2,595 research outputs found

    Writing stack acceptors

    Get PDF

    Near-IR Absorbers Based on Pt(II)-Dithiolene Donor–Acceptor Charge-Transfer (CT) Systems: A Structural Analysis to Highlight DA Interactions

    Get PDF
    The packing interactions of a series of electron donor (D) and electron acceptor (A) charge transfer (CT) near-IR absorbers based on platinum-dithiolene complexes are reinvestigated here as a case study also by using the Hirshfeld surface analysis. This analysis on systems, which exhibit the 1:1, 2:1 and 2:2 columnar stacking patterns between D and A, allows to point out that several inter-actions of atoms and fragments are involved in the stacking interactions but also that only a lim-ited fraction of these interactions, limited to the 1:1 D/A columnar stacking case, can be relatable to the absorption features of this class of compounds

    Collapsible Pushdown Graphs of Level 2 are Tree-Automatic

    Get PDF
    We show that graphs generated by collapsible pushdown systems of level 2 are tree-automatic. Even when we allow ϵ\epsilon-contractions and add a reachability predicate (with regular constraints) for pairs of configurations, the structures remain tree-automatic. Hence, their FO theories are decidable, even when expanded by a reachability predicate. As a corollary, we obtain the tree-automaticity of the second level of the Caucal-hierarchy.Comment: 12 pages Accepted for STACS 201

    Spatial mapping of band bending in semiconductor devices using in-situ quantum sensors

    Get PDF
    Band bending is a central concept in solid-state physics that arises from local variations in charge distribution especially near semiconductor interfaces and surfaces. Its precision measurement is vital in a variety of contexts from the optimisation of field effect transistors to the engineering of qubit devices with enhanced stability and coherence. Existing methods are surface sensitive and are unable to probe band bending at depth from surface or bulk charges related to crystal defects. Here we propose an in-situ method for probing band bending in a semiconductor device by imaging an array of atomic-sized quantum sensing defects to report on the local electric field. We implement the concept using the nitrogen-vacancy centre in diamond, and map the electric field at different depths under various surface terminations. We then fabricate a two-terminal device based on the conductive two-dimensional hole gas formed at a hydrogen-terminated diamond surface, and observe an unexpected spatial modulation of the electric field attributed to a complex interplay between charge injection and photo-ionisation effects. Our method opens the way to three-dimensional mapping of band bending in diamond and other semiconductors hosting suitable quantum sensors, combined with simultaneous imaging of charge transport in complex operating devices.Comment: This is a pre-print of an article published in Nature Electronics. The final authenticated version is available online at https://dx.doi.org/10.1038/s41928-018-0130-
    • …
    corecore