced by storin eannected component according to
their intensity values. Components are merged, ngixhe pixels of both components
results in another set larger due to the combinabiogroups. At last, intensity levels
which are local minima are selected as threshdtdgenerally generates many small
regions in order to be robust to occlusions anddawlanarity of features. Some
variations of MSER are [35] to work with colour aad expansion to affinities in [75].

Something worthy of note is the definition of atabie local invariant region or

window function. Once the region for calculatingganiants in the reference image is
calculated its affinely-invariant region.€. deformed) counterpart in the other image
must be found in order to be able to describe iamés under the appropriate area to
work in. Indeed, these regions must take into actthe image transformation that the
scene undergoes due to the different viewpoint. |lSmeasurement regions have the
advantage of better planarity but are less diso@tive. Therefore, measurement
regions must be relatively big but take into acddbe trade-off between discrimination
and taking parts of the background absolutely cifié to the ones of interest. These
measurement regions can be selected in a muleé-scay,i.e. the distinguished regions

and scales of them are used to have discriminatidarge regions and the planarity of
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small ones. In [108] and [4] it is pointed out thhéese regions must be deformable
somehow in order to cover the same area in bothsvieThat is related to the concept
of affine Gaussian scale-spadeveloped by Lindeberg and Garding [66] and [68&

present some of the basic steps in their autonsate detection. Let us consider the

second moment descriptar.
1z, 2)=g(Z) o (OL)z )oL)E,) (2.29)
with L(.;2) the affine Gaussian scale-space representati@m éfnage (.) and the co-

variance matrix2. 25 and2; are the covariance of andt respectively.g(x;2) is the

Gaussian kernel,

1 -x"7x

g(X;Z):me 2 (230)

The use of these “affine Gaussian scale-spacegptiebil windows can be used with
associated covariance matrices producing affindessizace to be generated by a
linearly transformed elliptical Gaussian kernelt@a& of the conventional scale space
which is usually generated by convolution with tatimnally symmetric Gaussian. The
covariance matrices are adjusted iteratively ared sbacond moment matrices (image

descriptors) result invariant under affine transfation.

/’IL(qL;Zt,L’ZS,L): M,
Z,. =M L_l (2.31)
T, =sM*

Then the square root of the second moment madrixs used to transform the local
image (equation (2.32)) and for the other imagedtiqn (2.33)):

LM 2%) =1, () (2.32)

1

o (M 2X) =1 o(X) (2.33)

Lindeberg showed that under a linear transformatibnimage coordinate®, the

following property for affine scale-space secondmaat matrices occurs:
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4 (02, Z,) = B" 4 (B,; BZ,B",BZ,B")B (2.34)

For the normalized case:

p-last,sl)=1 (2.35)
with | the2x2identity matrix.

The transformation between and | is a rotatiorB’:
| =y, =B" y,B'=B" B (2.36)

The process is iterated until the second momentixnadnverges to the identity matrix
I. Then there is a normalization for lighting chamgeinally, the effects of the rotation

are cancelled by using rotation invariants.

Dufournaudet al. [27] presented a novel approach to attempt thechmreg of two
images at different resolutions, up t6-acale factor, where the high-resolution image is
a small region of the low-resolution one. The highelution image is tackled by means
of a scale-space interpretation, while the low-k&t8un one is not represented at
different scales. The method detects interest pamboth images and proposes for this
purpose an improved version of the Harris cornezteator, which is scale-space
adapted for the wide scale factor between the isafieerefore, the matching lies in a

one-to-many correspondence problem.

Lowe [72] proposed extrema over scale space fidténedifference of Gaussian (DoG)
filters. The image is convolved with Gaussian fatat different scales and points of
interest are detected as extrema within neighbad$iof current and consecutive lower
and higher scale. [73] improved the location of theerest points by finding the

interpolation of the maximum when other extremaitighe proximity. Then applying

some thresholding low contrast extrema are rejeatetithe interpolated extremum kept
as a feature. Still, the system also achievesrostibility by suppressing features which
are not well located but present high edge resmonBmally, the features attain

invariance to rotation from dominant gradient ot&ions. In the next subsection we
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complete the SIFT detector with its descriptor @ecivhich allows strong resistance to

variations of illumination and affine transformats

Forssén and Lowe [34] developed an affine invar@dedgcriptor by computing SIFT
over MSERs detected at the different scales oheage pyramid. The multi-resolution
MSER attains higher scale invariance and contrbtethe descriptor with robustness
to illumination changes and local occlusions arel $FT acts as a shape descriptor of
the MSER. Nearby features are grouped in order ravigle more prominence to
features that repeatedly appear over many imagasataset. The authors admit that it
does not outperform SIFT over planar images buab#s over 3D scenes. Obdrzadek
and Matas [75] builtocal Affine FramegLAF) from MSERs. MSERs stem from local
shapes in the image and from them there can baate&tr geometric primitives that can
constrain the six degrees of freedom that definaffinity. These geometric primitives
are centre of gravity, curvature, covariance matfixhe region, directions, etc. and
combinations of them define the LAF. Next a geomatmormalization of the region
of measurement is performed from the change ofyeleeial affine frame with respect
to the canonical reference system. The regionse abrmalized in photometry. The
matching is performed by Euclidean distance betwegions. The descriptor is affine
invariant to geometric and photometric transforonadi In [22], geometric hashing is
used to matching LAFs.

Also inspired by SIFT, Bay et al. [5] used an apgration of the determinant of the
Hessian as a detector of points of interest atwifit scales in their SURF (Speed Up
Robust Features) descriptor. The Gaussian filtefsthe Hessian matrix are
approximated by box filters, increasing the spekthe calculations and still achieving
analogous results. The points of interest origifi@m, non-maximum suppression over
multi-scale neighbourhoods of the determinant of thessian matrix. The authors
compare the repeatability of their detector withess, such as difference of Gaussians
(DoG), the detector of SIFT and the Harris- and ditesLaplace detectors giving a

better or at least comparable performance for xipeements run.

For a complete and recent reference upon localifestextraction and descriptors see
[65].
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2.2.2 Feature descriptors and invariance

There are no general invariants when working ithimage points obtained fro8D
scene points - geometric invariance is almost abwagstricted to2D rotations and
translations of planar objects; for instance cscleecome ellipses under affine
transformations. Thus, [116] considers that maByobjects can be approximated in a
local way by means of planar surface patches ierota use th&D invariants on the
local scale selected. A similar approach was camsitl by [4], asserting that smooth
surfaces can be locally approximated by planarased. However, local regions on or
near borders and occlusions do not fulfil the ptapaconstraint. Therefore they
consider2D invariants asquasi-invariants” when dealing with 3D objects. This latter
assumption [7] permits the use of a variety of mavats for planar objects: moment
invariants, algebraic invariants, differential asdmi-differential invariants, Fourier

invariants, reflectance ratios, Gaussian derivatiegc.
Differential illumination invariants are used inOfl], describing each interest point by a
nine-dimensional rotation invariant vector of locaharacteristics. The Gaussian

derivatives in the neighbourhood of the interesinpallow invariance against rigid

transformations between images. The set of devieaiis given by:
IMxo) ={L,, (xe)O1x0%;n=0.N} (2.37)
L, (X0)=1:G ; (x0) (2.38)

whereiyx [0 {X1,%} and the parameter denotes the smoothness effect of the Gaussian

and also has to do with the next multi-scale apgraep.

The set of invariants is calculated up to thirdesrd’he nine elements of the vector are

computed according to:
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with e10=- 21=1 andgn: £20=0.

So after that, a multi-scale approach is undertakemder to be also insensitive to scale

changes:
f(x)= :
(9 =9(u) (2.40)
g(u) = g(u(x) = g(ax)
In the multi-scale approach derivatives are desdridgiccording to:
[1.6, ., (Ro)&=0"[1,G, , (U,a0)dd (2.41)

where G, ; are the Gaussian derivatives. In a discrete appration, the size of the

Gaussian and processing window are changed; sas@tigation is a necessary
condition for working with several scales. Therefathe vector of invariant features is
finally computed over several circular neighbourt®mf different sizes around the
point of interest. However, Mohr's approach is nawariant to some general
transformations, e.g. an affine transformation.hailtgh this method is not wholly

invariant it is worth mentioning since it set aastégy followed by other authors.

Zisserman and Schaffalitzky [133] stated that fiewwpoint and photometric changes in
a scene it suffices to reach an invariance of thgcuption tools to geometric and
photometric affine transformations of the geometng intensity values of the image,
respectively. Affine invariance has been pursued1iy,108,79,4,89,133,76,110] and
[105], the last one even aiming at some projeatigéortions. Of these, [116,108,4,133]
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used descriptors based on second moment matriees Géolet al. [116] looked for
geometrical invariance by bounding a region defineg two edges in the
neighbourhood of a corner. There exist two casesrding to the nature of the edges:

Curved edgesStarting from the Harris corner point and the twesghbour edges, two
affinely invariant parametedd andl2 are defined using an arbitrary curve parameter
(affine curve arc length, for instance) and thstféerivatives of the edgel ande2 with

respect to the curve parameter.
| =[abg|p®(s)p-pi(s)ls =12 (2.42)

From the cornep, the two points move along the edges describimgarallelogram
region Q(l), with | referring tol1=I2 when a point in one edgel(l1l) is affinely
invariant to the one in the other edg2(l12) RegionQ(l) where a given function(s)
reaches its extrema in an invariant way for geoicedtand photometrical variations is

evaluated and searched. These are the functions:

1
f,(Q) = o0
00
‘p_pg q_pg Ml
f,(Q) = abs - 000 —
‘p—p1 p-p, \/MooMoo_(Moo)
Pi= Py 0, Py M L
f,(Q) = abs % (2.43)
3 200 112
‘p—p1 P—p, \/MooMoo (Mgo

. N Ml Ml
M, = [ [1 s )] xPydxdy pg:( ]

The functions utilized are composed of two factarsatio of two areas, one of which
depends on the centre of gravity weighted withrisiy values of the local region, and

an expression of moments up to the second order.

Straight edgedf the edges are straight (quite commadm),0 and the method explained

before cannot be applied. Then, the local extresnaought in a 2D space with two
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arbitrary parameters as co-ordinatgsands,, for the two edges instead of the invariant
parametel. The two functiond,(2) andfs(2) are combined and the intersections of
their two valleys selected to define the invarisagion.

For objects with a lack of texture, the use of @ve functions may fail due to the

difficulty of the extraction of extrema. In thiss=g local extremum di(R2) is searched:
1] .

f,(Q) =X—y > DI (x%y;) . D,I(x,y) (2.44)
j=0 i=0

whereDy andDy are pixel differences an@,y) co-ordinates on the straight edges.

A drawback is the possible difficulty of findingdlsame edges in the other image, for
these can be non-connected, interrupted or corhelifterently. The intensity-based

method which follows endeavours to compensatetiisr t

Photometric invariance takes into account changetheé lighting conditions of the
different views of the scene. For their case, VaolGnd Tuytelaars prefer using a
photometric invariant based on generalised colooments, although the method can
work with gray scale images, to obtain colour infation in the neighbourhood
extracted according to the aforementioned localoregxtraction, which should be

more or less planar.

The intensity-based region extraction [110] is a@st on local extrema in intensity as
the seed points. The rays which emanate from tual lextremum are evaluated by
working with the Euclidean arc length along the,rthe intensity and the intensity

extremum:

abdI (t) - 1,])
t
J'abs

aba(l)(t)—loﬂ’d

t

f (t)= (2.45)

The points where the rays reach an extremum areegically and photometrically

affinely invariant. Extrema usually occur when th&ensity changes severely along the
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line. The points are all linked by enclosing aniredfy invariant region. An elliptical

surface surrounding this invariant region is crdate that this elliptic region has the
same moments (up to the second order) as thel ireggon. The authors doubled the
elliptic region size, in a heuristic way, to eabe matching process but putting the

planar restriction at risk.

As a conclusion, the geometry-based methods hasagms since they depend on an
accurate detection of the corners and edges. Ttemsity-based methods are also
sensitive to noise in the case of weak extrema.eNbgless, the experiments of the
authors showed good performance in spite of thevalsaid difficulty of accurate

detection of local extrema. In short, finding rbleinvariant regions in both images can
be difficult due to false matches, non-planaritgrgpective deformations, occlusions,

and noise, although the methods are not desigmeahfospecial sort of images.

Strechaet al. [104] tackled multiple wide-baseline views matchinighey extracted
ellipses using the affine invariant method usegilit0]. This way, the affine invariant
ellipses are defined from Harris corner points amakima extrema. The definition of
this extrema can be compared with the point fingetp concept [103]. Point
fingerprints rely on the extraction of geodesiclags around points of interest on real
range data. The projections of these geodesicesirohto the tangent plane &b
contours which are view invariant. Fingerprints mios discriminative enough so as to
discern among a big set of features. Coming backttecha’s ellipses, these try to
cover planes although covering more than one asbeaseen in the examples of the
article. The areas of the ellipses are well-defimed also expanded. For example,
keeping our attention on the first figure on th@grait can be appreciated that there are
not ellipses on the cover of the book on the sta# to the extrema in there is very
“diffuse” or “prominent” because of the existendedense letters in the book cover.
That might be a handicap for using it on sort oages like the ones we have to work
with. The fact that the extrema does not take plelose to the borders avoids
discontinuities. The system works with colour motsertherefore if the context is
restricted to gray intensity value images, a marsvenient descriptor could be used

instead.
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Affinely invariant Fourier descriptors were used [i@5] for intensity profiles across

planar surfaces. Six Fourier coefficients are dateudl:

sn_ 18E . (2mi
fo _ng(l)ﬁlr(Tj

fe _Ni;p(u)@o{ N j (2.46)

m=123

wherep(i) is the intensity profile andll is its length. As in the previous section, the
segment between pairs of interest points shoulthlitne same plane. Every profile is
normalized to its maximum intensity value in order achieve affine photometric
invariance (offset and scaling of profile).The aurth declare that the use of affine
invariance, which can be thought of as a weaknés¢lser method if any other harder
transformation occurs, is not problematic due ® plossible distortions of the image.
Usually there exist some directions within a plandnich suffer only affine
deformations. The algorithm looks for these affdeformations during the matching

stage.

A review of classical and modern techniques basidgpily on Fourier analysis for the
problem of geometrical invariance can be foundli25]. They assumed that the nature
of the invariance group is knowa priori. The techniques use integral transforms,
algebraic moments and neural networks in the ianae problem. Short-time Fourier
analysis are also used in [3], together with wagedend spline techniques. lllumination
and invariance to affine transformations, noisgidrimotion and perspective transform
is achieved. They state that their method, whichrk&soover colour and shape
information over different scale levels, does nequire the use of high-order
derivatives. Fraundorfer and Bischof [32] workedthvsalient descriptors that are
invariant to translation and rotation (calculatlmnhistogram) and scale changes (multi-
scale approach) and also robust to intensity aedypoint image variations (corners are
considered photometric invariants). They take iatwount the possibility of using
several descriptors, assuming their combination g@ite more support to better
discrimination of correct matches. They state thatmethod is scale invariante( it
can work with different image resolutions) and gaerform well for changes in
viewpoint (0° to 40°). Recently, Escaleztial. [30] have extended the work in [57] by
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combining their gray level entropy based salieniy & measurement of the entropy of
histograms of orientation of regions. The authdagtthat their detector shows a better
repeatability than other state-of-the-art detectors

Affine invariant texture descriptors were preseniad[133] together with affine

invariant point descriptors. Although many authds not consider textures for the
wide-baseline case since their repetitive patteay produce many correlation peaks
during the matching, Chetverikov and Matas [21] edeled the convenience of
dominant texture patterns for matching of regioHswever, whether texture is of
potential use, depends on the nature of the targetsexample, texture is not usually
present in vehicles (unless camouflaged). We olesenlely that texture descriptors do
not require the finding of any invariant neighboaot around interest points since it

works itself with the statistics of the texturetie images.

It is also pertinent to mention the work of Weid21], which provided invariants
related to the physical formation of images takeomf different systems: IR, sonar,
radar, etc. Physical invariants to translation aoition are calculated by means of
symmetries in images or in the imaging processdiences, energy conservation...),
and are potentially useful to find correspondenoats in the same or in different
image modalities. Viola [112] studied sets of lowamplex features as a whole instead
of single geometric features. These complex featare learnt from experience with
model objects. It mentionsriented energyas a pre-processing tool to decrease the
effect of photometrical and pose changes betwereint scenes.

The SIFT descriptor [73] expands the scale-rotaitmariance of the detected extrema
to quasi-invariance in changes of viewpoint andnilination. The method rotates the
spatial coordinates of the region of interest agditay to the orientation computed in the
detector, achieving orientation invariance. The nitagle of the gradient inside the

region is smoothed with a Gaussian to reduce tieetedf discontinuities and lower the

weight of pixels close to the boundaries of theiaegof interest. The descriptor is

composed of @x4 subdivision of the region, each containing oriéotahistograms of

8 bins. Thus the feature space is composed of 12&mhions. The method is affine
invariant to photometric changes since scalingntlagnitude of the gradient gives scale
invariance and also due to the fact that the gradas result of being pixel differences,
is invariant itself to offsets in intensity level®esides, robustness to non-affine
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invariant changes in illumination is achieved byilgg more importance to gradient
orientations and thresholding gradient magnituBesk6 and Schmid [26] rely on SIFT
for their Maximally Stable Local SIFT DescriptioMELSD). Their method anchors to
multi-scale Harris and Laplacian points and find &bable regions by using SIFT.
Maximal stable regions are found where the charfgthe descriptor at consecutive
scales is minimum. The descriptor benefits fromréqeatability of the corner detector
and from the robustness of SIFT to changes of ithation, invariance to rotation and

noise.

A comparison of the main methods presented abogeven in [83]. SURF is a novel
scale and rotation invariant descriptor by Bawl. [5] that extracts information inside a
rectangular region centred at interest points detedy an approximation of the
Hessian, as mentioned in the previous subsectibe. réctangular region is oriented
according to the output of Haar wavelets alongxthady directions of a circular region
of a radius proportional to the scale at which ploént of interest was detected. The
descriptor is &4-element vector, of summations of Haar wavelet sasps smoothed
with a gaussian for spatial robustness. The autimalisate their descriptor has better
level of performance than GLOH, SIFT and PCA-SIBT the images they tested, and

especially surpasses in lower computational time.

2.2.3 Complexity, metrics and robustness of the chatg

Vincent and Laganiére [113] assessed some diffenething strategies for validation
of constraints established in matching algorithifisese areunicity (for each feature
point, only the strongest match in the other imsgeonsidered)symmetry(the relation
between matches should be a reciprocal correspoajyl@mdconfidence measurghe
similarity of the matches should be similar to tees of their neighbours.e. both
features of the match should have a neighbourhodd wlike properties). They
proposed thalisparity gradientas a measure of the compatibility between pairs of
features. Zitova [131] also addeéavariance (both features of the match should be
described by the same descriptamjquenesgdifferent features should have different
descriptors, related t®ymmetry, stability (small deformations of the feature should be
closely described like the initial feature) aimdlependencéthe elements of descriptor

vector should be independent).
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Complexity. An exhaustive search to compare feature vectoteeesm images, or
alternatively between an image and a pre-formedbdeste such as BTM, has
complexity O(n?) wheren is the number of features. Where necessary, fesan be
stored in a data structure such as a kd-tree fompeefficient storage and fast access to
the matching features, e.@(nlogn. This can be very important, for example, when
searching for corresponding features in large destab of aerial or other photographs, in
order to perform registration and difference conywar to detect changes in ground

movement.

A kd-tree is a data structure for storing k-dimensi points. Figure.17 shows an
example of the structure of a kd-tree for the azse spatial distribution &D points.
The range of the values in each dimension B8Xmay, (YminYmay and €minZmay iN the
3D case, and with the median as criterion. A firgtipan is done according whether
the x, theny and z, co-ordinate is greater than the median. The phoeeis iterated
cyclically, until all the sub-volumes are empty.€eféfore, the structure stores the k-

dimensional points in sub-volumes according tortteglian criterion.

p< median(:/ N: median()

\
\

p< medlan(x)lz/ \p > n‘\éd|an(x)/2 \ 2\ 2\ , \ p< medlan(x) \p > median(x)/2

I
1

Figure 2.17. Kd-tree structure for 3D-space points.

Geometric hashing [32,22] is also used to matctufeavectors in data bases.
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Metrics. A cost function is generally minimized to estimatBe projective

transformation or homography. The function can be éxample the Mahalanobis
distance or an algebraic distance. The Mahalargibiance metric is used by [101,116,
108,4,133,110,105] to assess the similarity of iawd vectors. The expression is given

by:

d, (b,a)=/(b-a) A*(b-a) (2.47)

That measure considers random variables with Gasdistribution as well as their
covariance matrix! to give an estimation for the comparison of thetees. The square
of dv is a random variable which follows,a distribution. There is an option to set a
threshold todw(b,a) and reject a certain percentage of the matcheshwdmie deemed

false.

In contrast, Matast al.[79] considered the Mahalanobis distance as tiabte enough

since a single corrupted data may ruin the mattleyTbelieve their mapping is robust
enough; they gain advantage from the distinctiverwslarge regions which are not
very affected by non-planar constraints and the afsa voting system. Schmid and
Mohr [101] imposed a geometric constraint to rejgassible false matches by
establishing a threshold of consistency. The geomebnstraint used is an algebraic
distance under a given threshold (equaiagtg). The affine transformation between two
affinely invariant regions describes an approxioratof the projective transformation
which defines a nine-dimensional spacex8 matrices (equatio.14). The geometric

constraint is defined as (witly denoting the threshold):

A3~ bzs blS ~ a3 a13b23 - b13a23
def Q) ~ b22 b12 —a, a12b23 - b13a22 + a13b22 - b12a23 < 59 (2.48)

&~ b21 bu —ay, a11b23 - b13a21 + a13b21 - bllaZS

The metric evaluates the distances between theipscvectors encoding distinctive
characteristics. That generates a confusion matradistances between descriptors from
both images. Avoting algorithm[101,116,108,79,4,22,105] was used for selecting
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tentative correspondences from that confusion matfihe distance metric, beirmand

ain equation®.47and2.48 the vectors at the reference and sensed imageatesly.

