
Symposium on Theoretical Aspects of Computer Science 2010 (Nancy, France), pp. 501-512
www.stacs-conf.org

COLLAPSIBLE PUSHDOWN GRAPHS OF LEVEL 2 ARE

TREE-AUTOMATIC

ALEXANDER KARTZOW 1

1 TU Darmstadt, Fachbereich Mathematik, Schlossgartenstr. 7, 64289 Darmstadt, Germany

Abstract. We show that graphs generated by collapsible pushdown systems of level 2
are tree-automatic. Even when we allow ε-contractions and add a reachability predicate
(with regular constraints) for pairs of configurations, the structures remain tree-automatic.
Hence, their FO theories are decidable, even when expanded by a reachability predicate.
As a corollary, we obtain the tree-automaticity of the second level of the Caucal-hierarchy.

1. Introduction

Higher-order pushdown systems were first introduced by Maslov [10, 11] as accepting
devices for word languages. Later, Knapik et al. [8] studied them as generators for trees.
They obtained an equi-expressivity result for higher-order pushdown systems and for higher-
order recursion schemes that satisfy the constraint of safety, which is a rather unnatural
syntactic condition. Recently, Hague et al. [6] introduced collapsible pushdown systems as
extensions of higher-order pushdown systems and proved that these have exactly the same
power as higher-order recursion schemes as methods for generating trees.

Both – higher-order and collapsible pushdown systems – also form interesting devices
for generating graphs. Carayol and Wöhrle [3] showed that the graphs generated by higher-
order pushdown systems1 of level l coincide with the graphs in the l-th level of the Caucal-
hierarchy, a class of graphs introduced by Caucal [4]. Every level of this hierarchy is
obtained from the preceding level by applying graph unfoldings and MSO interpretations.
Both operations preserve the decidability of the MSO theory whence the Caucal-hierarchy
forms a rather large class of graphs with decidable MSO theories. If we use collapsible
pushdown systems as generators for graphs we obtain a different situation. Hague et al.
showed that even the second level of the hierarchy contains a graph with undecidable MSO
theory. But they showed the decidability of the modal µ-calculus theories of all graphs in the
hierarchy. This turns graphs generated by collapsible pushdown systems into an interesting
class from a model theoretic point of view. There are few natural classes that share these
properties. In fact, the author only knows one further example, viz. nested pushdown
trees. Alur et al.[1] introduced these graphs for µ-calculus model checking purposes. We

1998 ACM Subject Classification: F.4.1[Theory of Computation]:Mathematical Logic.
Key words and phrases: tree-automatic structures, collapsible pushdown graphs, collapsible pushdown

systems, first-order decidability, reachability.
1The graph generated by a higher-order pushdown system is the ε-closure of its reachable configurations.

c© A. Kartzow
CC© Creative Commons Attribution-NoDerivs License

27th Symposium on Theoretical Aspects of Computer Science, Nancy, 2010
Editors: Jean-Yves Marion, Thomas Schwentick
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/LIPIcs.STACS.2010.2480

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

502 A. KARTZOW

proved in [7] that nested pushdown trees also have decidable first-order theories. We gave an
effective model checking algorithm using pumping techniques, but we also proved that nested
pushdown trees are tree-automatic structures. Tree-automatic structures were introduced
by Blumensath [2]. These structures enjoy decidable first-order theories due to the good
closure properties of finite automata on trees.

In this paper, we are going to extend our previous result to the second level of the
collapsible pushdown hierarchy. All graphs of the second level are tree-automatic. This
subsumes our previous result as nested pushdown trees are first-order interpretable in col-
lapsible pushdown graphs of level two. Furthermore, we show that collapsible pushdown
graphs of level 2 are still tree-automatic when expanded by a reachability predicate, i.e.,
by the binary relation which contains all pairs of configurations such that there is a path
from the first to the second configuration. Thus, first-order logic extended by reachability
predicates is decidable on level 2 collapsible pushdown graphs.

In the next section, we introduce the necessary notions concerning tree-automaticity
and in Section 3 we define collapsible pushdown graphs. We explain the translation of
configurations into trees in Section 4. Section 5 is a sketch of the proof that this translation
yields tree-automatic representations of collapsible pushdown graphs, even when enriched
with certain regular reachability predicates. The last section contains some concluding
remarks about questions arising from our result.

2. Preliminaries

We write MSO for monadic second order logic and FO for first-order logic. For words
w1, w2 ∈ Σ∗, we write w1 ⊓ w2 for the greatest common prefix of w1 and w2. A Σ-labelled
tree is a function T : D → Σ for a finite D ⊆ {0, 1}∗ which is closed under prefixes.
For d ∈ D we denote by Td the subtree rooted at d.

