
MATHEMATICAL CENTRE TRACTS 108

. FOUNDATIONS OF
COMPUTER SCIENCE HI

PART 1 : AUTOMATA, DATA STRUCTURES. COMPLEXITY

J.W. DE BAKKER (ed.)

J. VAN LEEUWEN (ed.)

MATH EMATISCH CENTRUM AMSTERDAM 1979

1980 Mathematics subject classifications: 68B15,68C25,68C40,68D05,68D025,68F05,68F10

ACM-Computing Review-categories 4.34, 5.22, 5.23, 5.25, 5.26
ISBN 90 6196 176 9

CONTENTS

Contents 1

Preface • . . • • LL1

J. ENGELFRIET: Two-way automata and checking automata 3

K. MEHLHORN: Dynamic data structures 71

A.R. MEYER & K. WINKLMANN: The fundamental theorem of complexity

theory (preliminary version) 98

1.LL

PREFACE

The 3rd Advanced Course on the Foundations of Computer Science was

held from August 21 to September 1, 1978, in Amsterdam as part of an inter

national program of Advanced Courses sponsored by the CREST Subcommittee on

Training in Data Processing of the Commission of the European Communities.

The Advanced Courses on the Foundations of Computer Science are orga

nized to provide an opportunity for computer science graduates and profes

sionals to learn about the modern developments in theoretical computer

science at a high level. In 1978 semantics, analysis/complexity of algorithms

and automata theory were chosen as major fields of attention. Eight dis

tinguished lecturers were invited to present a series of six lectures each.

on leading issues and new results in their current field of specialty.

These volumes contain the (edited) text of most lectures given on the

occasion of the 3rd Advanced Course. The material, written especially for

the Course, usually presents an original view of an entire research area

which is not available in this form yet from textbooks for classroom use.

We believe that the chapters will serve as a valuable source of material

for high-level seminars in theoretical computer science. The lectures of

M.O. Rabin ("Probabilistic Algorithms") and of C-P. Schnorr ("Elementary

Methods in Algebraic Complexity Theory") will be published elsewhere and

are not contained in these volumes.

We thank the lecturers for their superb contributions and the partici

pants for being a most receptive audience. We are very grateful to the Dutch

Ministry of Education and the Commission of the European Communities, which

together provided the necessary funds for organising the Course. Finally,

we thank Mrs. S.J. Kuipers-Hoekstra for her invaluable assistance throughout

the organjzation of the Course and the Publication Service of the Mathema

tical Centre for the technical realization of these volumes.

J.W. de Bakker J. van Leeuwen

Directors of the Course

TWO-WAY AUTOMATA AND CHECKING AUTOMATA by J. ENGELFRIET

Introduction 3

1. Two-way finite state transducers 6

1.1. Transition tables and visiting sequences 8

1.2. Ranges of 2gsm.mappings 13

1.3. Composition of 2dgsm mappings, general automata theory 18

2. Grammars for two-day transducers 24

2.1. Generalized gsm mappings and restricted 2-way pushdown trans-

ducers 25

2.2. Tree transducers 33

2.3. Register grammars and macro grammars 36

3. Two-way automata and complexity 40

3.1. Two-way checking automata 40

3.2. Two-way deterministic pushdown automata 53

References • • • • • • • • • • • . • • . • • • • • • • • • . • . . • 64

MATHEMATICAL CENTRE TRACTS 108 (1979), 1-69 3

TWO-WAY AUTOMATA AND CHECKING AUTOMATA

J. ENGELFRIET

Technological University, Twente, the Netherlands

INTRODUCTION

A 2-way automaton(*) has a two-way read-only input tape, i.e. its

input reading head may move in all possible directions from one square to

another (neighbouring) one. This facility to reinspect its input without

having to store it in memory is what makes the 2-way automaton in general

stronger than the corresponding 1-way automaton. Figure 1 shows a general

2-way transducer consisting of a finite control, a 2-way input tape, a 1-

way output tape and a storage X (specified by a storage space and how to

manipulate it). Apart from being investigated as an interesting subject on

its own [RabSco; SteHarL; AhoUll 1], two-way automata have been defined to

model.certain parts of compilers [GinGreH; AhoUll 2], turned up in complex

ity theory [Coo 1; Coo 2; Iba] and were recently used in the study of bound

ed crossing Turing machines [Raj 1; Gre 1; Gre 2].

A checking automaton has a 2-way read-only tape which is part of its'

memory and should be filled before computation. Such a tape is called a

checking stack and is therefore usually drawn vertically in pictures. Fig

ure 2 shows a general checking acceptor with a finite control, an input

tape, and a storage consisting of a checking stack and additional storage

x. The automaton accepts the input if at least one choice of filling the

checking stack leads to a successful computation. In other words, viewing

the checking stack as a second input tape, the automaton accepts a binary

relation of which only the domain (or range) is considered. Thus the check

ing stack facility incorporates a large amount of nondeterminism: the auto

maton can e.g. guess (or ask for) an encoding of a computation of some other

we use "automaton" here to mean either an acceptor or a transducer;
later it will also be used to mean acceptor only.

4

2-way

~~~~~~-!· A general 2-way transducer. 

J 
$ 

finite 
contra 

1-way or 2-way 

[ J J· .. input 

checking stack 

storage 

~~~~~~-~· A general checking acceptor. 

machine or grammar, check that it is indeed such an encoding, and check

whether its guess was correct, i.e. whether the machine (or grammar) accepts

(or produces) the input string according to this computation. Checking auto

mata were defined as a useful tool in the analysis of 1-way stack automata

[Gre 3], were used to characterize space complexity classes [Fis 1; Iba]

and recently turned out to be strongly related to parallel rewriting systems

[Raj 2; vLe].

Thus a 2-way read-only tape is the common feature of 2-way automata

and checking automata. The aim of these notes is to provide the reader with

some insight into the properties of such "automata with a 2-way read-only

tape" and the theoretical tools to handle them. Both "classical" and more

recent results will be discussed.

5

We will try to present most results from the point of view of two

basic concepts: visiting (or crossing) sequences and transition tables. A

visiting sequence contains all moves of the automaton on one particular

square of the 2-way tape during some computation, whereas a (state) transi

tion table contains for each given starting state the corresponding final

state after the computation of the automaton on (part of) its 2-way tape.

Thus they contain local and global information (respectively) concerning

the 2-way computation of the automaton.

We will consider several specific types of automata, such as 2-way

finite state transducers and 1-way checking-stack pushdown acceptors, but

we will also be interested in obtaining general results on 2-way and check

ing automata, independent of their (additional) storage structure. An exam

ple of the latter, which should be obvious from the above discussion and

Figures 1 and 2, is the following (where X is some storage structure): the

class of languages generated as output by nondeterministic 2-way X trans

ducers is equal to the class of languages accepted by nondeterministic 1-

way [X + checking-stack] acceptors. This relationship will be used system

atically in the sequel. (In the deterministic case there is no immediate

connection between the two classes.)

These notes are divided into three parts. In the first part we consider

the simplest 2-way device: the 2-way finite state transducer. The domains of

these transducers are regular; we will therefore concentrate on the mappings

and output languages they define. Note that the output languages are those

accepted by the (ordinary) 1-way checking stack acceptor [Gre 3]. Since the

finite control of any 2-way automaton consists essentially of a 2-way finite

state transducer (with instructions to manipulate storage as output), one

can expect to obtain general properties of 2-way automata from those of the

2-way finite state transducer: this is the philosophy of general automata

theory in a nutshell [Gin; HopUll 1; Seo; AhoHopU 1].

In the second part we consider two types of grammars related to the 2-

way finite state transducer: parallel grammars and register grammars. They

represent two different ways of capturing the 2-way motion of the automaton

in a 1-way generation process. Straightforward generalization of these gram

mars leads to syntax-directed translations (or, top-down tree transducers)

and macro grammars. The recursion present in these generalizations can be

handled by a stronger 2-way transducer: a restricted type of 2-way pushdown

transducer (and the corresponding [checking-stack+ pushdown] acceptor).

Variations of this automaton provide a uniform description of classes of

6

languages generated by the above types of rewriting systems.

In the third part we discuss the relationship of 2-way and checking

automata to space and time complexity of Turing machines.

1. TWO-WAY FINITE STATE TRANSDUCERS.

The simplest machine with a 2-way read-only tape is the 2-way finite

state automaton [RabSco]. Addition of a 1-way output tape gives the 2-way

finite state transducer [AhoUll 1], which is also called 2-way generalized

sequential machine (2gsm) or 2-way a-transducer. Figure 1 shows a 2gsm when

the storage X is disregarded. Informally, a 2gsm consists of

- an input tape which is an array input[O:n+l] of symbols with input[O] ~

and input[n+l] = $, where n is the length of the input string,

- a read head (or input pointer) which is a variable x of type [O: n + 1],

- an output tape of the usual kind, and

- a finite control which is a nondeterministic flowchart build up from ele-

mentary operations x := x+l (move right), x := x-1 (move left), print(o)

for each output symbol o, and elementary tests input[x] = o for each input

symbol o.

Formally a two-way nondeterministic finite state transducer or 2gsm

is a tuple M = (Q,Z,6,o,q0 ,F) of states, input symbols, output symbols,

transition function, initial state and final states respectively. o is a

function from Q x (Zu{~ 1 $}) into the finite subsets of Q x {~1,0,+1} x 6*

The interpretation of (qt ,d,u) E o(q,o) is that Min state q and reading

input symbol o may go into state q', move its read head d squares to the

right and produce output u. A configuration of M is of the form (q,fw$,i,v)

indicating the state, the content of the input tape, the position of the

input head (0 ~ i ~ lw! + 1) and the content of the output tape. M realizes

* * a translation (or mapping) from Z to 6 , also denoted by M, viz.

* M = {(w,v)!(q0 ,~w$,O,;\) i-.:.:.. (q,~w$,i,v) for some q E F and i E {O,n+l}},

where f..:'.:. is the usual computation relation induced by o. Thus the computa

tion starts in the initial state with the read head on ~ and ends in some

final state with the read head on ~ or $. Alternatively we could require

the computation to end on ~ (or $) only, or even to end by falling off the

left (or right) of the tape, i.e. with i -1 (or i = n+2); similarly the

* computation could start by climbing up the tape. For w E Z , M(w) denotes

* * as usual the set of all v E 6 such that (w,v) E M; for a language L ~ Z ,
M(L) = U{M(w) lw E L} i.e. the image of L under M. M is deterministic

7

(denoted by 2dgsm) if o is a function from gx (l::uU,$}) into QX {-1,0,+l}xfl*.

The class of mappings realized by a 2gsm (2dgsm) is denoted by 2GSM (2DGSM).

For a class of languages L, 2GSM(l) is as usual {M(L) IM E 2GSM and L E L}.

Dropping the endmarkers and restricting the set of directions to {O,+l}

and {+1} gives the usual a-transducer and 1-way generalized sequential ma

chine (gsm, dgsm) respectively. Dropping the output tape gives the corres

ponding acceptors (2-way and 1-way finite state automata) which accept the

domains of the translations realized by the transducers.

In what follows we will always assume (in the 2-way case) that the set

of directions is restricted to {-1,+1}!

The basic capability of the 2-way finite state transducer is to make

copies of substrings and to reverse them. Thus it is easy to define e.g.

an ME 2DGSM such that M(w) = ww'W for all w E L*, where w denotes the re-

verse of w, and an ME 2GSM such that M(an) {(anb)m Im e: 2} for all n.

nl n2 nk
1. EXAMPLE. We define a 2dgsm M such that M(a ba b ... ba)

aR1bnlan2bn2 ••• ankbnk. The machine makes three sweeps over each ani consec

utively; i.t has the following Algol-like flowchart (initially x = 0 and

finally x falls off the right)

while input[x] f $ do

begin x := x+l;

while input[x]

x := x-1;

while input[x]

x := x+l;

while input[x]

end;

x := x+l.

a do begin x := x+1; print(a) end;

a do x := x-1;

a do begin x := x+l; print(b) end

Formally M has the following transition function

o(q0 ,~J (q1 ,+1, /..)

o(ql ,a) (q1 ,+1,a) o (q1 ,b or $) (q2 ,-1, /..)

o (q2 ,a) (q2 ,-1, /..) o(q2,~ orb) (q3,+1,/..)

iS(q3 ,a) (q3 ,+1,b) o(q3 ,bJ = cq1 ,+1,:x.J

0 (q3,$) (q3,+1,/..) D

8

1.1. Transition tables and visiting sequences

The first main result on 2gsm (both here and historically) is that they

accept regular languages, i.e. the 2-way finite state automaton has the same

power as the 1-way finite state automaton [RabSco; She]. This might sound

surprising in view of the following examples. Given a regular language R,

a 2-way finite state automaton is able to cut R in half, i.e. to accept the

language H(R) = {u E z*1 there exists v E z* such that lul = Iv! and UV E R}o

In fact, if M is a 1-way finite state automaton recognizing R, then a 2-way

finite state automaton can be constructed which, on input u, first simulates

M on input u (from left to right) and then continues simulation of M on some

string v of the same length which it guesses nondeterministically symbol by

symbol by walking from right to left over u. By a slightly different con

struction it is easy to see that a deterministic 2-way finite state auto

maton can take the root of R, i.e. accept the language {u E z*I uu E R}.

It is left as an exercise to the reader to show that the languages {u E z*!
there exists v E z* such that uv E R and Iv! = nlul for some n ~ 1} and

{u1µu 2# ••• #un I there exists v 1 , ••• ,vn such that luil = !vii and

u 1v 1#u2v2# ••• #unvn E R} are accepted by a 2-way finite state automaton.

Thus 2-way finite state automata are capable of a few weird operations

which nevertheless preserve the regular languages by the above mentioned

result. We will give two proofs of this result in order to define and illus

trate the use of two important general concepts: visiting sequences and

transition tables. Let us start with the simplest proof, which uses (state)

transition tables [She; HopUll 2], well-known from the 1-way finite auto

maton. The transition table of a 2gsm M for a nonempty string u, not neces

sarily surrounded by endmarkers, is a relation Ru ~ Q x Q (or a partial

function Q + Q if Mis deterministic) such that (q1 ,q2) E Ru if and only

if there is a computation of M on u which starts on the first square of u

in state ql and falls off the left end of u in state q 2 . Clearly, just as

in the 1-way case, if R = R then R R crv' where cr is a symbol. This means
u v (JU

that the transition table for a string u can be computed by a deterministic

1-way finite state automaton A which walks from right to left on u and con

tains in its state the transition table of the suffix of u it has read. A

accepts the same language as M (modulo endmarkers), assuming that M always

starts at ~ and terminates to the left of ~, and that A accepts a string u

iff u is of the form ~w$ and Ru contains (q0 ,q) for some final state q of

M. If you do not like A's direction, then consider its "reversal" or define

9

transition tables for prefixes of ~w$ as in [She].

2. THEOREM. [Rab 1]. For each 2-way finite state automaton an equivalent

1-way finite state automaton can effectively be found. So 2-way finite state

automata accept regular languages.

PROOF. We have seen that a 1-way automaton A exists. To prove effectiveness,

it suffices to see that Rcru can be computed from cr and Ru by the following

rule (see Fig. 3):

(*) if there is a sequence of states q 1 ,qi, ••• ,qn_ 1 ,q~_ 1 ,qn,q~

of M such that 1 s n s #(Q),

o(qi,cr) 3 (qi,+1, .••) for 1 sis n-1,

o(qn,cr) 3 (~,-1, ...)

and (qi,qi+l) E Ru for 1 s i s n-1,

then (qi,q~) is in Rcru for all i, 1 s i s n.

u

~~~~~~-~· Behaviour of a 2gsm on a suffix. 

Intuitively (*l means that we start Mon cru in state q 1, let M work (using 

Ru whenever it enters ul and wait until it moves left of cr (or repeats it

self). D 

Note that, by this theorem, each 2dgsm is equivalent to an always 

halting one. Note also that it easily follows from Theorem 2 that the reg

ular languages are closed under intersection. (In fact, the families of 



10 

languages accepted by 2-way acceptor models are nearly always closed under 

intersection.) 

3. EXERCISE. Prove that the regular languages are closed under inverse 2gsm 

mappings. Show that the operations mentioned in the beginning of section 1.1 

(such as cutting in half, taking the root) are examples of inverse 2gsm 

mappings. D 

We now turn to the alternative proof of Theorem 2 based on visiting 

sequences (or crossing sequences [Rab 2; Hen; HopUll 3]). The proof is more 

complicated but easier to vary for other purposes. 

A straightforward idea to prove Theorem 2 is the following. Consider 

the computation path of a 2gsm M on some input tape, see Fig. 4. Between two 

turns M behaves actually just as a 1-way automaton. It is clearly possible 

to simulate all these 1-way pieces of computation simultaneously by a 1-way 

automaton N (from left to right), alternatingly a forward and a backward 

simulation of M. N guesses M's state at-C:: turns and checks whether the for

ward and backward computations fit at :::Y.turns. To keep track of this simu

lation N keeps a visiting sequence of M in its finite control. 

forward 
backward 
forward 

backward 
forward 

I 

I 

'L__ visiting sequence 

~~~~~~ 4. Computation path of a 2gsm. 

$

A visiting sequence contains local information about the computation

of a 2gsm, analogous to a triple <q 1 ,cr,q2> in the 1-way case where q 1 (q2)

is the state of the 1-way automaton before (after) reading cr. A visiting

sequence of a 2gsm Mis a sequences= (cr,<d 1 ,q1 ,di,qi,v1>,

<d2 ,q2 ,d2,q2,v2>, .•. ,<~,qk'~'qk,Vk>) such that (qi,dl,Vi) E o(qi 1 G) 1 where

11

a E ~' k ~ O, d1.,d1! E {-1,+1}, q.,q~ E Q and v. E ~*.Intuitively s encodes
J_ J_ J_

all information about M's behaviour while visiting a particular input tape

square during a given computation: the square contains cr, it is visited k

times by M and during the i-th visit M enters the square in the di direction

in state qi and leaves it in the di direction in state qi, producing vi as

output. Clearly each (halting) computation of M on an input of length n can

be described completely by a sequence of n+2 visiting sequences, one for

each square. An example is given in Figure 5 for the 2dgsm defined in Ex

ample 1; in this picture the visiting sequences are put vertically, di is

drawn as an arrow towards qi and di as an arrow away from qi; qi and vi are

left out. (For a 2dgsm di,qi and vi are actually superfluous because they

are determined by o.) The dots in Figure 5 are drawn to

a a b

4q + --- :>q 1 ,+ 1

a

' ' ,

$

q + --- +q2+ --- +q2+- _, 2+-, {CI3+--' /+q2+-- ,4<13+
I ! !