For every modelM , for a regionA and an invariant descriptarthek nearest models

in the other imagev iB; (=1...k) fromk regions in the image are found. All the models

similar to M, are given a vote every time the distance resulielew an arbitrary

threshold. This way, the model which gets the lsrgeimber of votes is selected as the
best one. The experiments in [79] work wth6 invariants andl scales, a total 364
invariants. The authors assert that the experiniensashowed good performance for a

value ofk of 1% of the number of distinctive regions.

Robustness. An initial set of correspondences has been alreagyimated.
Notwithstanding, this set is under an approximatet (exact) solution which point-
position errors are assumed to describe a Gaudsaibution. Nevertheless, practical
situations show the existence of outliers or highenlbing mismatches which do not
follow the Gaussian distribution but may follow aather. They should be detected in
order to compute the homography only with the g$anleers within the set of initial
correspondences. Robust estimation algorithms sscRANSAC, Least Median of
Squares (LMS) or M-estimators are used for thigpse. These algorithms are able to
deal with a large proportion of outliers.

Therefore after voting, some methods opt for thpaar geometry (Appendi.3d to
reduce the scope of the matching problem. Pritchett Zisserman [89] stated that
many algorithms which use epipolar geometry withatieer support fail in the wide
view case. The use of homographies allows the idiefinof a viewpoint invariant
affinity measure as well as a reduction of the clexify of the search when putative
corner matches are created3B scene structure, together with the epipolar gepmet
defines the many local homographies that exist nnimmage pair. Their algorithm
generates the homographies between pairs of images sets of putative
(parallelogram) matches are verified. The fundardengtrix (representing the epipolar
geometry) and a consistent set of matches are lasduusingRANSAC(RANdom
Sample Consensus) which selects a subset of thatdes which are consistent with
the homography. Warping by a homography makes -@ogslation geometrically
invariant. Therefore, putative parallelogram masclzge verified by means of the

projective homography and calculating the crossetation of the projectively warped
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region enclosed by the parallelogram. It is worénironing that this approach is highly
dependent on the geometry of the image scene, ginekes on the existence of well-
defined parallelograms and large planar regionsfdature extraction. In [79], some
randomly selected potential matches are also metiély correlation techniques using
the centres of gravity. After the application BANSACto these, coarse epipolar
geometry is estimated. NevertheleR&NSACGs applied another time in a very narrow
threshold and finer epipolar geometry utilized ont#e to the remaining good matches
after the second application BANSAC Baumberg [4] identified potential matches and
found putative correspondences by means of amlpiguéiasures. It was argued that the
number of successful matches is greater than theuof mismatches. The last step in
the method is also the application of the epipotarstraint to eliminate the few outliers
still remaining. Fraundorfer and Bischof [32] aksdracted the epipolar geometry from
regions of interest (saliencies). Zisserman andaffalitzky [133] verified matches
using the Lucas-Kanade algorithm and other matdoesid from the obtained
homographies. They also apply RANSAC algorithm étest the correct matches for

the epipolar geometry extraction.

Tell and Carlsson [105] asserted that the sievenmatches created by directly
applying RANSAC and then epipolar geometry coulccbmputationally intensive. So
the authors propose to establishamsistency constrainh order to reduce the number
of false matches still remaining. To set this comist they supposed they knew the
camera model. Knowing the model of the camera aittdl avset of interest points, they
constrained the coordinate points of their couratespin the other image by applying
equation (equatior2.51) once they have eliminated camera parameters filoen

epipolar constraint.

They use the scaled orthographic camera model iedpbints randomly extracted

from two regions, each one from every image.

a; = —x e —x)+ (v -y fve - v7)

(2.49)
A =(a,.a5.a,)
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b ; = (Xib _le)(x? 'le)+(yib - yf)(y? - ylb)

2.50

B = (b,,bs.b,) (259

[BzAgAzt]+[AZBSA4]+[AzAaEa][BzBsA‘]+[BZA3E%4]+[A283Ea4q:O 250)
[B.AA]+[ABA]+[AAB]B,BA]+[B,AB]+[ABB]

where x2 and x; for k=[1...m] denote them points extracted for a regioh in the

sensed image and for a regi®in the reference one respectivdly.is the determinant.

When the points are not mismatches, the data fotlmvconstraint in2.51). Then a
counter for every match is increased. The prodestssagain selecting other five points
randomly and keeps on iterating. It stops whenvamaae level of increments reaches a
threshold. With this method they presumed the d&imn of 50% of the outliers.

Finally, RANSAC and the epipolar are estimated tfog reduced group of matches.
Their experimental results were based4@® corners from each image. Most of the
time complexity is due to the data structure (lekjrused for storing feature vectors.
The algorithm fails for reflective surfaces — rédals based on intensity profiles — and
some curved objects — there is a need for a plgnanstraint. However, it carries out
good behaviour for projective transformations of image since it works with lines

between many points allowing therefore the seavchdt very distorted lines.

Photometric and geometric changes and noise appnsible for mismatches. Some
kind of constraint should be imposed in order tontan the affine invariance and
immune to these undesirable effects. Paying atterit the distribution of the features
of the profiles [10p in the image by using the covariance matrix of #ile

features, allows some discrimination between vectBlowever, it does not work for
intensity changes. The magnitude of the distributad a profile feature has some
relation to the distribution of the feature ovee tWhole image. The variance of the
features is proportional to the diagonal elemeritshe covariance matrix of all the
feature vectors in the image. The proportionalggstant allows the distinction between
feature vectors, being more discriminative for dnaalues. To avoid many matches of

some feature vectors to others, a normal distobubif the feature vectors is considered
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and the ones which are close to the mean are destdor the matching stage for they

are very likely to have many matches.

2.3 Summary

A brief introduction to 3D-to-2D camera projectionas been presented. These are not
the only projections existent, the two images aisdergo deformations between them,

2D homographies deal with them.

Section 2.1.3 recalls and updates the work in [1®hjch provides a wide overview of
general methods for image registration. In thigcket the state-of-the-art is organised
according to the nature of the methods (appearbased or feature-based) classifying
them into the stages that are common to all registr tasks. These are: the extraction
of a feature space, the matching of the descrigtefised by the characteristics detected
in the raw images and finally, the transformationdel used to establish the final
correspondence. Evaluation of the overall resudts lse performed to refine the final

outcome.

Appearance-based methods are generally less catgulito implement, offer a dense
mapping, which is useful for a smooth reconstrugtiand work well with textured
images. They present the inconvenience of beingriamt to small geometric image
distortions; for instance most of them can onlyeopth translations, a simple rotation
prevents satisfactory results. However, despitedbacriptors such as correlation ratios
which similarity measure can only deal with rotagand translation; these have shown
to perform good results in multi-modal applicatiofrs the same way, very promising
research based on mutual information methods has Heveloped in the last years.
Therefore, these methods can be of great help whelemented together with feature-
based methods; for the latter can offer a bettatriimtion to achieve a coarse-to-finer
counterpart matches search (reducing the spasasfiormation problem) and the

former contribute to the intensity transformationlgem.

Feature-based methods take advantage when the imaag#istinctive objects, features
or details to be detected. These methods are mbrest to photometric changes in the

scene and usually have a faster response sincedthept have to process the whole
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image. The methods that use invariant descriptav® ftentred the attention of many
authors due to the interest in finding or charasitey features on images that do not
change under certain photometric or geometric toamstions. Nonetheless, the full

knowledge of the transformation is fundamental.

Both the consideration of constraints in the matgland the use of pyramid techniques
for multi-scale approaches are welcome and higlelsirdd when working with both
area-based or feature-based methods. The use iofiggiton techniques to maximise

the similarity cost function between two templatesssential.

The second part of this chapter dealt with wideebas methods for image registration.
The following tables show a taxonomy that summarigeme of the most important

approaches to the correspondence problem for wadelime scenarios. The majority of
methods rely on interest points that can be reliaihtched between images. Generally
this means that they are easily extracted, repkeathave high information content, and
if possible are invariant to the relevant geometiidd photometric transformations.

Most methods rely on Harris corners as seed pastthey fulfil many of these criteria,

at least where there are not significant photomethianges. However, these feature-
based methods themselves are effective when tptadesnent between frames is small
and a local window can suffice to finding correspemces. The majority of methods
look for photometric support, typically around teesnchor points, such as intensity
extrema or intensity profiles. This photometric gogt is searched within a quasi-planar
local region (or line segment). This region shoatmin be invariant to the geometric
and photometric distortions that occur in the insagehe definition of this invariant

area is difficult, yet fundamental. The assumptéplanarity to match between images
iIs a major limitation. Planarity is very useful bese finding region correspondences
based on planar homographies is much easier. Hoywmany of the most significant

points in image data occur precisely where thisgaonstraint is violated.

56



.

D

METHOD | FEATURES | LOCAL/ | DESCRIP-| INVARI- MATCHING NOVEL IMAGE OBSERVATIONS
DETECTED | GLOBAL TOR ANT TO METHOD CONCEPT
Van Gool & | Harris Paralle- Moment Affine Mahalanobis, | Local Wide Difficulty for finding edges for
Tuytelaars | corners, logram Invariants | transf., Cross- affinely baseline the geometric method
Canny edges| local occlusions, | correlation, invariant 3D indoor
[116, and local regions partial homographies | regions and Uncalibrated camera condition
108] intensity visibility, and voting outdoor
extrema scene clutter,| algorithm scenes Quasi-invariant planar surface
wide baseline
and
photometric
changes
Schmid & | Intensities Local Gaussian | Occlusions, | Mahalanobis, | Definition of | Greyscale | Short baseline
Mohr and circular deriva- rotations, voting regions paintings, | Multi-scale approach
Harris neighbo- tives scalesand | algorithm and | around 2D, aerial
[101] corners urhoods viewpoint indexing anchor pointg and 3D
techniques
Matas et al. | Extremal Local Complex | Affine Robust -Maximally | Wide Stable and multi-scale detectig
properties of | planar moments | transf., similarity Stable baseline for wide-baseline stereo case
[79] intensities regions scale(3.5x), | measure, voting Extremal 3D indoor
illumination, | system, Regions and Extended to colour in [35]
rotation, correlation outdoor
occlusion and techniques, -Robust scenes
translation RANSAC and | Similarity
epipolar geom. | Measure
Walker, Feature Pixel level | Probabili- Density of Faces Hard calculation
Cootes & | vectors and ty density feature space
Taylor obtaining of function of
saliencies feature
[120] vectors
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METHOD | FEATURES | LOCAL/ | DESCRIP-| INVARI- MATCHING NOVEL IMAGES OBSERVATIONS
DETECTED | GLOBAL TOR ANT TO METHOD CONCEPT
Lowe Intensity Local Gaussian | Scale, Modification of | Scale Indoor Only partially invariant to
extrema over deriva- translation, k-d tree invariant dense lighting, affine distortion
[72] scale-space tives rotation and | algorithm feature scene of
by DoG partially transform 3D objects | Works with a scale space and
filters invariantto | Hough feature vectors
lighting, transform and
affine and hash table
3Ddistortion
Baumberg | Harris Local Second Wide- Mahalanobis, | Affine Objects It fails for wide angle views
corners regions moment baseline, ambiguity gaussian Wide- (65°)
[4] around matrices scaling, measure scores, scale-space | baseline
interest affine and epipolar (Lindeberg et (15°-65°) | It uses an iterative procedure
points lighting geometry al. [66]) [66] for the finding of the
changes optimal invariant window
Zisserman &| Harris Local Second Viewpoint Mahalanobis, Wide- Extension of Baumberg’'s work
Schaffa- | corners invariant moment and lighting | Lucas-Kanade baseline
litzky regions matrices affine algorithm, outdoor Two methods: affine invariant
changes, homographies, scenes point and texture descriptor
[133] scaling RANSAC and (church)
epipolar
geometry
Fraundorfer | Harris Local Entropy Rotation and| Geometric Sub-salient | Outdoor Not absolutely (robust)
& corners and | regions scale and hashing (and | regions images invariant to intensity and view-
Bischof saliencies around robust to epipolar (church point
corners intensity and | geometry) and
[32] viewpoint objects) Multi-scale method
changes
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METHOD | FEATURES | LOCAL/ | DESCRIP-| INVARI- MATCHING NOVEL IMAGES OBSERVATIONS
DETECTED | GLOBAL TOR ANT TO METHOD CONCEPT
Pritchett | 4-line Local Affine RANSAC and Synthetic | Parallelograms and planar
& Zisserman| bounded planar transforma- | homographies image of a | regions must be present in the
regions paralle- tions house image
[89] lograms
Tell Harris Local Fourier Photometrica| Mahalanobis Consistency | Example Able to face some projective
& corners and | planar coefficient | I and affine | distance, voting| constraint pictures are| distortions.
Carlsson | intensity regions changes - algorithm, [18] indoor High-computational cost of the
profiles even some | consistency objects kd-tree.
[105] projective constraint, Needs planar surfaces and
distortions RANSAC and distinctive regions (no constan
epipolar brightness).
geometry Consistency constraint method.
Lowe Same as [72]| Local Gaussian | Same as [72]| Modification of | Scale Indoor Improves the estability of [72]
and deriva- and adds k-d tree Invariant dense
[73] interpolates tives robustness to| algorithm Feature scene of Widely used
and non-affine Transform 3D objects
SIFT thresholds light changes| Hough and Achieves highest accuracies.
extrema transform and outdoors
hash table
Bayetal. | Approxima- | Local Hessian Invariant to | Thresholded Approximati | - Indoors | Comparable or even
tion of the within scale and euclidean on of the and outperforms state of the art in
[5] determinant | interest rotation and | distance Hessian with| outdoors. | accuracy and especially in
of the point strong to box filters - Oxford speed.
SURF Hessian neighbourh photometric sequence
ood changes [86]
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METHOD |FEATURES | LOCAL/ | DESCRIP-| INVARI- MATCHING NOVEL IMAGES OBSERVATIONS
DETECTED | GLOBAL TOR ANT TO METHOD CONCEPT
Escaleraet | Salient Local Entropy Robust to Complexity Complex Caltech Better repeatability under
al. regions from viewpoint score Salient database | changes of scale, rotation, ligh
intensities changes Regions [16] and and affinities than Harris,
[30] and gradient outdoors Hessian Laplace and gray leve
orientations saliency detectors
Dorké & | - Harrisand | Local Harris, Affine Nearest Stable region Oxford Better matching and
Schmid Laplacian Laplacian | changes of | neighbour based on sequence | repeatability than Harris and
points. and viewpoint SIFT [86] Laplacian points.
[26] - Maximally SIFT and
Stable Local illumination
SIFT regions
Forssén and -MSER Local Multi- Robust to Dissimilarity Multi- - Outdoor | MSER improved against scale
Lowe -SIFT Resolution | illumination, | score resolution and indoor | changes
MSER and | occlusions MSER and | sequences.
[34] SIFT and combination | - Oxford
invariance of with SIFT sequence
MSER and [86]
SIFT
Obdrzalek | -MSER Local Local Affine Similarity Affine Synthetic, | No comparison with main state
and Matas | -Geometric Affine geometric measure frames from | indoor and | of-the-art methods ([83]).
primitives Frame and (Euclidean geometric outdoor
[75] (LAF) photometric | distance) features sequen-
transformat- ces
ions
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Chapter 3 — Extraction of features

3.1 Introduction

This chapter presents the employed methodology experimental results for the
extraction of shape information from images. FigBreshows the organization of the
chapter. Contours are built by grouping edges usomge perceptual organization rules.
These contours are labelled in terms of their e¢less and curvature, which assists with
the search of intersections among contours and ats@ppendix A, as a test of
suitability for the analysis of contours in theduency domain. The contours are also
partitioned into straight segments in order tolf@te the task of finding intersections
among contours from the projection of straight, midt segments and, also, in order to
delimit a ribbon-like region for the analysis ofetiphotometry at both sides of the
contours. We present some experiments about tihecéien of these regions around the
contours but the method is discarded due to iterentit lower reliability compared to

the affine invariant approach presented in the wbspter. We also perform a spline

approximation of contours used to compute metricShapte#.

Edge Mag

Link of Edges:

Contours

Image

Corner Map

A 4

»| Segmentatior Eﬁfféggn
Intersections
Graph
Labelling | - -» Appendix
A
Appr?)gi”rg:\tion [ -~ Chapter4

Figure 3.1. Organization of the chapter.
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A corner map from the original image is also exwdc The data from this map,
together with the contours and the intersectionsmdo is reorganized in a graph. This
graph approach, containing the spatial relationdwéen points of interest
interconnected by contours, is the output of thapter. The structural information
which is relevant in the image is preserved ingreph and used in the next chapter to

define affine invariant regions where to analyseghotometry.

3.2 Contours

This sub section deals with the preliminary stegxifacting contour information from
the input images. It can be argued that the uraleilgtg of contours, boundaries or
shape cognition is inherent to human visual perceptfor the interpretation,

classification and/or identification of our surralmg world. By analogy, in Computer
Vision the use of contours is also very sensiblecesithey provide robustness in
geometry against changes of the conditions of ithation, in particular because their
dependence is not directly related. Moreover, tlmnputational complexity is

drastically reduced as a result of not considetivg processing of the totality of the
pixels of the image or patches of it. This is angigant difference comparing with

another subfamily of feature-based methods sualegen matching - outline plus the
interior intensity information. When comparing withther primitive features such as
corners, edgeset cetera contours also possess the definite advantagethlest are

higher-level entities that conglomerate added m#tional content. On the other hand,
boundary information can be sensitive to noise @rausion. Structural methods treat

features as composed of sub-features, and cam battdle partial occlusions.

3.2.1 Extraction of edges

The process starts with the detection of edgens fre images by using the widely used
Canny edge detector [17] that extracts disconigsliin image intensities, which are
likely to correspond to structural parts of the receThe image is smoothed by
convolving it with a Gaussian filter in order talteee the effects of noise and perform a
multi-scale analysis. The magnitude and directibrthe gradient over the smoothed

data is computed from spatial derivatives:
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M= r2+r2

O = arctan—
rX

The direction of the gradiem is quantized t®°, 90°, 45° and135°in order to trace the
edge within the8-connected image grid. The detector optimisesradtge response by
applying non-maximum suppression over local pixelshe direction of the gradient,
i.e. a pixel is considered as edge if its magnitudeligrd is greater than the gradient in

the direction perpendicular to its quantised dioecbf the gradient.

Rather than using a single threshold to discerrelpixf higher edge response, the
algorithm carries out a hysteresis thresholding thastronger against pixel gradient
values drifting around a single threshold and aaysitherefore, discontinuous
detections along the edges. Thus if the gradiemnimade is lower than a thresholgl,t
the pixel is discarded as a part of the edge, veseiteis considered as an edge pixel
when its magnitude is higher than a threshgld and also whenever a pixel gradient is

higher than,, and is connected to a pixel already deemed ad@m (Eigure3.2).

An example and all the internal steps of the deteste shown in the plots of figuge3.
The input image is a grey level image with a resofu of 646x527 pixels. The
parameter of the Gaussian filter i$ and the hysteresis thresholds are s€&®2@5and
0.062 There arel44 edges found. Contours are traced to form longédrmaare reliable
features. As will be explained in subsequent sulmes; according to the gradient and
direction maps, proximity, continuity and certaiistdnce constraints contours are
linked with each other to form more significant anéormative entities. At the same
time, short contours, less than a minimum length discarded. The result is an
improved version of the Canny edge map. FigB# shows the contour map after

tracing and linking contours.
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Figure 3.3. Canny edge detection. a) original imdpemagnitude map, c) direction

map, and d) non-maximum suppression.

Figure 3.4. Canny edge map.
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3.2.2 Linking of edges

An edge map extracted from an edge detector doesusumlly provide by itself
meaningful information about the structure of tlverse. Edges are quite sensitive to
noise and changes of illumination and can resudtybeonnected in relatively complex
images. Therefore, edges are generally linked nm foigher, more informative entities
(contours) by using normally some local, systematignitive biases (sectidh2.2.)).
Other approaches, however, use global techniqudmkoedges such as the Hough
transform or graphs [46]. Indeed, we also procesturther contour linking by
organizing the information in a graph structurét agll be presented in sectidhb.

Our procedure for tracing contours of complex sbapebased on the method used in
[119]. The starting point of each contour is assdyto the strongest point of a
thresholded gradient magnitude map. The contowratsed by searching for the next
point with strongest gradient magnitude which ishi the8-pixel neighbourhood and
which is also within a certain angular marchingediion given by the direction of the
gradient. Once the end is reached the contouaced back and labelled till reaching
the starting point where the procedure starts agaging in the other direction. Figure

3.5shows the contour map for the input image fromrig.4.

Figure 3.5. Linked contours
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3.2.2.1 Perceptual grouping

We extend the method above by adding some perdgptoiaping cues. That leads to
the cognitive theory ofGestalt The Theory of Gestaltwas developed by Max
Wertheimer [122] in th€0s of the past century. It is a descriptive theorymndern
psychology that states that the operation of thedrmubrain aims for global perception
rather than processing smaller components in isolafThe stimuli are interpreted
according to perceptual laws that are dependergamh other and are call€&estalt

laws.

These laws are centred mostly in the visual doraaith we will only adjust to a short
definition incumbent upon our application. Thhaw of PrAgnanzwhich generalizes the
concept, declares that the information perceivestdganized in such a way so as to have
as much simplicity as possible. “Incomplete” images completed according to how

we perceive the world. These natural laws aboutgmual grouping are:

- The law of proximity. Similar stimuli or elements the proximity tend to be
perceived as a unigue instance.

- The law of good continuation. Elements that follawvcertain pattern (e.g.
curvature) are considered as linked.

- The law of similarity. Elements sharing similar pesties (e.g. colour, or
orientation) can be grouped into a single set.

- The law of closure. Perception completes figured #re not closed, by adding

the missing parts.