Sometimes it is useful to define trees inductively by describing their left and right
subtrees. For this purpose we fix the following notation. Let T̂0 and T̂1 be Σ-labelled trees
and σ ∈ Σ. Then we write T := σ(T̂0, T̂1) for the Σ-labelled tree T with the following three
properties

1. T (ε) = σ, 2. T0 = T̂0, and 3. T1 = T̂1 .

In the rest of this section, we briefly present the notion of a tree-automatic structure
as introduced by Blumensath [2].

The convolution of two Σ-labelled trees T and T ′ is given by a function

T ⊗ T ′ : dom(T) ∪ dom(T ′) → (Σ ∪ {�})2

where � is a new symbol for padding and

(T ⊗ T ′)(d) :=

(T (d), T ′(d)) if d ∈ dom(T) ∩ dom(T ′)

(T (d),�) if d ∈ dom(T) \ dom(T ′)

(�, T ′(d)) if d ∈ dom(T ′) \ dom(T)

By “tree-automata” we mean a nondeterministic finite automaton that labels a finite tree
top-down.

Definition 2.1. A structure B = (B,E1, E2, . . . , En) with domain B and binary rela-
tions Ei is tree-automatic if there are tree-automata AB, AE1

, AE2
, . . . , AEn

and a bijection

TREE-AUTOMATICITY OF 2-CPG 503

f : L → B for L the language accepted by AB such that the following hold. For T, T ′ ∈ L,
the automaton AEi

accepts T ⊗ T ′ if and only if
(

f(T), f(T ′)
)

∈ Ei.

Tree-automatic structures form a nice class because automata theoretic techniques may
be used to decide first-order formulas on these structures:

Lemma 2.2 ([2]). If B is tree-automatic, then its first-order theory is decidable.

We will use the classical result that regular sets of trees are MSO definable.

Theorem 2.3 ([12], [5]). For a set T of finite Σ-labelled trees, there is a tree automaton
recognising T if and only if T is MSO definable.

3. Definition of Collapsible Pushdown Graphs (CPG)

In this section we define our notation of collapsible pushdown systems. For a more
comprehensive introduction, we refer the reader to [6].

3.1. Collapsible Pushdown Stacks

First, we provide some terminology concerning stacks of (collapsible) higher-order push-
down systems. We write Σ∗2 for (Σ∗)∗ and Σ+2 for (Σ+)+. We call an s ∈ Σ∗2 a 2-word.

Let us fix a 2-word s ∈ Σ∗2 which consists of an ordered list w1, w2, . . . , wm ∈ Σ∗. We
separate the words of this list by colons writing s = w1 : w2 : . . . : wm. By |s| we denote
the number of words s consists of, i.e., |s| = m.

For another word s′ = w′

1 : w′

2 : . . . : w′

n ∈ Σ∗2, we write s : s′ for the concatenation
w1 : w2 : . . . : wm : w′

1 : w′

2 : . . . : w′

n.
If w ∈ Σ∗, we write [w] for the 2-word that consists of a list of one word which is w.
A level 2 collapsible pushdown stack is a special element of (Σ × {1, 2} × N)+2 that

is generated by certain stack operations from an initial stack which we introduce in the
following definitions. The natural numbers following the stack symbol represent the so-
called collapse pointer : every element in a collapsible pushdown stack has a pointer to some
substack and applying the collapse operation returns the substack to which the topmost
symbol of the stack points. Here, the first number denotes the collapse level. If it is 1 the
collapse pointer always points to the symbol below the topmost symbol and the collapse
operations just removes the topmost symbol. The more interesting case is when the collapse
level of the topmost symbol of the stack s is 2. Then the stack obtained by the collapse
contains the first n words of s where n is the second number in the topmost element of s.

The initial level 1 stack is ⊥1 := (⊥, 1, 0) and the initial level 2 stack is ⊥2 := [⊥1].
For k ∈ {1, 2} and for a 2-word s = w1 : w2 : . . . : wn ∈ (Σ × {1, 2} × N)+2 such that

wn = a1a2 . . . am with ai ∈ Σ × {1, 2} × N for all 1 ≤ i ≤ m:

• we define the topmost (k − 1)-word of s as topk(s) :=

{

wn if k = 2

am if k = 1

• for top1(s) = (σ, i, j) ∈ Σ × {1, 2} × N, we define the topmost symbol Sym(s) := σ,
the collapse-level of the topmost element CLvl(s) := i, and the collapse-link of the
topmost element CLnk(s) := j.