4q + ·--'
3

,' ,
+-.. ./'

q2+ --- 4<13+--

I

~~2~~~ 5. A sequence of visiting sequences.

indicate how the computation path of the 2dgsm can be recovered from the

visiting sequences: just connect the right-going arrows "between" two visit

ing sequences in the obvious bijective way (in the order in which they ap

pear in the sequences), and similarly for the left-going arrows.

Vice versa, given an arbitrary sequence of visiting sequences, it is

easy to decide whether they encode a (halting) computation of M (on the in

put string spelled by their first elements): check for each pair s 1,s2 of

consecutive visiting sequences whether they fit in the sense that the arrows

which cross the boundary between the two squares can be connected as sug

gested above and that the state transitions indicated by s 1 and s 2 are con

sistent; also check whether the first visiting sequence is initial in the

sense that its symbol is~. its first 5-tuple is <+1,q0 ,+1, ..• > and all

others are of the form <-1,q,+1, ••• >, and whether the last 5-tuple is

12

final in a symmetric sense (where we assume that M climbs up the left end

and falls off the right end of the tape). If this has been checked, the

visiting sequences have to encode a computation: just follow the path indi

cated by the (connected) arrows, starting at the first 5-tuple of the first

visiting sequence; since no 5-tuple can be passed twice (which would give a

loop), the path has to end at the only loose exiting arrow: the last 5-tuple

of the last visiting sequence. Note however that there may be some super

fluous information which encodes a circular path disconnected from the main

path; as an example, change the visiting sequence of square b in Figure 5

into (b,-+q 1+,:tq 3 ,q2't).

Thus a string of visiting sequences encodes a computation of M if and

only if it starts (ends) with an initial (final) visiting sequence and con

secutive visiting sequences fit. A formal proof is left to the reader; it

can be found {for other purposes) in [Gre 2; Fis 1]. It should moreover be

clear that (in case the length of the visiting sequences is bounded) the

decision process can be handled by a 1-way finite state automaton, cf. the

discussion following Exercise 3. For k ~ 1 we say that a computation of a

2gsm is k-visit if each square is visited at most k times. We can now for

mulate the following basic lemma.

4. LEMMA. For each 2gsm M and k ~ 1 there is a 1-way gsm Vk such that

Vk(4cr 1cr2 ... crn$) = {s0 s 1s 2 ..• snsn+l I s 0 .•• sn+i is a sequence of visiting
sequences of M encoding a k-visit computation of Mon input tape ~cr 1 ... crn$}.

PROOF. The states and output symbols of Vk are the visiting sequences of M

with at most k 5-tuples. Vk starts by guessing an initial visiting sequence

and for each new input symbol a it guesses a visiting sequence with symbol

a which fits to the previous one; Vk accepts if a final visiting sequence

can be reached. Observe that when Vk has read 4cr 1 ..• crj it has guessed a

computation of M

5-tuples with di

on 4cr 1 •.. a j in which there are still "holes" caused by

= +1 or d. = -1 in the current visiting sequence. D
]_

Note that Vk is actually a sequential machine (with accepting states),

i.e. produces one output symbol for each input symbol. Note also that each

halting computation of a 2dgsm Mis #(Q)-visit: if M visits the same square

twice in the same state, then it is in a loop; however, the number of visits

in halting computations of a 2gsm is in general not bounded. On the other

hand, if the 2gsm M has an accepting computation on a given input, then it

also has one which is k-visit fork= #(Q): skip the parts between two

13

visits to the same square in the same state. Hence the 1-way gsm Vk of Lennna

4 accepts the same language as M, which proves Theorem 2 again.

For future use we observe that Theorem 2 can also be proved using the

concept of visiting set which is a visiting sequence without order (note

that we may assume that no 5-tuple occurs twice in a visiting sequence). The

definition of fitting is the same except that some order should be chosen

in the visiting sets (which may be different with respect to the left and

right neighbour of a visiting set!). Thus a sequence of fitting visiting

sets encodes in general many (but at least one!) computations of the 2gsm,

depending on the choice of the order.

We finally note that the bounded visit property even allows writing on

the tape, as shown in the next exercise.

5. EXERCISE. [Hen]. Let T be a (nondeterministic) Turing machine with one

tape (which is both input and working tape) and assume that there is an in

teger k such that each accepted input can be accepted with a k-visit compu

tation. Show that the language accepted by T is regular. D

1.2. Ranges of 2gsm mappings

Everything said about domains, we now turn to ranges of 2gsm's and,

more generally, to classes 2DGSM(L) and 2GSM(L) of output languages, where

L is som.e class of input languages. In what follows we always assume that

L is closed under 1-way (g)sm mappings and putting endmarkers (so that

Lemma 4 is applicable). Note that 2GSM(REG) is the class of ranges of 2gsm's,

where REG denotes the class of regular languages. As observed in the intro

duction and shown in [Raj 2], 2GSM(REG) equals the class CSA of languages

accepted by 1-way checking stack automata [Grei 3]; similarly 2GSM(L) is

equal to the class of "L-based pres'et" checking stack languages [Kie; Gre 1;

Gre 2]. However, determinism does not carry over. We shall concentrate on

the difference between 2dgsm and 2gsm, and on output languages obtained by

compositions of 2gsm's. These results and many others can be found in

[Gre 3; AhoUll 1; EhrYau; Raj 1; Raj 2; Kie] and the more recent [Gre 1;

Gre 2; EngRozS; Gre 4; Eng 1] and (in a different formalism, cf. the next

section) in [RozVer; Ver; Lat 1; Lat 2].

A basic property of the range of a 2dgsm is the "Parikh property", i.e.

changing the order of the symbols in each of its strings produces a regular

language.

14

6. THEOREM. Each language in 2DGSM(REG) has the Parikh property.

PROOF. Define, for a visiting sequence s, h(s) to be the output produced

according to its visits, i.e. ifs= (cr,<d1 ,q 1 ,di,qi,v1>,< ..• ,v2 >, ... ,

< •.. ,vk>) then h(s) = v 1v 2 ... vk. Change the gsm Vk of Lemma 4 (with k = #(Q))

such that it outputs h(s) rather than s. Vk now produces the same output

string as M but in a different order. Moreover the output language of Vk is

regular, because REG is closed under gsm mappings. D

It should be clear from the proof that Theorem 6 holds for any

2DGSM(L) such that each language of L has the Parikh property. It is there

fore in particular true for 2DGSM(CF), where CF denotes the class of con

text-free languages.

Since {anln is not prime} is in 2GSM(REG) (translate ak into (ak)m

for k,m :2: 2), Theorem 6 implies that 2DGSM(REG) :f. 2GSM(REG). In this example

the 2gsm makes an unbounded number of visits to the squares of its input

tape. As shown next, this property is necessary for a 2gsm to produce a lan

guage not in 2DGSM(REG). A 2gsm is k-visit if each string of its output lan

guage can be produced by a k-visit computation, and finite visit if there

is such a k. The corresponding classes of languages are denoted by 2GSMk(REG)

and 2GSMFIN(REG). Note that these concepts are also natural for checking

stack automata (CSl\ and cs~IN).

7. THEOREM. 2GSMFIN(REG) = 2DGSM(REG).

PROOF. Let M be a k-visit 2gsm. The idea is to take the visiting sequences

of M's computations on "regular" strings (with up to k visits per square)

and to feed then as input into a 2dgsm N which simulates M by merely fol

lowing the computation path encoded in each such sequence. Thus if L is the

regular input language of M, then Vk(L) is the (regular) input language of

N (see Lemma 4). N follows M's computation by keeping an integer between

and k (to indicate which visit it simulates) in its finite control. D

This shows that 2dgsm's correspond to finite visit checking stack auto

mata in a natural way. It is left to the reader to extend this result to

Turing machines with a 1-way input (or output) tape and a working tape on

which they are finite visit (cf. Exercise 5) [Raj 1; Gre 1]. Note that

Theorem 7 can also be generalized to arbitrary L.

8. Exercise. Show that 2DGSM(2DGSM(REG)) = 2DGSM(REG), i.e. 2DGSM(REG) is

closed under 2dgsm mappings. Show similarly that 2GSM(2DGSM(REG)) =

= 2GSM(REG). Hint: the output string of the first 2dgsm lies "wrapped up"

in the string of its visiting sequences. D

It follows from Theorem 7 that 2gsm output-languages which cannot be

produced by a 2dgsm, contain strings which can be pumped.

9. COROLLARY. If LE 2GSM(REG) - 2DGSM(REG), then L contains an infinite

regular language.

15

PROOF. The 2gsm which produces Lis not #(Q)-visit by Theorem 7. Hence there

exists an output string w which cannot be obtained from a #(Q)-visit compu

tation. Thus, in the (shortest) computation with output w, some square is

visited twice in the same state, and so the subcomputation between these

visits (which produces w2 ~ A with w w1w2w3J can be repeated any number

* of times. Hence L contains w1w2w3 • D

Theorem 6 and Corollary 9 together show that every infinite language

in 2GSM(REG) over a one-letter alphabet contains an infinite regular language
n2 I. [Gre 3]. Hence the language {a n ~ 1}, which is accepted by a 1-way

(non-erasing) stack automaton, is not a checking stack language (every

checking stack language is a stack language [Gre 3]). Another consequence

of Theorem 7 and its Corollary 9 is that 2GSM(REG) is not closed under 2dgsm

mappings (cf. Exercise 8) and in particular not under "copying". Define

c 2 (L) = { w#w I w E L}, where # is a "new" symbol.

10. THEOREM. For every language L, if c 2 (L) E 2GSM(L) then LE 2DGSM(L).

PROOF. c 2 (L) contains no infinite regular language: if w1w;w 3 ~ {w#wlw EL},

then w2 cannot contain # and it cannot be a substring of one of the w's.

This forces the 2gsm to be finite visit and hence Corollary 9, generalized

to L, implies c 2 (L) E 2DGSM(L). A dgsm can be used to recover L from c 2 (L)

(Exercise 8, generalized to L). 0

Taking L = {anln is not prime} or any other language in 2GSM(REG)-

2DGSM(REG), c 2 (L) shows that

11. COROLLARY. 2GSM(REG) ¥ 2DGSM(2GSM(REG)). 0

16

This shows that 2gsm mappings are not closed under composition! Intu

itively this is because an output which is produced nondeterministically

cannot be reproduced.

Theorem 10 is an example of an (upward) "translational method" [RubFis].

It enables one, by translating the "problem" L into the harder problem

c 2 (L), to lift the proper inclusion 2DGSM(L) $ 2GSM(L) to the proper inclu

sion 2GSM(L) .St 2DGSM(2GSM(L)). Translational methods are widely used in com

plexity theory, where they are mostly called reduction techniques, and in

formal language theory, e.g. [Gre3; Sky; EngSky].

12. EXERCISE. Show that 2GSM2 (L) = 2GSM(l) if and only if 2DGSM(l)

2GSM(L). D

The natural question now arises whether the composition of n+1 2gsm's

is more powerful than that of n. This is indeed the case as recently shown

in [Gre 4; Eng 1]. We follow the proof in [Gre 4]; an alternative proof will

be given in section 3, Exercise 46. What makes 2GSM intuitively more power

ful than 2DGSM is the unbounded visit property which e.g. allows a 2gsm to

make an unbounded number of copies of the input string. This can be express

ed formally in the language operation c defined by c (L) = {(w#JnJw EL,
* * n 2 1}, where #is a new symbol. Thus L can be translated by a 2gsm into

c*(L). The following translational result shows that our intuition is true

if the class of input languages is of the form 2GSM(...).

13. THEOREM. If c*(L) E 2DGSM(2GSM(l)), then LE 2DGSM(l).

PROOF. Let c*(L) = M2(M1 (Lo)) for some Lo E L, Ml E 2GSM and M2 E 2DGSM.

The idea of the proof is (similarly to that of Theorem 10) to show that the

form of the language c (L) forces M to be finite visit and so
2 * 1

c*(L) E 2DGSM (l) = 2DGSM(l) and LE 2DGSM(l). A quick formal proof goes as

follows. Let k be the number of states of M2 . Then c*(L) E 2DGS~{2GSM(L))

and so ck+l (L) = {(w#)k+lJw EL} is also in 2DGS~(2GSM(L)) because this

class is closed under intersection with regular languages. Hence

ck+l (L) = N2(N1 (Ko)) with Ko E L, Nl E 2GSM and N2 E 2DGSMk. Since 2GSM(L)

is closed under 1-way gsm mappings and endmarking, we may assume by Lemma 4

that N1 produces output strings on which the visiting sequences of N2 are

printed. Suppose now that N1 is not finite visit. As in the proof of Corol-

lary 9 this means that N1

2dgsm N2 translates these

* produces strings w1w2w3 with w2 ~ A. The k-visit

into strings u 1v~u2~···~v~~+l (n21,v1v 2 ... vk~A)

17

in ck+l(L); this is easy to see if the subcomputations of N1 on w2 always

start at one end and leave at the other end of w2 , for the general case see

the "pumping lemma" in [Gre 1, Lellll!la 4.22]. Clearly ck+l (L) cannot contain

these strings. 0

This shows that the proper inclusion 2DGSM(L) ~ 2GSM(L) can be lifted

to the proper inclusion 2DGSM(2GSM(L)) ~ 2GSM(2GSM(L)) on the next level.

Together with Theorem 10 we obtain the following hierarchy result.

14. THEOREM. If 2DGSM(L) ffe 2GSM(L), then for all n ~

2GSMn(L) ~ 2DGSM(2GSMn(L)) ~ 2GSMn+l(L). 0

Note that the pumping argument in the proof of Theorem 13 also shows that

k+1 visits are more powerful thank visits, at all levels (also for

* 2DGSM(REG) because every regular language contains some w1w2w3).

Thus for L =REG and L =CF we obtain proper hierarchies {2GSMn(LJ}n~l.

General conditions on L under which the hypothesis of Theorem 14 is true are

given in [Gre 4]; see also Theorem 49 in section 3. One such condition is

clearly the Parikh property. Another is that L is a full principal substitu

tion-closed AFL, not closed under 2dgsm mappings (such as the indexed lan

guages). It is open whether "L is a full semi-AFL and L ff: 2GSM(L)" is such

a condition.

Another recent result on ranges is the incomparability of CF and

2GSM(REG), i.e. of pushdown automata and checking stack automata [Gre 1;

EngSchvL]. A careful analysis of the closure properties of 2DGSM(L) with

respect to the operation of substitution (similar to the one concerning

stack automata.in [Gre 3]) gives the following result [Gre 1; Lat 1].

15. THEOREM. L~t L be a full semi-AFL and L1 a full principal substitution

closed AFL. If L1 E 2DGSM(L), then L1 EL. 0

Taking e.g. L1 = CF this means that if L does not contain all context

free languages, then neither does 2DGSM(L): 2dgsm mappings are of no use in

producing all context-free languages. In particular L = REG shows that

2DGSM(REG) does not include CF. This can be extended to 2GSM(REG) as follows.

Assume that CF E 2GSM(L) and let L E CF. Let p(L) be the parenthesis lan

guage obtained by putting parentheses around right-hand sides of rules in

the context-free grammar for L. Then p(L) E 2GSM(L). Since parenthesis lan

guages do not contain an infinite regular language, Theorem 7 shows that

18

p(L) E 2DGSM(L) and, erasing parentheses, that LE 2DGSM(L). Together with

Theorem 15 this proves that if CF ~ 2GSM(L) then CF ~ L. Moreover, since
CF is a full principal AFL, the next general theorem is obtained [Gre 4].

16. THEOREM. Let L be a full semi-AFL. If CF~ U 2GSMn(L), then CF~ L. 0 n

This theorem actually holds not only for CF, but for any full principal
substitution-closed AFL with an APL-generator which contains no infinite

regular set (e.g. the indexed languages).

Thus CF cannot be reached from REG using 2gsm mappings. By the well

known substitution result of [Gre 3] it follows that not all context-free
languages can be accepted by nonerasing stack automata.

We note that the above "parenthesis argument" strongly suggests that

there is no "natural" class of grammars corresponding to the checking stack
automaton. Otherwise the same parenthesis argument would be applicable to

2GSM(REG), giving a contradiction.

1.3. Composition of 2dgsm mappings, general automata theory

Exercise 8 suggests that 2dgsm mappings are closed under composition.
This has recently been proved in [ChyJak], although most of the steps need
ed for the proof are already contained in [HopUll 1; AhoUll 1]. The problem

with the composition of two 2dgsm's M1 and M2 is that we would like to con
struct a 2dgsm M3 which gets an input string of M1 and knows the visiting

sequences of M1 on this input, cf. Exercise 8. Note that since M1 is deter
ministic, there is at most one computation on each input and consequently
at most one "correct" visiting sequence on each square. But it seems im-

possible for M3 (which has only a finite memory) to leave the current square
in order to compute M1 1 s visiting sequence by, say, simulating Vk of Lemma
4. Surprisingly, the following "regular context lemma" was proved in

[HopUll 1, Lemma 3], see also [AhoHopU 1, p.212].

17. LEMMA. A 2dgsm can keep track in its finite control of the state of a
1-way deterministic finite state automaton.

PROOF. Let A = (Q,I,-,o,q0 ,-) be a 1-way deterministic finite state auto

maton (i.e. a dgsm without output). We extend o as usual such that, for
* q E Q and w E I ,o(q,w) is the state of A after reading w when starting in

state q. We want to show that, on an input tape ~cr 1 cr 2 ... cri ... crn$, every

19

2dgsm M can keep track of o(q0 ,cr1cr2 ••• cri) where i is the position of M's in

put head. To prove this, suppose that M has o(q0 ,cr 1cr2 •.. cri) = q in its finite

control (initially M starts on~ with q 0 in its finite control). If M moves

right, it just replaces q by o(q,cri+l). The problem arises when M moves left:

what should M do to compute o(qo,crl •.. cri-1)? Suppose {p E Q I o(p,cri) = q} =
= {p 1,p2 , ..• ,p }, i.e. p , ... ,p are all possible states of A after simulat-

r 1 r
ing A one step backwards. If r = 1, then o(q0 ,cr 1 .•. cri-l) = pl and there is

no problem. If r ~ 2 then M continues to move left while simulating A back

wards for each pi as "final" state, simultaneously. Thus when M arrives on

the j-th square of the input tape ~cr 1 ... cr cr. 1cr ...• $, it has computed
J i- i

y(crj+l•••cri-l'pk) for every k (19;:~r), where y(v,p) = {p' E Q O(p',v) = p}.

Note that these y-sets are disjoint. But M has to be careful: it should be

able to return to the (i-1)-th square. Fortunately M can always do so as

long as at least two of the y(crj+1 ... cri-l'pk) are nonempty: in that case it

picks a state out of each one of these two y-sets and moves right simulating

A for both of these states; as soon as they coincide M is back on the i-th

square (they cannot coincide earlier because they should be different on

the (i-1)-th square).