Early work on perceptual grouping in Computer Visidates back to [78,128] with
works on grouping features into larger structuteswe [71] proposed a measure of
significance which quantifies in terms of proximity, paralith and collinearity how
likely straight lines may belong to the structuretie original scene rather than to
viewpoint projections. More recently Elder [29] flemed Bayesian statistical analysis
over position, length and luminance along a conb@ased on Gestalt cues for its correct
extraction. For us, the purpose of organizing ihuaan-like fashion the information
that a computer has to process is not to provigecttmputer a higher, human-like
ability of abstraction but to organise the datehigher and more meaningful entities.

For that intention, the perceptual grouping laws ba a tool for grouping contours or
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form larger clusters to describe in a more disarative way characteristics in the

scene.

We present a variation where once an endpointashed a search window is opened
and the endpoints of neighbouring contours in theinity are sought. Both
neighbouring contours are then bridged, by allé@wiathe threshold restriction during
the edge detection process, and relabelled thusirigra single and more informative
entity. When more than one endpoint of neighbourtogitours is found, the one
corresponding to the longest contour is preferfidte principle of proximity is used
when opening the searching window, whereas goodire@tion and similarity are
reflected by the consistency within a certain artglerance of consecutive points. In
terms of proximity and collinearity, the measuresgnificance proposed by Lowe [71]
is of importance as a tolerance to accept or rgpacts within the structure. The

significance measure on the basis of proximityrafgoints is the inverse of

_2Dm?

N 2

beingD a scale-independent density of line segmentggskieaind not relevant since all
line segments will be rated ), r the radius of the searching neighbourhoodlahd

length of the contour.

And on the basis of collinearity the significansehe inverse o&:

E= 4Dés(g +1,)
ity

with 6 the angle between both allegedly collinear segséiO if collinear), s the
perpendicular distance from the midpoint of thersdgt segment to the projection of the
other segmenfy the gap distance between both segmentslatite shortest segment.
Figure 3.6 shows the graphical representation of the sigmiiie in terms of proximity

and collinearity.
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Figure 3.6. Perceptual organization of segmentgr@imity and b) collinearity.

3.2.3 Segmentation of contours

Edge/contour information can be represented bycqmations of linear and/or higher
order splines (SectioB.2.5. In some applications this can be considered asueh
handier way to deal with the spatial coordinatethefedge features, thereby encoding
the interconnections of the contour segments. Fwtance, we make use of
segmentation of contours in order to define intetieas between contours and, also, to
define a photometric region at both sides alongctir@ours. This is showed in section
3.3, although this approach is discarded in thal fsystem and the affine invariant

approach presented in Chaptas preferred.

Rosin and West [93] segmented contours by usingbamations of straight lines,
circular, elliptical and superelliptical arcs, apdlynomial curves. They claimed the
process allows reduction of data (storing onlyesetoordinates), it is not dependent of
any initial parameter and the representation aesievwnvariance to2D rigid
transformations since the segments are normalizethd length of the curve. Their
method links the two endpoints of the contour anthgutes the point of maximum
deviation of the curve with respect to that linging both endpoints. Each endpoint is
linked to this point of maximum deviation and thegess is repeated to each one of the
primitives (see figure3.7). The process iterates by calculating again the&imam
deviation for every sub feature until it stops du@mpossibility to represent the feature.
All the sub features are stored in a tree strucamé assigned aignificance value
measure. According to this, the features primitiaes selected by visiting the nodes of

the tree. The final contour segmentation is shawilgure 3.8.
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Figure 3.7. Recursive curve segmentation. Origioakour in blue, final segmentation

in red.

Figure 3.8. Contour segmentation.

For the simplest case of straight segment apprdiomathe algorithm simply returns
the endpoints of all the segments. In our casesegaire the spatial coordinates of the
segments of the contourse. the pixels that correspond to a piecewise linear
approximation (otherwise just keep the points gggment the contours). The simplest
way of finding the pixels of the segments is simpgmng the equation of the line and
then rounding the values. However, a much relialplgon from the computer graphics
literature is the Bresenham’s line drawing algomtiil2]. An example is shown in

figure 3.9.
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Figure 3.9. Example of Brenseham’s method. In wariginal line pixels.In coloured
dots, pixels coordinates plotted after: roundst)l@ihd Bresenham’s line drawing
(right).

3.2.4 Labelling

First of all, let us establish a few definitions:

* A"line” is a contour that is approximated by aglmlinear segment.

* A “curve” is a contour that is approximated by npl# linear segments, or by a
single curved segment, or by a combination of lireeal curved segments.

* A “closed” curve is one in which the start and @uiht are the same. Note, that
there may happen the case lobp contours i.e. a contour that could be
segmented as a closed contour plus, at least,djo@d open segment curve.

We are confident that the tie points resulting fritva intersections of two straight lines
can be much more reliable than the intersectiowdsn two curves or one straight line
and one curve. Therefore, it could be sensibkstablish a certain priority order during
the computation process, or even weight signatlyiag on the crossing of straight

segments. For the case of a contour composedaifistrand curvilinear segments, the
contour segmentation performed before can helph&wacterise the intersection where
the interest point lies on according to the ordahe spline of the curves that define it.

Consequently, the curvature of the contours (or pienitives that intersect) is
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calculated and each point of interest is classifiedording to the nature of the curves

that produce iti.e. a straight line or curved line.

The other issue to be concerned of is whether t¢mtoar is closed or open. This is
related to the use of the Fourier-based matchiggrithm developed in Chapté,
where there is a preference in the use of the oaddosed contours. That is due to the
need for periodicity when working in the Fouriemaain. Figure3.10 shows the four

types of labelling.

SV A

Figure 3.10. Labelling. a) line, b) curve, c) closeirve and d) loop contour.

3.2.5 Approximation by splines

In Chapter 4 we will require the spatial derivasiv@ the contours detected during the
feature extraction process in order to compute aftine invariant operator. These
derivatives can be computed by means of finitecdiffices between samples. However,
these can be very noisy and unreliable for up tworsg order derivatives. A better
approach consists of approximating the contour plinss and computing the
derivatives of these spline curves after.

Splines are piece-wise polynomial functions thanpea flexible design for shaping

different curves smoothly. Among the different ¢ixig schemes in the literature of
splines, we will focus on some aspects of our @gerAlthough the origins of these
curves date back to the work of Lobachevsky inrtimeteenth century, their modern
conception as a curve approximant is due to th&kwbiSchoenberg [98]. Some years
after, the recurrence relations promoted by C. derBM. Cox and L. Mansfield meant

the appearance of more effective algorithms fopiBs calculations [11,33,99].

Definition. Let S(t)be a parametric curve whose domain is definedfimita interval[a
b] and subdivided by a strictly increasing sequddspio< u; < ... < Un1<Uq]. These
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m+1 elements ofJ are called thé&notsand the intervalu; ui+1), delimited by eachy
Ai D[a b], is called the&knot spanlf r successive knots have coincident value, they are

called knots omultiplicity r, otherwise they arsimple Notice that, therefore, multiple

knots imply a null knot span.

S /

Uo up U Uz Uy
a b

Figure 3.11. Input curve, knots and knot span.

A spline curveS(t) of degree>0, i.e. orderk+1, is composed of piecewise polynomials
of degreek called B-spline or basic splines. These basimeﬁlﬂnctionsAtD[a b],

are defined by thde Boor-Cox recurrence relations

1 ifu <t<u,
Njo(t) = ; o
0 otherwise
(3.1)
N0 5 N (O 5% N ()
b uj+k_uj bt uj+k+1_ j+1 e

N, k(t) is non-zero in the interviilj u.k+1) and vanishes outside of it. A consequence of
this is that within any knot spaju; u:1) there are at mo%t+1 non-zero B-spline

functions of degrek. The sum of all of these is unity:
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i N; () =1 on spanii U] (3.2)

j=i-k+1

A linear combination of these B-spline functionsiig the spliné(t)
h -
S(t) = >, N (®) Ch(i) (3.3)
j=0

wherep=[Po,P,...,R-1,Py are theB-spline coefficient®f S(t) These coefficients are
also calledcontrol pointsand represent the points of a control polygon,ciidefines
the spline curve. The number of control pointe#4. There exists a relation betwelen

the order of the splingk) and the number of elements of the knot sequehn¢m+1):
h=m-k-1 (3.4)

The practical scenario is that the number of comgaints (h+1) is set by choosing
according ton=h>k=>1, n being the number of (parameterized) input samples.
Therefore, the number of element®of the knot sequendg is given by:

m=h+k+1 (3.5)

Figure 3.12 illustrates the control polygon of a spline to apjmate a sine curve.
Notice that in this example the spline rather tH#ahng the input data points
approximates the virtual curve defined by theseatTih due to our requirements of

implementation. Spline approximation is introdueg¢dhe end of this section.

Since the conditions of continuity are given by tiigerence of the order of the spline
and the multiplicity of every single knot, that edts the differentiability of the spline
curve in a given knot. Therefore, a cubic splinel¢o4) would have only continuity of
function for a knot with multiplicity of3, whereas it would have continuity and first
derivative in a knot of multiplicity oR. Likewise, a knot of multiplicity? would imply

no continuity not even in the function. As aforerti@med, the knot sequence should be
non-decreasing. When the first and last knots mn@le (multiplicity = 1), the spline
curve is said to bepenas its ends do not match the first and final adrgoints,P,and

Pm. However, if we fix the initial and last knots # multiplicity k+1, i.e. a knot
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sequencd) = [up= U1 = ... = Uk < Uks1 < ...< Uneker < Uk = ... = Um-1 = Up, the spline
curve isclampedand starts and ends at both extremes of the ¢omdtggorf. The
value ofup andup, can be arbitrarily assigned valug@sindl, respectively, or set to the

boundary conditiona andb.

Figure 3.12. Example of data approximation by sgdin

In any case then-2k-J i.e. n-k, remaining central knots can be either chosenlgqua
spaced or dependent on the parametric vector ohthé data. In the former case the

definition of the vector for the uniformly spaceetimod is obvious:

Up=a u,=b

(3.6)

Ui =a+ib_a forl<isn-1

Concerning the possible parameterizations of tipaitimata pointdg ... D, briefly

these are the expressions of three widely usedadsth

- The Chord Length method:

t,=a t,=b

Z|Dk B Dk—1| _ (3.7)
t=at+———(b-a) forl<isn-1

Z|Dk B Dk—1|

k=1

2 Multiplicities k+1 produce division by zero in the calculation of @isesN; «(t). AsN(t) can be zero,
the cas®/0is considered.
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- The Centripetal method:

t,=a t,=b
Z|Dk _Dk—1|c

t. :a+%(b—a) forl<sisn-1 (3.8)
Z|Dk _Dk—1|
k=1

wherecis typicallychoseras0.5(squareoot)
The interior knots can be the result of an aveddbe parameters.
u =avg(t_ .. t.)) fori =k +1,...m-k-1

Despite that the knot vector can be defined asiforamly spaced sequence or as a
function of the parametric version of the inputg. éhe average, there exists another
strategy which also involves both the knot sequemog the parametric vector. It is
called theUniversal methodor Lim’s method In that case the parametric vector,
although also related to the knot sequence, isnaetled for the definition of the knot
sequence. Conversely, the knot sequence is albbamea uniformly spaced vector
(multiple knots are respected) and the parametesizas given by distance along the
input data curve where the+1l B-spline functions defined by the equally spacadtk
sequence peak. Searching for the maximum of evespliBe function, although 4D
search, can involve a considerable computatiorfaitefShene [99] states that a few
samples on each B-spline and assigning the absmfiseach maximum to the
corresponding can suffice (figure3.13. Moreover, Lin’'s method has proved to be
affine invariant. Actually, B-splines themselvese amlso invariant to affine
transformations. Affinely transformed points carvéadheir curve recovered providing
the same knot and parametric vectors. Notwithstagdinterpolation/approximation
methods using parameterizations like chord lengtteatripetal are not affine invariant
anymore as they depend on the length of the segmdatt is not the case of the
uniformly spaced method. Even though a simple nekthiois invariant as the knot
sequence is equally spaced and thus the samehrirbages. Therefore, that invariance
does require that every input data in one imagldasxact affine map of its counterpart
in the other image. Realistically this affine innaarce property does no longer exists

unless the contour map of the second image isedffitransformed from the contour
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map in the original image. Therefore, this techeiguould increase the computational
load of our system, gaining little or none affin@ariance in a practice.

0.9

0.8

0.7

4 5
Euclidean distance

Figure 3.13. Universal method. B-splines and patarnzation.

Splines as approximants.When fitting a spline to every given sample for adat
interpolation, the output can be different thant thesired, such as a wiggled outcome
around the input data. However if we smooth theiexy requirements, we can permit
a certain error and perform an approximation. lat tbase, the curve does not pass
through every given data point but at a certairtadise bounded by an error. The
restriction of null error at the curve endpointkeépt. Therefore, the curve should track
the control polygon within a distance. Note thaattlcloseness of the curve to the

control polygon is dependent on the order of thewveuLower order curves track closer
the polygon.

The least-square criterion is widely used as arrce@mant in the bibliography of
splines. It consists of finding the control poipts[Po...R] that minimize the sum of

squares of the deviation between the input datatpaind the resultant curve:
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o(P,.,....P.) :i|Di - S(t,)| (3.9)

Since we establish as boundary conditiSfiy=D oandS(t,)=D

D, - S(t;) =D, _|:N0,k(ti)D0 +(h_l Nj,k(ti)ij-'- Nh,k(ti)Dn:| =

j=

(3.10)
h-1
= (Di - NO,k(ti)DO - Nh,k(ti)Dn)_(z Nj,k(ti)ij
Hence let us define:
Q =D; = Ng, (t)Dg = N, (t)D, (3.11)
and the vecto@ and the matrix:
2. Nu(t)Q (NG () o Ny () | (R ]
Q= N, j) = . . P=| . (3.12)
SN, ()0 Np(tos) oo Nogy (t) P
(NTN)P=Q (3.13)
P=(N"N)\Q (3.14)
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Algorithm

Input: Data point®D=[D o...Dy], new vector to interpolat
Output: The splineS(X)
Procedure:
- Compute some parameterizatioof the data
- Extract the knot sequente
- Calculate the B-splingj(t)
- ComputeQi, N(i,j) andQ
- Obtain the control pointB
- Set the new interpolating sequence and parameterise
- Calculate B-splineb|; «(X) for the previous knot sequende

h
- Compute the spline cunas S(X) => N, (X)p(j)

j=0

Figure 3.14 shows a comparison between a parametric splirerpiolant and least-
squares spline approximation to contour samples.fijure is a zoom-out over one of
the contours in the book scene of figd8 See that the spline oscillates at both sides

of the least-squares spline solution, being lessipe.

Interpolation (k=3 knots=50 step=3)
T T

I I I I I
2685 20 25 280 288 280 285
¥ coordinates

Figure 3.14. Comparison of spline fitting and lesgtiares approximation. a) Planar

contour and spline fitting and approximation byskesquares. b) Zoom.
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Derivative of a spline. The derivative of a spling(t)is given by:

SO’ =3 Nop (0Q (3.15)
being:
Q=——(R.-R) (3.16)

For a clamped splin&’(0) andS’(n-1) should be:

Q=" (R-P) (3.17)
Q= (P, -Ppy) (3.18)
n-1 1 _ tm_k_l n n-1 "

3.3 Extraction of regions around contours

We are aware that some works have performed ratimirbased on only contours. For
instance [71] did model matching from contours segted into straight lines. However
we consider that the use of only geometric contearsot suffice for registering wide-
baseline scenarios and we look for further supipased on the photometry of the scene.
Contour maps from dense scenes may contain a pdetbi similar contours that
together with the changes in viewpoint harden treching. If we add some further
support to our features such as, ideally, a photeen@escriptor invariant to the lighting
conditions in the scene, the search space of gunelences can diminish considerably.
Herein, we propose the extraction of photometriorimation surrounding contours,
obtaining a ribbon-like patch. Thus, the photomeingd the geometry of the contour can

be combined in order to extract more informativadiees for the matching process.

To extract a ribbon - a patch around a contour e finst step is to perform a
segmentation of the contour. The contour segmemat section3.2.3 returns the
endpoints of the feature primitives (segments)haf ¢contour. For every endpoint that
defines a segment we calculate points at a cepipendicular distance at both sides of

the contour. For the case of a single straight ssgnust computing the point at a
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certain distance» in the perpendicular to our segment would suffidewever, two

consecutive segments will form an angle differemtl80° Then the median of the
perpendicular vector of the current segment with plerpendicular vector of previous
and next segments, respectively at both endpoirtseocurrent segment, will delineate

guide landmarks that track the contour. Figure 3Hi&ws a graphical representation.

Figure 3.16 shows a practical example. The contaap of an intensity image is
depicted in figure8.16a) The contour that concerns us in this examplegklighted in

red. The output segments given by the segmentatemmarked as blue asterisks.

(a)

(b)

Figure 3.15. Schematic of a ribbon. a) Originaltoon in blue, segmented contour and
their perpendiculars in other colours, the cireckgsresent the guide landmarks and final

ribbon in solid black, b) contour and ribbon.
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The red circles are the guide landmarks that tthekcontour at both sides. The ribbon
is defined by the dotted yellow outline, which Isnthe red-circled-guide landmarks by
using the Bresenham'’s algorithm [12]. Finally, green circles represent the pixels that
are taken inside the ribbon to sample homogenetwdometry along the ribbon.
Intersection of other contours with the contourimterest will segment the ribbon,

“labelling” different photometric regions.

Notice in figure3.16a)that the contour also plays the role dfn@edian strip” inside
the ribbon, defining what we call theight region of interest (broiand thedark region

of interest (droi) where to extract colour information. Pixel averag used to
distinguish darker from brighter ribbons. FiguBd 6b)shows the same patch with the
contour and the outline close area. We start vhth first sample inside the internal
ribbon, shown as a magenta dot, and from this iocate make the effect of flooding a
whole close region. That region is delimited by thline, the contour of interest and
any other contour intersecting. Assuming that tbetaur map is accurately extracted,
we can say that we are extracting a homogeneousipletric region around one of the
flanks of the contour under inspection. FigBr&8a)shows that from the first location a
whole homogeneous photometric region is filled. vEting and flooding for next
samples inside the internal region makes no eSeute that region has already been
filled by the first sample. See in figuBel8b)that finally one of the samples is located
in a region still empty and can fill a new regioefiding another photometric patch
(figure 3.189. Figure 3.18d shows the result after performing the same stepshie
external side of the contour. Internal and extehmahogeneous photometric regions in

false colour are shown in the two bottom images.

Figure 3.16. Extraction of regions of interest athbsides of contours. a) process of
extracting region around a contour; and b) fingioa extracted
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Figure 3.18. Extraction of homogeneous photome&gsons.a), b), ¢) ande) internal
flank; d) andf) external flank.
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Figure 3.19. Histograms. a) Internal and b) exteregions.

The histograms corresponding to the internal artdreal regions are shown in figure
3.19 Notice that these sub-regions, and consequdrglihdmogeneity of intensities, are
strongly dependent on the edge detection and comitersections. As an example, one
of the contours does not intersect for few pixéle tontour under inspection. The
consequence is that two non-homogeneous interegigms are not well separated. The
probability density function in figure B9ashows that some pixels are classified as sub-

region2 while they belong to sub-regidn

We can organize the extraction of regions in ddferways, namely:

) Extract regions around whole contours and perfoomesRGB averages,
entropy, etc. and define a descriptor. Fig8r20 shows an example of the
extraction of regions. The drawback is that, algtouwe are adding
photometric support, the method is still very degestt on the detection of
the contours, their breaks and occlusions.

i) Extract points of interest (corners, etc) thatower contours. The ribbons at
both sides of the contour emanate from the poinntdrest until they are
intersected by other contours. It is also depenaenthe extraction and
intersection of contours but in a lesser extennthi@e above mentioned
strategy since the ribbons are better delimitecpbmts of interest — these

are presumably more reliable than contour endpoints
An input image and its transformed version are showFigure3.21.Points

of interest are extracted by hand in this instarfeigure 3.22 shows a

conglomerate of plots that represent for each fwvribbon(s) that emanate
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from each point of interest. The first two colunuwsrespond to thdroi and
broi regions of the original image, whereas the last t@lumns are thdroi
andbroi regions of the transformed image.

The extraction of regions along contours basedliyons is quite heuristic and will not
be considered as part of the final system sinceost mlegant approach is presented in
the next chapter. The parameteris only invariant to translations and rotations. A
simple change of scale would imply that the regiensracted along corresponding
contours in both images would not correspond td estber. However, if the contour
map is able to separate different photometric regia an efficient way; the overlap of
the contour map with the ribbon would delimit raggonith homogeneous photometry,
i.e. same photometry although non-corresponding gedmetgions. That could be
valid for images where the photometry of the image be easily segmented due to
well-differentiate photometric regions (for instandmages with lighting conditions
under control and well-distinguishable man-madeecdts). The region around each
contour does not invade other photometric regiafaaas contours are well extracted,
no matter the transformation between the imagesveider, the assumption of being
able to segment regions of homogenous photomedmy frontours is weak in complex,
natural images.

Figure 3.20. Contour and region extraction overidevbaseline countryside setting.

Left images: contour map. Right images: regionawtton around the longest contour.
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Figure 3.21. Left, original image and points okr@st manually extracted. Right,
affinely transformed image (0.9 and 0.1 geometaeand shear, respectively with
0.7,0.65 and 0.75 RGB scale)

3.4 Intersection and corner criteria

IntersectionWe can define intersections (between open or dlosatours) of the kind:

e Line-Line. This is a point that is (a) the intersec of two infinite lines, (b)
exists within the image, and (c) is within a rad{us. “near” to each finite line
segment. By definition, lines are “open”.

* Line-Curve. This is a point that is (a) the intetgen of the infinite line and one
of the curve segments, (b) exists within the im@jeas within a radius.

e Curve-Curve: this is a point that is (a) the in¢etgon of a segment on one curve
with a segment on another curve, (b) exists witi@ image (c) is within a

radius.

There exists the restriction that the projectioranfend segment of a contour can never

originate an intersection if it intersects itselépously.