504 A. KARTZOW

For s, wn and k as before, σ ∈ Σ\{⊥}, and w′

n := a1 . . . am−1, we define the stack operations

popk(s) :=

w1 : w2 : . . . : wn−1 if k = 2, n ≥ 2

w1 : w2 : . . . : wn−1 : w′

n if k = 1,m ≥ 2

undefined otherwise

clone2(s) := w1 : w2 : . . . : wn−1 : wn : wn

pushσ,k(s) :=

{

w1 : w2 : . . . : wn(σ, 2, n − 1) if k=2

w1 : w2 : . . . : wn(σ, 1,m) if k=1

collapse(s) :=

w1 : w2 : . . . : wr if CLvl(s) = 2,CLnk(s) = r > 0

pop1(s) if CLvl(s) = 1

undefined otherwise

The set of level 2-operations is OP :=
{

pushσ,1,pushσ,2, clone2,pop1,pop2, collapse
}

. The
set of level 2 stacks, Stck(Σ), is the smallest set that contains ⊥2 and is closed under all
operations from OP.

Note that collapse- and popk-operations are only allowed if the resulting stack is in
(Σ+)+. This avoids the special treatment of empty words or stacks. Furthermore, a collapse
on level 2 summarises a non-empty sequence of pop2-operations. For example, starting from
⊥2, we can apply a clone2, a pushσ,2, a clone2, and finally a collapse. This sequence first
creates a level 2 stack that contains 3 words and then performs the collapse and ends in the
initial stack again. This example shows that clone2-operations are responsible for the fact
that collapse-operations on level 2 may remove more than one word from the stack.

For s, s′ ∈ Stck(Σ), we call s′ a substack of s if there are n1, n2 ∈ N such that
s′ = pop1

n1(pop2
n2(s)). We write s′ ≤ s if s′ is a substack of s.

3.2. Collapsible Pushdown Systems and Collapsible Pushdown Graphs

Now we introduce collapsible pushdown systems and graphs (of level 2) which are
analogues of pushdown systems and pushdown graphs using collapsible pushdown stacks
instead of ordinary stacks.

Definition 3.1. A collapsible pushdown system of level 2 (CPS) is a tuple S = (Σ, Q,∆, q0)
where Σ is a finite stack alphabet with ⊥ ∈ Σ, Q a finite set of states, q0 ∈ Q the initial
state, and ∆ ⊆ Q × Σ × Q × OP the transition relation.

For q ∈ Q and s ∈ Stck(Σ) the pair (q, s) is called a configuration. We define la-

belled transitions on pairs of configurations by setting (q1, s) ⊢(q2,op) (q2, t) if there is a
(q1, σ, q2, op) ∈ ∆ such that Sym(s) = σ and op(s) = t. The union of the labelled transition
relations is denoted as ⊢:=

⋃

l∈Q×OP ⊢l. We set C(S) to be the set of all configurations

that are reachable from (q0,⊥2) via ⊢-paths. We call C(S) the set of reachable or valid
configurations. The collapsible pushdown graph (CPG) generated by S is

CPG(S) :=
(

C(S), (C(S)2∩ ⊢ℓ)ℓ∈Q×OP

)

Example 3.2. The following example of a collapsible pushdown graph of level 2 is taken
from [6]. Let Q := {0, 1, 2},Σ := {⊥, a}, and ∆ given by (0, ∗, 1, clone2), (1, ∗, 0,pusha,2),
(1, ∗, 2,pusha,2), (2, a, 2,pop1), and (2, a, 0, collapse), where ∗ denotes any letter in Σ. In our
picture (see Figure 1), the labels are abbreviated as follows: cl := (1, clone2), a := (0,pusha,2),

TREE-AUTOMATICITY OF 2-CPG 505

a′ := (2,pusha,2), p := (2,pop1), and co := (0, collapse).

0,⊥
cl

1,⊥ : ⊥
a

a′

0,⊥ : ⊥a
cl

1,⊥ : ⊥a : ⊥a
a

a′

0,⊥ : ⊥a : ⊥aa
cl

1,⊥ : ⊥a : ⊥aa : ⊥aa

a′

a . . .

2,⊥ : ⊥a
p

co

2,⊥ : ⊥a : ⊥aa
p

co

2,⊥ : ⊥a : ⊥aa : ⊥aaa
p

co
. . .

2,⊥ : ⊥ 2,⊥ : ⊥a : ⊥a
p

co

2,⊥ : ⊥a : ⊥aa : ⊥aa
p

co

. . .

2,⊥ : ⊥a : ⊥ 2,⊥ : ⊥a : ⊥aa : ⊥a
p

co

. . .

2,⊥ : ⊥a : ⊥aa : ⊥ . . .

Figure 1: Example of a collapsible pushdown graph

Remark 3.3. Hague et al. [6] showed that modal µ-calculus model checking on level n CPG
is n-EXPTIME complete. Note that there is an MSO interpretation which turns the graph
of the previous example into a grid-like structure. Hence its MSO theory is undecidable.

The next definition introduces runs of collapsible pushdown systems.