There are two cases. ~~~~-~: at the j-th square all y-sets become empty

except one: y(crj+i···cri-l'pk}. Then pk is the state of A to be computed. M

moves one square to the right into the previous situation (which it should

remember, in its finite control) and goes home as indicated above.

f~~~-~: M arrives at ~ wit,~ at least two of the y-sets nonempty. If

q0 E y(cr 1 ••. cri-l'pk), then pk is the required state. D

This lemma clearly settles the composition result in case M1 is a 1-way

dgsm. It will now be used to prove the composition result of [ChyJak].

18. THEOREM. 2DGSM is closed under composition.

PROOF. To compose M1 and M2 it suffices to show that M3 can be constructed

so that it keeps track of the visiting sequence of M1 at the current square

of the input tape of M1 (and M3). Then M3 can move along the output string

of M1 (which is wrapped up in the visiting sequences) simulating M2 on this

string. Let M3 be on the i-th square of input tape ~cr 1 ... cri ... crn$. By Lemma

17, applied to the deterministic 1-way finite state automaton corresponding

to the gsm Vk (without output} of Lemma 4 by the usual subset construction,

M3 can compute the finite set L of all visiting sequences si of M1 for which

20

there is a sequence s 0s 1 ... si of fitting visiting sequences (on ~cr 1 ... cri)
with s 0 initial. Since in both Lenuna 4 and 17 we may as well assume that the
1-way device moves from right to left, M3 can also compute the set R of all
si for which there is a fitting sequence si .•. snsn+l with sn+l final. Since
there is only one computation of M1 on the input tape, L n R is a singleton
containing the required visiting sequence. 0

We now observe that in this proof it is essential that M1 is a 2dgsm,
whereas M2 might in fact be any other device which, if required, is able to
work as a 2dgsm. In particular 2DGSM o 2GSM ~ 2GSM (where M1 °M2 means "first
M1 , then M2"), cf. Exercise 8. If M2 is any other two-way transducer, then
M3 will be of the same type. The reader can easily check that the only thing
required of our transducer type is that it can move along its input tape
without manipulating its storage. This independence between input and stor
age is exactly the basic assumption of general automata theory as described,
independently, in [HopUll 1; Gin; Seo]. The definitions found in each of
these references can serve (almost) the same purposes; unfortunately, the
simplest [Seo] has been the least developed. Our definition is inspired by
[Seo], cf. [Gol].

First the nondeterministic case. A storage type (or data type) X is
specified by a set s of (storage) configurations, a set s 0 ~ S of initial
configurations, a set S00 ~ S of final configurations, a set T of tests which
are partial functions from S to {true,false}, and a set F of operations which
are binary relations on S. As an example, pushdown storage is defined by
taking s r* for some countably infinite alphabet r (or equivalently r =

* ={0,1}), s0 ={A}, S00 ={A} or S00 = r depending on whether acceptance is
by empty storage or not, T = {e} u {top I y E r} such that e(w) is true * y for w E r iff w = A, and top (w) is true iff w's rightmost symbol is y,

y * and F {pop} u {push I y Er} where pop= {(wy,w) I w Er ,y Er} and
y * push {(w,wy) I w Er} for ally Er. Alternatively (in the nondetermin-y

istic case) we could take T = 0 and F = {popy J y E r} u {pushy I y E r}
with pop {(wy,w) J w Er*}, and use a special symbol in r as bottom sym-y
bol. An automaton type consists of a storage type X together with a way of
handling the input and output (such as 1-way, 2-way, multi-head, etc.). In
formally an automaton type consists of a type of storage and a type of
finite state automaton. This shows why finite state automata are so important
in general automata theory. An automaton "of that type" is obtained by
writing any nondeterministic flowchart which uses the tests and operations

21

allowed on X, the input and the output. The automaton starts with its stor

age in an initial configuration and accepts only in a final configuration.

In the deterministic case we require that the operations in F are partial

functions and that all flowcharts are deterministic (and, if you wish, that

s0 is a singleton). In the nondeterministic case it may always be assumed

that T = 0: each test can be simulated in the usual way by a guess between

two partial (identity) functions.

As an example, for a given X without tests, a 2-way nondeterministic

X transducer is a nondeterministic flowchart which uses the elementary in

structions on X together with those on the input array and output tape as

specified for the 2gsm in the beginning of this section. Formally it can be

described in the usual fashion by a function o from Q x (Eu{~,$}) to the

{ } •* * * finite subsets of Q x -1,0,+1 x Ll x F . An element f 1f 2 ••. fn of F in-

dicates that operations f 1,f2 , ..• ,fn should be applied to the current con

figuration in that order (nothing happings if n = 0). In the deterministic

case (and an X with tests) the values of the tests appear in the domain of

o; a formalization is left to the reader.

For every storage type X let T~(X) and T~(X) denote the classes of

translations defined by two-way deterministic and nondeterministic X trans

ducers respectively.

19. THEOREM. For every storage type X,

2DGSM o T~(X) E T~(X) and 2DGSM o T~(X) E
N T2 (X). D

D Let us now consider 2-way deterministic X acceptors and let L2 (X)
-1

denote the class of accepted languages. Since dom(fog) f (dom(g)), where

dom =domain, the above composition theorem shows that L~(X) is closed under

inverse 2dgsm mappings. In fact this property (almost) characterizes such

classes, as shown in [AhoUll 1]. To prove this we need a basic lemma which

formally states the division of an automaton into storage and finite state

automaton. Consider a 2-way deterministic X acceptor M, where X has no

tests. Then o is a function from Q x (Eu{~ 1 $}) to Q x {-1,0,+1} x F*, i.e.

M is a 2dgsm with output alphabet F! Actually the output alphabet is a fi-

* nite subset of F. For F' E F, let LF' be the set of all f 1f 2 ... fn E (F')

which (when interpreted) lead from some initial configuration to some final

configuration. The next lemma is analogous to one for the 1-way case in

[Gin].

22

20. LEMMA. Let x be a storage type without tests. L~(X) consists of all lan---1
guages M (LF,), where Mis a 2dgsm with output alphabet F' ~F.

PROOF. Since no tests are made on storage, we can first compute the "output"

f 1f 2 ... fn and then check whether this sequence of operations leads to suc

cess. D

21. THEOREM. [AhoUll 11. A class of languages is L~(X) for some storage

type X if and only if it is closed under inverse 2dgsm mappings and marked

union (i.e. aL 1 u bL 2 where a and bare new symbols).

D PROOF. Closure of L2 (X) under inverse 2dgsm mappings has been shown and

closure under marked union is obvious. Now let L be a class closed under

these operations. Storage type X is defined as follows. s consists of the

empty string ~d all strings crLw with L E L (where crL is L viewed as a sym
bol) and w E Z (where Z is the set of all symbols appearing in LJ. s 0 ={A}
and s

00 {crLw W E L}. T is empty and F is the set of all partial functions

ffL (A) crL and undefined otherwise, for all L E L

lrcr(crLw) = a wa
L

and f 0 (A) is undefined, for all a E z
F as an alphabet can be identified with {crLjL E L} u L Then LF is clearly

the union of all languages crLL, L E L. Hence, for a finite F' ~ F, LF' is

a finite union of such languages and so LF' E L (by closure under marked
D union). Lemma 20 now implies that L2 (x) ~ L. On the other hand, each LE L

can easily be recognized by an (even 1-way) acceptor which writes crL in

storage followed by the input string.

Of course the constructed 2-way deterministic acceptor type is not

very natural: it has an infinite number of instructions and accepts in a
odd way. D

The result in [AhoUll 1] actually considers the more special case of

automata which can be reset to their (unique) initial configuration. To

characterize these in terms of operations, marked concatenation and marked

star have to be added.

It is easy to see that Lemma 20 also holds for 2-way nondeterministic

X acceptors (l~(X)) for which T 0 may always be assumed. Let L~(X) be

the corresponding 1-way class.

22. THEOREM. For every storage type X, L~(X) -1 N
2GSM (L 1 (X)).

23

PROOF. ~: Use the nondeterrninistic version of Lemma 20. Clearly LF' is ac

cepted by a 1-way X acceptor.

2: The 2-way acceptor simulates the 2gsm and feeds its output directly into

the 1-way acceptor. D

-1 As an example, 2GSM (CF) is the class of languages accepted by 2-way

nondeterministic pushdown automata.

Since L~(X) classes can be characterized as full semi-AFLs (i.e. closed
N under a-transducers and union) [Gin; Gol], this shows that the L2 (x) classes

are characterized as the images of full semi-AFLs under inverse 2gsm map-

pings. Thus the study of 2-way acceptors is dual to that of preset checking
-1

stack automata (2GSM (L) versus 2GSM(L)). Recall that inverse 2gsm mappings

are mappings such as cutting in half, taking the root, etc. (cf. Exercise 3).

Lemma 20 and Theorems 21 and 22 (see also Exercise 3) express the basic

"inverse law" of the general theory of acceptors: the class of languages ac

cepted by an acceptor type can be expressed in terms of the inverse mappings

defined by the finite state transducers with the same type of input. (For the

1-way case [Gin], note that a-transducers are closed under inverse, and that

quasi-realtime 1-way acceptors are characterized by inverse gsm mappings
-1

i.e. h , n R,A-free h).Theorems 19 and 21 express the "composition law"

of the theory: in order to obtain a characterization of L<x) by closure

under language operations, the corresponding class of finite state trans

ductions should be closed under composition. Thus the nonclosure of 2gsm

mappings under composition explains that no such characterization result

for 2-way nondeterministic acceptors exists. It is an open problem whether

a different set of operations exists which characterizes L~(X) as in Theorem

21.

We return to 2dgsm and 2gsm mappings. Although 2gsm's are clearly

stronger than 2dgsm's due to nondeterrninism, we will show that this gives

no additional power apart from computing more outputs to the same input.

More clearly: 2GSM n PF = 2DGSM, where PF is the class of partial functions.

To show this we need the concept of a 1-way dgsm with regular look-ahead
R R (denoted dgsm). A dgsm M decides its next move on the basis of regular

properties of the rest of the input string (and, as usual, its state and

input symbol). These properties are specified by a finite set of disjoint

regular languages or, equivalently, by the states of a 1-way deterministic

finite state automaton which works from right to left on the same input.

Basic properties of dgsmR are

24

(i) DGSM Si. DGSMR.::, GSM (clear),

(ii) DGSMR ~ 2DGSM (by the regular context lemma 17),

(iii) GSM n PF = DGSMR (using regular look-ahead, determine which next moves

of the gsm lead to acceptance; do one of these moves).

(i) and (iii) show that the theorem to prove does not hold in the 1-
R way case! (iii) can be improved by replacing the dgsm by a conceptually

simpler automaton: the bimachine [Sch; Eil].

We need the following "slice lemma".

23. LEMMA. For every 2gsm M there is a 2dgsm N with the same domain and

N ~ M (as a relation).

PROOF. We first note that this slice lemma holds for gsm and dgsmR (in place

of 2gsm and 2dgsm respectively): use the same proof as (iii) above. Let k

be the number of states of M. If M has an accepting computation on ~w$, then

it also has a k-visit accepting computation on ~w$. Let M1 be a dgsmR which

"slices" the gsm Vk of Lemma 4. Let M2 be the 2dgsm which simulates M on the

sequences of visiting sequences. Let N = M1 °M2 • Clearly N slices M. Since

DGSMR E 2DGSM and 2DGSM is closed tmder composition, N is in 2DGSM. 0

It easily follows from this lemma that 2GSM n PF = 2DGSM. Now remember

that {2GSMn} is a proper hierarchy. Even these compositions cannot give new

partial functions.

24. THEOREM. For every n ~ 1, 2GSMn n PF = 2DGSM.

PROOF. Let M1 °M2° ... 0 Mn be a partial function, with Mi E 2GSM. Change Mi in

such a way that it only produces strings in the domain of Mi+l (use Theorem

2 and start with i = n-1). Replace Mi by a slice Ni according to Lemma 23.

Since 2DGSM is closed under composition, the result follows. D

2. GRAMMARS FOR TWO-WAY TRANSDUCERS

We would like to find grammars corresponding to 2-way finite state

transducers, i.e. generating 2DGSM(REG) or 2GSM(REG). Very often it seems to

be difficult to find grammars for 2-way devices, but we might have some

chance because we are dealing with 1-way (checking stack) automata! The

existence of grammars for 2DGSM(REG) was shown in [Raj 2].

25

A grammar G may be viewed as a 1-way transducer M and vice versa: a

computation of M is a derivation of G, the output of M is the string gener

ated by G, the input of M is the "control string" of G's derivation indi

cating which elementary steps have to be taken in which order, and the range

of M is the language generated by G. Thus our problem is how to transform

the 2-way translation process of a 2gsm into a 1-way process of some 1-way

transducer. It turns out that the 1-way transducer has to make use of some

kind of parallelism (such as that present in expressions or in parallel as

signments): the 2-way computation is cut in several 1-way pieces and these

pieces are simulated simultaneously. In fact we have already seen how to

to do this in section 1: by computing transition tables or by guessing vis

iting sequences (the results of section 1 all depend on this possibility to

transform 2-way into 1-way and then use well-known 1-way techniques).

Generalization of these two constructions in section 1 (used to prove

Theorem 2) by incorporating the output of the 2dgsm will lead to two dif

ferent types of grammar. We will first take the visiting sequence approach

and then that of transition tables. In both approaches it is essential that

(for a given symbol cr) the translations of a string cru can be expressed in

terms of the translations of u. This was apparent for transition tables.

For visiting sequences it can be seen from the behaviour of Vk of Lemma 4:

after guessing a visiting sequence for a it continues to work on u and need

not return to cr. This essential property shows that the translation can be

defined recursively on the structure of the string (the string is build up

by prefixing symbols). As an example consider a 1-way gsm. It can be de

scribed by (rewriting) rules q(crx) ~ wq'(x) where (q',+1,w) E o(q,cr) and x

stands for any suffix of the input string. Such a rule expresses that the

q-translation (i.e. the output when starting in state q) of crx is w fol

lowed by the q'-translation of x. A natural generalization of this idea is

to allow any number of translations in the right-hand side of the rule. This

leads to the following definition of a generalized gsm.

2.1. Generalized gsm mappings and restricted 2-way pushdown transducers

A generalized gsm or parallel machine (abbreviated pam) is a tuple

M = (Q,E,~ 1 q0 ,R) where Q is a set of states or procedure names, q0 is the

initial state or main procedure name, E and ~ are the input and output alpha

bet respectively, and R is a set of rules or body definitions of the form

26

with n

* string and v. E /'!. •
1

Application of rule (*) to a sentential form consists of rewriting an oc-

* curence of q(au), for some u EL, by w1q 1 (uJw2q 2 (u) •.. wnqn(u)wn+l· The

I * * translation realized by Mis {(w,v) q 0 (cl:w$) * v} where=> denotes repeated
application of rules. M is deterministic (dpam) if for each q and a there is
at most one rule with left-hand side q(ax).

There are three ways of viewing a pam. First as a set of recursive
procedures (with parameter and result of type string); rule (*) is part of
the body of procedure q and expresses the translation of ox recursively in
those of x. Secondly as a (generalized) finite state transducer; (*) means
that when M reads a in state q it splits into n identical transducers which
continue to process the rest of the string in parallel (each in its own
state). Thirdly as a rewriting system as suggested in the definition. With
out loss of generality, derivations may be restricted to be left most and
also to be parallel (as in the case of context-free grammars). Parallel deri
vation means that a rule is applied to each "call" pi (ui) in the sentential
form simultaneously; during a parallel derivation each sentential form is
of the form v 1p 1 (uJv2p 2 (u) ... vnFm(u)vm+l and thus the parameter u may be
kept globally, i.e. outside the sentential form; in that case the rule (*)
can be written as a: q-+ w1q 1w2q 2 ... wnqnwn+l' i.e. the "control symbol"
a causes the "nonterminal" q to be rewritten by the string w1q 1 ..• qnwn+l"
From this parallel rewriting point of view M is called an ETOL system
[HerRoz; Roz].

25. EXAMPLE. The translation of Example 1 can be realized by the dpam N with
states q 0 ,q1 ,q3 and the following rules:

q0 Ccl:xl -+ ql (x)q3 (x) '

q 1 (ax) -+ aq 1 (x) q 1 (bx) -+ A., ql ($x) -+ A.,

q 3 (ax) -+ bq3 (x), q 3 (bx) -+ ql (x)q3(x),

q3 ($x) -+ A..

n 1 n2 ~ * n 1 n 1 n2 nk * n 1 n 2 n 2 ~ nk. Clearly q 1 (a ba ... ba $) *a and q 3 (a ba ... ba $) * b a b ... a b .
A left-most evaluation of the call q 0 (cl:aaba$) is

q0 (caaba$) => q 1 (aaba$Jq3 (aaba$) * aq 1 (aba$)q3 (aaba$) * aaq (ba$Jq3 (aaba$) *
2 2 1 2 2 aaq 3 (aaba$) * aabq3 (aba$) => aabbq3 (ba$) *a b q 1 (a$)q3 (a$) =>a b aq 1 ($Jq3 (a$)

2 2 2 2 2 2 =>a b aq3 (a$) =>a b abq3 ($) =>a b ab.

27

A parallel derivation is

Clo(<l:aaba$) ,. q 1 (aaba$)q3 (aaba$) ,. aq1 (aba$)bq3 (aba$) ,. aaq1 (ba$)bbq3 (ba$) ,.
2 2 2 2 aabbq1 (a$)q3 (a$) ,. a b aq1 ($)bq3 ($) ,. a b ab.

And an ETOL derivation is
<I: a ~ b a $. 2 2 q 0 ,. q 1q 3 ,. aq1bq3 aaq1bbq3 ,. aabbq1q 3 ,. aabbaq1bq3 -.. a b ab. D

26. EXERCISE. Show that the language {w1#w2# ••• #wn#w I n ~ 1 and w wi for

some 1 ~ i ~ n} can be generated by a pam. 0

We now want to show that 2DGSM E PAM. Let M = (Q,E,~,o,q0 , {qf}) be a

2dgsm which starts on <I: and falls off the left of <I:. The pam N which simu

lates M has state set Q x Q, initial state <q0 ,qf> and the same input and

output alphabet. The rules of N will be constructed in such a way that

<q1,q2>(u) generates the output produced by M during a computation which

starts on the first square of u in state q 1 and terminates by falling off

the left of u in state q2 (just as for transition tables). Moreover, if

* <q0 ,qf>(d:w1w2$l,. v 1<q1 ,p1>(w2$lv2 ... vm<~,pm>(w2 $)vm+l is a parallel deri-

vation, then v1 ,v2 , ••• ,vm+l are the pieces of output produced by Mon <l:w1
during some computation and q 1 ,p1, ••• ,~,pm is the "crossing sequence" of

that computation at the boundary between w1 and w2 , i.e. the sequence of

states in which M crosses that boundary (qi in the +1 and pi in the -1 di

rection). Thus N guesses crossing sequences (as Vk in Lemma 4) and at the

same time produces the corresponding output at the proper places. Note that

each visiting sequence essentially consists of two crossing sequences, one

for each boundary of the square. The rules of N are constructed such that

each <q,p> guesses its own piece of the visiting sequence of the next square.