We find intersections with other contours by opgnover both endpoints a circular
window where to search for a neighbour contountersect. That is implemented in the
way described in figur@.6 for perceptual group based on circular proximiigure
3.23 and 3.24 illustrate the process and restrictions imposedtidd that for this
illustrative example, the dimensions of the windoawve been magnified making them
proportional to the length of the contour, with gy aim of easing the visualization of
the circular regions. Figur®.25 shows the propagation of the contours and the

intersections found in the image.
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Figure 3.22. Extraction of regions around pointsrérest

scene.The original images and points of interest weres@néed in Figure 3.21. Odd

columns araroi's whereas even columns dmi’s.
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Figure 3.23. Contour map with windows where to cedor intersections between two
contours. Intersections found are numbered in whithe image by the number of two

contours that intersect.

Figure 3.24. Search for intersections. Close-ughefintersection map. Intersection pair
30-32is removed after as there is a restriction thab@tour cannot intersect another

contour if previously it intersects itself.

Rather than only finding intersections by propagga&nd-segments we could have also
considered intersections at the connection of eosteegments with ad-hoc constraints
based on the angle formed by the junction and nlzeth lengths of the segments
involved. However, changes of views will degenetéitese as points of interest since
these intersections are only invariant up to rigaghsformations. The number of points
of interest would also increase severely losingrefoee the discriminative power

87



presumed to the definition attached to a pointndérest. So this alternative was not

considered.

Corners.Corner detectors show many responses in highluted images due to the
rapid local intensity variation they are definedrfr. Therefore corners lose their ability
to discriminate as we can see in figBt86 We discard the common associatamner

= Harris corner and consider a “corner” or ‘point of interest’ aspaint of high
curvature on a single open or closed contour. Scenth man-made objects contain
structural elements that can be described by cosmitand corners lying over them
(figure 3.27).

S

Figure 3.25. Contour propagation to search forrgaetions. a) The green crosses
indicate the propagation of each contour endpairgearch for neighbour contours; b)

intersection map.

Figure 3.26. Harris-Stephens-Noble corner over ghlizi textured imageSmoothing

Gaussian of 1.5 pixels width.
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First image contours and comers

Second image contours and corners

Figure 3.27. Corner points detected by the Hartepitens-Noble operator that lie on

extended contours.

3.5 Graphs

We are proposing a combinatorial extraction of whi@rmation along the contours
connecting every pair of points of interest in fobem of a graph, which will indeed
increment considerably the processing time, butesgipbecially strengthen the reliability
of the primitive features for our scenario. Therskaspace is reduced by including
ancillary heuristic constraints; otherwise the camborics could become unwieldy.

We introduce some basic definitions in graph thd@d). A graphG(V,A)is a pair of
setsV and A where the elements of the Sétare calledverticesor nodesand the
elements ofA are calledarcs The nodes contain information about the strustaed
the arcs the relationships between the structlfrésere exist the connections=(v,w)
andp=(w,v) anda=4 — (u,w)=(w,v)the arcs are considered in both directions and the
graph is called aon-directed graphA nodew is adjacent to another nodéf and only

if there exists an arc that links both nodes. Ahpata graph is a sequence of nodes
p={V1, Vo, ..., W } | (Vi, Vi+1) O A i O [1,n[, which length is the number of arcs that the
path contains or the number of vertices minus édngath issimplewhen all its vertices
are different, or at the most, only the first aastlare the same. A non-directed graph is
connectedwhen there is a path connecting any pair of nadeke graphj.e. all the

nodes are connected.

Our basic features, contours and points of inteiest be organised in the form of a
graph. The search of paths between contour-corsh@dimts of interest can provide a
better performance against noise and viewpoinabdiiy. Points of interest prove that
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can be a quite reliable support in the wide-base eghereas contours are exposed to

partial extractions, occlusions and different l#ibglat junctions.

In our system, the arcs will represent contoursctwioverlap or lie within a certain
proximity to a Harris corner, and the nodes will \agual representations of Harris
corners over or in the proximity of contours, is&gtions as defined in secti@mt and

the endpoints of the contours represented by 8vesdifferentiate betweeprocessing

or activenodes (Harris corners) amaixiliary nodes (intersections and endpoints). The
former gives rise t@rocessingarcs, which are the paths from where to extract the
information that will define descriptors, whereasgxidiary nodes play the role of
connectivity. That choice is consistent with thetféghat we consider high-curvature
points more reliable than contour endpoints or gutiye intersections between

contours.

Contours and points of interest (corners and ietgigns) have been extracted, and data
structures contain spatial information about thetgors in the proximity of each point
of interest and about the closest sample in théocorto that point of interest. The
information is reorganised so as to have for eachtour the points of interest
associated with them, that way contours with nan{soof interest as well as corners
without contours within its vicinity are discardethe nodes are expanded by searching
for its connectiong,e. the equivalent of the parent and the successadrege structure.
We consider connectivities of a node wignext and previous nodes along the contour
and b) other nodes in other contours associated to thee gaoint of interest. After
expansion the nodes are visited usingepth First Searci{DFS) algorithm. TheDFS
algorithm returns the sequence of visit of nodabiwieach connected graph, providing
paths between any two nodes of the graph. Theedtigoaith is the one with minimum
distance in number of nodes and where loops witiénpath are sieved. The process
can result in a single or multiply connected gragapending on whether all points of

interest are interconnected or not.

Let us carry out a simple example to illustrate ittes. Figure3.28is our input image

and figure3.29represents the corresponding graph. Four diffesentours, represented
in different colours, have been extracted. Alsaeygrorange and white-filled stars
represent allegedly extracted (manually defined)rislacorners, intersections and
endpoints respectively. The yellow boxes at thétrizand side of the stars symbolize
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the nodes associated with that point of interestaVoid confusion nodes are listed by
letters in the colour of the contour they belongvithereas interest points by numbers.

In that figure, there are a couple of particulasesa First let us examine the point of
interest numbe®, a Harris corner.

Figure 3.28. Sample image.

Harris corner
Intersection
Endpoint
Node

C+++

14 15

+n n I
12

Figure 3.29. Graph.
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This point of interest does not lie over a contbut it has red and blue contours within
its vicinity. Nodeg ande are thus created. Noglavill contain the closest sample to the
poi in the red contour and node will contain the closest counterpart in the blue
contour. Therefore nodeis connected t& andi and nodee to d andf. Since node$
and e are associated to the samp@, both are also connected and therefore permit a
virtual path between the red and blue contourseéond case is the green contour. It is
not connected to any other contour. However, byjegtong its endpoints within a
predefined distance (projection of end segmentadrdaour for intersection of contours)
it gets in touch with the black and blue contoueseyating nodes andr andt andd,
respectively. As these are intersections, theymatlbe active nodes but will work only
as connections between contours. Starting from @odbe DFS algorithm gives the
following order of visitsDb = {a, b, ¢, d, e, f, g, f, e,j,1, h,i,}, k,e,d, t,s,r,n,0,p, q,
p,o,n,m |, mn,r,s,t d,c,b,&8equenc® gives all the possible paths between all
these connected nodes. As an example, the twceanbigles andi can be linked by the
pathpl={i, ), k, j, e, d, t,s,r,n,0,p, g, p,o,ml, mn,r,s,t, d ¢cbut the shorter
pathp2={c, d, e, f, g, f, e, j, ilis the one naturally preferred. Still, notice ttas path

is not simple and the shortest path is the ondtneglafter removing the loop that exists
inside thep2 p3={c, d, e, |, i} The procedure that builds the graph and procasses
information between points of interest to definsa#gtors is shown in pseudo-code in

the next page.

A demonstration of the method over real stereo gsag shown in figure3.30to0 3.34
This image dataset is comprised of indoor and autdgeenes. Images in figur8s33
and 3.34 are a reference for many authors [83]. Contouid pmints of interest are
detected as explained in previous sections. Thanmtion is organised in the graphs
displayed in the figures, where yellow nodes arevaaodes RPOIs) and white nodes
are auxiliary nodes (intersections and contour emdp) that can interconnect nodes in
different contours. The spatial coordinates of pla¢h in between active nodes defines
the ground information to build an invariant degtor in the next chapter. Therefore,

there exist as many descriptors as combinatoricmgractive nodes.
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Input:
- Landmarks:

o Corners over/nearby contouR@ls— active nodes)
0 Intersections (auxiliary nodes)
- Contour spatial information (arcs)
Output:
- Descriptors for pairs d?Ols
Process:
FOR every contour
Find the landmarks in their proximity
IF no landmark
Continue
END
FOR every landmark
Find the closest sample to that landmark in treaur
IF POI
Node is active
ELSE
Node is auxiliary
END
Store landmark as a node, function (active/auxijiaclosest contour
sample and contour number
END
Store endpoints of the contour as auxiliary nodes
Store landmarks, function (active/auxiliary), clsseample and contour number

END

%Expansion of nodes

FOR each nodse
Search for consecutive and previous nodes in time santour

%Search for neighbouring nodes in other contowarat the landmark
IF the landmark has neighbour contours

FOR every neighbour contour
Find sample in the other contour associatelédandmark
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Identify to which node it corresponds and store tlogle as a

connection
END
END
END

%Build graph
FOR each node
IF already visited
Continue
END

Do DFS visit and store graph
Search for redundant nodes that correspond tcatime $andmark

Delete these nodes from the list of nodes to psoethe graph
Delete nodes that are intersections from the fistooles to process but maintain

them in the list of connections between nodes

END

%Compute descriptor

FOR each graph
Compute all combinations between active nodesitake at a time

FOR each combination

Find shortest path
* Find minimum distance (in number of nodes)

eg.cdefgfejih
= Sieve loops in the path
eg.cdefgfjih
Do not consider intermediate contours along #mescontour
Extract spatial information along the path (to comep invariant
descriptor in the next chapter)
Save descriptor
END
END
RETURN
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Figure 3.31. Antenna stereo scene. a-b) Contowtsamers; c-d) Output graph.
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Figure 3.33. Graffiti stereo scene. a-b) Contours and corners; c-d) Output graph.
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Figure 3.34. Valbonne stereo scene. a-b) Contours and corners; c-d) Output graph.
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3.6 Summary

We have presented different methods for the extmacof morphological and

photometric information from images. The extractadrieatures is a preliminary step of
principal importance for the success of furthernscanalysis. The accuracy views
during the extraction, the amount of features dradrtconsistency across views will

define the complexity and the feasibility of thethe.

Extended contours were found in the images by usiags of magnitude and direction
gradients. The resultant edges were extended tmwanby assembling edges within a
neighbourhood given proximity, continuation and iganity. We have also presented a
contour segmentation technique functional for fingdprojective intersection between
contours and for articulating flank regions at bsithes of the contours where to analyse
the photometry. These regions have a high depeedemc the extraction and
intersections of contours and on the photometritureaof the image to define
homogeneous photometric regions at both sideseottimtours. Two alternatives were
anticipated: regions along whole contours and regemanating from points of interest
and delimited by contour intersections. Any of ffreposed methods proved reliable
enough for the wide-baseline case. A better and miere expensive choice was the
rearrangement of points of interest and contoursthne form of a graph. The
combinatorics of all the paths delimited by poiotsnterest interconnected by contours
are preferred as signatures and regions to expiamtometric information alongside.
Since corners prove good repeatability and goodawebr under viewpoint and
photometric changes proclaim the employ of a grapticulated by corners and
intersections as an interesting alternative toleatke unreliability in the extraction of
contours given noise, breaks and the tracing afratbntours at intersections.
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Chapter 4 — The affine invariant descriptor

4.1 Introduction

The variability of the objects viewed under differeviewpoints and illumination
conditions can be solved in three ways: a) by $@agcfrom an a-priori camera model
the whole space of transformations and align thasfiormed and reference image; b)
by using image normalization of scale, rotationntcast, etc. or c) by constructing
invariant functions. The first approach is obvigusbt viable due to computational
burden. The second alternative is sometimes indiadea pre-processing stage inside a
more-efficient process when there is informatioronfr a model that permits
normalization. However, invariance is a better 8otu that is achievable for planar

objects and there exists a large literature.

Methods that use invariant descriptors charactdeigkires which do not change under
a given photometric or geometric image deformatwith the purpose of finding
counterpart landmarks (points of interest, regiofsin. both images to solve the
correspondence problem. Simple examples of geamigivariance can be a segment
line, which length does not change under a traioslair rotation in the plane but it does
under othe2D transformations; or a circle, that under an affirmsformation will be
distorted in to an ellipse. In the photometric cage transformation will rely on
extrinsic and intrinsic parameters of the camerabkthe lighting conditions. Therefore,
it is fundamental to know the kind of transformatithat the images will undergo and
the set of features to work with in order to finglsdriptors invariant to this geometric

transformation, which is usually affine or projeeti

Projective invariants from points and lines haverbeleveloped from the theory of
geometric algebra [8]: th&D cross-ratio as the basic projective invariant nifréour
points in a line) and its bi- and tri-dimension&ngralisations (five points in a plane
and six points irBD space, respectively); as well @B invariants for the stereo case
(six non-coplanar corresponding points, given thedamental matrid) and for the

three-view scenario (components of the trilineaste from lines and planes).
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Shape descriptors such as Fourier descriptors diptidEFourier descriptors have been
widely used in the literature, but are generallgtneted to close contours. Other
popular feature descriptors over two dimensionahcfions are Fourier Mellin
descriptors [1,23], Zernike moments [106,60] anckuo®-Zernike moments [14].
However, the pioneering work on moment invariarabsplute orthogonal moment
invariants) by Hu [53] has been used extensivelgrahroughout the years. These
moments based on algebraic invariants were inviattasimilarity transformations. The
concerned reader can find individual modificati@nsl improvements of Hu's moments
in [77,6,67,90]. Also Flusser and Suk [37] presdntemplex moment invariants to
affine transformations and, lately, Flusser an@v&t[39] combined and expanded the
invariance to contrast and to convolution with atcaly symmetric point-spread
function (blur effect). Mindruet al. [82] presented generalised colour moments,

descriptors that compute affine invariant momemntstoape and colour bands.

Excluding the last method, most of the bibliograpdfprementioned is related to
intensity images. Doubtless the use of colour [@3h contribute with further
information but at the same time colour is very sigle to the scene illuminant.
Therefore, raw colour features are not reliapkr sein image recognition. This
dependency on the illumination should be removed aome other stronger to
illumination models such as CIE LUV can be prefdrrather than the traditional RGB
model. Although out of our scope, other colour espntations are based on
histogramming. Nevertheless, this option has thawback of losing the spatial

information of the patterns.

4.2 Affine geometric invariance

4.2.1 The affine frame

An area-preserving affine transformatips AX+b, is characterized by a translation

vector b and a matrixA being SL(2,R) i.e. the group of all reaPx2 matrices with
determinant one that preserve oriented area [44R8&}ting from d&renetframe where
the area enclosed by two vectdes &} is the unit area, we search for an oblique
system of coordinates defined by two vectdes ap}. These vectors delimit a
parallelogram of unit area, thus having an areagmeng frame under affinities. This
frame can be defined over every point of a curig=(x(t),y(t))" € R, which is at least

100



a two times differentiable planar curve. The ve@gpican be the tangent vector at a

given point of the curve, whereasshould be defined so as to enclose an oblique frame

of unit area. Therefore, the determingaf(t), a, (t)| should be one. The setting is:

€

P w
x

Figure 4.1. Euclidean and affine frames (from [44])

If T'(t) and[ (t)are respectively the first and second derivativiethe curvel” at the

parametet, these vectorfa; ap} that determine a unit area are given by:

a,(t) = @.F®)] 2r e @)

2,(t) = \\r(t),f(t)\\'3f<t)

4.2.2 The affine arc-length metric

The basic concepts on affine differential geomeirtyoduced above lead us to the

definition of the affine arc-length expression.

As we need the parallelogram created by the oblitaree{a; a;} to be of unit area,

the curvel” is reparameterised to a new parameter always assuming the condition

IF®).F ] #o.
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2 2
[F (xt), y), F(x), y)| = d_X:lt_zy_ d?x dy

dt dt2 dt
2 2 2 2 (4.2)
- Ux do d y(d_aj _dy do d X(d_aj
do dt §g2\ dt do dt 4o 2\ dt
_|ar d?r [(d_o—f:[d_af
do "qg2| \ dt dt
———
Therefore the expression of the arc-length paramsatenc is as follows:
b
a(t) = [3/I7 o). ). T (), y(o)ox(t)dy(t) (4.3)
0o
and the normalized version:
o(t)
o) = 4.4
n (0) max@) (4.4)

which is an absolute invariant. However it needthbendpoints of the curve to be

known.

By performing several affine transformations to trgginal contour we can compute a
parameter analysis of the affine invariant metscshown in the next figure. However,
although the normalized affine arc-length is anoélis invariant, it cannot cope with
partial contour matching,e. the contours should correspond exactly to eaclerpth
unless a partial (and exact) segmentation of cporeding parts of the contours is

known.

In order to evaluate the performance of the afinelength the next sequences (figure
4.2) show a real image and its affinely transformednterpart. The contour maps are
extracted in both images and a few contours highdid as examples. Four synthetic
curves have also been superimposed on the imagesidoto the test: a circle, a
parabola, a ellipse and sine-exponentialfunction described byz(x(t),y(t)) with
x(t)=a*sin(t) andy(t)=b*exp(t). Figure4.3 presents the affine arc-lengtft) of these
curves, where is the centripetal distance along the curve. Tieswadce along the curve
is normalized tdl. At a first glance, the affine arc-length coulel iised to distinguish
between some corresponding curves. However, degteeduced set of curves of this
example we see that some of them have similar bhetav

102



We will see in the next sub-section that theretexaslinear relation between the affine
arc-length of two affinely transformed curves. Thisear relation, which gives an
estimation of the transformation undertaken, isenatlent in figure4.3. That is due to
the fact that thex-coordinate of the plot represents the centripdisance along the
curve. This metric is not invariant under affinartsformations, thus the property of
geometric invariance up to a linear relation of difiine arc-length is not evident in this
representation. Figu.4 represents the ratio of corresponding affirel@ngth curves
to the third power, which is a measure of the ti@msation between the curves. Notice
that the ratios for the ground truth (syntheticves) overlap each other giving a single
measure of the transformation between all them. ther real contours, which are
extracted independently, the results are lessfaetiisy since there is no sample-to-

sample contour correspondence between views.

50 100 150 200 250 300 350 400

Figure 4.2. Original and affinely transformed imsageith contour map. Highlighted,

selection of real contours and synthetic curvesustudy.
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Figure 4.4. Ratios of affine arc-length.

Figure 4.5a presents an instance of a synthetigenvehere a contour and a point of
interest has been extracted. Figure 4.6b shows natance of the same image
transformed by an affinity. The other figures shibm affine arc length and normalised
affine arc length under a wide range of transforomst Notice how the affine arc

length is invariant up to scale, whereas the nagedlaffine arc length is an absolute

invariant for the whole range of affine transforioas.
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Figure 4.5. Affine and normalized arc-length parsananalysis. a) and b) Input contour
and affine-transformed contour, point of interesarked with a black circle and
endpoints of the contour in blue and yellow circt@sand e) affine arc-length for the
original and transformed contours. d) and f) noreeal affine arc-length for the original

and transformed contour.

4.2.3 The affine invariant area

We assume again that we have a curyg) that is transformed to a curvg(t) by an
affine transformationM. Then I'A(t) and Ig(t) are reparameterised d%(oa(t)) and
I's(os(t)), respectively. Recall that the parametatefines an oblique frame of unit area
at every point of the curve. We pursue that themallglogram instead of covering a

unit area in the second image it should encloseatka that corresponds to the unit
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frame in the first image. Evidently, the effecttbé affine transformatioM is reflected

in the transformed image by a scaling of the cqwesding area [49]:

areaafter trarsformation
; — =|Mm| (4.5)
are¢ before transfornatior
with M a3x3matrix:
rnll rnl2 tx
M=m, m, ft (4.6)
0 0 1

where the determinant Isy1my-My2p;, as my; and my, correspond to scaling iRy
coordinates andy, andnp; to shear. Consequently, scaling does shape theareavof

the parallelogram whereas shearing can only aiffect

From equations (4.1) and (4.5), two correspondieg®can be extracted by scaling the
parallelogram defined by the vecti andagg to &;zandayg:

[Bie 8o = e 22 | (M @)

The relation between the two affine arc length metin both corresponding curvés
and/g is as follows:

[3/laus s | QM [dx(t)dy(t)

gg(t) _i =3[M] (4.8)

PO (4l aloxay

Therefore we show that there is a linear relatignfietween the affine arc-length of
two corresponding curves. So far, by computingdfime arc length of a curve and its
transformed version we can estimate the transfoomaindergoneM. However, we

approach that fact the other way around: insteadexdfacting the transformation
between the two curves, we can scale the ve§tarsy} in the second image by the

relation given in equation (4.8) and extract cquaesling patches in both images.

Consequently, from the two equations above:
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[ (1), B (8] = e (8 2 ()] T 222 (4.9)
0

Example. The following example illustrates the idea. Forieass we choose a circle.

A curvel's that describes a circle is expressed in paramfetma:

x =r[cos@)
. (4.10)
y =r [$in(@)
where:
0= ! (4.11)
r
beingl the length of the circle amdts radius.
From equation (4.1):
, -sin(@)
a, =x(6) =
cos@)
(4.12)
—Cos
a2 — X"(e) — . @)
-sin(@)
and the area defined by these two vectors is one:
|la,,a,|| = sin(8) +cos’ (6) =1 (4.13)
If we apply now an affine transformatidto 7’5, we have the ellipsEs
=alcos
x =alcose) (4.14)
y =b3in@)

wherea andb are the semi-major and semi—minor axis, respdgtivdhe determinant

of the area defined by; anda, over/ is alsol.

As the ellipse is obtained by applying an affirmnsformatiorM with expression:
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X

SX
k, t (4.15)

y

0 1

X

k
M=|s

y

with ky, ky representing the scale iy coordinates;s,, S, the shear and, t, the

translation, although not relevant. The new argaénsecond image is given by:

cosf -sind| |k, s,
sinéd cosf ||s, kK

y

e 8z = =kk, —s,s, (4.16)

However, the parameters of the transformatikn K, sc ands)) are unknown. The
computation of the affine arc-length over the @rahd the (transformed) ellipse gives

an estimation of the transformatidhwhich scales @ ag according to equatiof.8

Figure4.6 shows the example of the input circle and fransed ellipse. The top plots
show the extraction of a unit area from a givennpdi of the circle and the
corresponding one in the ellipse. The central pdoesthe affine arc length along both
curves (see the linearity between them) and thealed version, which is an absolute
invariant. The bottom plots are the extractionred tinit area in the input curve and the

affine-arc-length scaled extraction of equivalegion of ratio M.