Definition 3.4. Let S be a CPS. A run r of S of length n is a function

r : {0, 1, 2, . . . , n} → Q × (Σ × {1, 2} × N)∗2 such that r(0) ⊢ r(1) ⊢ · · · ⊢ r(n).

We write ln(r) := n and call r a run from r(0) to r(n). We say r visits a stack s at i if
r(i) = (q, s).

For runs r, r′ of length n and m, respectively, with r(n) = r′(0), we define the compo-
sition r ◦ r′ of r and r′ in the obvious manner.

Remark 3.5. Note that we do not require runs to start in the initial configuration.

4. Encoding of Collapsible Pushdown Graphs in Trees

In this section we prove that CPG are tree-automatic. For this purpose we have to
encode stacks in trees. The idea is to divide a stack into blocks and to encode different
blocks in different subtrees. The crucial observation is that every stack is a list of words
that share the same first letter. A block is a maximal list of words in the stack that share
the same two first letters2. If we remove the first letter of every word of such a block, the
resulting 2-word decomposes again as a list of blocks. Thus, we can inductively carry on
to decompose parts of a stack into blocks and code every block in a different subtree. The
roots of these subtrees are labelled with the first letter of the corresponding block. This
results in a tree in which every initial left-closed path represents one word of the stack. By
left-closed, we mean that the last element of the path has no left successor.

It turns out that – via this encoding – each stack operation corresponds to a simple
MSO-definable tree-operation. The main difficulty is to provide a tree-automaton that
checks whether there is a run to the configuration represented by some tree. This problem
is addressed in Section 5.

2see Figure 2 for an example of blocks and Definition 4.1 for their formal definition

506 A. KARTZOW

f

e g i

b d d d h j l

a c c c c c c k

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Figure 2: Example of blocks in a stack. These form a c-blockline.

As already mentioned, the encoding works by dividing stacks into blocks. The following
definition makes our notion of blocks precise. For w ∈ Σ∗ and s = w1 : w2 : . . . : wn ∈ Σ∗2,
we write s′ := w \ s for s′ = [ww1] : [ww2] : . . . : [wwn].

Definition 4.1 (σ-block(line)). For σ ∈ Σ, we call b ∈ Σ∗2 a σ-block if b = [σ] or b = στ \ s′

for some τ ∈ Σ and s′ ∈ Σ∗2. See Figure 2 for examples of blocks. If b1, b2, . . . , bn are σ-
blocks, then we call b1 : b2 : . . . : bn a σ-blockline.

Note that every stack in Stck(Σ) forms a (⊥, 1, 0)-blockline. Furthermore, every block-
line l decomposes uniquely as l = b1 : b2 : . . . : bn of maximal blocks bi in l. Another crucial
observation is that a σ-block b ∈ Σ∗2 \ Σ decomposes as b = σ \ l for some blockline l and
we say l is the induced blockline of b. For b ∈ Σ the induced blockline of [b] is just the
empty 2-word.

Now we encode a (σ, n,m)-blockline l in a tree by labelling the root with (σ, n), by
encoding the blockline induced by the first block of l in the left subtree, and by encoding
the rest of the blockline in the right subtree. In order to avoid repetitions, we do not repeat
the symbol (σ, n) in the right subtree, but replace it by the default letter ε.

Definition 4.2. Let s = w1 : w2 : . . . : wn ∈ (Σ× {1, 2} × N)+2 be a (σ, l, k)-blockline. Let
w′

i be words such that s = (σ, l, k) \ [w′

1 : w′

2 : . . . : w′

n] and set s′ := w′

1 : w′

2 : . . . : w′

n. As
an abbreviation we write hsi := wh : wh+1 : . . . : wi. Furthermore, let w1 : w2 : . . . : wj be a
maximal block of s. Note that j > 1 implies wj′ = (σ, l, k)(σ′, l′, k′)w′′

j′ for all j′ ≤ j, some

fixed (σ′, l′, k′) ∈ Σ × {1, 2} × N, and appropriate w′′

j′ ∈ Σ∗. For ρ ∈
(

Σ × {1, 2}
)

∪ {ε}, we

define recursively the
(

Σ × {1, 2}
)

∪ {ε}-labelled tree Enc(s, ρ) via

Enc(s, ρ) :=

ρ if |w1| = 1, n = 1

ρ(∅,Enc(2sn, ε)) if |w1| = 1, n > 1

ρ(Enc(1s
′

n, (σ′, l′)), ∅) if j = n, |w1| > 1

ρ(Enc(1s
′

j, (σ
′, l′)),Enc(j+1sn, ε)) otherwise.

Enc(s) := Enc(s, (⊥, 1)) is called the (tree-)encoding of the stack s ∈ Stck(Σ).

Figure 3 shows a configuration and its encoding.