As an example, <q1,q3> might guess the piece of Figure 6 (cf. Fig. 3 in

section 1), where CJ is the next symbol

CJ

~~2~~~ 6. Piece of visiting sequence

and, e.g. q2 ~ q2 denotes the 5-tuple

<-1,q2 ,+1,q2,v2>. The corresponding

rule of N is <q1 ,q)>(CJx) ~

v 1<qi,q2>(xlv2<q2,q3>(x)v3 • Note that

q2 and q 3 have to be guessed: if, how

ever, the pam N has regular look-ahead

(in the obvious sense), then it can

compute q 2 from qi and q 3 from qz (be

cause the domain of a 2dgsm is regular,

Theorem 2). The above construction was

applied in Example 25 to the 2dgsm M of

28

Example 1 to which a state ~ is added which, at the end, walks from $ to ~;

in Example 25, q 0 stands for <q ,q >, q for <q ,q > and q for <q ,q >.
0 00 1 12 3 300

Hopefully this has convinced the reader that 2DGSM c PAM and 2DGSM c R - -
DPAM. The reverse inclusions are false: the dpam with rules q0 (~x) + q(x),

q(ax) + q(x)q(x) and q($x) +a translates an into a2n, but {a2nln? O} is

not even in 2GSM(REG) by Theorem 6 and Corollary 9. Also {an2 1n ? 1} can be

produced by a dpam. To characterize 2DGSM we note that, in the construction

sketched above, a parallel sentential form contains at most k calls
<qi,pi>(u), where k = #(Q), because each qi is part of the same visiting se-

quence (of the first square of u). A parallel derivation of a pam is k-copy

ing (or, of index kl if each sentential form contains at most k "calls".

A pam is k-copying if each of its successful parallel derivations is k-copy

ing (for ranges we only require that there exists such a derivation for each

output), and finite copying (or, of finite index) if there is such a k (nota

tion: subscripts k and FIN). Intuitively this means that of each suffix of

the input string at most k translations appear in the output string. Thus

2DGSM E DPAM~IN We also prove the reverse inclusion.

2 7. THEOREM. 2DGSM DPAM~IN

PROOF. One inclusion has been shown above. For the other inclusion it suf-

fices to show that DPAMFIN E 2DGSM because the regular look-ahead can be

printed on the tape by a 2dgsrn and a dpam can use this information instead

(and 2DGSM is closed under composition, Theorem 18). We explain the idea of

the proof by a (very simple) example. Let the dpam M have states S.A.B.C.D

and (at least) rules S(~x) + eB(x)fA(x)g, B(cr 1x) + bA(x), A(cr 1x) + aB(x)d,

A(cr2x) + bb, B(cr2x) + bC(x)eD(x)f, C(cr3x) + A(x)c, D(cr3x) + d and A($x) +a.

Let ~cr 1 cr2 cr 3 $ be an input string and consider Fig. 7. This figure represents

a derivation tree of the evaluation of the call S(~cr 1 cr 2 cr 3 $J in an obvious

way. Since M is k-copying (for some k) the width of the derivation tree is

bounded (by k times the maximal length of the right-hand sides of rules).

Consequently, the derivation tree can be printed (in some suitable coding)

on the input string with all nodes of one level at one square as indicated

in Fig. 7. Since this can obviously be done by a 1-way dgsm, it now suf

fices to define a 2dgsm N which simulates M on input tapes of the form of

Fig. 7 (again because 2DGSM is closed under composition). N just makes a

left-most traversal through the derivation tree, producing its yield

$

s

~
e B f A g

/\ ~
b A a B d

/1 ~
b b b Ce D f

A4a/
I
a

~~2~~~ 7. Derivation tree

of a pam.

as output (it keeps a pointer to a

node at the current level in its

finite control; the level itself is

indicated by the input head). Thus N,

in some sense, simulates a left-most

derivation of M. Q

29

Since the regular look-ahead can be computed in advance, finite copying

dpam's generate precisely 2DGSM(REG). It should also be clear that the same

holds for finite copying pam's.

28. COROLLARY. [Raj 2]. 2DGSM(REG) = DPAMFIN(REG) =

2GSMFIN(REG) = PAMFIN(REG). 0

Finite copying pam's are the same as the "absolutely parallel grammars"

of [Ray 2] (modulo a slight definitional variation). They are also called

ETOL systems of finite index and are investigated as such in [RozVer; Ver;

Lat 1; Lat 2]. Corollary 28 also holds for arbitrary L (satisfying the re

strictions of the previous section) , i.e. 2DGSM (L) is generated by the "L

controlled" PAMFIN grammars; see [Gre 1], where it is also shown that for

all k 2GSM2k(L) = P~(L) which corresponds to the intuition that one pass

(i.e. two visits) of the 2gsm over a string corresponds to one translation

of the pam, cf.· Example 25. Arbitrary L-controlled PAM (ETOL) grammars are

investigated e.g. in [Asv].

It is unlikely (cf. the end of section 1.2) that there is a natural

subclass of PAM which generates 2GSM(REG), i.e. the 1-way checking stack

languages (we saw that a dpam can generate {a2nln 2 O}). We now turn to the

reverse question and ask whether there is a natural class of automata cor

responding to pam's. Since a pam is a set of recursive procedures, it can

be implemented using a pushdown store in the usual fashion. Moreover, since

the recursion closely follows the recursive structure of the string, it

turns out that the parameters of the procedures (suffixes of the input

30

string) need not be stored on the pushdown. A global 2-way pointer to the
input string can keep track of the parameter of the procedure call(s) on
top of the pushdown (by pointing to the first square of the suffix), cf. the
description of a parallel derivation from the ETOL point of view, and
Fig. 7. Thus a pam M can be simulated by a 2-way pushdown transducer N!
N's method is exactly the same as for the finite copying case (Fig. 7) ex
cept that now a pushdown is used to traverse M's derivation tree, simulating
a leftmost derivation. N has suffixes of right-hand sides (without parameters)
in its pushdown squares indicating which part of the tree still has to be
traversed. Thus (taking the same example, see Fig. 8) N starts on ~ with
empty pushdown and moves one square to the right pushing the "symbol" eBfAg.
N will evaluate eBfAg in such a way that after evaluation its input head has
returned to the same square. N generates output e, changes eBfAg into BfAg
and moves one square to the right pushing bA (in order to evaluate the call
B).If N has evaluated bA (thereby changing it into the "symbol";\), it
moves one square to the left, popping ;\, and changes BfAg into fAg. Note that

~

a1 eBfAg Bf Ag

a2

a3

$

time
--+

2 2 2 2 2
Bf Ag Bf Ag Bf Ag Bf Ag fAg Ag

bA A A ;\ aBd

bb ;\

~~2~~~ 8. Implementation of a pam on a 2-way pushdown trans
ducer

N always knows what to push because its input head scans the first element
of the current parameter. Several stages in the computation of N are shown
in Fig. 8 where the input string is put vertical, the pushdown is upside
down and the input head scans the square at the same level as the top of
the pushdown (the number of intermediate steps of N is also indicated). This
shows that the languages in PAM(REG) can be generated by a 2-way pushdown
transducer. This does not mean very much because all recursively enumerable
languages can be so generated (check that the input string is the encoding
of a Turing machine computation) . Observe however that the above 2-way

31

pushdown transducer always moves right when it pushes and moves left when

it pops; hence its pushdown always has the same length as the prefix of the

input string to the left of the input head. This observation leads to the

following automaton, introduced in [vLe].

A checking stack pushdown transducer (cs-pd transducer) is a 2-way push

down transducer whose operations on input and storage may only be used

coupled in the following way: move right one square and push one symbol, move

left one square and pop one symbol (and eventually: do not move the input

head and change the top symbol of the pushdown). Thus the input pointer and

the pushdown pointer are tied together and forced to move simulta-

2-way <I: bottom
input

~pu•h~ (checking
stack) finite

contro
1-way

top I· .output

(input)
$

!I9~E~ 9. The cs-pd transducer (acceptor).

neously, as suggested in Fig. 9. A cs-pd acceptor is obtained in the usual

way by viewing input and output of the cs-pd transducer as checking stack

and input, respectively. Note that a cs-pd transducer does not satisfy the

basic assumption in general automata theory as explained in section 1.3,

whereas the cs-pd acceptor does. CS-PD(L) will denote the class of languages

generated from L by the cs-pd transducer (or, accepted by the "L-based"

cs~pd acceptor). A des-pd transducer is a deterministic cs-pd transducer

(we will not consider deterministic cs-pd acceptors).

The above arguments show that PAM(REG) E CS-PD(REG) and, obviously,

DPAM(REG) E DCS-PD(REG). The following characterization result is shown in

[vLe]; note that PAM(REG) = ETOL and DPAM(REG) = EDTOL; for the second

equality see [EngSchvL; EngRozS].

29. THEOREM. PAM(REG)

DPAM(REG)

CS-PD(REG) and

DCS-PD (REG) •

32

PROOF. To prove that DCS-PD(REG) ~ DPAM(REG), one can view the pushdown of

a des-pd transducer M as an additional read/write track on the input tape

which has to be erased when moving to the left. Extend the notion of visit

ing sequence to include the current content of that track (i.e. the top of

the pushdown) in the 5-tuples (cf. Exercise 5). Although Mis of course not

finite visit in general, the proof that 2DGSM c IDPAM;IN (see Fig. 6) can be

carried over to show DCS-PD ~ DPAMR: the states of the dpam N are triples

<q,y,p> meaning that M starts on the first square of a suffix of the input

string in state q and with y on top of the pushdown, and falls off the left

of the suffix in state p, popping y. The return states can be guessed by

regular look-ahead because the domain of a cs-pd transducer is regular

(Theorem 35). This implies that DCS-PD = DPAMR, cf. Theorem 27. Note that

this proof is based on the fact that the length of a piece of visiting se

quence (as in Fig. 6) is bounded for a des-pd transducer (otherwise it would

be in a loop). In the nondeterministic case this is not true any more (a

pam translates each input into a finite number of outputs, whereas the

number of outputs may be infinite for a cs-pd transducer). However, it is

easy to see that the infinitely many pieces of visiting sequence to be

guessed form a regular language (i.e. the guessing can be done by a finite

state automaton). An element of this language may be guessed step-wise if

arbitrarily many dummy symbols are interspersed with the input symbols; for

details, see [vLe; EngRozS]. D

Due to the coupling of input and storage, the analogue of Theorem 19

is not true for DCS-PD: the use of the language {a~nln ~ 1} E 2DGSM(REG)

as input to a des-pd transducer can produce an output language not in

DCS-PD(REG). Nevertheless, Theorem 18 (composition closure of 2DGSM) can

be generalized as follows.

30. THEOREM. DCS-PD o 2DGSM ~ DCS-PD.

PROOF. We will show that DPAMR o 2DGSM ~ DCS-PD, cf. the previous proof.

Let M be a dpamR and N a 2dgsm. Let Fig. 7 be a derivation tree of M. The

output of M for input ~0 1 02 0 3$ lies wrapped up as the yield of this tree.

Analogous to the case of visiting sequences, the 2dgsm N walking on this

output can be simulated by walking along the paths of the tree, as shown

in Figure 10

N moves right on

the yield.

33

(for a different tree). Although the

derivation tree is not present on the

input tape, the necessary nodes of

the tree can be constructed using the

pushdown facility as in the proof of

PAM~ CS-PD (Fig. 8); since this time

the tree is traversed to and fro, the

des-pd transducer should not erase

symbols of right-hand sides in its

pushdown squares, but has instead a

pointer in each right-hand side in

dicating the topnode of the subtree

being processed (as in the proof of

Theorem 27) . Note finally that the regular look-ahead of M can easily be

computed: the current input square can be marked on the pushdown and the

input head can walk to the right (pushing dummy symbols) and walk left

computing the regular look-ahead until it finds back the marked square. n

Hence DCS-PD(REG) is closed under 2dgsm mappings [EngRozS].

2.2. Tree transducers

The results of the previous subsection can be generalized straightfor

wardly to tree transducers, i.e. transducers which obtain a tree (preferably

a derivation tree of some sort) as input and translate it into another tree

or a string. Such transducers are studied because of their relevance to the

syntax-directed translation of context-free languages. In fact, the model

of (generalized) syntax-directed translation defined in [AhoUll 2,3] is

equivalent to the top-down tree transducer of [Rau; Tha 1]. Both models

formalize the recursive translation of a tree, using its recursive structure.

Thus the top-down tree transducer generalizes the pam in a natural way. (In

[Tha 1] tree transducers are called g2sm mappings, here it would be appro-
3 priate to call them g sm mappings!). we will only sketch the generalization

to trees, a detailed survey (also for the string case) can be found in

[EngRozS].

A top-down tree-to-string transducer M is the same as a pam except that

its rules are of the form

34

q(cr[x1 , .•. ,x]) + w1q 1 (x.)w2q 2 (x.) ... w q (x.)w 1 m 1 1 1 2 n n in n+

meaning that the q-translation of a tree with topnode labeled cr and subtrees

x 1 , ••. ,xm (in that order) is expressed as a concatenation of output symbols

and translations of the subtrees (for 1~s~n: l~i ~m). In case the right-hand s
side is a (coding of a) tree (with qs(xis) at the bottom) Mis a top-down

tree (to tree) transducer. The class of top-down tree transductions is de

noted by T (rather than TTT), and the class of top-down tree-to-string trans

ductions by yT (where y denotes the mapping which associates with each tree

its yield; clearly yT Toy). Determinism is indicated by D. The role of REG

is taken over by the class RECOG of recognizable tree languages, which is

strongly related to derivation tree languages of context-free grammars:

y(RECOG) =CF [Tha 2], whence the relationship to syntax-directed transla

tion of CF.

The results of section 2.1 for strings are generalized to trees by put

ting the strings vertical (as we already did in Figures) and imagining they
are trees. In particular the notion of suffix generalizes to that of sub

tree. Thus a tree transducer is finite copying if it makes a bounded number

of translations of each subtree of the input tree. Also, a tree-to-string

transducer can be implemented on a 2-way tree-to-string pushdown transducer,

called checking tree pushdo~m transducer (et-pd transducer), which keeps a

pointer to the top of that subtree which is the current parameter.

A et-pd transducer has an input head pointing to a node of the input

tree, a usual pushdown and a usual 1-way output tape, and it works by moving

down and up the tree (down to a specified son, up to the father) simulta

neously pushing and popping symbols, respectively (see Fig. 11). Since the

2-way
input tre
(checkin
tree)