Figure4.7 illustrates better the same example by overlappirdes of different radius
over a background, input image. Both the backgrammaye and the circles are affinely
transformed. The affine arc length is computed doagh curves and the invariant area
defined by vectorsy anda, and the counterpart given by equat{dr8) are shown for
the first sample of the contour. In figure 4.7agteesa; anda, are coloured in red and
green, respectively. Figure 4.7b) shows the eftdctomputing the affine invariant
vectors over every sample of the circle. The tipgeztorsa; anda, are linked resulting
in affine invariant regions at both sides of thatoair.
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Normalized afine arc length

0 01 02 03 04 05 06 07 08 09 1

0 01 02 03 04 05 06 07 08 09 1

Figure 4.6. Affine-arclength-based method to exti@mresponding areas. a) original

curve (circle) and extraction of unit area by vest anda, ; b) affinely transformed

circle (ellipse) and extraction of unit area bytees @ and g; c) affine arclength of the

d) normalized affine arclengtithe circle and ellipse e) same as a)

circle and ellipse;

aZB

and f) corresponding area defined ay,

Figure 4.7. Affine invariant regions over two affirely transformed background

images. a) Affine arc-length vectors enclosing correspogdareas and b) affine

invariant regions by linking tips of invariant vecs.
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4.3 Affine photometric invariance

4.3.1 Hu's moment invariants

Hu [53] presented a set of moments invariant tatromn, translation and changes in
scale for planar geometry based in algebraic iavsi The ordinary moments of order

p+q of a continuous functiof{x,y) are defined by:

+oo+00 +oo+00

wi=feriomas oty fimmsero o

—00—00 —00—00

The central momentwég) are expressions of the ordinary moments that eah dith

translation in the image:

+00+00

1) = [ [O=%)P(y=9)°f (6 y)d(x=X)d(y - y) (4.10)
being
(f) ()
X = rnl((:) y: nﬂl()%) (411)
Mo Mo

the geometric centre of gravity of the functigxy) that define the central moments.

The normalized central moments, which can be iavérito changes in scale, are
defined from the central moments:

(f)
Hpq y= p+q+2

o ; (4.12)
00

(f) —
”pq -

By combining orders of normalized central moments Benerated six absolute
orthogonal invariants and one shear orthogonalriamaof the second and third order.

We do not present the expressions of the momentefar to [53].
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4.3.2 Generalised colour moments

Mindru et al [82] present a set of moments that preservesrismwge up to affine
geometric and photometric transformations of thegem These are the generalised
colour moments, which are computed from a slightat@n of the ordinary moments

of Hu by incorporating the threRGB) colour bands:
M2 = “xpyq[R(x, V[G(x, )]°[B(x, y)]° dxdy (4.13)

In this expressionp+q denote again the order of the moment abd indicates the
degree of the momerite. each of the powers applied to the colour bandwichaally.

As a matter of robustness, moments are computebbfoiorders and degrees. Hence,
considering moments up to the first order and seéateygree, the possible generalised
colour moments and their descriptive features ayanoments of ordgygq and degre®
([a,b,c]=000) represent thpa-shape moments, b) moments of degteenly consider
one band and exclude the two others being the igésccomputed over intensities of
the selected band, c) likewise moments of deg@reembine two bands and reject the

one left, and d) finally moments of order@=¢=0) neglect pixel spatial information.

The basic invariant moments are devised as sokitidrsystems of partial differential
equations by means of Lie group methods [115]. &heever affine geometric
invariance combined with scale photometric invac&aiiTypel), and with scaling and
offset photometric variations in the image (TY)eTypes3 and4 are related to scaling
plus offset illumination changes and affine changesspectively, but no affine
geometric distortion permitted. We will focus outeation on the first type, as scaling
photometric invariance can suffice to model themsity variations of indoor images.
For the case of outdoor scenes, affine models ibesdoetter the changes of
illumination. However, since the wide baseline casestrongly constrained by
geometric distortion thus the scaling plus offdebtometric model can only be used in

detriment of affine photometric, model- based imnevats.
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Syq invariants are related to single band analysisleny,q are for combinations of two
out of three bands. The superscript indicates thveep(s) to use for the band(s) under
consideration. Therefore, there should be comp6Gt&invariants &, and S, in R,G
andB) plus 18 D-invariants as a result of the three possible coatimnsRG, RB and

GB. In total, 24 invariants can be reduced to a basis set of 2drianwts. The elements

discarded ardX"®, DR and D{°®

Figure 4.8 shows an input image and combinationgeaimetrical and photometrical
patches — some extracted over the same area, otber$he basic set of 21 invariant
moments is computed. Figure 4.9 shows the result ctaresponding and non-

corresponding regions.
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4.4 Descriptor and matching

In Chapter 3 we have discussed the way of extrgatibons around contours. The
drawback is that we are not extracting invariargiones and the approach is ad-hoc.
However, considering that the contour map is adelyaletected, patches are extracted
with an acceptable photometric homogeneity. Starfiiom a set of points of interest, a
Harris corner lying on one contour at least, thecdgtor is a vector containing ti24
photometric invariant moments extracted over thiehms defined by a ribbon. Thus for
a point of interest there are two descriptors, famghe brighter ribbon and another for
the darker side. These ribbons emanate from that pui interest. The Euclidean
distance among descriptors in both images are ctedpand that way we can have an

initial estimation of corresponding contours.

However, the descriptor should combine geometrit gmotometric properties. In this
chapter we have defined invariant regions from #itne arc-length distance of
corresponding contours but it needs to know thentarpart contour. That is sorted out
by a combinatorial search over features extraateoh fthe graph structure. Affine arc
length frames are extracted along the contour lthis two points of interest. These
frames define the regions where to analyse theopheiry by the generalised colour

moments descriptor.
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Figure 4.8. Extraction of patterns to compute tieariant moment signature. a) and b)
Original image and patch extraction; c¢) and d) Adfy transformed photometry; e) and
f) Affinely transformed geometry and scaled tramsfed photometry; g) non

corresponding patch; h) non-corresponding patch different morphology.
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Figure 4.9. Comparison of two sets of 21 momengaim@nts resulting from a) two
corresponding geometric patches with photometrinelff transformed (figure 4.8b)
and d)); b) two corresponding patches geometridatigsformed and scaling of RGB
bands (figure 4.8b) and f)); c) two non-correspagdipatches geometrically and
photometrically transformed (figure 4.8b) and h3nd d) two non-corresponding
patches with different morphology. Notice that ttedues of some moment invariants

are missing, that is due to the non representatioregative values in logarithmic axis.

4.5 Experimental results

Regions along the contourThe proposed algorithm was tested on the real cosito
and synthetic curves over an indoor image alreadggmted (see figure 4.2). The image
is an RGB image with a resolution 884x512pixels. A contour map is created by
extracting Canny edges. The Gaussian fitey1.35and hysteresis thresholds are set to
0.0312and0.0781 There weret50 edges found that after linking according to gratlie
and direction maps, proximity, continuity and dista constraints were reduced6
contours of a minimum distance 80 pixels. Four synthetic curves were overlapped

over the image, resulting in a setkff0 contours in total. Seven landmark points were
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selected manually on the reference image. Theydcbave been extracted by looking
for Harris pixels over contours or in the proximdicontours but for the purpose of the
experiments this suffices. The original image ipleggl an affine transformatioM, a
20° rotation, 100 pixels translation in the&-axis, and0.9 and0.2 scaling and shear in
both x- andy-axis respectively. A scale plus offset photometansformation was also
applied, scal¢0.6 0.6 0.7]and offse{-0.2 -0.2 0.1]in theRGBbands.

From the points of interest we extract homogengdatometric regions at both sides of
the contours. These ribbons are delimited by thtazo map as explained in Chapter 3.
Figure 4.10 shows the regions extracted for thentpoof interest lying over/by the
synthetic curves. Notice that the extraction ofioag is also expanded to the
neighbouring contours within a certain distancerfrihe point of interest. That is, the
algorithm starts from the point of interest, opemssmall window and search for
neighbour contours. Ribbons are extracted arouedctintours where there exists a
point of interest in the vicinity. The rest of tlw®ntour map is only taken under
consideration for delimiting homogeneous regionsgiBns emanating from points of
interest close to real contours are shown in figulid. Every pair of region is classified
as ‘darker’ and ‘brighter’ side of the contour, hyeraging grey levels. The affine
photometric invariant moments are computed oveseheegions for every point of
interest. Therefore, the point of interest is defirby two vectors 021 moments for
each side of the contour(s). We use Euclidean mtistdo find the proximity among
descriptors in both images. Tabldsl and 4.2 present the results for the points of
interest lying over the curves under study. We gme# green correct matches, in red
mismatches and in orange the corresponding match. & analysing here the
performance of the extraction of homogeneous phetomregions as well as the
invariance of the descriptor towards geometry ahdt@metry changes. The distance

matrices allow us to have an initial estimatiorcofresponding points over contours.

116



Darker region for poi 4

100 200 300 400

@
=}
S}

Darker region for poi 5

100
200
i 300

100 200 300 400

@
=}
S}

Darker region for poi 6

100 200 300 400

@
=}
IS}

Darker region for poi 2

100
200
300

100 200 300 400

a
=3
o

Darker region for poi 4

Brighter region for poi 4

Brighter region for poi 4

100
200
300

100 200 300 400 500

100 200 300 400 100 200 300 400

Darker region for poi 5 Brighter region for poi 5

Brighter region for poi 5

100 200 300 400 500

100 200 300 400 100 200 300 400

Darker region for poi 6 Brighter region for poi 6

Brighter region for poi 6

100
200
300

100 200 300 400 500

100 200 300 400 100 200 300 400

Darker region for poi 2 Brighter region for poi 2

Brighter region for poi 2

100 200 300 400 500

100 200 300 400 100 200 300 400

Figure 4.10. Homogeneous photometric regions fromtp of interest lying over

synthetic curveslL eft) original image and right) transformed image.
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Figure 4.11. Homogeneous photometric regions fromtp of interest lying over real

contours. Left) original image and right) transh@d image.

118



Distance matrix for darker side
Circle | Parabola| Sin-exp | Ellipse C1l C2 C3

Circle 3.8602 | 9.5013 | 2.0559 | 3.4642 | 2.8978 | 3.9281
Parabola| 3.8940 9.5730 | 4.3539 | 5.2931 | 4.8164 | 5.3342
Sin-exp | 8.6256 | 8.5970 8.6658 | 9.3747 | 9.0764 | 9.8345
Ellipse | 2.4610 | 4.2999 | 9.4541 2.8824 | 2.5515 | 3.6552
C1 44571 | 4.8553 | 10.2390| 3.0956 2.2314 | 3.7357
C2 3.3103 | 4.8553 | 9.7509 | 2.3659 | 2.0661 3.4422

C3 5.4207 | 6.6489 | 12.9295| 5.5166 | 5.4581 | 5.3388

Table 4.1. Distance matrix among descriptors basethvariant photometric moments

for the darker side of the contour. Rows, originakge. Columns, transformed image.

Distance matrix for brighter side
Circle | Parabola| Sin-exp | Ellipse C1l C2 C3

Circle 8.3006 | 8.9197 | 4.7941 | 3.7586 | 3.6892 | 6.2086
Parabola| 6.7288 6.1622 | 4.2438 | 4.8347 | 4.2472 | 6.1573
Sin-exp | 5.2813 | 9.5286 6.2698 | 5.7025 | 5.5429 | 8.0059
Ellipse | 7.4692 | 5.6224 | 7.6261 5.3378 | 5.0944 | 6.2336
C1l 5.8041 | 6.7267 | 6.6712 | 4.7079 2.9260 | 3.4681
C2 5.6476 | 6.5232 | 5.5123 | 3.8103 | 2.4245 3.7451

C3 8.9412 | 7.2558 | 7.8222 | 7.8230 | 6.5349 | 6.6196

Table 4.2. Distance matrix among descriptors basethvariant photometric moments

for the brighter side of the contour. Rows, origiimaage. Columns, transformed image.

Affine invariant frames. We compute the affine arc-length frames over thepa
desk scene with synthetic and real contours indidgety detected to show with these
examples how the affine invariant regions (parajehms) are extracted. We can set up
a relation between affine arc-length of potentiafresponding contours and extract
invariant regions based on affine arc-length. Thataurs are reparameterised from
centripetal to affine arc-length distance. The tewhthe affine arc-length in equation
(4.3),i.e. up to second order derivatives, determinant atebmal, are computed in the
domain of splines. The computations of derivativesfinite differences introduce
considerable errors. Therefore, a least-mediamoéres cubic spline approximation is
a better solution [99]. The ratios of affine aradénhs of corresponding contours to the
third power, equation (7), give an estimation o ttheterminant of the fundamental

matrix. Table 4.3, shows the results in an exhaesearch for corresponding contours.
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The determinant of our transformatidv is 0.77, which is accurately obtained for
synthetic curves. For the three real contoursréiselts are also very accura®7419
0.7369and0.8549. Figures4.12 to 4.18 depict extraction of the invariantioeg for
synthetic and real contours. The figures on therkgfresent the extraction of patches
defined by the affine invariant vectors over a feantour samples, for a better
visualisation. We find acceptable performancehef $ystem over the synthetic curves,
whereas real contours do not show satisfactoryltees®Recall that second order
derivatives are sensitive to noise. Affine curvateould have been a useful invariant
but its expression contains fourth order derivajwehich rules it out of any practical

consideration for us.

Affine arc-length ratios
Circle | Parabola| Sin-exp | Ellipse Cl C2 C3

Circle 0.7700 | 0.0220 | 0.0199 | 0.1084 | 5.2935 | 6.8597 | 0.5679
Parabola | 26.9154| 0.7700 | 0.6945 | 3.7897 | 185.0361] 239.7812 19.8511
Sin-exp | 29.8435| 0.8538 | 0.7700 | 4.2020 | 205.1662| 265.8672| 22.0107
Ellipse | 5.4687 | 0.1565 | 0.1411 | 0.7700 | 37.5961| 48.7194| 4.0334
Cl 0.1079] 0.0031 | 0.0028 | 0.0152 | 0.7419 | 0.9614 | 0.0796
C2 0.0827 | 0.0024 | 0.0021 | 0.0116 | 0.5687 | 0.7369 | 0.0610
C3 1.1582 | 0.0331 | 0.0299 | 0.1631 | 7.9622 | 10.3179| 0.8542

Table 4.3. Affine arc-length ratios of curves ie fhroximity of points of interest. Rows,

original image. Columns, transformed image.

Figure 4.12. Affine invariant arc-length frames psgnthetic curve. Circle.
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Figure 4.13. Affine invariant arc-length frames psgnthetic curve. Parabola.

Figure 4.14. Affine invariant arc-length frames osgnthetic curve. Sine-exponential.
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Figure 4.15. Affine invariant arc-length frames psgnthetic curve. Ellipse.

Figure 4.16. Affine invariant arc-length frames psgnthetic a real contour. C1.
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Figure 4.17. Affine invariant arc-length frames pageal contour. C2.

Figure 4.18. Affine invariant arc-length frames paaeal contour. C3.

In figure 4.18 we can notice that the length ofketora; for some of the samples is of
considerable magnitude. The inconvenience of thibat the descriptor extract regions
that are not local. In figure 4.19 we present apdnexperiment. In the left figure we
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plot the initial sequences of the affine invaridrame for samples along the curve.
Notice how the vectors al in red and a2 in greeraiieach side of the contour. In the
right-hand side figure we show the whole sequeroegathe contour. There is a
sample, marked by the arrow, where the vectors ggwiiinat occurs at an inflection
point. At that inflection point the determinant efuation (4.2) is null, the vectors
overlap and go to infinity in order to describelanar parallelogram of unit area. Figure
4.20 shows the value of the determinant of thevdéxies along the samples of the
contour. The original curve is overlap by a rotategtsion, which means that the
determinant is invariant to rotations. The deteaninof other affine versions of the
input curve are also displayed. We can see thatehe crossing point of all the curves
corresponds to a point of null determinant, or affine curvature. We can discern from

that that these inflection points are invarianatione transformations.

30

25

=60,scale=[0.8 0.9],t=[4 6] shear=[0.10.1]
=60,scale=[0.5 0.5],t=[4 6] shear=[0.8 0.8]

dxds.*d?yds? - d?xds?.*dyds

Figure 4.20. Determinant of the derivatives fofefiént transformations.
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Geometric and Photometric affine invariant approach We combine the affine
geometric invariant frame with the generalised aolmoments in this section. The
algorithm is presented in pseudo-code in figurel4.Basically, it consists of an
exhaustive search over the space of spatial désgigenerated in Chapter 3 from the
graph structure. The search space is reduced tiygseertain constraints. For instance,
we do not take samples when the magnitude of ortbeof/ectors of the affine frame
exceeds a certain magnitude, since we would nexbracting local regions (see figure
4.18a). That is caused by the samples where tleendigiant in equation (4.2) is close to
zero, points of inflection of null affine curvaturéherefore, we do not consider these
regions along the contour. Another constraint idgbmit the transformation the system
can cope with. From equation (4.8), the determinainthe transformation M is a
function of the ratio of two corresponding affine-dength distances. If the determinant
of M is too high or too low, both descriptors cowdly correspond each other when
that strong transformation occurs. If we boundgpace of possible transformations we
are also reducing the search space. The re-scafitige affine frame in image B is
given by equation (4.9), with the assumption thlaése two spatial descriptors
correspond. We define a grid over this re-scaldthafframe and interpolate the
photometry of the image and apply the generalisgdouc moments descriptor. We also
store the normalised affine arc-length of both igpakescriptors. However, despite that
this measure is expected to be an absolute intaniasults are not so good when
incorporating this measure in real applications tuthe sensitivity to noise. Therefore,
the only metric used to measure the distance betwbe two descriptors is the
Euclidean distance of the natural logarithm of giemeralised colour moment vectors.
The voting algorithm casts votes row- and columeendver the distance matrix of the
descriptors. We cast votes only to the best 8 nestcddong each column of the
descriptor matrix (votes = [10 8 6 5 4 3 2 1]). We do the same row-wise aftdr
multiply both matrices. The result matrix is weigthtby the inverse of the Euclidean
distance matrix. The potential correspondencesh@renes with higher scores. We take
as a match the pair with maximum score acrositsmn- and row-wise location in the
confusion matrix. In [5] and previous works refertbere, a match is assigned when the
distance between the pair is lower than 0.7 tichesdistance of the second best pair.
However, this measure did not obtain more successsults for our setting. As another
strategy, the Munkres algorithm has also been @medptimization in the assignment

process.
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- Descriptors with spatial information from graphustiures from both images
Out:
- Set of correspondences
Procedure:
1. FOR every descriptor from image A
a. Extract affine arc-lengtha
b. Discard samples when the magnitude of the affinetore exceed 3§
predefined threshold
c. FOR every descriptor from image B
I. Extract affine arc-lengthg
ii. Estimate the determinant of the fundamental mdlikbetween
the pair of contour segments (equation (4.8))
iii. IF (JM|>maxoffset OR |M|<minoffset)
CONTINUE - The descriptors can only correspond if
strong transformation that is out of considerabeours
END
iv. Define affine invariant regions in image B (equat{d.7))
v. Discard samples when the magnitude of the affirtors exceed
a predefined threshold
vi. Set grid over affine invariant frames in image B
vii. Extract photometry over samples in the grid
viii. Compute the generalised colour moments
ix. Compute distance between normalized affine arctlend both
descriptors
END
d. Set grid over affine invariant frames in image 4uation (4.1))
e. Extract photometry over samples in the grid
f. Compute the generalised colour moments
g. Compute Euclidean distance between both descriptors
END
2. Voting algorithm

3. Return set of correspondences

Figure 4.21. Geometric and photometric affine inuatralgorithm.
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We perform now experiments on the extraction ofnaffinvariant arc-length frames
over the images used in Chapter 3 (figures 3.38.34), i.e. the output to the affine

invariant system is the graph structure in previcbapter. Since the results in the
previous experiments were not satisfactory for ceaitours, we do not use the pair of
stereo images but a original one and its affinedlpsformed (homography). The ground
truth permits us visualise how accurate the mateisn The transformation applied for
each experiment is summarised in Table 4.4. Thdtseare displayed in the confusion
matrices of figures 4.22 to 4.26 and the measurescdll, precision and number of

corresponding regions in figure 4.27 to 4.29.

Homography Rotation Scale Shear Phot_offset Phot_scale
1 20 1 0 0 1
2 0 2 0 0 1
3 0 2 0.1 0 1
4 0 2 0 0.2 0.7
5 20 0.7t 0.1 0 1
6 20 0.7t 0.2 0 1
7 20 1.2 0.1 0 1
8 20 1.2¢ 0.3 0 1
9 40 0.7t 0.1 0 1
10 40 0.7t 0.2 0 1
11 40 1.2¢5 0.1 0 1
12 40 1.2¢F 0.2 0 1

Table 4.4. Space of transformations

Figure 4.22.Confusion matrices. Book scene.
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Figure 4.23.Confusion matrices. Antenna scene.
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Figure 4.24.Confusion matrices. Countryside scene.
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Figure 4.25.Confusion matrices. Graffiti scene.
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Figure 4.26.Confusion matrices. Valbonne scene.
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4.6 Error analysis

4.6.1 Propagation of errors

The affine arc-length method for the extractiorafiine invariant regions was strongly
dependent on the nature of the curves. The rgsidieed to be satisfactory for synthetic
curves, whereas rather the opposite for contowrs freal images. Splines based upon
least-mean of squares fairly approximate our syitheurves but present a little,
practically insignificant errors over real contouwe analyse how these small errors
propagate through the experimental procedure tmgeb error in the final result. The
final error is as a by-product of the combinatidrttee uncertainty for each single step

that leads to the affinely invariant arc-length toes.