Remark 4.3. In this encoding, the first block of a (σ, l, k)-blockline is encoded in a subtree
whose root d is labelled (σ, l). We can restore k from the position of d in the tree Enc(s) as
follows. If l = 1 then k = |d|0, i.e., the number of occurrences of 0 in d. This is due to the
fact that level 1 links always point to the preceding letter and that we always introduce a
left-successor tree in order to encode letters that are higher in the stack.

The case l = 2 needs some closer inspection. Assume that some d ∈ T := Enc(s)
is labelled (σ, 2). Then it encodes a letter (σ, 2, k) and this is not a cloned element.

TREE-AUTOMATICITY OF 2-CPG 507

(c, 2, 1) (e, 1, 3)

(b, 2, 0) (b, 2, 0) (c, 1, 2) (d, 2, 3)

(a, 2, 0) (a, 2, 0) (a, 2, 2) (a, 2, 2) (a, 2, 2)

(⊥, 1, 0) (⊥, 1, 0) (⊥, 1, 0) (⊥, 1, 0) (⊥, 1, 0)

c, 2 e, 1

b, 2 ε c, 1 d, 2

a, 2 a, 2 ε ε

⊥, 1 ε

Figure 3: A stack s and its encoding Enc(s): right arrows lead to 1-successors (right suc-
cessors), upward arrows lead to 0-successors (left successors).

Thus, k equals the numbers of words to the left of this letter (σ, 2, k). We claim that
k =

∣

∣

{

e ∈ T ∩ {0, 1}∗1 : e ≤lex d
}∣

∣. The existence of a pair e, e1 ∈ T corresponds to the
fact that there is some blockline consisting of blocks b1 : b2 : . . . : bn with n ≥ 2 such that b1

is encoded in Te \ Te1 and b2 : . . . : bn is encoded in Te1. By induction, one easily sees that
for each such pair e, e1 ∈ T all the letters that are in words left of the letter encoded by
e1 are encoded in lexicographically smaller elements. Furthermore, the size of ((0∗)1)∗ ∩ T
corresponds to the number of words in s since the introduction of a 1-successor corresponds
to the separation of the first block of some blockline from the other blocks. Each of these
separation can also be seen as the separation of the last word of the first block from the first
word of the second block of this blockline. Note that we separate two words that are next
to each other in exactly one blockline. Putting these facts together our claim is proved.

Another view on this correspondence is the bijection f : {1, 2, . . . , |s|} → R where
R := ((0∗)1)∗ ∩ dom(T) and i is mapped to the i-th element of R in lexicographic order.
f(i) is exactly the position where the (i − 1)-st word is separated from the i-th one for all
i ≥ 2. In order to state the properties of f , we need some more notation. We write π for
the canonical projection π : (Σ×{1, 2}×N)∗ → (Σ×{1, 2})∗ and wi for the i-th word of s.
Furthermore, let w′

i be a word such that, wi = (wi ⊓wi−1) ◦w′

i (here we set w0 := ε). Then
the word along the path3 from the root to f(i) is exactly π(wi ⊓ wi−1) for all 2 ≤ i ≤ |s|
and the path from f(j) to f(j) ◦ 0m for maximal m ∈ N is π(w′

j) for all 1 ≤ j ≤ |s|.

In order to encode a configuration c := (q, s), we add q as a new root of the tree and
attach the encoding of s as the left subtree, i.e., Enc(c) := q(Enc(s), ∅).

The image of this encoding function contains only trees of a very specific type. We call
this class TEnc. In the next definition we state the characterising properties of TEnc. This
class is MSO definable, whence automata-recognisable.

Definition 4.4. Let TEnc be the class of all trees T that satisfy the following conditions.

(1) The root of T is labelled by some element of Q (T (ε) ∈ Q).
(2) Every element of the form {0, 1}∗0 is labelled by some (σ, l) ∈ Σ×{1, 2}; especially,

T (0) = (⊥, 1) and there are no other occurrences of (⊥, 1) or (⊥, 2).
(3) Every element of the form {0, 1}∗1 is labelled by ε.
(4) 1 /∈ dom(T), 0 ∈ dom(T).
(5) For all t ∈ T , if T (t0) = (σ, 1) then T (t10) 6= (σ, 1).

3By the word along a path from one node to another we mean the word consisting of the non ε-labels
along this path.

508 A. KARTZOW

(σ, l) ε . . . ε ε

(τ, k)

...

(σ′, l′)

(σ, l) ε . . . ε

Figure 4: pop2-operation

...

(σ, 2) ε . . . ε ε

Figure 5: collapse-operation of level 2.

Remark 4.5. Note that (5) holds as T (t0) = T (t10) = (σ, 1) would imply that the subtree
rooted at t encodes a blockline l such that the first block of l induces a (σ, 1, n)-blockline
and the second one induces a (σ, 1,m)-blockline. But as level 1 links always point to the
preceding letter, n and m are equal to the length of the prefix of l in the stack plus 1, i.e.,
if T encodes a stack s then s = s1 : [w \ l] : s2 and n = m = |w|+ 1. This would contradict
the maximality of the blocks in the encoding.