bottom

puohdown~
top

finite
control

1-way

I j I·. output

(input)

~~~~~~ 11. The et-pd transducer (acceptor). 

machine starts with empty pushdown, the pushdown always has the same length 

as the path from the root to the input pointer (thus one may also imagine, 

as before, that each node of the input tree has an additional read/write 

square which has to be erased when moving up to the father) . A et-pd trans

ducer is finite visit if the number of visits of each node is bounded. The 



35 

proof of the next theorem is the same as in the string case (Theorems 7 and 

29, Corollary 28). 

31. THEOREM. 

(i) yT(RECOG) = CT-PD(RECOG) and 

yDT(RECOG) = DCT-PD(RECOG). 

(ii) yDTFIN(RECOG) = DCT(RECOG) CTFIN(RECOG). D 

yDT(RECOG) is the class of languages which can be obtained from the 

context-free languages by deterministic (generalized) syntax-directed trans

lation [AhoUll 2]. DCT denotes all dct-pd transducers which do not make use 

of the pushdown; thus they are 2-way finite state tree transducers, the gen

eralization to trees of the 2dgsm. These tree-walking dct transducers were 

introduced in [AhoUll 2], where also the relationship to finite copying 

was established (first equality of Theorem 31(ii)). The restriction of their 

proof to vertical strings gives the proof of Corollary 28 [Ray 2]. 

An inclusion diagram of classes of ranges of transducers is shown in 

Figure 12, where REG and RECOG are left out, CS and DCS stand for 2GSM and 

2DGSM, a path means inclusion and no path incomparability. This figure shows 

that variations of the same machine model characterize several different 

CT-PD 

CT CS-PD 

DCT DCS-PD 

DCS 

Figure 12. 

CT-PD automata classes 

defining mechanisms (such as the top

down tree-to-string transducer, the 

ETOL system, the 2-way finite state 

transducer). 

The tree-walking trick used in 

the proof of Theorem 30 (Figure 10) 

can be realized by a dct transducer. 

Thus, a 2dgsm walking on the yield of 

a tree can be simulated by a dct 

transducer walking on that tree, and 

similarly in the nondeterministic case. 

Using Theorem 31 this can be expressed as follows, where L is a class of 

tree languages satisfying certain closure properties. 

32. THEOREM. 2DGSM(y(L)) ~ yDTFIN(L) and 

2GSM(y(L)) ~ yT(L). D 

Taking L = RECOG implies 2DGSM(CF) ~ yDTFIN(RECOG) and 2GSM(CF) ~ 

yT(RECOG). Thus 2gsm mappings of context-free languages can be defined by 

syntax-directed translation! Taking L = DT(RECOG) and using the fact that 

DT is (almost) closed under composition, it ev~n shows that yDT(RECOG) is 



36 

closed under 2dgsm mappings. 

Iteration of the second inclusion in Theorem 32 implies that 

2GSMn(CF);:: yTn(RECOG), where yTn denotes the composition of n top-down 

tree transducers followed by yield. {yTn(RECOG)}n is a proper hierarchy and 

the counter-examples can already be found in the sub-hierarchy {2GSMn(REG)} 

[Eng 1], cf. Theorem 14. 

33. EXERCISE. Show that DPAM(REG) and yDT(RECOG) are closed under c*. 0 

2.3. Register grammars and macro grammars 

n 

We now turn to the transition table approach to find grammars for 

2DGSM(REG). We will try to incorporate the output of the 2dgsm Min the con

struction of the (first) proof of Theorem 2. Addition of output to the 1-way 

(right-to-left) finite state automaton A computing the transition tables 

then results in a 1-way transducer (grammar) for 2DGSM(REG). As discussed 

before, the existence of A is based on the fact that Rcru is determined (and 

can be computed from) cr and Ru; similarly, the output strings involved in 

computations of M on cru can be expressed in terms of those on u. If we 

provide A with a register x[q 1 ,q2 ] of type string, for each pair of states 

(q 1 ,q2 J of M, then it can use this to store the output of M resulting from 

a "(q 1,q2 J-computation" on u. A updates its registers by assignments, as 

follows (cf. (*) in the proof of Theorem 2, and Fig. 3): 

(**) if there is a sequence of states q 1 ,qi 1 ••• ,qn_ 1 ,q~_ 1 ,qn,q~ of M 

such that 1 s n s #(Q), 

for s i s n-1, 

(q~,-1,vn), and 

(qf,qi+i) E Ru for s i s n-1, 

then (q 1 ,~l is in Rcru and the assignment 

x[ql,q~] := v1x[qi,q2]v2x[q2,q3]v3 ... vn-1x[q~-1'qn]vn 
should be executed by A. 

(Note that the sequence q 1, ... ,q~ is unique for given q 1 and cr, because M 

is deterministic and Ru is a function.) Thus A, reading cr, changes its reg

ister contents by a parallel assignment of the form (x1 := w1 , 

* x2 := w2 , ... ,xm := wm) with wi E (LIU{x 1, ... ,xm}) , where x 1 , ... ,xm are all 

registers x[q1 ,q2]. At the end of A' s computation register x[q0 ,qf] contains 

the output of M. 



37 

34. EXERCISE. Define a "1-way register transducer" which can handle the 

above computation. Do this formally by specifying a storage type and a way 

of manipulating the input and producing output, as indicated in section 

1. 3. D 

Observe that there is a direct correspondence between the assignments 

in (**) and the rules of the pam corresponding to M (see the argument be

fore Theorem 27). Actually the register transducer can be viewed as an 

(iterative) bottom-up computation of the values of the recursive procedure 

calls of the pam. Thus the difference between the visiting sequence and 

transition table approaches corresponds, when generalized to trees, to the 

difference between top-down and bottom-up computation on trees (cf. [Eng 2]). 

Also, if the rules of the pam (or too-down tree transducer) are viewed as 

recursive functional equations, then the register machine may be viewed to 

perform an iterative computation of the least fixed 'point of these equations 

(in the usual way) . 

If we use the 1-way register transducer to generate languages, then the 

input can be replaced by nondeterminism. The corresponding flowcharts are a 

very simple class of nondeterministic register programs for the generation 

of languages: they only use parallel assignments. Let RP denote the class 

of generated languages. Thus 2DGSM(REG) ~ RP. As an example, the language 

{an2 1n ~ O} is generated (in register y) by nondeterministically iterating 

the parallel assignment (x := ax, y := yxxa) starting with (x:= A, y :=A). 

This example shows that RP is more than 2DGSM(REG). 

The transition table approach can be extended to the des-pd transducer. 

Due to the forced dependence between input and pushdown, the behaviour of 

a des-pd transducer M on a suffix u of the input string is determined by 

the state q in which M enters the first square of u and the symbol y it just 

pushed on the pushdown (cf. the proof of Theorem 29). Thus a transition table 

of M can be defined as a function R: Q x r -+ Q, where r is the set of push

down symbols, such that R(q,y) is the state M is in when falling off the 

left of u, popping y. In the nondeterministic case R is a relation ~ 

(Qxf)xQ. Similar to the pushdown-less case, this gives the following well

known result (extending Theorem 2). 

35. THEOREM. The domain of a cs-pd transducer is regular. D 

In terms of (ETOL) grammars this means that the set of control strings 

which lead to success, also called the Szilard language, is regular. Gener

alized to trees it can be shown similarly, using a bottom-up finite state 



38 

tree automaton [ThaWri], that the domain of a top-down tree transducer is 
in RECOG. 

It is easy to check that, as for a 2dgsm, a register program can 
compute the translation of a des-pd transducer. We leave it as an exercise 

to the reader to show that, vice versa, each language generated by a register 

program is the range of a des-pd transducer (use the "duality" between as

signments and pam rules), cf. [EngSchvL]. 

36. THEOREM. RP= DCS-PD(REG). 0 

This result was proved in [Dow], for DPAM(REG) i.e. EDTOL. 

It is rather straightforward to see that 2DGSM(REG) corresponds pre

cisely to the "noncopying" register programs [EngRozS], which only use as-

signments (xl := wl, ... ,xm := w ) such that each x. occurs at most once in 
ill ]. 

w1w2 ... wm. A more careful proof shows that 2k-visit 2dgsm correspond to 

non copying register programs with at most k registers (and to k-copying pam). 

Register programs are such a natural language-generating device that 
they form an additional motivation to study DCS-PD(REG), It follows from 

an extension of Theorem 15 that not all context-free languages are in RP 

[EhrRoz; EngRozS; Lat 2]. It is easy to see that all derivation-bounded con

text-free languages are in 2DGSM(REG). It has recently been shown [Lat 3] 

that no full AFL generator of CF is in RP. 

The language generated by a register program can be recognized by sim

ulating each register by two pointers to the string to be recognized, point

ing to the substring which is the content of tl).e register (if a register 

content is not a substring of that string, then it can be disregarded). 

Using some more pointers the parallel assignments can easily be simulated 

by pointer manipulation only. This shows that RP can be recognized by non

deterministic multi-head finite state automata, i.e. in nondeterministic 

logarithmic space [JonSky 1]. On the other hand, 2GSM(REG) contains an NP

complete language [Hun]. 

In the nondeterministic case, CS-PD(REG) can be characterized by "ex

tended" register programs which have languages in their registers (each 

register containing the set of possible translations of a given suffix), 

see [Dow;EngSchvL;AsvEng] and cf. the proof of Theorem 29. Note that CF~ 
CS-PD(REG): just disregard the checking stack (which should be "guessed" 

long enough); the corresponding extended register program computes the least 

fixed point of the context-free grammar viewed as a system of recursive 

equations. 

Register programs are related to macro grammars [Fis 21. If the state 



39 

of the finite control of the register program changes from F to G executing 
assignment (x 1 := w1, .•. ,xm: = wm), then the corresponding macro grammar 

has a rewriting rule F(x1 , .•• ,xm} + G(w1 , ... ,wm). For example, the macro 

grammar with rules S + F(A,A), F(x,y) + F(ax,yxxa) and F(x,y) + y will 

generate {an2 ln ~ O}. In general a macro grammar is just a set of (non

deterministic) recursive procedures (such as F,G} with bodies defined by its 

rules. The difference with a pam is that a "macro grammar procedure" has 

any number of parameters, builds up its parameters by concatenation (instead 

of breaking them down) and can have calls nested in other calls. Macro gram

mars can also be viewed as context-free grammars in which the nonterminals 

have parameters. These parameters can be used to define non-contextfree 

features of the syntax of programming languages. 'I"he class of all macro 

grammars generates the indexed languages, which are characterized by the 

nested stack automaton [Aho]. Natural restrictions on macro grammars (making 

them look like register programs) define 2DGSM(REG), DCS-PD(REG) and CS-PD(REG}. 

A stack is a pushdown which may also be used as a 2-way read-only tape; 

it has only one pointer which is either inside the stack (for reading} or on 

top of the stack (for pushing and popping} [GinGreH]. A 1-way (nondetermin

istic) stack automaton can easily simulate a 1-way (nondeterministic) 

checking stack automaton [Gre 3]. In [EngSchvL] the 1-way stack push-

down (s-pd) automaton is considered which, as the cs-pd automaton, has a 

read/write second track on its stack which should be erased when the stack

pointer moves up. The s-pd automaton is a very restricted case of the nested 

stack automaton (each pushdown square is a nested stack of size one), and 

the cs-pd automaton even more. The diagram in Fig. 13 shows some classes of 

languages defined by stack-like machines (where S denotes "stack"), cf. 

Figure 12. A peculiar kind of determinism can be defined to name the two un-

Nested S 

l MD 

CS-P s 

DCS-P 

DCS 

~~:!~!:~ 13. 

Stack-like automata 

classes. 

labeled nodes of Fig. 13. Natural 

classes of macro grammars have been 

found for all automata except stack 

and checking stack. Gluing Figures 12 

and 13 together shows that tree trans

ducer languages and macro languages 

are related via PAM(REG) or ETOL !an-

guages, and that this relationship 

can be "explained" by simple variations 

in the machine model. The addition of 

the "pushdown facility" to stack-like 

automata seems to improve the chance 

to find grammars (which are so helpful 



40 

in formal proofs); another possibility is to impose the finite visit proper

ty (or some kind of determinism). Correctness of the diagrams of Figures 

12 and 13 together is shown in [EngSchvL ; EngRozS]. 

37. EXERCISE. [vLe]. Show that a nonerasing (i.e. nonpopping) stack automa

ton can be simulated by a cs-pd automaton. Show the same for a stack-counter 

automaton (i.e. a stack automaton whose pushdown alphabet is a singleton). 

Hint: the top of the stack can be marked on the pushdown. D 

38. EXERCISE. [Gre 3]. Using transition tables, show that a 1-way nonerasing 

stack acceptor which does not read input when reading in its stack, accepts 

a regular language. Show that a 1-way stack automaton with the same property 

accepts a context-free language (Hint: store the transition tables on the 

stack). D 

3. TWO-WAY AUTOMATA AND COMPLEXITY 

Space-bounded Turing machines are typical examples of automata which 

do not satisfy the basic assumption of general automata theory (as discussed 

in section 1.3): the amount of storage depends on the input. Similarly time

bounded Turing machines are not acceptable because of the (time) restric

tions imposed on the programs for the machine. Surprisingly, certain types 

of 2-way (stack) automata, which do satisfy the basic assumption, turn out 

to characterize some of the space and time complexity classes. Moreover, if 

these automata are allowed to have several input heads (i.e. are multi-head 

automata), then still more complexity classes are obtained. In general the 

advantage of an automaton characterization of a complexity class is that 

the automaton can be programmed freely without caring for space or time, 

and one can be sure that an equivalent efficient algorithm exists. The main 

known results can be found in [HopUll 2 or 3; Fis 1; Coo 1,2; Iba; Gre 2; 

vLe]. 

3.1. Two-way checking automata 

The next simplest device with a 2-way read-only tape (after the 2-way 

finite state transducer or 1-way checking stack acceptor) is the 2-way 

checking stack acceptor. A nondeterministic 2-way checking stack automaton 
(2csa) has two 2-way read-only tapes: an input tape and a checking stack. 



Thus it is essentially a 2-tape 2-way finite state automaton accepting a 

binary relation of which only the domain (or range) is of interest. 

41 

Formally a 2csa is as usual a tuple M = (Q,L,f,o,q0 ,F) of states, in

put symbols, stack symbols, transition function, initial state and final 

states respectively, and 6 is a function from Q x (LU{~,$}) x (fu{~,$}) in

to the finite subsets of Q x {-1,0,+1} x {-1,0,+1} with obvious meaning. 

The set of directions of the stack-head may be restricted to {-1,+1}. As 

usual, 2CSA(L) is the class of languages accepted by L-based 2csa, i.e. 

2csa whose checking stack is preset by a string from a given language in L. 

39. EXERCISE. Show that 2DGSM-l(2CSA(L)) 

2CSA(L). D 

2CSA(L) and 2CSA(2DGSM(L)) 

The notions of transition table and visiting sequence can be generalized 

from the 1-way to the 2-way csa (i.e. they pertain to the checking stack, 

not to the input tape): in the definitions, the states (and piece of input) 

of the 1-way csa should be replaced by the states of the 2csa together with 

the positions of the input head (and the movements of the input head should 

be dealt with). Thus the 5-tuples <d,q,d',q' ,v> in the visiting sequence of 

a 2gsm (lcsa) are replaced by 6-tuples <d,q,x,d' ,q' ,x'> with d,d' E {-1,+1}, 

q,q' E Q and 0 ~ x,x' ~ n+l where n is the length of the input. A visiting 

sequence of a 2csa M for a given input w is a sequences= (A,< ..• >, ... ,< ... >) 

such that A Er and each 6-tuple <d,q,x,d' ,q',x'> ins satisfies 

(q',x'-x,d') E o(q, input[x],A), where "input" is the input array [O:n+l] 

containing ~w$. Note that, since lx'-xl ~ 1, we can put an element of 

{-1,0,+1} in the place of x' in all 6-tuples. As in the 2gsm case, a compu

tation of M on some input ~w$ and checking stack ~v$ is represented by a 

fitting sequence of visiting sequences (for input w) whose stack symbols 

spell ~v$. It may be assumed that all 6-tuples in a visiting sequence are 

different, because the computation between two identical 6-tuples may be 

skipped. Thus the same remarks hold for visiting sets (except that a se

quence of visiting sets may represent more than one computation). 

The relationship of the 2csa to space-bounded Turing machines is stated 

in the next theorem, where NSPACE(n) denotes the class of languages accept

ed by nondeterministic Turing machines in linear space: the context-sensi

tive languages. 



42 

40. THEOREM. [Fis 1]. 2CSA NSPACE (n). 

PROOF. We first show that 2CSA ~ NSPACE(n). An input ~w$ is accepted by a 

2csa M if there exists a checking stack such that M makes some successful 

computation on ~$ and that checking stack. A linear bounded Turing machine 

N can be constructed which, with input w, guesses one by one the elements 

of a fitting sequence of visiting sets for that input (cf. Lemma 4); thus 

it guesses both a checking stack and a computation of M. The idea of the 

construction is that one visiting set may be represented on a tape of length 

n (or n+2) by storing the 6-tuple <d,q,x,d' ,q' ,x'> on the x-th square of 

that tape as a 5-tuple <d,q,d',q',e> where e = x'-x (there are only a bound

ed number of such 5-tuples). The checking stack symbol is kept in the finite 

control of N. Thus N has one tape of length n+2 with three tracks; the first 

track contains the input ~w$, the second track contains the representation 

of some visiting set and the third track is used to guess the next (fitting) 

visiting set. It should be clear that N can realize such a guess by moving 

through the second track and "connect" each of its 6-tuples <d,q,x,d',q',x'> 

such that d -1 or d' +1 to a corresponding 6-tuple on the third track; 

note that the position of this new 6-tuple (on the track) differs at most 

one square from that of the old one; note also that N can check the consis

tency of the connection by reading input[x]. This proof makes an essential 

use of visiting sets; a visiting sequence would take nlogn space: logn space 

to store a 6-tuple (O~x~n+1) and there may be n of them. 

To show NSPACE(n) ~ 2CSA, let M be a Turing machine with a tape of 

length n exactly. The 2csa N guesses a computation of Mon input w by check

ing that its stack contains a string w1#w2 # •.. #wm where w1 ,w2 , ..• ,wm are 

the (usual) instantaneous descriptions of M's computation. N first checks 

that w1 = q 0w, where q 0 is M's initial state. It then checks for each i 

whether wi+l is a possible successor of wi: wi+l should be the same as wi 

except for a local change due to a move of M. N compares wi and wi+l symbol 

by symbol; since the distance between corresponding symbols is n+l, this 

can be done by counting to n+l on the input: it takes the input head exact

ly n+1 steps to travel from~ to $. Clearly the possible local changes can 

be kept in N's finite control. The essential property of the 2csa in this 

proof is that it can measure off n squares using the input as a "yard

stick". 0 

Note that the theorem e:x:plicitly concerns acceptors; if both automata 



are given a (1-way) output tape, the construction (in one direction) does 

not work. 

43 

The proof of Theorem 40 in [Fis 1] is amusing. It uses the intermediate 

concept of a "bug-automaton" which is a 2-way finite state automaton with a 

read-only rectangle (divided into labeled squares) as input; 2-way (or 

better 4-way) means as usual that the input head ("bug") can move to all 

possible neighbors of a square; the automaton accepts the string on the first 

row of the square. The bug-automaton is equivalent to the 2csa because two 

one-dimensional pointers are equivalent to one two-dimensional pointer. The 

bug-automaton recognizes NSPACE(n) because a rectangle can contain a deri

vation of a context-sensitive grammar, and a linear bounded Turing machine 

can guess a rectangle (with bug visiting sets) line by line. 

Theorem 40 characterizes NSPACE(n) by a very simple unrestricted 2-way 

automaton. Note that the 2csa needs 2n space to have the Turing machine com

putation on its checking stack. 

Note that by Theorem 22 (taking X to be the checking stack) 2CSA = 

2GSM-l(lCSA) and hence, by Theorem 40, NSPACE(n) = 2GSM-l(2GSM(REG)) which 

means that each context-sensitive language is characterized by two 2gsm 

mappings. 

As observed above, each 2csa Mis "linear visit", i.e. for each input 

of length n there is a computation of M which visits each square of the 

checking stack at most kn times for some constant k. Let us see what happens 

if the 2csa is required to be finite visit (2CSAFIN). Let NSPACE(log n) = 

NLOG be the class of languages accepted by a nondeterministic Turing machine 

(with a 2-way read only input tape) in log n space (on its working tape). 

It is well-known (see e.g. [Har]) that NSPACE(log n) is the class of lan-

guages accepted by nondeterministic multi-head 2-way finite state automata. 

Note that this is already an automaton characterization of NLOG. 

41. THEOREM. [Gre 2]. 2CSAFIN NSPACE (log n). 

PROOF. The proof is a variant of the previous one. 

(i) 2CSAFIN ~ NSPACE(log n). Let the 2csa be k-visit. Since each visiting 

set contains at most k 6-tuples <d,q,x,d',q',x'>, k input heads can 

point to the x-coordinates of these 6-tuples and the other coordinates 

can be kept in the finite control (of a multi-head finite state auto

maton). A next visiting set can easily be guessed, moving each head 

at most one square. 



44 

(ii) NSPACE(log n) ~ 2CSAFIN" Let M be a k-head 2-way fsa. An instantaneous 

description of M consists of the input string w with k markers to in

dicate the position of the heads on w (and M's state). As before a 2csa 

N checks a sequence w1 #w2 # ... #wm of instantaneous descriptions of M. 

This time N first checks whether w is the "underlying" string of all wi 

(in one sweep). Then it checks for all i the changes in the markers be

tween wi and wi+l; to do this it makes one sweep over wi to determine 

the symbols read by the heads and thus their next moves, and k sweeps 

over wi#wi+l to check these moves (using the input as a yardstick). 

This shows that N is finite visit. D 

In the finite visit case we may allow writing on the checking stack as 

before (Exercise 5 and the remark following Theorem 7) [Gre 2]. Thus 

NSPACE(log n) is the class of languages accepted by Turing machines with a 

2-way read-only input tape, and a working tape on which they are finite 

visit. 
-1 

Note that, by Theorem 22, 2CSA I = 2GSM (lCSA IN) and so, by Theorems 
-l F N F 

41 and 7, NSPACE(log n) = 2GSM (2DGSM(REG)); cf. [Kie] for the fact that a 

finite visit checking stack is a storage type. Since NSPACE(log n) i 
-1 -1 NSPACE(n), this implies that 2GSM (2DGSM(REG)) ~ 2GSM (2GSM(REG)). Note 

that this gives an alternative proof that 2DGSM(REG) i 2GSM(REG), cf. sec

tion 1.2. 

A space-bounded Turing machine may be viewed as a general automaton 

(from the point of view of section 1.3) if we consider the bounded amount 

of space as a way of handling the input (contemplate the sequence "1-way, 

2-way, multi-head 2-way =logarithmic space, linear space, •.. "). Following 

[Coo 2] we can define the following automaton type for each storage type X 

and function S(n): an NSPACE(S(n)) auxiliary X acceptor is a nondetermi

nistic acceptor which has storage type X and handles its input by way of a 

2-way read-only input tape and an additional S(n) bounded Turing machine 

tape. A similar definition holds in the deterministic case (DSPACE(S(n))). 

Depending on your point of view, "auxiliary" refers to X [Coo 2] or to 

NSPACE(S(n)). Thus an S(n)-bounded Turing machine is an NSPACE(S(n)) aux

iliary finite state automaton! An NSPACE(log n) auxiliary X acceptor is 

equivalent to a multi-head (2-way) X acceptor, and an NSPACE(n) auxiliary 

X acceptor to a "writing X acceptor" which has a read/write input tape (of 

fixed length). Theorems 39 and 40 are extended to arbitrary multi-head and 

writing acceptors in the next theorem of [Gre 2] (only (2) is actually 



stated there). 

42. THEOREM. Let X be a storage type and L~(X) the corresponding class of 

nondeterministic 1-way languages. 

(1) 2CSA (L~ (X)) is the class of languages accepted by nondeterministic 

writing X acceptors. 

45 

(2) 2CSAFIN(L~(X)) is the class of languages accepted by nondeterministic 

multi-head X acceptors. 

PROOF. (i) E= The proof is exactly the same as in Theorems 40 and 41. Each 

time a new visiting set is guessed, the corresponding stack symbol is "fed" 

into X storage which is programmed to accept only strings from the preset

language. Note that the "feeding" is 1-way. 

(ii) 2: The proof is obtained by combining the previous proofs with an ap

propriate version of the basic Lemma 20. Thus the class of languages accept

ed by nondeterministic multi-head X acceptors consists of all languages 
-1 

M (LF,) where Mis a nondeterministic multi-head finite state transducer 

and LF' is the language of all instruction sequences (over F') which lead 

from an initial to a final configuration of the storage X (F' is a finite 

set of operations on storage). To accept a string in M-l(LF,) the 2csa N 

guesses and checks a string w1$v1#w2$v2 ••• #wm$vm where w1, ••• ,wm is a se

quence of instantaneous descriptions of Mas before and v 1, .•• ,vm are the 

corresponding pieces of output. If we now preset N's checking stack w:Lth the 

language L of all strings which are in LF' when symbols not in F' are dis-
-1 

regarded, then N accepts M (LF 1 ). Clearly LF' can be accepted by a 1-way 
N X acceptor; thus N is an L1 (X)-based finite visit 2csa. The same proof is 

valid for the writing case. D 

It is easy to see that an L-based 2csa which has a 1-way checking stack 
-1 

(notation 2CSA1 ) accepts 2GSM (L). Thus, 
-way 

by Theorems 22 and 42, we ob
N 

tain the following increasing sequence (where L = L1 (X)): 

2CSA1 (L) 
-way 

2CSAFIN(L) 

2CSA(L) 

2-way X acceptor 

multi-head X acceptor 

writing X acceptor 

-1 
2GSM (L) 

-1 
2GSM (2DGSM(L)), 

-1 
2GSM (2GSM(L)). 

By adding heads to the 2csa higher complexity classes can be obtained. 

In fact the multi-head 2csa corresponds to polynomial space on Turing 

machines. To simplify the proof we will use transition tables. A transition 



46 

table of a k-head 2csa M for a given input ~w$ and checking stack u is a 
k 

binary relation Ru on Q x [O:n+l] such that <p,x 1 , ... ,~,q,y 1 , ... ,yk> €Ru 