Figure 4.30 shows a diagram with the main stepshawdthe error propagates. The
coordinates of the curve in imageare applied an affine transformatidno generate
the xy coordinates of the curve in imade That curve is approximated by splines,
introducing an error that propagates throughoutniird blocs highlighted in red. In the
other hand, we also transform the approximatiomsgdines from imagé into imageB

by using the same&. The error that propagates in further steps it itiat is due to the
fact that the input error is zero and no more appnations happen in further steps.
Therefore, we can consider the blocks highlightedred as ground truth for the
evaluation of the propagating error. Next we introel some basics on the theory of

error propagation [15].

If x is a function of two variables andv, X its expected value based on ground truth
variablest and Vv, andx; the consequence of each individual measuremeandv;,

therefore the variance afis given by:

s? = Iim%Z(xi -X)? (4.15)

N - o0

By expressing the deviationsas a function of its variablesandv:

x —%=(u - J)(%j (v, - v)(axj (4.16)

ou E
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Figure 4.30. Error propagation across the calcofwdfine invariant frames.

the variances? can be expressed in terms of the deviation of&miablesu andv:

1 _L(x) L (o) L[ ox Y ox
'N'[QOWZ{(ui—u) (a—uj Ly, ) (EJ + 2, - D)y v)(auj[avﬂ (4.17)

and that way it can also be expressed as a funofitime variance and covariancewof

andv:

ox) ax ) ox )’
) =l5)5) o
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In our particular case our functions under studythe affine arc-length expressioft)
in equation (4.3), and the affine invariant vectorghe transformed image, equations
(4.1) and (4.9).

If we dissect hierarchically the expression of @fffene arc-length, there is a summation,
a third root and a determinant, which is a subiwacof products of first and second
order derivatives of the andy components of the curve. Likewise, the final vexto
imageB (we do not consider vectors in imagesince we assume no error propagation
in the original image) is the result of a determina product by its derivatives and
another product with the division of affine arcdgims to the cube. We analyse the

propagation of the uncertainties throughout thaesgions in figure 4.31.

4.6.2 Experimental results

In figure 4.32 we present an example of the propagaf errors to the affine invariant
frame. The first image corresponds to the origimahge, in the second image the
splines have been transformed from image A andhe bottom image the contour
coordinates were transformed and these were the teethe frames. Notice that the
affine frames in the central image covers corredpanareas to the ones in the first
image; whereas in the bottom image the parallelfograo not correspond exactly.
Figures 4.33 to 4.35 show the propagation of erem®ss the expressions in figure
4.31. These are calculated for an affine frame it area,i.e. r=[1 1]. See in
expressions S11 and S12 in figure 4.28 that thecetif scaling the affine vectors by r
implies a multiplication of the error bi’. Figure 4.36 shows the distribution of the
errors in the affine frame as a function of theed®minant of the derivatives of the
contour for the ground truth (from transformatidnsplines) and for the measured data
(from the transformation of xy coordinates). Notagain how samples where the value

of the determinant is low tend to have higher exror
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Figure 4.31. Error propagation across the calcofwadfine invariant frames.
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LAROUSSE

compact

Figure 4.32. Propagation of error over affine imamar frames (=[10 80]). a) Original
image, b)transformed image with spline approximaiotransformed 1:1 and

c)transformed image with transformeglcontour coordinates.
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Figure 4.34. Propagation of the error along the@anfor the affine arc-length ratios.
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Figure 4.35. Propagation of the error along themanfor the affine arc length frames.
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4.7 Summary

We have presented two methods for solving the spamedence problem over affinely
transformed images. The first one consists of timetion of regions of homogeneous
photometry around contours. The generalised caloaments are used to describe the
photometry in the regions and the matching is peréal by Euclidean distance between
descriptors and a voting algorithm. For the sanmplgage containing synthetic and real
contours the system works well. But this metho@dshoc, only invariant to rotation
and translations, and highly dependent on the tgbdf the contours to extract
homogeneous photometric regions. So we have pegtbreome tests but we do not

consider the method valid for our system.

The second method plays a main role in this th¥8eshave described affine geometric
invariant frames along segmented contours fromaplgstructure that are theoretically
absolute affine invariants. We have shown how thegens are extracted for synthetic
and real contours and run experiments in combinatigth the generalised colour
moments descriptor over the images used in Ch&t&/e have worked with ground
truth dataj.e. we have taken one of the images and have affinehgformed it together
with the high-curvature points and contours. Thatsteindertaken consisted of several
single rotations and shears together with trarsiatiand then combinations of all those
(affinities) including also changes in photomeWye have displayed the results of the
matchings after applying a voting algorithm in tfeem of confusion matrices and
number of true correspondences. The percentagesroéct matches are around the
10%, which implies that the system needs somedurhpport to discern outliers. That
also suggests that for a viewpoint change scenerewllee features are also

independently extracted, the chances of a sucdesstching even decrease further.

We have analysed the reasons why the affine agtHeframes do not perform in
practical applications as they do in theory. We engperformed an error analysis
throughout the steps involved in the calculatiothef affine invariant frames. The small
error introduced by the approximation by splinesieeded for finding the spatial
derivatives — propagates throughout the levels dodive reason of the malfunction.
These errors in the affine frame are more signitickbor the instances where the

determinant of the first and second order deriesiv is lower.
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That is due to the high magnitude that one of tbetars that define the frame reaches
against the magnitude of the other. Thereforesgts¢em is endemic to the accuracy in
the computation of the derivatives and at the atiten points where the affine curvature

is null. The latter problem can be easily solveditscarding the samples in the contour
where the affine curvature (or determinant) is sedocertain threshold. The solution to

the former problem is more complicated, since ipliss the propagation of an input

error that is always inherent to any real-worldlaggpion.
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Chapter 5 — Robust estimation from correspondences

5.1 Introduction

In chapter 4 we defined an affine invariant degoripvhich embedded an affine arc-
length distance and photometric moments. The dascrvas defined along contours’
spatial coordinates delimited by points of intereSbnsequently, each descriptor paired
two points of interest and due to the combinatooicthe graph’s approach every point
of interest was encoded in at least one descripfor. initial set of putative
correspondences was computed from a confusion xnaifow in chapter 5 we
recapitulate the search of correspondences bygilrening the matching with a robust
algorithm. It would be desirable that the data desals in the sample space are
approximately normally distributed. However, thehbt what happens in practice since
generally there exists outliers or mismatches tlaanot be approximated by a normal
distribution. If these outliers are considered, tifamsformation between the two images
will not be estimated correctly. It is necessaryuse robust algorithms to identifying

and discarding the corrupted data.

Some of the robust algorithms are based in noatiter methods [70,47] but we will
centre our attention towards iterative methods.r@lage two options for the estimation
of the parameters of the transformation betweernntages: either the minimisation of a
cost function based on a certain distance metricher use of the Gold Standard
algorithm. The chapter starts with these two apgmea and follows with the
presentation of classical methods for the rejecbbrtarge sets of outliers. Next the

whole robust algorithmic approach is presentedwadinish with experimental results.

5.2 Cost functions

The projective transformation between two imagéethée the fundamental matrix or a
projectivity) and its nature (perspective or afjindgll define the number of degrees of
freedom of the transformation and therefore, det@nthe minimum number of
correspondences needed to compute that transfemalhat is called theninimal

solution In the case that a bigger number of samples nsidered (over-determined
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system), if the samples in a real application astucbed by noise, the projective
transformation that maps these correspondencesnotagxist. The problem is reduced
to be content with the best possible approximatioaptimal solutionby minimising a
cost function which parameters are each pair ofespondences; andx’ and the
fundamental matriXt or homograph, i.e. the minimisation of the distance between
the measured and estimated location of pairs akespondences. Some examples of
cost functions are presented in this thesis ameéefin [54]. The cost functions are
classified in two groups according to the minimisatof: a) an algebraic error, arg) a
geometric or statistical error. For simplicity tmetation is related to the case of
computing a homography (x’=Hx), but it is also the same for the fundamental matri
F (X'Fx=0) with the difference of computing the distance frdive measured

correspondence to the estimated epipolar line.

5.2.1 Algebraic distance

If we express each pair of correspondengesdx’ in homogeneous coordinates.:
x = (ui v W) and X = (u’ vi' wi') T, x' andHx will have the same orientation but may
have different magnitude up to a scaling factore €kpression can be rearranged in the

form of the cross product:

X' X Hx=0 (5.1)
The termHx; can be written as:
th X:
Hx =| h?Tx; (5.2)
h3 x.

Beingh'™ thej-th row of the homographiy. Therefore, the cross product is:

vih¥ % —wh? X,
x; x Hx; =| w;h"x —u;h™ x, (5.3)
uh? x —vh'"x

Taking into account that"x = x;" i/, and from equations.1 and5.3;
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0" -—wx' wvx |[ht
WX 0" -ux |h?®|=0 (5.4)

which can be expressed as:
Ah=0 (5.5)

We are interested in finding a non-trivial solutifmm h that minimizes the error vector

e=Ah. The error vectos is also given by:

£=) ¢ (5.6)

With ¢ each of the single partial errors from each paircofrespondences and
homographyH. The vectog; is called thealgebraic errorand its norm is thalgebraic

distance

2
dag 4. HX)? =[] = (5.7)

0" -wx' vx' |[ht
wx' 0" —ux [ h?

The advantage of the use of the algebraic distenttet it results in a linear solution to
the problem and therefore, lower computational .cbbe disadvantage is that it does
not have any geometric meaning and for the casanohffine transformation, the

algebraic and geometric distance are the same [54].

5.2.2 Geometric distance

The objective is finding the homography that minimises the Euclidean distarte)
between measured)(and estimatedX) locations of correspondences. The errors can
be computed in three different ways, dependinghendiegree of accuracy or objectivity
desired. These are the instances in ascending: order
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Error in one image. The measurements in the first image are consideitbdnull error

(or true valuex). Therefore, the estimated image coordinatesiareix,. The error

function to minimise the geometric distance isftiilwing square of differences:
2 [N V'
£ :Zd(xi,Hxi) (5.8)

Symmetric transfer error. In most applications it is more sensible to coesithat the
errors occur in both images. Taking into accourttihckward transformatiofd), the

function to minimise is given by:
£ = Z(d(xi JH™x )2 + d(xi' ,Hx; )Zj (5.9)

Reprojection error. The correspondences in both images are adjusteatder to

minimise the error. That entails the computatiorihef estimated true correspondences
(% and %, notice that% is not needed sinc& =H ) by means of the maximum

likelihood estimation of the correspondences amdnbmography, as will be explained
in section5.2.3.The cost function for the reprojection error is:

£2 :Z(d(xi % f +d(x;,>‘¢)2j (5.10)

Contrary to the error in one image and the symmetansfer error, the reprojection
error adds the2n parameters of then correspondences to the parameters of the
transformatiorH that are needed to optimise the cost function. S&ampson error [94]
reduces the parameter space of the reprojection terthe parameters éf.

5.2.3 Statistical error

Probabilistic model

With absence of outliers, it can be assumed thatctirrespondences are affected by
noise that follows a Gaussian probability distribotwith zero mean and varianeé

Hence, the probability density function of each swamenk; is given by:
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1 -d(x.%)*
P(x.) =( je 20° (5.11)
270

For the case of error in both images, the proldgbitf obtaining the set of

measurements and x' given the true homography and measurements is:

_d04,%)%+d (%, H% )
j e 20° (5.12)

Pix o .3)=1

i\ 270

And the log-likelihood is of the form:

log P({x, x}|H,x)=- 12 > d(x, %)% +d(x,HX)? + constant (5.13)
and minimises the error function
£2=> d(x,%)* +d(x,Hx)? (5.14)

The true valuesx, and Hx, in the equations above must be estimatgar{ds ) by

means of a Maximum Likelihood Estimate (MLE) of tinee correspondences.

If we assume now that the errors are not only Gansbut there exist outliers, the error
distribution can be modelled as a mixture distiifutof a Gaussian and a uniform
distribution [111]:

P(e) = I'IM 277102 J e +(1- y)%] (5.15)

where y is a mixing parameter indicating the expected propn of inliers andv a

constant providing some knowledge about the distioim of mismatches.

Equation (5.16) yields the negative log-likelihdod the mixture model:

144



1 et
-L=->lo e v 5.16
Z‘ g {y o J (5.16)
The maximisation of L minimises the error functiorequatiorns.14

Maximum Likelihood estimation of true corresponden@s

The Maximum Likelihood of true correspondences athbimages ¥k and X') can be
obtained from the measured correspondengesn@ x’) and the homographyHj or
fundamental matrixK) consistent with these correspondences under shangtion
that the errors follow only a Gaussian distributi@ve will restrict to our more practical
case of computing the fundamental matrix. The tveasurementsy and x’;) and the
fundamental matrixK) define via triangulation a hyperplane that pagkesugh both
correspondences and the two camera centres. Taesantion of the beams passing
through each camera centre and respective imagespandence provides the location
of the pointX; in the 3D-space, whenev&r does not lie over the baseline linking the

two camera centres (epipolar geometry, Appendix A).

Therefore, the requirements of the true correspoceeare twofold: they should satisfy
the epipolar constrainttFx' =0 and they should minimise the sum of squared
differences in equation (5.10). The geometricaknptetation is straightforward, the
function to be minimised is the distance betweea theasurements and the true
correspondences lying over the epipolar lines. Thhes solution is reduced to finding

the closest distance from a point to a line.

Expectation Maximization

The Expectation Maximization (EM) algorithm [25] eYdls maximum likelihood
estimates of parameters of models with missing, datahere exist the (complete) data
spaceX with observed variables X and the (incompletepdggaceY with variables Y

that can only be observed indirectly through X.

The EM algorithm consists of two basic steps: thkpdetation (E-) step computes the

expectation of the maximum likelihood values of tiwenplete dataX ) given only the
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incomplete data (Y) and the current parameter wahfethe distribution ¢®). Note
that if all the variables could be directly obseatvéhe log-likelihood of the complete
data would solve the problem. However, it does tears incomplete data spacé -
herein the problem! The Maximization (M-) step @i the maximum likelihood
estimate of the complete datX ( from the E-step) to compute the log-likelihoodtié
complete data, whose maximization updates the sabfiehe parameters of the distri
bution (). The algorithm needs an initial estimate of theoimplete variables and,
after, both steps iterate until the algorithm coges. The choice of the initial estimate,
the sort of distributions that models the data #redsize of the parameter space will

affect both the accuracy and time of convergendbetlgorithm.

Y(@

A\ 4

X = E(X|Y,CD“’))

v

A\ 4

E ¢ﬁpﬂ)

X,®)=arg max L(x®, o)

CONVERGENCE
NO

Figure 5.1. The EM algorithm.
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5.2.4 Minimisation

We could dedicate a whole section about minimisatibcost function. However that is
beyond our scope. We will only mention the most ownly used methods for iterative

optimisation over the parameters of a function [40]

Direct search methods do not rely on the computatiothe gradient of the function to
minimise. Therefore, they are used when the cogttion cannot be differentiated since
their performance is not the most desirable. Exasipre the downhill simplex and the
amoeba method. Gradient-based methods can besof(dgiradient descent) or second
order (Gauss-Newton). The former does not usuakgent a good convergence while
the latter depends on the approximation of a Tgytdynomial to the searching surface.
Least-squares methods minimise the sum of squastduals. Gradient based-methods
can be used in the minimisation. For first ordeadient descent the Jacobian is used
and for Gauss-Newton the Hessian. An intermedigdpraach is the Levenberg-
Marquardt algorithm [42]. It is considered as thestboptimisation method for least-
squares approaches. Levenberg-Marquardt alterratadient Descent and Gauss-
Newton depending on the trade-off between the spéednvergence and reliability: it
uses the Gauss-Newton when the Hessian is robwstghnto converge fast to the
minimum but uses gradient descent when Gauss-Nefivids troubles to converge. We
use the Levenberg-Marquardt algorithm as a noratimeinimiser of our cost function
within the Gold Standard algorithm (see next segtior scenes we assume that the

projection is perspective.

5.3 The Gold Standard algorithm

The Gold Standard algorithm serves as a referehegaellence for other algorithms in
the minimisation of the maximum likelihood cost @ion. The algorithm varies
depending on whether the application consists dimesing the homography,
fundamental matrix or also affine fundamental nxattiet us explain the procedure of
the Gold Standard algorithm for the maximum likebld estimate of the fundamental
matrix (thus, through minimisation of the geometitor distance in equatiofh10.
The information available is the set of correspoeés kX andx’), whose error can be

modelled by a normal distribution. An initial fundantal matrix € ) can be estimated
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from these correspondences by using the normaBzeoint algorithm. FromF , and
up to a projective transformation, tBe&4 camera matrixR®’) of the right image can be
determined (providing the camera mati® ©f the left image, which does not need to

be computed, only set as3a3 identity matrix and a null 3-vector, and be coteis

thus with F andP’). By triangulation the 3D poinX; is computed from the measured
correspondences and the estimated fundamentalxmabat 3D point is reprojected to
the image plane by the two camera matrices produdite maximum likelihood
estimatesx and x'. The geometric error distance is minimised by a-lwear method
(Levenberg-Marquardt) that corrects the3D-points and the parameters of the right

hand-side camera.

The number of parameters of the cost function is 8n+12, i.e. the number of 3D
points by the3 dimensions plus th&2 parameters of the right camera matrix. Despite
the fact that the parameters of one of the candwa®t need to be adjusted and that the
projection cameras could be defined up to scales(thopping one degree of freeddm
the complete parameter space in the minimizatiagtilislarge and implies a significant

computational cost.

The Gold Standard algorithm for affine geometrymiach simpler. It is reduced to a
linear minimisation of a cost function which is tlsem of distances from sets of
correspondences to the hyperplane that would famthaccording to the affine
fundamental geometryk{ F,% =0), where the hyperplane is f=(a,b,c,d @efined by

the fundamental matrix, see sectibi®). The function is linearly minimised so as to
force the hyperplane to pass through the centréidhe points. Then in order to
minimise the distance from the points to the hyfzam the cost function is minimised

in terms of the normal to the plane. This last s¢egplved easily by SVD.

5.4 Robust estimation

The mismatches existing within the set of corresigmees will degenerate the

calculated transformation that maps both images. pAésent the traditional robust

® A minimal parameterisation is not recommended since it hardens the minimisation surface
[54].
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algorithms that deal with big proportions of outie(>50%) within the putative
correspondence set.

5.4.1 RANSAC

The RANSAC (RANdom Sample Consensus) algorithm [814n iterative algorithm
that randomly selects subsets of samples, modelpdahameters of the projectivity for
that subset and computes a disparity measure beecdmplete set of samples. If the
number of samples, which overall disparity to theded is smaller than a distance
measurd, is larger than a predefined threshdlor the maximum number of iterations
N is reached, the algorithm stops. Otherwise, itststeps again selecting a new set of
random samples. The algorithm discards the sulesetisining outliers, since a wrong
model will score poorly with respect to the thrdsh®. Therefore, it basically consists

of a draw of hypothesis and consequent verification

The disparity measure of RANSAC permits the defnitof a set of inliers, which is

the set of correspondences that approvetmsensushreshold for each iteration:

o\ |1 g2<t?
ple )_{O N (5.17)

The thresholdt is set by considering the distribution of inlieesssuming a normal
distribution of the location error. The distanceoers therefore the result of sums of

squared Gaussian errors, which results ig®a distribution. The probability that this

error is lower than a certain threshold leads usmimdel the threshold with a

cumulative chi-squared distribution.
The definition of the minimum number of inliers &@cept a subseT, is a cautious
estimate of the number of inliers. The set witlyésst number of inliers is stored and the

parameters of the model are estimated from that set

The maximum number of iteratiodsis set to have a probabilify(typically 0.99 that
at least one of the randomly selected samples mimesontain any outlier.
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— |Og(1 - p) (5 18)
log{l - (1- &) '

beings the number of samples drawn every time anthe proportion of outlierd\ is
usually adapted iteratively.,e. when a subsample which contains a lower propoxion
outliers than the previous estimate is found (tleisesponds to a highethat gives rise

to a higher L in equation (5.16).

The performance of RANSAC is vulnerable to a noprapriate selection of the
thresholdt. If the threshold is too high wrong samples wid bcecepted and all the
inliers (true inliers plus false positives) will moibute with the same weight; whereas

when the threshold is too low the support may mosiificient for a good modelling.

5.4.2 MLESAC

The MLESAC (Maximum Likelihood Estimate Sample Census) algorithm [111] is a
variation of RANSAC that improves the performangedmoosing a more robust cost
function. Instead of considering the number of @rdi a maximum likelihood is

preferred.

Another advance with respect to RANSAC is the weadlcontribution of the samples.
If an error is below the threshold, the error ciimition of that inlier is the error itself.
Whereas if the error is above the threshold, therdmution of the error of that outlier is

weighted by the threshold:

(5.19)

The summation of aji’s is the cost function to minimise. The valueta$ also selected
to assure with ®5% of probability that an inlier with an error locati following a

normal distribution is not rejectede. t=1.96.

The negative log-likelihood presented in equatibrig) is minimised. The trouble is

that we do not know the value of the mixing paramet, which is an estimation of the

proportion of inliers in the distribution. Thistise problem of estimating parameters of

150



a model where there is missing data, and the apbréa solve it is Expectation

Maximization. The initial value of is chosen as an estimate of the samples aresinlier

(estimate of inliers for ground truth experiments Chapter4). The E-step of the

algorithm defines that the probability that a saenpl is an inlier given the expected

proportion of inliers is:

Pl =)= (5.20)

With p, the likelihood that a sample is an inlier giveratths an inlier andp, the

likelihood that a sample is an outlier given thetin outlier. The denominator §120
represents the error in the sample spaeethe mixture distribution of a Gaussian and

uniform distributions as shown in equatidri5for a single sample

The M-step consists of a new estimation of thefrom the estimation in equation

(5.20):

1
y="> Pl =1y) (5.21)
1
The algorithm iterates until convergence, genegatite set of inliers. This set of inliers
produce an initial estimate of the transformatibattmaps both images. That initial
estimate is optimised by minimising the cost fumctover that initial estimate and the
whole sample space.