Remark 4.6. Enc : Q × Stck(Σ) → TEnc is a bijection and we denote its inverse by Dec.

Our encoding turns the transitions of a CPG into regular tree-operations. The tree-
operations corresponding to pop2 and collapse can be seen in Figures 4 and 5. For the pop2,
note that if v1 is the 0-successor of v0 then v0 and v1 encode symbols in the same word of
the encoded stack. As a pop2 removes the rightmost word, we have to remove all the nodes
encoding information about this word. As the rightmost leaf corresponds to the topmost
symbol of the stack, we have to remove this leaf and all its 0-ancestors.

For the collapse (on level 2), we note that each ε represents a cloned element. The
collapse induced by such an element produces the same stack as a pop2 of its original
version. The original symbol of the rightmost leaf is its first ancestor not labelled by ε.

Note that the operations corresponding to pop2 and collapse are clearly MSO definable.
All other transitions in CPG correspond to MSO definable tree-operations, too. Due to
space restrictions we skip the details.

Lemma 4.7. Let C be the set of encodings of configurations of a CPS S. Then there are
automata A(q,op) for all q ∈ Q and all op ∈ OP such that for all c1, c2 ∈ C

A(q,op) accepts Enc(c1) ⊗ Enc(c2) iff c1 ⊢(q,op) c2 .

TREE-AUTOMATICITY OF 2-CPG 509

5. Recognising Reachable Configurations

We show that Enc maps the reachable configurations of a given CPS to a regular set.
For this purpose we introduce milestones of a stack s. It turns out that these are exactly
those substacks of s that every run to s has to visit. Furthermore, the milestones of s are
represented by the nodes of Enc(s): with every d ∈ Enc(s), we can associate a subtree
of s which encodes a milestone. Furthermore, the substack relation on the milestones
corresponds exactly to the lexicographical order ≤lex of the elements of Enc(s). For every
d ∈ Enc(s) we can guess the state in which the corresponding milestone is visited for the
last time by some run to s and we can check the correctness of this guess using MSO or,
equivalently, tree-automata.

We prove that we can check the correctness of such a guess by introducing a special
type of run, called loop, which is basically a run that starts and ends with the same stack.
A run from one milestone to the next will mainly consist of loops combined with a finite
number of stack operations.

5.1. Milestones

Definition 5.1 (Milestone). A substack s′ of s = w1 : w2 : . . . : wn is a milestone if
s′ = w1 : w2 : . . . : wi : w′ such that 0 ≤ i < n and wi ⊓ wi+1 ≤ w′ ≤ wi+1. We denote by
MS(s) the set of milestones of s.

Note that the substack relation ≤ linearly orders MS(s).

Lemma 5.2. If s, t,m are stacks with m ∈ MS(t) but m 6≤ s, then every run from s to t
visits m. Thus, for every run r from the initial configuration to s, the function

f : MS(s) → dom(r), s′ 7→ max{i ∈ dom(r) : r(i) = (q, s′) for some q ∈ Q}

is an order embedding with respect to substack relation on the milestones and the natural
order of dom(r).

In order to state the close correspondence between milestones of a stack s and the
elements of Enc(s), we need the following definition.

Definition 5.3. Let T ∈ TEnc be a tree and d ∈ T \ {ε}. Then the left and downward
closed tree induced by d is LT (d, T) := T ↾D where D := {d′ ∈ T : d′ ≤lex d} \ {ε}. Then we
denote by LStck(d, T) := Dec(LT (d, T)) the left stack induced by d.

Remark 5.4. LStck(d, s) is a substack of s for all d ∈ dom(Enc(s)). This observation
follows from Remark 4.3 combined with the fact that the left stack is induced by a lexico-
graphically downward closed subset. In fact, LStck(d, s) is a milestone of s.

Lemma 5.5. The map given by g : d 7→ LStck(d,Enc(s)) is an order isomorphism between
(dom(Enc(q, s)) \ {ε},≤lex) and (MS(s),≤).

Lemmas 5.5 and 5.2 imply that every run r decomposes as r = r1 ◦ r2 ◦ . . . ◦ rn where
ri is a run from the i-th milestone of r(ln(r)) to the (i + 1)-st milestone.

In order to describe the structure of the ri, we have to introduce the notion of a loop.
Informally speaking, a loop is a run r that starts and ends with the same stack s and which
does not look too much into s.

Definition 5.6. Let r be a run of length n with r(i) = (qi, si) for all 0 ≤ i ≤ n.