iff M when started in state p with its stack-head on the first square of u 

and its i-th input-head at position xi, terminates by falling off the left 

of u in state q with its i-th input-head at position yi. Let P-SPACE denote 

Uk NSPACE (nk) Uk DSPACE (nk). 

43. THEOREM. [Iba]. Multi-head 2CSA = P-SPACE. 

k PROOF. It is easy to show that NSPACE(n ) can be accepted by the k-head 2csa, 

as in the proof of Theorem 40 (note that k heads on an input of length n can 

count to nk). Vice versa, a proof similar to the one of Theorem 40 can be 
k given to show that a k-head 2csa can be simulated in space n , and hence k-

head 2CSA = NSPACE(nk) for all k. To prove the statement of this theorem it 

suffices to use the rougher method of transition tables. A given k-head 2csa 

on input ~w$ can be simulated by a Turing machine which guesses a checking 

stack symbol by symbol and computes the corresponding transition tables (cf. 

the proof of Theorem 2). Since a transition table is an nk x nk boolean 

. ( hl ) . b d . 2k . h h . matrix roug y , it can e store in space n . It is easy to see t at t is 

amount of space also suffices to compute a new transition table (see 

[HopUll 2]). The actual proof in [Iba] uses translational arguments which 

reduce the problem to the 1-head case. D 

44. EXERCISE. Show that Multi-head 2CS-PD = P-SPACE, i.e. the multi-head 

2-way cs-pd acceptor defines P-SPACE [vLe]. Show that the multi-head 2NESA 

(2-way nonerasing stack automaton) also defines P-SPACE [Iba], cf. Exercise 

37. It is proved in [HopUll 2,3] that NSPACE(n 2 ) ~ 2NESA (and vice versa); 

show that 2CS-PD NSPACE(n2 ) = 2NESA. 0 

Theorem 43 can again be generalized to show that the use of an auxil

iary checking stack results in an exponential jump in space [Iba]: if 

S(n) ~log n, then a language is accepted by an NSPACE(S(n)) auxiliary 

2csa if and only if it is in NSPACE(2cS(n)) for some constant c. Combining 

this with the method of Theorem 42, we obtain the following general result. 

45. THEOREM. Let X be a storage type and S(n) ~log n. Then NSPACE(S(n)) 
N cS(n) aux CSA(L 1 (X)) is the class of languages accepted by an NSPACE(2 ) aux 

X acceptor for some constant c. 



47 

2cS(n) 
PROOF. Exercise (note that space S(n) can be used to count to ; note 

that a transition table for an NSPACE(S(n)) aux csa can be stored and up-
. cS(n) 

dated in space 2 for some c). D 

46. EXERCISE. Using Theorem 45 and the remark following Theorem 42, prove 
-1 k 

that the classes 2GSM (2GSM (REG)) form increasingly larger space complexity 

classes UcNSPACE(fk(~~)) where f 1~n) = n and fk+l (n) 

ilar result for 2GSM (2DGSM(2GSM (REG))). D 

fk(n) 
2 . Prove a sim-

This exercise thus provides an alternative proof that 2GSMk(REG) is a 

proper hierarchy (Theorem 14). It also shows, using a result of Ritchie, 
-1 k 

that 2GSM (Uk2GSM (REG)) is the class of "elementary" languages (cf. e.g. 

[Arb, section 6.3]). 

We now turn to time complexity. Let NTIME(f(n)) denote the class of 

languages accepted by (multi-tape) nondeterministic Turing machines in f(n) 

steps, and similar for DTIME(f(n)). Let NP-TIME= UkNTIME(nk) and P-TIME = 
k 

UkDTIME(n ). Recall that DSPACE(log n) ~ NSPACE(log n) ~ P-TIME ~ P-SPACE. 

P-TIME can be characterized by multi-head 2-way (deterministic) pushdown 

acceptors (2(D)PDA); in general the use of an auxiliary pushdown gives an 

exponential jump from space to time. We state this basic result without 

proof. 

47. THEOREM. [Coo 2]. 

(1) Multi-head 2PDA = Multi-head 2DPDA = P-TIME. 

(2) For S(n) 2 log n, NSPACE(S(n)) aux PDA = DSPACE(S(n)) aux PDA 

U DTIME(2cS(n)). D 
c 

Using Theorem 47, time-complexity classes can be characterized also by 

checking automata. First, this can be done by CF-based checking stack ac

ceptors [Gre 2]. For instance, by Theorem 42, P-TIME = 2CSA (CF). Note 
-l FIN 

that consequently NLOG i P-TIME if and only if 2GSM (2DGSM(REG)) ~ 
-1 

2GSM (2DGSM(CF)). The general effect of an auxiliary CF-based checking 

stack can easily be computed from Theorems 45 and 47. 

Secondly, time-complexity classes are related to checking tree accep

tors. Let CTA denote the storage type of a checking tree acceptor (without 

additional pd) as explained in section 2.2 (Figure 11). Thus 2CTA is the 

class of languages accepted by 2-way checking tree acceptors (2-way input 

tape, tree-walking storage). 



48 

48. THEOREM. 

(1) 2CT~IN Multi-head 2PDA = P-TIME. 

(2) 2CTA NSPACE(n) aux PDA U DTIME(2cn). 
c 

(3) Multi-head 2CTA = P-SPACE aux PDA = U {DTIME(2p(n)) I p(n) is a polyno-

mial}. 

PROOF. The second equalities follow from Theorem 47. The proof of 2CTA = 
NSPACE(n) aux PDA is similar to that of 2CSA = NSPACE(n) in Theorem 40, the 
checking tree corresponding to the behaviour of the pushdown. 

(i) 2CTA ~ NSPACE(n) aux PDA. A computation of a 2cta can be coded by a tree 
of visiting sets (rather than a sequence of visiting sets as for the 2csa) 
obtain from the checking tree by adding to each node a set of tuples which 
code the visits of the 2cta to that node. The visiting set of a node should 
moreover fit to the visiting sets of its sons in an obvious sense. An 

NSPACE(n) aux pda can guess such a tree by storing visiting sets of nodes on 
its pushdown, using a pre-order traversal. It replaces the visiting set of 
a node on top of the pushdown by a possible sequence of visiting sets be
longing to its sons. The check that the visiting sets fit can be done in 
linear space (similar to the case of the 2csa) . 

(ii) NSPACE(n) aux PDA ~ 2CTA. By Theorem 42(1), NSPACE(n) aux PDA = 
2CSA(CF). The inclusion 2CSA(CF) ~ 2CTA can be proved using the tree-walking 
trick in the proof of Theorem 30 (Figure 10), cf. also Theorem 32. The 2cta 
first checks that its checking tree is a derivation tree of the given con
text-free grammar and then simulates the 2-way movement of the 2csa on the 
yield of this tree by walking on the tree itself. 

This proves (2). The proof of (1) is analogous, using Theorems 41 and 
42 (2). The proof of (3) uses in the same way Theorems 43 and 45. Note that 
transition-tables for subtrees have to be computed in a bottom-up fashion; 
the checking tree with transition-tables is guessed in this case by a post
order traversal. D 

Thus, in general, an auxiliary checking tree gives a double exponential 
jump from space to time. The same is true for an auxiliary et-pd. 

Another automaton related to time-complexity is the (general) stack 
automaton. A 2-way stack automaton (2SA) can be turned into a pushdown 
automaton by storing the transition table of each suffix of the stack on 
top of that suffix: this ensures that the transition table of the whole 
stack is always present on the top of the stack, and hence stack-reading 



can be skipped (cf. Exercise 38). Since a new transition table can be com-
2 2 puted in space n (cf. Exercise 44), this shows that 2SA ~ NSPACE(n) aux 

PDA. Actu~lly 2SA = NSPACE(n2 ) aux PDAwhich equals the union of all 

DTIME(2cn ) by Theorem 47. More generalization, [Iba], shows that Multi-head 

2SA = "2P-TIME", and gives corresponding results for auxiliary stack autom

ata. Thus an auxiliary stack is equal in power to an auxiliary checking tree 

(cf. Theorem 48). It is shown in [Bee] that an auxiliary nested stack also 

has the same power. 

From these complexity considerations we can now ?rove the following 

result concerning 2-way gsm (cf. Theorem 14). 

49. THEOREM. If L is a full semi-AFL included in the class of indexed lan-

guages, then 2DGSM(L) t 2GSM(L). 

k PROOF. By Exercise 12 it suffices to show that 2DGSM(L) !f:. 2GSM (L) for some 

k. We will show that there even exists a language in 2GSMk(REG) for some k 

but not in 2DGSM(Indexed). To be able to use complexity arguments we apply 
-1 -1 

the operation 2GSM Consider the class 2GSM (2DGSM(Indexed)). Since the 

indexed languages are recognized by the 1-way nested stack automaton, 
-1 

2GSM (2DGSM(Indexed)) is the class of languages accepted by the1 multi-

head nested stack automata (cf. Theorem 42 and the remark following it) 

which equals the class 2P-TIME = U {DTIME(2p(n)) I p(n) is a polynomial} by 

[Bee]. Since 2P-TIME ~ 2P-SPACE ~ U DSPACE(22cn), Exercise 46 implies that 
p -1 3 c 

2 -TIME~ 2GSM (2GSM (REG)), and hence we can conclude (using Exercise 46 
-1 -1 3 -1 4 again) that 2GSM (2DGSM(Indexed)) ~ 2GSM (2GSM (REG))~ 2GSM (2GSM (REG)). 

Therefore 2GSM4 (REG) ~ 2DGSM(Indexed) which finishes the proof. D 

Note that, by Theorem 48(3) and its generalization to CT-PD, Theorem 

49 also holds for the tree transformation languages yT(RECOG), cf. Theorem 

31, instead of the indexed languages, and in fact for any class L~(X) such 

that the class of languages accepted by multi-head X acceptors is inside 

some UcNSPACE(fk(cn)) as defined in Exercise 46. 

The relationship between multi-head automata and complexity classes 

has some consequence with respect to the complexity of certain problems 

concerning 1-way automata, cf. [Jon 1; JonLaa; Gal 1; Hun]. We will show 

that for certain storage types X the non-emptiness problem of 1-way X ac

ceptors (i.e. the problem whether a given 1-way X acceptor accepts a non

empty language) is complete in the class of languages accepted by multi-



50 

head (2-way) X acceptors, i.e. the problem can be handled by a multi-head 

X acceptor and (more important) each multi-head X language can be reduced 

(in log space) to the problem. We say that a storage type is finitely en

coded [Gin] if it has only finitely many tests and operations. The proof of 

the next theorem is similar to those in e.g. [Jon 1; JonLaa; Gal 1; Hun]. 

50. THEOREM. Let X be a finitely encoded storage type. The non-emptiness 

problem for nondeterministic 1-way X acceptors is complete in the class of 

languages accepted by nondeterministic multi-head X acceptors. 

N 
PROOF. Let A1 (X) denote the class of nondeterministic 1-way X acceptors and 

also, ambiguously, the set of strings which code these acceptors over a 

fixed alphabet in the usual way (note that the alphabet can be fixed because 
N X is finitely encoded). We first show that the language {M E: A 1 (X) L (M) f. 0} 

can be accepted by a 2-head (2-way) X acceptor. Given an input string M, the 
N 2-head X acceptor N checks that M E: A1 (X) and then simulates M, guessing 

nondeterministically some input string for M which hopefully is accepted by 

M. N uses one head to point to the current instruction of M, simulates this 

instruction (possible because X is finitely encoded) and uses the second 

head to find a new instruction; the correct state behaviour of M is ensured 

by N checking equality of (binary coded) states in the two instructions, 

using both heads. 

Next, let N be a k-head X acceptor. We will show that L(N) is log-tape 

reducible to {ME: A~(X) I L(M) f. 0}. Let w be a given input to N of length 

n. Construct Nw E: A~(X) such that, independent of its input, Nw simulates 

Non w by keeping track of N's head positions on w in it? states; thus Nw 

has states <q,i 1 , •.. ,ik> such that q is a state of N and 0 ,,; ij :S n+l. 

Clearly w E: L(N) iff L(Nw) f. 0. The translation from w to Nw can be realized 

by a log n space Turing machine with a 1-way output tape. In fact, Nw con

tains for each <i 1 , .•. ,ik> a set of instructions easily obtainable from 

those of N; thus N has cnk instructibons for some constant c. To write down w 

a sequence <i 1 , •.. ,ik> takes log n space and it suffices to keep track of 
k these sequences. Note that Nw is of length en log n. ~ 

We note that this theorem holds (instead of non-emptiness) for every 

nontrivial property of 1-way X languages which can be decided by a multi

head X acceptor and which is false for 0 (cf. [Hun]): after successful 

simulation of N on w, Nw should simulate (on its actual input) some machine 



51 

M whose language has the property. It is also easy to see that the theorem 

is true for the "general membership problem", i.e. the language 

{(M,v) I ME A~(X) and v E L(M)}. We finally note that the theorem also 

holds if the 1-way X acceptors are restricted to be deterministic (Nw uses 

its input to determine the nondeterminism of N). 

Since most of the discussed storage types (excluding e.g. CSAFIN) are 

finitely encoded or (what suffices) equivalent to some finitely encoded 

storage type, we can obtain a lot of completeness results using Theorem 50. 

Let us consider some of them. 

First, since NLOG is the class of languages accepted by multi-head 

finite automata, {M E lFA L(M) 1 0} is complete in NLOG, where 1FA is the 

class of 1-way finite state automata [Jon 1]. 

By Theorem 43, {M E !CSA I L(M) 1 0} is complete in P-SPACE. Since a 

1-way csa is the same as a 2gsm and the range of a 2gsm is empty iff its 

domain is, this implies that {M E 2GSM I dom(M) 1 0} is complete in P-SPACE, 

cf. [Gal 1]. It is possible to determine the complexity of {M E 1CSA 

L(M) 1 0} more precisely as follows. It is quite easy to see that 

{M E 1CSA I L(M) 1 0} can even be accepted by a 2csa (rather than a 2-head 

2csa as in the proof of Theorem 50): for input M, check that the checking 

stack contains a string cr 1Mcr2M ... crkM, simulate M with checking stack 

cr 1cr2 •.• crk and use the stackhead as a second input head working on one of 

the M's. Hence, by Theorem 40, {ME 1CSA I L(M) f 0} is in NSPACE(n). More

over, since the log tape reduction used in the proof of Theorem 50 produces 
1-E: an n log n output, it is not in NSPACE(n ) for any E > 0. A similar rea-

soning (cf. Exercise 44) shows that {ME lCS-PD I L(M) 1 0}, which is com

plete in P-SPACE, is in NSPACE(n2 ) but not in any NSPACE(n2- 2 J; in 

[JonSky 2] this is shown for {M E PAM I L(M) f 0} and NSPACE(n): note that 

the transition from a cs-pd machine to a pam requires nonterminals which 
2 are pairs of states and thus a factor n , cf. Theorem 29. A similar result 

holds for nonerasing stack automata [Hun]. 

51. THEOREM. The language {ME 2GSM2 I dom(M) 1 0} is complete in exponen

tial space. In general, for every k ~ 1, the language {M E 2GSMk 

dom(M) 1 0} is complete in k-double exponential space, i.e. 

U {NSPACE(fk(p(n))) I p(n) is a polynomial} where fk is defined in Exercise 

46. 



52 

PROOF. By Theorem 45, {ME 1CSA(L~(X)) I L(M) f 0} is complete in the class 

of languages accepted by P-SPACE auxiliary X acceptors. From this the re

sult follows by induction. D 

It can be shown that this theorem also holds for 2GSMk-l o 2DGSM rather 

than 2GSMk. 

We now turn to time. By Theorem 47(1), {ME 1(D)PDA I L(M) f 0} is com

plete in P-TIME [JonLaa; Gal 1; Hun]. 

52. THEOREM. The language {M E CT I dom(M) f 0} is complete in exponential 

time. 

PROOF. By Theorem 48(3). 0 

This theorem shows that the non-emptiness problem for the finite-state 

tree-walking automaton (i.e. the checking tree transducer without output, 

cf. section 2.2) is complete in exponential time. This problem is closely 

related to the circularity problem of attribute grammars [JazOgdR]: it is 

quite easy to simulate a tree-walking automaton by the dependency graph of 

an attribute grammar which has an attribute corresponding to each of its 

states. 

The language {ME 1SA I L(M) ¥ 0} is also complete in 2P-TIME, cf. 

[Hun]. 

This ends our discussion of complete problems. We finally consider 

NP-TIME. 

It is an open problem whether NP-TIME can be characterized by an un

restricted class of automata. NP-TIME can be obtained by restricting time 

or space of the multi-head 2csa, see [vLe]. We say that a multi-head 2csa 

is polynomial either if it works in polynomial time or if it only needs 

a checking stack of polynomial length. 

53. THEOREM. Polynomial Multi-head 2CSA NP-TIME. 

PROOF. As in Theorem 43. On the one hand, an NP-TIME Turing machine has. 

computations w1#w2 # .•. #wm where both lwil and mare polynomial inn, and 

so the multi-head 2csa can work in polynomial time (and hence in polynomial 

space). On the other hand, transition tables of a multi-head 2csa M can be 

updated in polynomial time, and if M's checking stack has polynomial length, 

only polynomially many transition tables have to be computed. 0 



53 

The same result (with the same proof) holds for polynomial multi-head 

2cs-pd and for the general "auxiliary case" [ vLe]. 

It would be nice if the sequence P-SPACE, NP-TIME, P-TIME would cor

respond to a sequence of multi-head automata obtained by increasing re

strictions on the same storage type. Consider Theorems 43 and 47 and note 

that the checking stack and the pushdown are incomparable storage types 

(cf. Theorem 16). What about combining them into a cs-pd automaton! A cs-pd 

acceptor is said to be deterministic if it works deterministically and more

over has to start by deterministically building up (symbol by symbol) its 

own checking stack (i.e. it is viewed as a deterministic s-pd automaton). 

It is shown in [vLe] that in the deterministic (2-way multi-head) case the 

checking stack is of no use to the cs-pd automaton. Thus ([vLe]) the above 

sequence corresponds to multi-head 2cs-pd acceptors (Exercise 44) restricted 

to be polynomial (Theorem 48) and deterministic (Theorem 47) respectively 

(each deterministic multi-head cs-pd works in polynomial space). 

3.2. Two-way deterministic pushdown automata 

We have seen that restricted 2-way pushdown automata related to syntax

directed translation (the cs-pd transducer in section 2.1, Figure 9) and gen

eralized 2-way pushdown automata related to time complexity (the multi-head 

2pda in section 3.1). In this section we consider the normal 2-way pushdown 

automaton which has been studied extensively for both of the above reasons, 

see e.g. [SteHarL; GraHarI; Gal 2; Hun; Mon]. Apart from a few general 

properties we will concentrate on the linear time simulation of a 2-way 

deterministic pushdown automaton (on a random access machine with uniform 

cost) proved in [Coo 1]. This result can be used to obtain efficient pat

tern-matching algorithms [KnuMorP; cf. AhoHopU 3, Chapter 9]. 

A 2dpda consists of a 2-way read-only input tape which is an array 

input[O:n+l], an input head which is a variable x of type ro:n+ll, an out

put tape and pushdown store of the usual kind, and a finite control which 

can use the operations x := x + 1, x := x - 1, push(A), pop, and the tests 

input[x] =a and top= A (for each input symbol a and pushdown symbol A). 

Formally, a 2-way deterministic pushdown automaton (2dpda) is a tuple 

M = (Q,L,f ,o,q0 ,F,Z0 ) of states, input symbols, pushdown symbols, transi

tion function, initial state, final states and bottom pushdown symbol re

spectively, where a is a function 

Q x (LU{J:,$}) x r-+ Q x {-1,0,+1} x ({pop} u {push(A) IAtr}). 



54 

The interpretation of o(q,cr,A) = (q' ,d,Sl is that M in state q reading in-

put symbol er with top = A may go into state q', move the input head d 

squares to the right and either pop A (if S=pop) or push B on top of A (if 

S=push(B)). A configuration of M for a given input cl:w$ is of the form 

(q,i,y) indicating the state, the position of the input head (Osislwl+l) 

and the content of the pushdown store (with the top at the left). M accepts 

{w E * I ~ (q,i,y) lwl+l, the language l: (qo,o,zo) for some q E F, 0 s i s 

* y E r , and all configurations are for cl:w$}. We will also need the concept 

of a surface configuration of M for given input cl:w$: it is a triple (q,i,A) 

with q E Q, 0 s i s lwl+l and A E r, which only indicates the top of the 

pushdown rather than the complete pushdown. The basic property of surface 

configurations (as in the 1-way case) is that if (q,i,A) ~ (p,j,A) then, 

for ally Er*, (q,i,Ay) ~ (p,j,y), expressing that we never look inside 

the pushdown. The notion of a nondeterministic 2pda is obtained in the ob-

vious way. 

54. EXAMPLES. 

(1) The following program for the 2dpda recognizes all palindromes, i.e. 

s~ings w equal to their reverse w, by putting w on its pushdown and com

parHtg it with the input. (We use a few more involved operations and tests 
which can easily be similated). 

begin x : = x + 1 ; 

end. 

while input[x] 'I$ do begin push(input[x]); x := x + 1 end; 

while input[x] 'I cl: do x := x - 1; 

x:=x+l; 

while input[x] = top do begin x := x + 1; pop end; 

if input[x] = $ and top = z 0 then accept else reject 

(2) The following program shows the applicability of the 2dpda to string 
matching: it recognizes all strings u#v such that u is a substring of v. 

The program uses the most obvious method: it tests whether u is a prefix of 

a suffix of v; successive suffixes of v are kept on the pushdown. We assume 

that the pushdown contains already vz0 and that x = 1. 

begin 

while top 'I z 0 do 

begin {does u match a prefix of the pushdown?} 

while input[x] top do begin x := x + 1; pop end; 



if input[x] # then accept 

else if top z0 ~ reject 

else {restore the pushdown after a mismatch 

and try the next suffix} 

55 

begin x : = x - 1; wnile input[xJ ! <I: do beain push Cinput[xJ l ; 

x := x - 1 

pop x := x + 1 

end 

end; reject 

end. D 

55. EXERCISE. Show that the following languages are in 2DPDA: 

{a2nln ~ O} (if x = 2m, use the pushdown to make x = 2m+l), 

{a~n2 jn ~ 1}, {a~n3 ln ~ 1}, 

{u1#u2# •.• #un I n ~ 2, ui ! u. for i ! j}, 

{u1#u2# ••• #un##v1#v2# ••• #vm IJn,m ~ 2, ui ! uj for i ! j, 

and for each i there exists j such that vj = ui} (declarations~), 

{uv I u = ~,lul > 1} (similar to Example 54(2), see [AhoHopU 3]), 

{u#vl#v2# ••. #vn n ~ 1, UV, E D2 for some 1 s i s n}, 
1. 

{u # •.• #u ##v # ••• #v 
1 n 1 m I n,m ~ 1, u.v. 

1. J 
E D2 for some i,j}, 

where o2 is the Dyck language generated by the context-free rules 

S + [S]S, s + tsJs, s + A. (interpret [as push(a) and] as pop(a)). 
a a a a !J 

We first note that 2DPDA and 2PDA are closed under inverse 2dgsm map

pings by Theorem 19, cf. [GraHarI] where this was not yet realized. Next we 

note that 2DPDA languages are context-sensitive. 

56. THEOREM. [SteHarL; GraHarI] 2DPDA ~ DSPACE(n). 

PROOF. The result follows because the length of the pushdown during a suc

cessful computation of a 2dpda M is bounded linearly in the length of the 

input. To prove this, let AmAm_ 1 ••• A1 be the content of the pushdown at 

some moment of time and let, for 1 s k s m, (qk,ik 1~) be the surface con

figuration of M at the last moment of time that the pushdown had height k. 

* If (q ,i ,A ) = (q ,i ,A ) = (q,i,A) for some 1 s s < t s m, then (q,i.A) J-=-
s s s t t t 

(q,i,AyA}, where AyA = At ••• As, and the 2dpda is in a loop. Hence the length 

of the pushdown is at most the number of surface configurations which is 

proportional to n. 0 



56 

It is an open problem whether the above inclusion is strict, but in 

[Gal 2] it is shown that 2DPDA = DSPACE(n) implies P-TIME = P-SPACE. Simi

larly it is open whether 2DPDA is properly included in 2PDA, and whether 

CF~ 2DPDA. It is shown in [GalSeiJ, using combinatorial properties of palin

dromes, that the language {u~_;; I u,v E: {a,b}+} is in 2DPDA (which was con

jectured in [AhoHopU 2] not to be in it). The relation of 2PDA to NSPACE(n) 

is unknown. Similarly the relation of 2DPDA to DLOG = DSPACE(log n) is not 

clear. Using Theorem 47 [Coo 2] it is shown in [Gal 2] by a translational 

argument (translating k-head 2dpda down to 1-head 2dpda) that if 2DPDA ~ 

DLOG then P-TIME = DLOG (the same result was shown in [Hun;Mon]). Since 
4 . 2DPDA ~ DTIME(n ) [AhoHopU 2], this proves that 2DPDA ~ DLOG. Thus several 

open problems in complexity theory "hide" in 2DPDA. 

We now turn to the linear time simulation of the 2dpda [Coo 1]. The 

result is important because it allows one to program a 2dpda without caring 

about time bounds, and be sure that an efficient equivalent algorithm exists. 

In fact, a 2dpda can be made to count to 2n in between its moves: store the 

position of the input head on the pushdown by moving left to ~ pushing 

dummy symbols; simulate a des-pd transducer which translates an into a 2n; 

find back the original input head position. Note also that the string-match

ing algorithm of Example 54(2) works in time n 2 . 

The proof in [Coo 1] uses essentially a transition table approach. In 

this approach "small" computations are used to build u_o "larger" computa

tions (in the cases we have seen in sections 1.1 and 2.3 "small" and "large" 

refer to the length of the suffix on which the computations work, or just 

to the length of the computations). Such a method is also called "dynamic 

programming" and can be used e.g. to recognize context-free languages in 

time n 3 , cf. [AhoHopU 3, section 2.8; AhoUll 3, section 4.2]. In general 

dynamic programming can be used to compute the values of recursive proce

dures (or pushdown algorithms) in a "bottom-up" fashion, i.e. by calculat

ing the values for small parameters first (storing them in a table) and 

proceed to larger parameters (cf. the bottom-up computation by a register 

transducer of the recursive calls of a pam, section 2.3). The (time) ad

vantage of the method is that identical calls are evalulated only once and 

stored in a table for further use. The disadvantage of the method is that 

the structure of the original recursive (or pushdown) algorithm is almost 

completely lost, and moreover that calls are computed which may never occur 

in the original algorithm giving rise to a large constant in the time bound. 



57 

A solution to these disadvantages is to take a mixed approach [Jon 2]: the 

recursive (or pushdown) algorithm is executed in the usual "top-down" 

fashion, but as soon as the value of a call F(x) has been computed, it is 

stored in a (transition) table; a subsequent call F(x) is just looked up in 

the table. Observe that a call of a recursive procedure in a recursive al

gorithm corresponds roughly to a ("surface") computation (q,i,A) ~ (p,j,).) 

of a pushdown algorithm, where (q,i,A) is a surface configuration. In [Jon] 

this mixed strategy is applied to the simulation of the 2dpda [Coo 1], 

whereas in [Bir] it is applied to some specific examples of 2dpda algorithms. 

We shall give an iterative variant of the algorithm of [Jon 2]. How

ever, to illustrate the idea we start with a 

57. "Mixed" proof of Theorem 35. 

PROOF. we only consider the deterministic case. Let M = (Q,E,r,o,q0 ,F,Z0 ) 

be a des-pd transducer without output (i.e. a restricted 2dpda). We will 

show that, using the mixed approach, M can be simulated by a finite visit 

Turing machine N with one read/write head of length n and one input head x 

(note that this implies regularity of M's domain by Exercise 5; note also 

that the finite visit property implies that N works in linear time). N's 

tape is divided into four tracks as shown in Fig. 14. Track 2 contains the 

input ~cr 1 cr2 ••• crn$ of Mand track 3 contains the pushdown of M; N's input 

head simulates M's input head, i.e. it points to the top of the pushdown. 

R 

<p,A,q>,. 

1 

input 
(cs) 

~ 

$ 

2 

pd 

A 

3 4 