5.5 Affine epipolar geometry

The epipolar geometry for perspective cameras éseuted in Chaptes. Here we
introduce the basic expressions we need for oupatations. When the scenario can be
approximated by affine cameras the algorithms ass kcomplicated due to linearity.
The centres of affine cameras are at infinity ahd projection from 3D to 2D is
parallel. Therefore, the epipolar lines are paraiece by definition all epipolar lines

meet at the epipole, and this is at infinity.

The affine fundamental matrix has the form:
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(5.22)

n
>
1
O O O
o O O
® T 9

As the matrix has five non-zero entries, it hasr fdagrees of freedom: one for each
epipole and two for the affinity between the permdikepipolar lines in each view. The
epipolar lines have the expressions:

I'=Fox = (a,b,cx+dy+e)’ (5.23)

| =F{x=(c,d,ax+by+e)’ (5.24)
And the epipoles are:

e=(-d,c0)" (5.25)

e=(-b,a0) (5.26)

5.6 Automated solution to the correspondence prolhe

Input descriptor. Our descriptor stems from the grouping of pair oinps of interest.
That pairing is a significant advantage when rugniterative algorithms in the
RANSAC'’s family. Recall that the number of iteratoto guarantee with a probability
p that a subset of samples is free of outliers wéasgarithmic expression (equation
(5.18)). As a consequence of the pairing we aemdly reducing the number of samples
sto a half. For example, for the case of affine camepproximation we require four
samples for a minimal solution. By selecting twaatgtors in each image we already
have the four correspondences needed to calcuteteaffine fundamental matrix
mapping both images. But the parameten equation (5.18) will have a value 8f
rather thand4. That is due to the fact that if two descriptosrespond (a pair of
corresponding points in each descriptor that atecaplanar with a pair of points of a
second descriptor in their respective images), ieagsuring at once that a set of two
points in one image have their correspondence atetidpoints of the counterpart
descriptor in the other image. That is advantag@ouke sense of an improvement of
speed of processing: the system will require a kemaumber of iterations as we can
see in figureb.2 But even more interesting, it is a very-welcombéancement in terms

of the proportion of outliers that the new layoanccope with. Figur®.3 shows the
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relation between the number of inliers inside drihigtion that a RANSAC algorithm
can deal with afteN iterations fors=2 ands=4. We can see in the plot that the cost of
dealing with a proportion of arourtD% of inliers 0% of outliers) when selecting
samples is equivalent to dealing with a distriboutaf 50% of outliers when we only
have2 samples to select. The gain is even more advamtiager a greater proportion of
outliers. Notice that the cost of dealing with agortion of almos70% of outliers for
s=4 is the same as dealing with a proportion of orglief 90% fors=2. That proves
that the pairing of data points with our descripiorespecially more powerful when
larger proportions of mismatches exist, which meidwas$ the algorithm can cope with

more corrupted datasets for the same computatcwsal

Number of iterations

Proportion of inliers (y)

Figure 5.2. Number of iterations as a functionha& proportion of inliers and number of
samples.

Proportion of inliers for different s and same number of iterations

Figure 5.3. Proportion of inliers for different nber of samples and fixed number of
iterations.
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Algorithm. Now we explain how the algorithm proceeds (seaigpgeode at the end).
We subdivide the whole feature spa&@nto the two input sub-spac& andS,. The
criterion is thatS, encloses theés0% of the descriptors that received the highest
similarity scores and& the rest. We will refer only t& whenever we mention the
sample space, until a new clarification arises.fifé¢ tile the image with the purpose of
selecting samples (endpoints of descriptors) homegesly distributed over the whole
image - that aims at a proper estimation of thelfumental matrix. We divide the image
into nine quadrants and randomly select featuresrgeors with the restrictions that no
more than two samples can be extracted from thes spradrant and if more than one
sample belongs to the same quadrant the descigptonly accepted if the quadrant
contains at leas20% of the whole number of samples. Otherwise the rijgsc is
withdrawn and another one is randomly selected. éSapplies if the four selected
points are coplanar or three of them are collinsiaGe that would lead to a degenerate

solution for the affine fundamental matrix.

The character of our features sets up four diffecembinations of correspondence of
samples. Let us assume that the two selected &satuirthe first image afgs andfcp,
being the sub-index the endpoints that delimit fisa&ure. Their respective putative
correspondences in the other imagefage andfcp. Therefore, the four combinations
of matching are{AA’,BB’,CC’,.DD’}, {AB’,BA',CC’,DD’}, {AA’,BB’',CD',DC’} and
{AB’,.BA’',CD’,DC’}. For each of these four possibilities we compheedffine minimal
solution of the fundamental matrik,. There can be up to three real solutions congisten
with the data points and all cases should be exasniAt this point we test that the
epipolar lines do not overlap within a minimum drste threshold. If so, the samples
are rejected and another set is chosen to avoidilpesfalse positives since both
samples would be represented by identical epidolas in the other image. Next we
calculate the MLE of the true correspondences thatimises the algebraic error
distance according to the measured correspondemzkshe affine epipolar geometry
defined by F,. That ML is calculated over the whole sample spdte As the
correspondences are arranged in pairs, we fincdhabaidichotomy of finding which is
the true point correspondence. For example, p@nasdH from descriptoffgy in one

image ands’ andH’ from fe in the other image would give rise to the followitvgp
functions to minimise: G-6f +(H-H) +(e-&f +(H-Aor

(G-H) +(H-Gf +(e-AT +(H-&T, representingt the maximum likelihood value or
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true correspondence of that sample. Thereforefuthetion we need to work with is the

one that minimises the distance error among theecbitrue correspondencesg.:
min((G ~6f +H-Af.(e-RA)+(H —é)z) + min((G'—é')z +(H-AT (e-AT +(H '—é')z). The

convergence by Expectation Maximization is impletedras explained in secti@n2.3
The distance error is plugged into equation (5tb5¢ompute the maximum likelihood

estimation of the proportion of inlierg,. After convergence, the error distance gnd

give the negative log-likelihood -L. If that —L iswer than the previous existing
estimate, the set of inliers, their fundamentalrmatnd their errors are stored. Finally,
the number of iteration® of the algorithm is adapted by equation (5.18) dmel
algorithm iterates again selecting a new set ofptesn The process is repeated until the

adapted maximum number of iteration is reached.

After that, another iterative procedure starts lutite number of inliers obeys the
minimised estimation of the fundamental matrix. Wé&em as inliers these samples for
which the error distance is below the threshbldVe differ with equatiorb.19in the
sense that the non-inlierse. error equal or bigger thah, are not included in the
minimisation process. We also sieve inliers thaidpce multiple matches,e. one
sample has got within its vicinity more than onépefar line, only the one with lowest
error is kept. With the set of inliers we determthe Maximum Likelihood estimate of
the fundamental matrix by using the Gold Standadgbrghm for affine epipolar
geometry. Affinities imply linearity and that eagée calculus, basically a simple SVD
provides the affine fundamental matrix from therespondences. For the case that the
images we are working with have perspective effeitis process of finding the true
correspondences consistent with the epipolar gegmggts more complicated as
explained in sectio®.3. We perform the non-linear minimisation with thevienberg-
Marquardt algorithm. Next, with the ML estimatior the fundamental matrix we
define epipolar lines and search for further cqroesliences within the remaining whole
set of putative correspondences, S + S - Sniiers- We find the maximum likelihood of
the true correspondences and calculate the errardich datum. The algorithm checks
whether the number of inliers is stable and if iterates again including new inliers, as
the new correspondences that accomplish the conditiat their error distance is below
the threshold'.
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Procedure Robust estimation of the fundamental matrix

« Putative correspondences from endpoints of affivariant descriptors

« ML estimate of the fundamental matrix

« Correspondences (set of inliers)

Algorithm:
1. Tile both images for homogeneous extraction of damp
2. Repeat for N subsets of samples:

" Select a random number otorrespondences
. Check collinearity and coplanarity constraints
. If violated, select random correspondences again
. Four each case {AA',BB',CC’,DD’}, {AB’,.BA’',CC’,DD},
{AA'BB’,CD’,DC’} and {AB’,BA’,CD’,DC'}:
. Compute fundamental matrix
. There can exist up to three solutions
. ML of true correspondences oV&r
. Calculate error for each correspondence

. Estimate expected proportion of inlieys
= Until y converges:

. ComputeP(/yi =11y)=L

Pi + Po
«  New estimation ofy from P{y, =1y)
* If ¥> Jpeq Store parameters

. Compute negative log-likelihood -L
. Store best inliers, errors and fundamental mathemv—L<-lyest
. Adapt number of iterations
3. Until the number of inliers converge

" Store all (new) correspondences deemed as inhens$;

&2 <t

2>t

2

. 52
«  Threshold constralnp(s2)= 5

. Multiple matches constrain — keep minimum erroepaolar line

= Estimate fundamental matrix from set of inliers

156



. If affine, Gold Standard affine
. If perspective, Gold Standard in section 5.3
. Find further correspondences $ + S - Sniers Over a strip around
epipolar lines
" ML estimate of the (new) true correspondences
. Calculate error for each (new) correspondence
. UpdateS = S- Spjiers, With S =5+ S

5.7 Experimental results

We show final results for the robust estimationcofrespondences from the invariant
descriptors between the images and their homogzaphiChapter 4. Figures 5.4 to 5.6
show the recall, precision and number of regiorisaeied. By referring to table 4.4, we
can see that the system encountered more difesultor the instances where the
transformation combined changes of scale and sHdwa.system should have been
strong to these affinities. However the aforemered propagated errors in the affine
frames face the evidence of lower performancetfong affine changes.

We also show an example of the performance of therithm over the countryside
scene under an affinity and changes in the illutroma The location of the 44 ground
truth correspondences has been added a Gausssnaiatandard deviation 1. Figures
5.7 and 5.8 show the correspondences and the apiljpats. Notice that epipolar lines
nearby can be a source of mismatches when seartdringprrespondences within an
epipolar line strip, since their correspondencesehather epipolar lines in the

proximity. Figure 5.9 shows a successful matchihgoorespondences.
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First image, paints, spipolars

Figure 5.7 Correspondences and epipolar linesarotlginal image.

Second image, points, epipolars

Figure 5.8 Correspondences and epipolar linesarrtmsformed image.

Figure 5.9 Matching of correspondences.
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Yo # matches Success (%) Ybest Iterations
avg std avg std avg std Avg Std
01 8.400 2.998 13.49 8.696 0.250 0.024 61.74 1482
0.15 14.300 3.457 20.06 24.849 0.259 0.022 43.45 1845
0.2 20.100 | 16.535 48.82 41.064 0.268 0.045 50.01 19{38
0.25 26.600 8.947 82.14 4.810 0.332 0.043 31.23 17)49
0.3 33.800 | 10.304 93.41 4.364 0.37y7 0.083 27.77 15/53
04 32.700 9.129 92.94 6.291 0.458 0.059 12.99 4.02
0.5 35.100 | 11.070 93.69 10.640 0.53p 0.030 8.70 291
0.6 34.300 | 11.585 95.30 3.378 0.659 0.049 6.72 1.46
0.7 33.700 | 12.266 98.88 5.778 0.740 0.0587 4.49 1.07
0.8 29.500 | 11.335 96.44 5.639 0.886 0.058 2.95 1.12
0.9 29.800 | 12.726 98.42 3.759 0.963 0.047 0.52 1.10

Table 5.1. Performance of MLESAC algorithm

Table 5.1 presents the results of the performafdeeoMLESAC algorithm over the
same scene for different valuesyofThat is, the set does not contain outliers bat th
initial estimation of our correct potential matchesthin the set, previous robust
estimation, isy. The algorithm was executed 1000 times for eachn the table, the
number of matches is the number of correct (grownth) matches found from the
initial set of 44, ‘success’ is the percentageroétinliers foundypes: IS the maximum
likelihood estimation of inliers obtained by therdtive process of MLESAC previous
to the search of further correspondences by thengation and strip about epipolar

lines stages.

The result of using the system over a real imagdhawvn in figures 5.10 and 5.11. We
can see that the system is not able to find theecbwhole set of correspondences. In
figures 5.12 and 5.13 we perform a search of amum number of correspondences
that permits the recovery of the fundamental mafioixa minimum solution. That is
extracting only the set of best inliers in theatere MLESAC algorithm — four points
(two pairs of descriptors) — and not extractionfuother correspondences over a strip
distance from epipolar lines. The search of cowadpnces is not completely fulfilled
but we can observe that the correspondence protdg@nerates in the search of further
correspondences when the fundamental matrix oifitial set of correspondences does
not satisfy the transformation in between both iesag
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Correspondences

inrages.

Figure 5.10. Matching of correspondences over
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Figure 5.11. Matching of correspondences overireages.
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Figure 5.12. Matching of best set of inliers fanaimal solution.
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Figure 5.13. Matching of best set of inliers fanaimal solution.
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5.8 Conclusions

We have implemented the MLSAC algorithm [111], whis able to deal with the high
proportion of outliers in the sample set of cormsgences. Part of the success of the
MLESAC is the nature of the features that we inRabust estimators are usually input
with single point correspondences. Our featuressisbrof pairs of points. If two
descriptors correspond, that implies that therstexdready two corresponding points.
That permits faster convergence of the algorithnrdgucing the number of iterations
or being able to deal with higher proportions oflieus at the same computational cost.
The experiments were performed with the syntheatadrom the affine invariant
descriptor in Chapter 4. When using real datayoeist estimator of the parameters of
the fundamental matrix between the images was ¢ @0 find the correct
correspondences. However, the system proved dasatisy performance for affinely
transformed images. That stems from the fact thatdomputation of the geometric

descriptor relies on the calculus of derivativestawn in previous chapter.
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Chapter 6 — Conclusions

6.1 Discussion

We have proposed a method that combines an absadfute geometric invariant with
an affine invariant photometric descriptor basednmyments developed by Mindet
al. [82]. The affine geometric invariant is based oae #ffine arc-length metric. Affine
invariant parallelograms are extracted along camstoihe principal difficulty of this
kind of approach is that the affine arc-length Eryw dependent on the adequate
extraction of the contours and particularly on ghtidetection of the endpoints of
segmented contours. Contour maps are not alwaibielextracted under change of
view or illumination: they are sensitive to occlusj partial detection and different
labels at junctions. To ameliorate this, we implatrtero approaches. First, we perform
perceptual contour grouping that improves the aaenections of the contour map.
Second, we consider high-curvature points lyingrogentours that are robust to
viewpoint and illumination changes. This permitgreentation of the contours into
more reliable and bounded primitives from which f@em the invariants. We organise
the information in a graph structure: the nodesestioe spatial information of the high-
curvature points whereas the edges are the comstgments delimited by the high
curvature points. We generate a descriptor for eaain of interconnected high-
curvature points. Thus, the system can accommottaeaffine arc-length based
descriptor, and is robust to poorly defined contdetection, since all the possible
combinatorics of interconnected high-curvature timand different labelling of
contours are considered. However, the drawbackaesitherent computational cost
associated with a dense search space.

Experimental analyses have shown that the areanatkfby the affine invariant

parallelogram is very susceptible to input errofbe affine arc-length requires the
computation of the first and second order spataivdtives along the contour. We
approximate the contour with a least-square cupime approximation and compute
the derivatives of the splines. That is prefertedther alternatives like computing
finite differences, which are sensitive to noisewdver, the small noise that stems
from the approximation with splines propagates ulgitmut the expressions that define
the affine arc-length frame resulting in a consadbée error at the output. Indeed, in our
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tests even the computation of the affine invarifatme from one-to-one affinely
transformed contours results in unsatisfactory grerénce. In our tests with ground
truth, we compared the performance of the systemenwtiansforming the spatial
coordinates of the contour with an affinity withetiperformance when applying the
same transformation to the spline themselves @guB0). In the former case, the error
introduced by the splines is minimal but it is prgpted, whereas for the latter there is
no error propagation. We performed experiments sytiithetic data where the contours
were affinely transformed. The matching successhefalgorithm was low, although
further research has been undertaken in the imprewme of the voting algorithm. In
particular its substitution by an iterative Munkisgorithm. However, we have centred
our efforts upon the descriptor itself rather th@m the matching process. The low
number of true correspondences found for synthetages restricted the application of

the system over real viewpoint scenes where thtooosare independently extracted.

In Chapter 5 we have implemented a maximum likelthoestimate RANSAC
algorithm, MLESAC [111], which is able to deal witte high proportion of outliers in
the sample set of correspondences. Part of theessiaf the MLESAC is the nature of
the features that we input. Robust estimators aally input with single point
correspondences. Our feature descriptors are as@airs of points. So matching the
descriptors between images implies that there ewist corresponding points. This
permits faster convergence of the algorithm in cangon with single point-feature
descriptors by reducing the number of iterationsgrmabling the system to deal with a
higher proportion of outliers at the same compatel cost. We have proved that the
algorithm is able to deal with percentages of eusliof around 90%. This is equivalent
computationally to the cost of dealing with a prdfmm of outliers of less than 70% in
the single-point feature case. These experiments performed with the synthetic data
from the affine invariant descriptor in Chapter When using real data, the robust
estimator of the parameters of the fundamentalimbéatween the images was not able
to find correct correspondences due to errors engkiraction of the affine invariant

frames.
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6.2 Further work

The performance over real scenes of the geomdtmzanvariant frame, which is core
to our application, is endemic to the propagatibarcors. There is a need to investigate
whether this propagation of error can be mitigated; whether even if the
parallelograms are not absolute invariant due éséherrors, the descriptor can produce

more reliable regions; or if not, we need to lobkléernatives that are more robust.

Wide baseline matching has been applied almostusix@ly to images of the same
modality. The system can be expanded potentialmutii-modal applications using for
instance, mutual information as a photometric dpgar. The incorporation of intensity
and range data models of image formation can aklsocassessed for multi-modal
registration and even fusion. Defining a collectmmodels, initially for visible and
infrared imagery, with a different number of chaesistic components may be helpful
in constraining feature search as well as estahtishomplementary information and
eliminate interpretation ambiguities between ddéfdar modes. Therefore, changes in
illumination, emissivities, reflectance, surfacemal o depth would produce a different
variation of intensities depending on the image enodlhe approaches would be
strongly dependent on the operational scenario,iffstance the search for planar
patches approximations is effective for aerial syrbut totally inappropriate for long

range IR or RF data.
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Appendix A — Matching contours in image pairs using-ourier
descriptors

A.1 Introduction

We study an alternative approach to solve the spmedence problem using
corresponding contours in a pair of images. Theslfas this study is the work by Wu
and Sheu [127], which described a method to matoked contours in a pair of
perspective images. As before, contour informatgpotentially more robust against
changes in the photometry of the image, and thepadational complexity may be
reduced by limiting the dataset. Boundaries arédrdevel entities than corners, edges,
etc. being able to conglomerate much more inforomathat at the same time can be

constrained by some metrics in order to have &bdtfinition of the entity.

The method assumes a perspective projection andvligdge of the positions,

orientations and focal length of the cameras. Hetlmefundamental matrix that relates
a point in one image to an epipolar line in theeotimage is known. Contours on either
image plane can be represented by Fourier seriemn Fourier descriptors are defined
using the computed epipolar geometry to performntfaéching based on a measure of
similarity. This metric, termed the “spectral dista”, between these two descriptions is
a measure of the degree of matching between thewan If this is maximised, then the

contours are well matched. The authors computeeaative procedure in the frequency
domain where sets of slopes and intercepts of pif@okar lines corresponding to each
contour are used as descriptors. Therefore, ithes difference between these two

encodings that is minimized.

If the method assumes knowledge of the epipolamgéxy then at first sight it is not a
viable approach to match uncalibrated, wide-baselimages. There are two

possibilities:

 The minimum spectral distance is used as a cogitimin an optimization
procedure. The transformation into the Fourier donmaight be expected to

make the computation more robust.
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« ltis used as a hypothesis verification step intarative algorithm. Hypotheses
are generated by random sampling of point sets &wst@nded contours, then the
minimum spectral distance(s) of the whole contguigs(are) used to confirm
the hypotheses in a robust manner.

A.2 Scene geometry

As depicted in figuré\.1, the relative positions and orientations of the ttemeras with
respect to the world coordinate system are knowhthe locations of the 3D points in
the space are unknown. Three tri-dimensional and bikdimensional coordinate
systems are involved. These are, respectivelywbed coordinate system, the two
coordinate systems of the two cameras and the gfaiwo-dimensional coordinate
systems of their image projection planes. The sgcooordinate of the cameras’
reference frame corresponds to the dimension othd@fherefore, image planesand

w; are parallel to the image planesandw of thei™ camera coordinate system at a
certain depth magnitude which is set by the foeayth4; of each camerd.; andL, are
the rays that go through the camera centres andagbria perspectivea 3D point of the

world onto the image plane coordinates.

The displacement between the two cameras is:

Ked Kot - Xe2
ycd = ycl - ycz (A. 1)
Zd Zer- Ze2

where X Y. Zi are the coordinates of the camera centres in woddrdinates.
Therefore, a point into the coordinate system @& camera can be transformed into the
coordinate system of the other camera by:
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Camera 2

U U-
Vi | = R Ve |+ P (A2)
Wi W-

If Ry andR; are the orientation of the each camera with resjgetite world reference

frame, therR; andP; are:

R=R R (A3)
J Ked
R=K|=-R QY (A.4)
L Zea

The calculations can be reduced in complexity withlmss of generality by simply
assuming a canonical camera configuration. Hemstayd consider that the basis of all
coordinates is the cametacoordinate system. Consequently, this camerahaie its
camera centre at the origin and look alongixis. The resulting new coordinates for
the camera centre®; and two imaged points from obje¢t i and Q,, are the

following:
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0, = (000) Q= (Uyp Ay, W)

(A.5)
T
0,=(J,K,L) Q,=R|-4, [+|K
W. L

2p

where the coefficientg denote the focal length of each camera

A.3 Epipolar Geometry

The epipolar geometry [130,54,36,109] limits tharsk of the position of points in one
view of a single scene according to the positiothefr counterparts in the other view
by means of epipolar lines which constraint wheme points lie. The projective

geometry between the two images is defined withstigport of the internal parameters
of the camera and the relative pose. It is independf the scene structure.