510 A. KARTZOW

• r is called a simple high loop if s0 = sn and if s0 < si for all 0 < i < n.
• r is called a simple low loop of s if s0 = sn = s, between 0 and n the stack s is never

visited, s1 = pop1(s), CLvl(s) = 1, |si| ≥ |s| for all 0 ≤ i ≤ n, and r↾[2,n−1] is the
composition of simple low loops and simple high loops of pop1(s).

• r is called loop if it is a finite composition of low loops and high loops.

Lemma 5.7. Let s be some stack, m1,m2 milestones of s, and r a run from m1 to m2 that
never visits any other milestone of s. Then either r = l1 ◦ p ◦ l2 or r = l0 ◦ c ◦ l1 ◦ p1 ◦ l2 ◦
p2 ◦ l3 ◦ . . . ◦ pn ◦ ln+1 where each li is a loop, and all pi, p, and c are runs of length 1, p
performs one pushσ,k, c performs one clone2, and the pi perform one pop1 each.

This lemma motivates why we only define low loops for stacks s with CLvl(s) = 1.
Whenever the topmost symbol of a milestone m is not a cloned element, then pop1(m) is
another milestone. Hence, the li can only contain low loops if they start at a stack with
cloned topmost symbol. But any stack s with cloned topmost symbol and CLvl(s) = 2
cannot be restored from pop1(s) without passing pop2(s) since a pushσ,2-operation would
create the wrong link-level.

From Lemma 5.7 we can derive that deciding whether there is a run from one milestone
to the next is possible if we know the pairs of initial and final states of loops of certain
stacks s. Hence we are interested in the sets Loops(s) ⊆ Q × Q with (q1, q2) ∈ Loops(s) if
and only if there is a loop from (q1, s) to (q2, s). The crucial observation is that Loops(s)
may be calculated by a finite automaton reading top2(s).

Lemma 5.8. For every CPS there exists a finite automaton A that calculates4 on in-
put w ∈ (Σ × {1, 2})∗ the set Loops(s) for all stacks s such that w = π(top2(s)). Here,
π : (Σ × {1, 2} × N)∗ → (Σ × {1, 2})∗ is the projection onto the symbols and collapse-levels.

5.2. Detection of Reachable Configurations

We have already seen that every run to a valid configuration (q, s) passes all the mile-
stones of s. Now, we use the last state in which a run r to (q, s) visits each milestone as
a certificate for the reachability of (q, s). To be precise, a certificate for the reachability of
(q, s) is a map f : dom

(

Enc(q, s)
)

\ {ε} → Q such that there is some run r from ⊥2 to

(q, s) and f(d) = q if and only if r(i) =
(

q,LStck(d)
)

for i the maximal position in r where
LStck(d) is visited.

Lemma 5.9. For every CPG G, there is a tree-automaton that checks for each map

f : dom(Enc(q, s)) \ {ε} → Q

whether f is a certificate of the reachability of (q, s), i.e., whether f is induced by some run
r from the initial configuration to (q, s).

The proof of the lemma uses Lemma 5.8 and the fact that the path from the root to
some d ∈ Enc(s) encodes the topmost word of LStck(d,Enc(s)). Hence, a tree automaton
reading Enc(s) is able to calculate for each position d ∈ Enc(s) the pairs of initial and final
states of loops of LStck(d). As every run decomposes as a sequence of loops separated by
a single operation, knowing Loops(s′) for each s′ ≤ s enables the automaton to check the
correctness of a candidate for a certificate of reachability.

4We consider the final state reached by A on input w as the value it calculates for w.

TREE-AUTOMATICITY OF 2-CPG 511

As a tree-automaton may non-deterministically guess a certificate of the reachability of
a configuration, the encodings of reachable configurations form a regular set.

5.3. Extension to Regular Reachability

By now, we have already established the tree-automaticity of each CPG G since we
have seen that our encoding yields a regular image of the vertices of G and the transition
relations are turned into regular relations of the tree encoding. Using similar techniques,
we can improve this result:

Theorem 5.10. If G is the ε-closure of some CPG G′ then (G,Reach) is tree-automatic
where Reach is the binary predicate that is true on a pair (c1, c2) of configurations if there
is a path from c1 to c2 in G.

Remark 5.11. Each graph in the second level of the Caucal-hierarchy can be obtained as
the ε-contraction of some level 2 CPG (see [3]) whence all these graphs are tree-automatic.

For a CPS S let R ⊆ ∆∗ be a regular language over the transitions of S. As collapsible
pushdown graphs are closed under products with finite automata even the reachability pred-
icate ReachR with restriction to R is tree-automatic. Here, ReachRxy holds if there is a path
from x to y in CPG(S) that uses a sequence of transitions in R. If A is the automaton recog-
nising R, we obtain that ReachR(q, s)(q′, s′) holds in CPG(S) iff Reach

(

(q, qi), s
)(

(q′, qf), s′
)

holds in CPG(S × A) where qi is the initial and qf the unique final state of A. Using this
idea one can define a CPG G′ which is basically CPG(S ∪ (S ×A)) extended by transitions
from (q, s) to ((q, qi), s) and to ((q, qf), s). CPG(S) as well as ReachR w.r.t. CPG(S) are
FO[Reach]-interpretable in G′. Hence we obtain:

Theorem 5.12. Given a collapsible pushdown graph of level 2, its FO[ReachR] theory is
decidable for each regular R ⊆ ∆∗.