~~~!:::~ 14. "Mixed" simulation o! a cs:-pd transducer 

(without output)_.

N simulates M step by step except that it skips s.ubcomputations which it

58

has stored in a table. Track 1 contains the (partially filled) transition

tables of the suffixes of the input string, i.e. (for each i) R[i] is the

(partial) transition table of suffix 0i ... 0n$; R[i] is a list of triples,

each triple <p,A,q> representing the usual (surface!) computation of Mon

0i ... 0n$; moreover this computation has actually been executed before by M

and the triple was stored in R[i] after its completion (except that, to

simplify N, R[i] contains initially <p,A,q> if o(p, input[i],A) = (q,-1,pop)).

Whenever N simulates M in state p at position x with top = A, it consults

R[x] to see whether it contains some triple <p,A,q>; if so, N moves left

popping A and continues to simulate M in state q; if not, it simulates a

(push) move of M. In order to fill R, N has to do some bookkeeping on track

4. L is an auxiliary pushdown which makes the same movements as M's push

down; for 0 $ i $ x, L[i] contains a list of states of M: they are the

previous states of M at position i during the current subcomputation of M

on 0i ... 0n$ (they correspond to the states q 1 , ... ,qn in (*) of the proof of

Theorem 2 and (**) in section 2.3; note that, in those statements, actually

(q,,q') ER for all q,). Suppose as before that N simulates Min state p
J n 0U J --

at position x with top = A; if there is no triple <p,A,q> in R[x], then N

adds p to the list L[x] and simulates a (push) move of M (pushing the empty

list on L); if there is a triple <p,A,q> in R[x], then N adds a triple

<qj,A,q> to R[x] for each qj in the list L[x], and moves left popping both

pushdowns and continues with M in state q (in this way N has recorded all

of M's subcomputations on the suffix it just left). This ends the descrip

tion of N.

It remains to show that N is finite visit. This is mainly due to the

following property of the algorithm which formally expresses that N never

computes the same surface computation (p,i,A) ~ (q,i-1,:\) twice:

(1) for given i, each state q of M is added at most once to L[i]. (Proof:

if q occurs twice in L[i] at some moment of time, then M got into a

loop and simulation should stop; if there is only one occurrence of q

in L[i] and L[i] is then popped, then a triple <q,-,-> is added to R[i]

and q will never be added to L[i] again).

It remains to show that the number of visits is proportional to the number

of state additions. This follows from the following observations, where

k = #(Q).

(2) Each L[i] is a nonempty list except possibly L[x]. (Proof: before push

ing, the current state of M has to be added to L[x]).

59

(3) The number of visits to a square x such that L[xl is nonempty is ~ 2k.

(Proof: with each such visit either a state is added to L[x] or a state

is removed from L by popping L[x]; by (1), this happens at most 2k times).

(4) The number of visits to x with L[x] empty is ~ k. (Proof: by the proof

of (2) , and (1)) .

Since the initial filling of R (with pop-moves) takes two visits, (3) and

(4) imply that the total number of visits is bounded by 3k+2. D

We now turn to the (unrestricted) 2dpda and show that the linear time

property of the above construction is preserved. The simulating algorithm

will be written in Pidgin ALGOL, cf. [AhoHopU 3, section 1.8].

58. THEOREM. [Coo 1]. If L is accepted by a 2dpda, then L is accepted by

a Pidgin ALGOL program in linear time.

PROOF. [Jon 2]. Let M = (Q,Z,r,o,q0 ,F,Z0) be an arbitrary 2dpda. A transi

tion table of M for input ~w$ is a function R: Q x [O:n+1] x r + Q x [O:n+1]

such that R(q,i,A) = (p,j) if and only if (q,i,A) ~(p,j,\) is a (surface)

computation of Mon ~w$. We will construct a Pidgin ALGOL program N, simu

lating M, which uses an array R to store a (partially filled) transition

table of M; each location R[q,i,A] of R will either contain a pair (p,j)

or some indication that it is undefined. Moreover (see Figure 15 which

should be compared to Fig. 14) N uses the input, input head x and pushdown

of M, plus an auxiliary pushdown L moving simultaneously with M's push

down. Each "square" of L contains a list of surface configurations <q,i,A>

of M (where the A is actually superfluous because it will always be equal

to the pushdown symbol on the same level); if the k-th square of M's push

down contains symbol B and the corresponding list on L contains a triple

<q,i,B>, it means that M was in surface configuration <q,i,B> at a previous

moment in its computation with the k-th square on top, and in the meantime

this particular B has not been popped.

In program N, a pop-instruction will pop both pushdowns, whereas a

push(B}-instruction pushes B on M's pushdown and the empty list on L; "top"

refers to M's pushdown, whereas "list" denotes the top of L; "state" con

tains the current state of M; and "conf" abbreviates (state, x, top), i.e.

the current surface configuration of M. The program starts with z 0 on M's

pushdown, the empty list on L, and R completely undefined. We assume that

the program halts automatically if M halts. Finally we assume that

o(q0 ,~,z0 J ~ (-,-,pop). Program N now follows.

60

x

t
top ____,,. A <q,i.,A>, ... - list

I~ I I I I$ I
input

state

conf=(state,x,top) L

pd of lists (partial) transition
table

~~2~~~ 15. Data structure of the Pidgin ALGOL program.

begin for all (q,i,A) E Q x [O:n+1] x f do

if O(q, input[i],A) (p,d,pop) for some d E {-1,0,+1}

then R[q,i,A] ·= (p,i+d);

2 state := q 0 ; x := O;

3 add (q0 ,o,z0 > to list;

4 repeat

5 begin let o(state,input[x],top) = (p,d,push(A)) in

begin state := p; x := x + d; push (A) end;

6 while R[conf] is defined do

7

8

9

10

end

end of N.