The epipolar geometry is represented by a 3x3 mjatne essential matrixwvhen the
internal parameters of the camera are availablihe@fundamental matrixvhen these

are unknown.

ConsideringO, andO; the optical centres of two cameras and a @it the 3D space;

p andp, are the images d® on the 2D image plane of each camera (fighi/d. The
epipolar plandT is defined by the point in the first imageand the two optical centres.
The line which intersect$/ with the plane of the second camérg) is called the
epipolar line This constrains the location of the counterpdripo(p;) to this line.
Furthermore, for every poirgi in the first image describing a plang, there exists a
point & in the other image, called tlepipole which all the possibl& epipolar lines
pass through by. This is due to the line betweenaibtical centres acts as a pencil for
all epipolar lines and the epipole lies in the iséetion of this joining line betwedd,
andO.

Assuming pinhole model:

5B = Al O]m 5 =A[R ‘][ﬂ (A.6)
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EPIPOLAR GEOMETRY

EPIPOLAR
PLANE

EPIPOLAR
LINES

Figure A.2. The epipolar geometry.

with § and s arbitrary scalesA and A, the intrinsic matrices of the camerasthe
identity matrix andR andt the rotation and translation of the second camespect to
the first. Cancellings, s andP from equatiorA.6, gives the fundamental equatiéy,

which says that the corresponding point in thetrigtage lies on the epipolar line:

P, A TRA'P =0 (A7)

whereT is an anti-symmetric matrix defined bguchTx=t 4 x for all 3D vectorx, with

A denoting the cross product.

From the previous equation, it can be extracted etygression of théundamental

matrix of the two images:

F=ATRA™ (A.8)
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Figure A.3. Epipolar lines over indoor and outdaade-baseline scenes.

A.4 Slope- and intercept-based contour matching

Therefore, the search for a poi@t in the right image is constrained according to the
given point Q; in the left image and the epipolar camera geomelry find the
relationship between point®; and Q,, we refer to the seminal paper by Longuet-
Higgins [70]:

Q' EQ-=0 (A.9)

whereE is the essential matribg = R [P{]x, and[P{x denotes the skew-symmetric
matrix:

0 t3 -t
[R]x =-t3 0 5]
tob, -t O

For uncalibrated cameras, we can use the fundahrattiar than the essential matrix.
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Then
Q' FQ=0 (A.10)

and
l,=F Q, h=F'Q (A.11)
wherel; andl, are the epipolar lines corresponding to the gpeints in image planes
1 and 2, respectively. Therefore, for two corregpog pointsQ: = (Uip -41 Wip) andQ>
= (uzp A2 Wop), from equation (A.10) we have:
[Uzp -2 Wag F [U1p A2 Wy "= 0 (A.12)
whereF is the 3x3 fundamental matrix, which is a functadra rigid transformation:

F=R'[Pdx=R K=R (-Ky) (A.13)

For a given pointupp , Wop) On image plane 2, the epipolar liheon image plane 1 is

given by equation (A.11) the parametric expressiothe line is:

l1=[a; by c] "= Fugp A2 Wag T (A.14)
and, as a lind; can be expressed as:

W=+ pidy (A.15)
the slope and intercept are:

n="%  p=2 (A16)
G G

Similarly, for a point ¢1p, Wip) on image plane 1 the corresponding epipolar tine

image plane 2 is:
lo=[az bo cg] "= F [uzp -1 Wig] " (A.17)
W2 = 12Uz + po/z (A.18)

175



p, =21, (A.19)

At this stage, we have two epipolar lines, one atheimage plane, expressed as
parametric equations. The equations below show rélationship between the
parameters of both epipolar lines.

Hence, lefup, v, W] T be the coordinates of a 3D point in the spacegipeessions of
the 3D-to-2D perspective projections of this pairg given by:

Up Uy, Up U,,
Ve || A Vo |=SR| =4, [t R (A.20)
W, W, W, Wy,

wheres; and s are the scalar parameters of the perspective projeci@ach camera.

Inserting the termui, -41 Wlp]T from equation (A.17) into equation (A.14) and

applying equatio\.2Q

Developing analogous steps for the parametric esspa of the epipolar line in image

plane 1 (equation (A.14)) yields the following egpsion:

4 K
b [==t0u, vo W] (A.22)
, S,
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Thus, the relationship between the parameteryendby:

ap a
b, |=s[Ry Oy s:-sg2 (A.23)
C2 vl

The scalar constarst can be neglected if the parametfash ¢] are expressed as a

function of their respective intercepts and slope# equations (A.1&nd (A.19).

From the relationship among the parameters of spaeding epipolar lines, it can be
demonstrated that given a poingd, Wop) in image plan, the epipolar line on plare

is:

[uz -A2 Wo] Ry' F' [ugp-42 Wo] "= 0 | (A.24)

Finally, if (U, 2, Wap) and (1 -41, Wip) are corresponding points, then the
expressions of their respective epipolar linesmage plan® should be equal, then:

SR CF (U Wa = F - [Usp—la W (A.25)

The approach is described above for a pair of ppiahe from each image. When
matching contours, each contour is treated as afsebnnected points, and so each
contour leads to a set o epipolar lines. At theggst we could define a procedure to
match these sets of epipolar lines. This would mgsspre-calibration of the cameras’
intrinsic and extrinsic parameters, but the meastisimilarity between closed contours
does not depend on knowledge of corresponding pdiatween the images. Further,

the contours are not constrained to be planarar8ih space.
Procedure Match a pair of closed contours, one in each En@gatial domain)

In:
e [I7,1%,; one closed contour from each imagéxiny;} form.
* R, P arotation and translation matrix that definesgbsition of the second
camera 2 with respect to camera 1.
« The focal lengths of cameras 1 andizandA,.
Out:
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* DM, a metric defining the similarity between the teantours.

Algorithm:

1. Compute the fundamental matrix from known camertiresic and intrinsic

parameters (equation (A.13)).

2. Compute the set of epipolar lines in image planthat correspond to the set of
contour points in image plane 1, usingFQ;. Express these in terms of their

slopes and interceptg; andp..

3. Compute the set of epipolar lines in image plantat correspond to the set of

contour points in image plar#e usingl;=F 'Q..

4. Knowing, the transformation from image plahé¢o the image plang (R and

Py compute the set of transformed epipolar linesriage plane, I_Z, from the
set of epipolar linet. Express these in terms of their slopes and iefescr7,

andp, .

5. Compute a distance metric between the two setpipbkr lines in image plane
2, using the set of slopes and intercepis, 2} arising from the contour in

image planel, and the set of slopes and intercepig {p,} arising from the

contour in image plan2

However, Wu and Sheu expressed the contours aseF@earies in a spectral domain.
They claimed that there are two advantages of #pproach. First, most of the
information about shape is contained in the fiest fcoefficients. Hence the matching
process can be made more efficient than using camploint set$x;,y;}. Second, the

process is inherently more noise insensitive in #pectral domain, since higher
frequency components can be easily truncated. éyrémce the comparison is made in

the spectral domain, the encoding is invarianth® thoice of starting point on the
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contour. For a contouf; in the left image and? in the right image, the description
through their Fourier series coefficients is atofwk:

u, (t) o | @b co{ kz?ntj
Ml -A [=|-A +; oog
w(t)| | e e fu | sin k=
- (A.26)
u, () azo . A Do Co{kz_n
M —=A, |[=|-A, |+ 00
2 2 2 kZ:; _ 7
w,(t)| | es e fa | | SN k—

wheret defines the sampld; the total number of samples around the contkuhe
harmonic term and;, 4 and/;, thex, depth (focal) ang coordinates of the contour in

the image plane respectively. The Fourier series coefficients espond to the, b, e
andf terms.

Thus, the spatial information of the contour isygfarmed into the frequency domain.
The slopes#) and interceptsp] of the epipolar lines on image pla@efrom points
extracted from image plarieare described in that domain using the approasbrited
in equationgA.17) to (A.19), computing the same parameterthefepipolar lines on

image plane but from contour points of image pla@eby applying equation (A.24).
That is:

a0+ [, Eoska) +b, Binka)|

@) =——-2 -
8o+ [6, Loska) + T, Sinw)

(A.27)

Co + i[&tk [toskaw) +d,, [];in(ka))]
pl@) =—2 -
8o+ [e, oska) + T, Binka)]

with:
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a0 810 B by a bk
Co |=F -1 ¢k dyx|=FO 0 O (A.28)
€0 €0 ik ftk e f

for the coordinate points in the frequency domaimfimage plané (left image), and:

)

atO azo atk Atk aik blk
Co [=R F -4, ¢, d,|=R'IF'00 0 (A.29)
€ €0 € ftk e fu

for the other Fourier description of those poimtgmage plan@ (right image).

The sets of slopes and intercepts along a conteuexiodic, thence:

{n(w)}{nao}i[nak anHCt_Ds«w)} (A.30)
p(w) Pao] G P Poc | Sinka)

To solve equation (A.30)n which there exist two unknowns but also fourestinfinite

terms, an iterative solution is proposed. The dtlgor iterates until an approximation
error &pound computed fromyak, 7bk, pak @nd ppk, converges to a minimum, which is
predefined. Once this minimum has been reachedalparithm terminates and the
Fourier descriptors for the set of slopes and oajgts of the epipolar lines on image
plane2 are defined. Recall that this is performed for $leé of epipolar lines on image
plane2 calculated from the set of contour points on imagmel (equations (A.2)y

and (A.25) and for the set of epipolar lines on image plareomputed from the set of

contour points in image plarZ(equations (A.24), (A.27) and (A.29)).

A.5 Minimum spectral distance and fuzzy logic implenentation

The next step defines the measure of similaritywbet corresponding contours in
different planes by means of a spectral distanedoth are now represented by Fourier
descriptors of the same set of epipolar lines emgame plane. An additional, claimed
benefit of application in the frequency domainhattit gains benefit of invariance to the

position of the starting point on the contour.
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The spectra of the slopes and intercepts of a comntim the left image and of another
contourj in the other image are given Bk, 7ok Piak Piok aNd Hjak, Hjoks Piaks Pjbk »

respectively. Hence,

1 1
SD”- :a[[(mao _,7ja0)2 +(10ia0 _loj'ao)z]E + (1_0') ZN:(ﬁik _’?jk )2 +i(pak _ijk )ZT

k=1 k=1

(A.31)

where

M = \/”iik +,7i§k Py = v piik + piik
ﬁjk = \/”jzak +/7j2bk ﬁjk =4 Iojzak + lojzbk

SD; is the spectral distance between descriptors ofocosi andj, k is the harmonic
number N is the total number of harmonics amds a factor constrained in the interval
0 to 1 that weights the relevance of the frequency teofmthe descriptor. Thus, the
value of this parameter is related to the set of epipolar lines that degieach contour.
For the case of similar shapes ttheterm could acquire greater significance as this
defines the position, whereas the higher frequeéecys are of most interest in defining

differences in shape of the contours.

An automatic method based on the principles ofyuagic [28] has been implemented
to adjust this weighting factor. This is the degoéenatching between contours [{d)
for a certaimn:

SO

DM, (@) =1-————
max(SDh,)

(A.32)

Let | be a number of evenly space® considered in the interv@0...1]. There will
existl different fuzzy set®(a), containing the degrees of matching [X), that will be

calculated for each and enhanced via a fuzzy AND operator)( The fuzzy degree of
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matchingD, enhances the value for good matches and redheesries with a low

degree of match Dipjt

D= h R(a,)=R(a,) O R(a,) OR(@,) 0...0 R(@,) (A.33)
R(@y.) ORG@,) ={[(i. i) MR (a,..a,) DX, O} (A.34)

max{o, DMij (am—l) + DMij (am) _1}
for DM, (a,,4) + DM, (a,,) -1<U,

MRJ' (am—l’am) =
%[DM i (@) + DM (am)]

for U <DM,(a,,)+DM;(a,)-1<1

whereU; is a threshold. The outcome is a table of the degfematching betweem
contours on image the left image andontours on the right image, Tal#el. The final

algorithm is shown below. Also, figure A.4 showgraphical representation.

pair 1 2 N
1 D11 D12 Dln
2 D21 Dzz
m ISm:l. Dm2 IESmn

Table A.1. Degree of matching matrix

Procedure Match a pair of closed contours, one in each en@pectral domain, Wu

and Sheu)

In:

I, I5,; one closed contour from each imagéxiny;} form

N, the number of harmonics used in a Fourier desurigf each contour

*  Onax a@n approximation error for the vibrating slopel amtercept representations
* R, P:arotation and translation matrix that definesgbsition of the second
camera 2 with respect to caméra

» The focal lengths of camerdasaand2, A; andA
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Out:

DM, a metric defining the similarity between the teamntours

Algorithm:

1.

Compute the fundamental matrix from known camertiresic and intrinsic

parameters (equation (A.13)).

. Compute thgN+1) Fourier series coefficients for contour,, using equation

A.26
Compute the corresponding parameters for the egipgwles in image plan2

using equation (A.28).

. Convert this into the spectral set of slope aneérggpt functionsy,(w) and

p2(w) using equation (A.27), that exist within imagenda.
Expandnz(w) and pa(w) in Fourier seriegnao, ak Hok and pao, pak, ppok) as
expressed in equation (A.28). Uggxto determine the number of harmonics.

Compute the Fourier series coefficients for contdurusing equation (A.27).

7. Compute the corresponding Fourier series coeffisiéor the epipolar lines in

image planel, then use the known transformation matrices to pdm the
Fourier series coefficients for the transformedpefar lines in image plan2
using equation (A.29).

Covert this into the spectral set of slope andre#pt functions,s, (») and
0, (0), that exist within image plariz

Expand 7, (w) and g, (w) in Fourier serieg7 .77... 7, and p.,, p... P,).as
expressed in equation (A.30). Use algg.x to determine the number of

harmonics.

10. Determine the minimum spectral distance betwegs 7ak, 7ok Pao, Pak,, Lokt and

{70 M. Ty @Ndp, . D, B, } (€quation (A.31)).

11.Compute the degree of matching PM) (equation (A.32)) and optimise the

search for a set of equidistant values of the patam by using a fuzzy logic
approach (equations (A.33) and (A.34)).
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Compare both epipolar lines

Figure A.4. Graphic representation of the epipdiaes algorithm. Top figures
represents the relation between a p@aton the left plane and epipolar lingih the
second plane. The blue dashed line is the unkn@ipolar line on the left plane of the
corresponding point o®; on the right image (also unknown). The left bottbgure
represents the relation of the epipolar line on lgi¢ plane of Q. (the potential
corresponding point o;) whereas the right bottom graph shows the reldtiemveen
two epipolar lines. Therefore, the bottom biggestwa gives a relation for extracting
from a pointQ, on the right image plane the epipolar line (alsalwa plane 0fQ,) of
the potential pairing poin@;. Finally, the minimum spectral distance metric Vdou
compare slopes and intercepts of both epipolarslioe the right planes (solid red

epipolar lines).

Using the above procedure, we obtain a minimumtsgledistance NISD), normalized
in the range 0<MSD<=1, for each ofnn pairs of contours in the two images, where
andn are the numbers of contours in the respective @naghis can be represented in
the form of a matrix. To obtain a final consistéaibelling, it is necessary to find the

optimum labelling between the possible pair of ocon$ using the appropriate
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constraints. Wu and Sheu used a fuzzy logic praeesiuwhich they can prioritise the
importance of position or shape of the contour gi@nparametery, that weights the
first (dc) component of the Fourier series with respeché&higher harmonics.

A.6 Experimental results

First, the process will be demonstrated using stichdata. A simple scene is
represented by two planar contours in 3D spacégadsof creating a complex setting,
depicted in figure A.5The camerd coordinate system is paced at the world reference
frame, and camera 2 points toward the scene frahfferent, only slightly displaced

position and orientation.

The 3D-to-2D projections of each camera for a pearspe CCD projection are shown
in figures A.6 and A.7. Note that the intersectafnthe axial rays (in cyan) with the

plane of the object sets the origin of coordinatehie projected image.

Figure A.8 shows a representation of the Fouriealymms of the set of spatial
coordinatescorresponding to the largest contour up to an asirgy number of
harmonics. Note that a short numberkdfiarmonics gives a fair approximation to the
original signal. This is equivalent to smoothing thontour in the spatial domain.
Figures A.9 and A.10 depict the values of the spécbefficients of the expansions of
slopes and intercep, /7, 0, 2 (steps 5 and 9 above — equation (A.31)) W&R20

for the four possible combinationg€1,2) between the two contours in the two images.

3D scene and camera locations

I e S

s o : “:WN\IPQ.Camera2
EIan \E' 1¢ameraT:
5

Figure A.5. 3D scene and camera geometry
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CCD camera prajection onto the plane

3D scene and camera locations

Figure A.6. 3D scene view from a viewpoint perpentir to the axial ray of camera 1
(left), and CCD projection onto the plane (right).

CCD camera prajection anta the plane
T T

T T
30 scens and camera locations H ; %1
(R : 4 H {

\

Figure A.7. 3D scene view from a viewpoint pergeunbtir to the axial ray of camera 2
(left) and CCD projection onto the plane (right).
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Spatial reconstruction up to harmenic k=0
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Figure A.8. Recovered contour in the spatial donbgimising k harmonics.

Successively, k=0, 1,2,3,4,5,10,20
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Figure A.9. Measure of slopes and intercepts ofgendata extracted from contouin
the left image and from contopin the right image (equatioh28 [a-d] / (i,))={1,1};
[e-h] / (i,))={1,2}: a) and e) slopeg, 77, - b) and f) respective logarithmic plots. c) and

g) interceptsp, P, . d) and h) respective logarithmic plots.
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Figure A.10. Measure of slopes and intercepts @igiendata extracted from contaun

the left image and from contoyrin the right image (equation (A.28)) [a-d] /

(i,)={2,1}; [e-h] / (i,j))={2,2}: a) and e) slopesj, 77, - b) and f) respective logarithmic

plots. ) and g) interceptg, 0, . d) and h) respective logarithmic plots.
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The degree of matching performed by the curreniempntation of the algorithm for a
threshold olU; = 0.6is:

5 06) = {0.9395 0 7}

0 0.894

This means that the algorithm identifies that timst fcontour in the first (left) image
corresponds to the first contour in the secondhfyignage, with a degree of matching
(DM) of 0.9395.For the second contour in both images, notice tth@DM is 0.8947
The matching between the pair of first and secamttaurs in the left image with the
pair of second and first contours in the right imagespectively, are rated with 0. The

matrix above yields the contour correspondencetisolu

However, the satisfaction with the degree of maighobtained is a function of the
parameter U;. This parameter was set empirically. Figure A.lhoves the
correspondence matrix @M for different values otJ;. Values within the range[1-
0.6] show similar results and good performance. Howefor higher values ot); the
results are degraded:

_ 0 0 ]-=~ 0 0 = 0 0
D(07) = D (08) = D (09) =
0 0.8947 0 07893 0 04171

U,= 0.1-0.]
Y=07
U=08
U,=09
U=t

Matching matrix graph

LN I )

=
o

= =
S m

o
ha

Degree of ratching (D)

(=]
"y

Contour right image Contour left image

Figure A.11. Representation BbiM; as a function otJ; (4 possible combinations for
the case of two contours in each image). Noticesbme dots mask others.
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Thus, the selection of this parameter plays an mapo role for the final outcome. If a
fuzzy logic procedure is sensible, and we cantlyeadmment on its efficacy at this
stage, then the setting of this parameter woule habe set automatically and justified.
Further, the degree of matchiijM (equations (A.31) and (A.32)) is a function of a

parameter, which crudely weights position as opposed to shaghe contour.

Finally, figures A.12 and A.13 depict, back in thpatial domain, the two sets of
epipolar lines in image plar extracted from the spectra of the slopes anddeps
computed by the algorithm. In figure A.14 we shdw tesult of applying the algorithm
to an indoor scene where three close contours bhaen detected. The algorithm
satisfactorily rejects non-corresponding contowrstbere appears one mismatch.

Wibrating epipolar lines

wwwwwwwww

"
= 0
0
2 D
z X

Figure A.12. (Left) Epipolar lines on image planeénstructed from contour points
from image plane 2. Notice the epipolar lines avatained on the image plane for a
focal length f=20. (Right) Zoom.

Vibrating epipolar lines

Figure A.13. (Left) Epipolar lines on image planeénstructed from contour points
from image plane 1. Notice the epipolar lines anetained within the image plane for a
focal length f=20. (Right) Zoom.
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Figure A.14. Confusion matrix of a real scene. Hbgorithm is run over the three

closed contours selected from the scene.

A.7 Summary

We have implemented an algorithm to match closedtoeoss based on the
fundamentals of epipolar geometry, following theliea work of Wu and Sheu. We
have applied it only to synthetic data, and shohat it is successful in identifying
correspondences between simple contours, providedepipolar geometry is known.
Working in the frequency domain, the method has libeefits that it can be less
sensitive to noise by taking only a determined nends frequency components, and of
lower complexity than a full Fourier implementatiofurther, normalization can
provide scale invariance, and the algorithm app#atse invariant to starting point on
the contour since the measure of dissimilarity asdal solely on magnitude spectra.
Invariance against rotation and translation is inipkince the geometry of the camera

scene is contained in the fundamental matrix.

Examples in the literature typically apply Fourgscriptors to closed contours due to
the need for periodicity for the Fourier analydiowever, there can be strategies to
devise periodicity from open contour informatioror lexample, when the two endpoints
are reliable the travelling-back sequence fromlés¢ point to the initial point can be

added to the original curve string [88]. If the pothts are not reliable, a threshold
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measurement based on the curvature extrema ofdh®w can be used to define

limiting points.

As described, the method relies on knowledge ofdammera intrinsic and extrinsic
parameters. That may seem contradictory since Hjective of the method is the
matching of contours and, for the usual case oflil@ted images, this is unknown.
However, a fundamental matrix may be extracted @mcmitial set of potential matches
has been computed, e.g. from some of the methasisided in Chapters 2 and 4. The
procedure could be considered as a robust methaigport a pre-computed set of
putative matches from an image pair that might gazaough estimation of the
fundamental matrix. Consequently, it may be possibldevelop a stark hypothesis (a

fundamental matrix) and test, or an optimisatiomcpdure.
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