5.4. Computation of concrete tree-automatic representations of CPG

Up to now, we have only seen that there is a tree-automatic representation for each
CPG. For computing a concrete representation, we rely on the following lemma.

Lemma 5.13. Given some CPS S = (Γ, Q,∆, q0), some q ∈ Q, and some stack s, it is
decidable whether (q, s) is a vertex of CPG(S).

The proof is based on the idea that a stack is uniquely determined by its top element and
the information which substacks can be reached via collapse- and popi-operations. Hence we
can construct an extension S′ of S and a modal formula ϕq,s such that there is some element
v ∈ CPG(S′) satisfying CPG(S′), v |= ϕq,s iff (q, s) ∈ CPG(S). S′ basically contains new
states for every substack of s and connects the different states via the appropriate popi-
operations which are only applied if the topmost symbol of the stack agrees with the symbol
we would expect when starting the popi-sequence in configuration (q, s).

From this lemma we can derive the computability of the automata in Lemma 5.8.
Having obtained these automata, the construction of a tree-automatic representation of
some CPG is directly derived from the proofs yielding the following theorem.

Theorem 5.14. There is an algorithm that, given a level 2 CPG G and regular sets
R1, . . . , Rn ⊆ ∆∗, computes a tree-automatic representation of (G,ReachR1

, . . . ,ReachRn
).

512 A. KARTZOW

6. Conclusion

We have seen that level 2 collapsible pushdown graphs are tree-automatic. This result
holds also if we apply ε-contractions and if we add regular reachability predicates. This
implies that the second level of the Caucal-hierarchy is tree-automatic. But our result can
only be seen as a starting point for further investigations of the CPG hierarchy: are level 3
collapsible pushdown graphs tree-automatic? We know an example of a level 5 CPG which
is not tree-automatic. But even when tree-automaticity of all CPG cannot be expected,
the question remains whether all CPG have decidable FO theories. In order to solve this
problem one has to come up with new techniques.

A rather general question concerning our result aims at our knowledge about tree-
automatic structures. Recent developments in the string case [9] show the decidability of
rather large extensions of first-order logic for automatic structures. It would be interesting
to clarify the status of the analogous claims for tree-automatic structures. Positive answers
concerning the decidability of extensions of first-order logic on tree-automatic structures
would give us the corresponding decidability results for collapsible pushdown graphs of
level 2.

References

[1] R. Alur, S. Chaudhuri, and P. Madhusudan. Languages of nested trees. In Proc. 18th International

Conference on Computer-Aided Verification, volume 4144 of LNCS, pages 329–342. Springer, 2006.
[2] A. Blumensath. Automatic structures. Diploma thesis, RWTH Aachen, 1999.
[3] A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in terms of logic and higher-order

pushdown automata. In Proceedings of the 23rd Conference on Foundations of Software Technology and

Theoretical Computer Science, FSTTCS 2003, volume 2914 of LNCS, pages 112–123. Springer, 2003.
[4] D. Caucal. On infinite terms having a decidable monadic theory. In MFCS’02, pages 165–176, 2002.
[5] J. Doner. Tree acceptors and some of their applications. J. Comput. Syst. Sci., 4(5):406–451, 1970.
[6] M. Hague, A. S. Murawski, C-H. L. Ong, and O. Serre. Collapsible pushdown automata and recursion

schemes. In LICS ’08: Proceedings of the 2008 23rd Annual IEEE Symposium on Logic in Computer

Science, pages 452–461, 2008.
[7] A. Kartzow. FO model checking on nested pushdown trees. In MFCS’09, volume 5734 of LNCS, pages

451–463. Springer, 2009.
[8] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In FOSSACS’02,

volume 2303 of LNCS, pages 205–222. Springer, 2002.
[9] D. Kuske. Theories of automatic structures and their complexity. In CAI’09, Third International Con-

ference on Algebraic Informatics, volume 5725 of LNCS, pages 81–98. Springer, 2009.
[10] A. N. Maslov. The hierarchy of indexed languages of an arbitrary level. Sov. Math., Dokl., 15:1170–1174,

1974.
[11] A. N. Maslov. Multilevel stack automata. Problems of Information Transmission, 12:38–43, 1976.
[12] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to a decision

problem of second-order logic. Mathematical Systems Theory, 2(1):57–81, 1968.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