COMMENTS:

begin for all c on list do R[c]

(state,x) := R[conf];

pop

add conf to list

R[conf];

~Lines 1,2,3 contain the initialization; in particular in line 1 R is

filled with one-step surface computations (due to pop-moves).

~Line 5 simulates one push-move of M; pop-moves are dealt with when ap

plying R (in line 9) due to the initialization of R with pop-moves.

~ In the while-statement of line 6 use is made as much as possible of the

subcomputations in the transition table R (each such subcomputation results

in a pop). In line 7 R is updated using the information in list.

~Line 10: if R cannot be used, the current surface configuration is added

R

61

to list and a push move will be simulated (line 5).

It remains to show that N works in linear time. This follows from the

following observations:

(1) A surface configuration is only added to list if R[c] is undefined

(lines 6 and 10).

(2) Each surface configuration c is added at most once to list by line 10

(if c occurs twice in L at the same moment of time, then M is in a loop,

cf. the proof of Theorem 56; but if c occurs once in L and is removed

from L (line 9), then line 7 has defined R[c] and so, by (1), c cannot

be added again to L) .

(3) The number of surface configurations is O(n).

(4) Lines 3 and 10 now show that, by (2) and (3), the repeat statement

(lines 5 to 10) is executed O(n) times.

(5) Since a push-move is always preceded by line 10 (or 3), list is nonempty

after a pop (line 9).

(6) Since execution of the while-body (lines 7-9) is always preceded by a

pop (except on each first entrance), (5) implies that at least one c

is removed in line 7. Thus the total time used to execute the while-

statement (lines 6-9) is O(n) (the number of first entrances, see (4))

plus O(n) (the time to execute line 7, see (3)), hence O(n).

Taking (4) and (6) and the time to execute line 1 together shows that the

program takes O(n) time. D

If it costs log n time to store number n, then the algorithm takes

time n log n. The algorithm can easily be generalized to show that a k-head

2dpda can be simulated in time nk (or nk log n), cf. [Coo 1] and Theorem 47.

59. EXAMPLE. Consider the string-matching 2dpda of Example 54(2). The only

interesting state q of that program is the one on the 4-th line in which u

is matched against the pushdown. If at the end a mismatch occurs, then the

use of R will make it unnecessary to raise the pushdown. In fact this means

that if u u 1u2 ... um (uiEl:) and (when the mismatch occurs) x = i and top=

A (thus A! ui), then R[q,i,A] = (q,j) where j is the largest integer such

that u 1 ... uj is a suffix of u 1 .•. ui_ 1A. Note that R depends only on u. This

is almost exactly the function computed in the linear time algorithm for

string matching described in [KnuMorP], see also [AhoHopU 3; Bir]. 0

Finally we discuss the relevance of these ideas to limited backtrack

(top-down) parsing of context-free languages [AhoUll 3, section 6.1].

62

Although a 2dpda has the ability to reconsider its input, it is not imme

diately clear how this can be used for backtracking. Top-down recognition

with limited backtracking works as follows. Let A be a nonterminal (of a

context-free grammar) to be recognized, beginning at position i of the in

put string. Let A have productions A+ a 1 !a2 1 ••• lam. If a 1 is recognized,

then A is recognized; if a 1 is not recognized, then no other recognition

of a 1 is tried, but the input-head is reset to position i and recognition

of a 2 is started. Etcetera, for details see [AhoUll 3]. This recognition

method can be implemented on a "back-track.,29pda" which is an extension of

the 2dpda (and does not satisfy the basic assumption of general automata

theory). Apart from the usual 2dpda-instructions a back-track 2dpda also

has "jump" instructions o(q,a,A) = (q',jump,pop) meaning that A should be

popped and the input head should be put at the position it had just after

this particular A was pushed on the pushdown.

60. THEOREM. Each backtrack 2dpda can be simulated in linear time by a

Pidgin ALGOL program.

PROOF. The program is a slight extension of the one in Theorem 58. The idea

of the extension is that (i) the first item of list always contains the

"back-track position" to which the input head should jump (see Fig. 15),

and (ii) if, just after a push, R[conf] indicates a back-track computation,

then the input head can stay where it is. Apart from the usual R[q,i,A] =

(p,j) which expresses a "successful" surface computation (q,i,A) ~(p,j,>d
of the backtrack 2dpda M, we now also have R[q,i,A] = (p,jump) expressing a

"failing" surface computation of M resulting in a backtrack: (q,i ,A) ~

(q' ,i' ,A) ~ (q' ,i' ,A) !-- (p,?,A.) where the last move is caused by a jump

instruction.

We give th.e new program without much comment. It consists essentially

of the old program together with (numbered) statements handling the jump

case. The while statement has been unravelled once. The program is shown

in Fig. 16.

COMMENTS:

~ At line 1 the one-step backtrack computations are put in R.

~ The if-statement starting at line 2 is executed just after a push. There

fore, if R indicates a backtrack computation, then (by the definition of

the jump instruction) x is at the backtrack position and hence should

2

3

4

63

begin for all (q,i,A) E Q x [O:n+l] x r do

if o (q,input[i],A) = (p,d,pop) ~ R[q,i,A] := (p,i+d)

else if o(q,input[i],A) = (p,jump,pop) then R[q,i,A] := (p,jump);

state := q 0 ; x := O;

add (q0 ,o,z0) to list;

repeat

end

begin let o(state,input[x],top) = (p,d,push(A)) in

begin state := q; x := x+d; push(A) end;

if R[conf] is defined then

begin if R[conf]

else if R[conf] ---
pop

end;

(q,j) then (state,x) := (q,j)

(q,jump) then (state,x) := (q,x);

~ R[conf] is defined do

begin if R[conf] = (q,j) ~

begin for all c in list do R[c] := R[conf];

(state,x) := (q,j)

end

else if R[conf] (q,jump) then ---
begin state := q; x := input-position of first item in

list;

pop

end;

add conf to list

end of repeat

for all c in list do R[c] := R[conf]

~!~~~ 16. Simulation of backtrack 2dpda.

not change (line 3), cf. remark (ii) above.

- The if-statement starting at line 4 is executed just after a pop (and

hence list is nonempty); x is set to the input-head position of the first

triple of list, cf. remark (i) above.

The time-analysis of the new program is exactly the same as that in

the proof of Theorem 58. D

64

As a corollary we obtain that limited backtrack top-down recognition of

context-free languages can be done in linear time (see [AhoUll 3, section

6.1.4], where a dynamic programming algorithm is given). Actually the back

track 2dpda is (almost) the same as the "parsing machine" in [AhoUll 3,

section 6. 1 . 5] .

REFERENCES

[Aho] AHO, A.V., Nested stack automata, JACM 15 (1968), 647-671.

[AhoHopU] AHO, A.V., J.E. HOPCROFT & J.D. ULLMAN,

(1) A general theory of translation, Math. Syst. Th.3 (1969),

193-221.

(2) Time and tape complexity of pushdown automaton languages,

Inf. and Control 13 (1968), 186-206.

(3) The design and analysis of computer algorithms, Addison

Wesley, Reading, Mass., 1974.

[AhoUll] AHO, A.V. & J.D. ULLMAN,

(1) A characterization of two-way deterministic classes of lan

guages, JCSS 4 (1970), 523-538.

(2) Translations on a context-free grammar, Inf. and Control

19 (1971), 439-475.

(3) The theory of parsing, translation and compiling, Prentice

Hall, Englewood Cliffs, N.J., 1972 (two volumes).

[Arb] ARBIB, M.A., Theories of abstract automata, Prentice-Hall, Englewood

Cliffs, N.J., 1969.

[Asv] ASVELD, P.R.J., Controlled iteration grammars and full hyper-AFL's,

Inf. and Control 34 (1977), 248-269.

[AsvEng] ASVELD, P.R.J. & J. ENGELFRIET, Extended linear macro grammars,

iteration grammars, and register programs, Memorandum 209,

Twente University of Technology, 1978 (to appear in Acta Infor

matica).

[Bee] BEERI, C., Two-way nested stack automata are equivalent to two-way

stack automata, JCSS 10 (1975), 317-339.

[Bir] BIRD, R.S., Improving programs by the introduction of recursion,

CACM 20 (1977), 856-863.

65

[ChyJak] CHYTIL, M.P. & V. JAKL, Serial composition of 2-way finite-state

transducers and simple programs on strings, in: Automata, Lan

guages and Programming, Fourth Colloquium (A. Salomaa, M. Steinby

eds), Lecture Notes in Computer Science 52, p. 135-147, 1977.

(Springer-Verlag, Berlin).

[Coo] COOK, S.A.,

(1) Linear time simulation of deterministic two-way pushdown

automata, Information Processing 71 (Proceedings IFIP Con

gress, Ljubljana), North-Holland, p. 75-80, 1972.

(2) Characterizations of pushdown machines in terms of time

bounded computers, JACM 18 (1971), 4-18.

[Dow] DOWNEY, P., Formal languages and recursion schemes, Harvard University,

Report TR 16-74, 1974.

[EhrRozJ EHRENFEUCHT, A. & G. ROZENBERG, On some context-free languages

that are not deterministic ETOL languages, RAIRO (Informatique

Theoretique) 11 (1977), 273-291.

[EhrYau] EHRICH, R.W. & S.S. YAU, Two-way sequential transductions and stack

automata, Inf. and Control 18 (1971), 404-446.

[Eil] EILENBERG, S., Automata, languages and machines, Volume A; Academic

Press, New York, 1974.

[Eng] ENGELFRIET, J.,

(1) Three hierarchies of transducers, Memorandum 217, Twente

University of Technology, Enschede, 1978 (see also [EngRozS]).

(2) Bottom-up and top-down tree transformations - a comparison,

Math. Syst. Th.9 (1975), 198-231.

[EngRozS] ENGELFRIET, J., G. ROZENBERG & G. SLUTZKI, Tree transducers, L

systems and two-way machines, Memorandum 187, Twente University

of Technology, Enschede, 1977, also in: Proc. 10-th Ann. ACM

Symp. on Theory of Computing, San Diego, 1978, p. 66-74 (together

with [Eng 1]).

[EngSchvL] ENGELFRIET, J., E. MEINECHE SCHMIDT & J. VANLEEUWEN, Stack

machines and classes of nonnested macro languages, Report RUU

CS-77-2, University of Utrecht, 1977 {to appear in JACM).

66

[EngSky] ENGELFRIET, J. & s. SKYUM, Copying theorems, Inf. Proc. Letters 4

(1976) I 157-161.

[Fis] FISCHER, M.J.,

(1) Two characterizations of the context-sensitive languages,

IEEE Conf. Ree. of 10-th Ann. Symp. on Switching and Automata

Theory, p. 149-156, Waterloo, Ontario, Canada, 1969.

(2) Grammars with macro-like productions, Ph.D. Thesis, Harvard

University, 1968.

[Gal] GALIL, Z.,

(1) Hierarchies of complete problems, Acta Informatica 6 (1977),

77-88.

(2) Some open problems in the theory of computation as questions

about two-way deterministic pushdown automaton languages,

Math. Syst. Th. 10 (1977), 211-228.

[GalSei] GALIL, z. & J. SEIFERAS, A linear-time on-line recognition algorithm

for "palstar", JACM 25 (1978), 102-111.

[Gin] GINSBURG, s., Algebraic and automata-theoretic properties of formal

languages, North-Holland/Elsevier, Amsterdam/New York, 1975.

[GinGreH] GINSBURG, s., S.A. GREIBACH & M.A. HARRISON, Stack automata and

compiling, JACM 14 (1967), 172-201.

[Gol] GOLDSTINE, J., Automata with data storage, Proc. of A Conference on

Theoretical Computer Science, Waterloo, Ont., Canada 1977, p. 239-

246.

[GraHarI] GRAY, J.N., M.A. HARRISON & O.H. IBARRA, Two-way pushdown automata,

Inf. and Control 11 (1967), 30-70.

[Gre] GREIBACH, S.A.,

(1) One-way finite visit automata, Theor. Comp. Sci. 6 (1978),

175-221.

(2) Visits, crosses, and reversals for nondeterministic off-line

machines, Inf. and Control 36 (1978), 174-216.

(3) Checking automata and one-way stack languages, JCSS 3 (1969),

196-217.

(4) Hierarchy theorems for two-way finite state transducers,

Report, University of California, Los Angeles, 1977.

[Har] HARTMANIS, J., On non-determinacy in simple computing devices, Acta

Informatica 1 (1972), 336-344.

[Hen] HENNIE, F.C., One-tape, off-line Turing machine computations, Inf.

and Control 8 (1965), 553-578.

67

[HerRoz] HERMAN, G.T. & G. ROZENBERG, Developmental systems and languages,

North-Holland, Amsterdam, 1975.

[HopUll] HOPCROFT, J.E. & J.D. ULLMAN,

(1) An approach to a unified theory of automata, The Bell System

Technical Journal 46 (1967), 1793-1829.

(2) Nonerasing stack automata, JCSS 1 (1967), 166-186.

(3) Formal languages and their relation to automata, Addison

Wesley, Reading, Mass., 1969.

[Hun] HUNT, H.B., III, On the complexity of finite, pushdown, and stack

automata, Math. Syst. Th.lo (1976), 33-52.

[Iba] IBARRA, O.H., Characterizations of some tape and time complexity

classes of Turing machines in terms of multi-head and auxiliary

stack automata, JCSS 5 (1971), 88-117.

[JazOgdR] JAZAYERI, M., W.F. OGDEN & W.C. ROUNDS, The intrinsically expo

nential complexity of the circularity problem for attribute

grammars, CACM 18 (1975), 697-706.

[Jon] JONES, N.D.,

(1) Space-bounded reducibility among combinatorial problems,

JCSS 11 (1975), 68-85.

(2) A note on linear time simulation of deterministic two-way

pushdown automata, Inf. Proc. Letters 6 (1977), 110-112.

[JonLaa] JONES, N.D. & W.T. LAASER, Complete problems for deterministic

polynomial time, TCS 3 (1977), 105-117.

[JonSky] JONES, N.D. & S. SKYUM,

(1) Recognition of deterministic ETOL languages in logarithmic

space, Inf. and Control 35 (1977), 177-181.

(2) Complexity of some problems concerning L systems, in:

"Automata, Languages and Programming", Turku, 1977,

p. 301-308, Lecture Notes in Computer Science 52, Springer

Verlag, Berlin.

68

[Kie] KIEL, D.I., Two-way a-transducers and AFL, JCSS 10 (1975), 88-109.

[KnuMorP] KNUTH, D.E., J.H. MORRIS JR. & V.R. PRATT, Fast pattern matching
in strings, SIAM J. Computing 6 (1977), 323-350.

[Lat] LATTEUX, M.,

(1) Substitutions dans les EDTOL-systemes ultralineaires, Publi

cation 77, Universite de Lille, 1976.

(2) EDTOL-systemes ultralineaires et operateurs associes, Publi

cation 100, Universite de Lille, 1977.

(3) Generateurs algebriques et langages EDTOL, Publication 109,
Universite de Lille, 1978.

[Mon] MONIEN, B., Transformational methods and their application to com
plexity problems, Acta Informatica 6 (1976), 95-108 (Acta In
formatica 8 (1977), 383-384).

[Rab] RABIN, M.O.,

(1) Two-way finite automata, Proc. Summer Institute of Symbolic

Logic, p. 366-369, Cornell University, 1957.

(2) Real-time computation, Israel J. Math. 1 (1963), 203-211.

[RabSco] RABIN, M.O. & D. SCOTT, Finite automata and their decision problems,
IBM J. Res. Devel. 3 (1959), 115-125.

[Raj] RAJLICH, V.,

(1) Bounded-crossing transducers, Inf. and Control 27 (1975),

329-335.

(2) Absolutely parallel grammars and two-way finite-state trans

ducers, JCSS 6 (1972), 324-342.

[Roul ROUNDS, W.C., Mappings and grammars on trees, Math. Syst. Theory 4

(1970), 257-287.

[Roz] ROZENBERG, G., Extensions of tabled OL-systems and languages, Int.
J. Comp. Inform. Sci. 2 (1973), 311-336.

[RozVer] ROZENBERG, G. & D. VERMEIR, On ETOL systems of finite index, Inf.
and Control 38 (1978), 103-133.

[RubFis] RUBY, S. & P.C. FISCHER, Translational methods and computational

complexity, Proc. 6-th Ann. IEEE Symp. on Switching circuit

theory and Logical design (1965), p. 173-178.

69

[Sch] SCHUTZENBERGER, M.P., A remark on finite transducers, Inf. and Control

4 (1961) I 185-196.

[Seo] scarT, D., Some definitional suggestions for automata theory, JCSS 1

(1967), 187-212.

[She] SHEPHERDSON, J.C., The reduction of two-way automata to one-way auto

mata, IBM J. Res. Devel. 3 (1959), 198-200.

[Sky] SKYUM, S., Decomposition theorems for various kinds of languages

parallel in nature, SIAM J. Comp. 5(1976), 284-296.

[SteHarL] STEARNS, R.E., J. HARTMANIS & P.M. LEWIS II, Hierarchies of memory

limited computations, Proc. 6-th Ann. IEEE Symp. on Sw. circuit

Th. and Log. design (1965), 191-202.

[Tha] THATCHER, J.W.,

(1) Generalized2 sequential machine maps, JCSS 4 (1970), 339-367.

(2) Characterizing derivation trees of context-free grammars

through a generalization of finite automata theory, JCSS

(1967), 317-322.

[ThaWri] THATCHER, J.W. & J.B. WRIGHT, Generalized finite automata theory

with an application to a decision-problem of second-order logic,

Math. Syst. Th.2 (1968), 57-81.

[Ver] VERMEIR, D., Over strukturele restrikties op ETOL systemen (in English)

Ph.D.Thesis, University of Antwerp, 1978.

[vLe] VANLEEUWEN, J., Variations of a new machine model, 17-th Ann. IEEE

Symp. on Foundations of Computer Science, Houston, 1976.

MATHEMATICAL CENTRE TRACTS 108 (1979), 71-96 71

DYNAMIC DATA STRUCTURES

K. MEHLHORN

University of Saarland, Saarbrticken, W. Germany

The organization and manipulation of large sets of data is one of the

central problems of computer science. In commercial computing centers about

1/3 of the total computing time is spent on searching and sorting. Sets of

data are often dynamic in a twofold sense:

1) the set itself changes by inserting elements into it and deleting elements

from it.

2) the access behavior of the users changes, i.e. the points of interest in

the file change.

Let us look at an example: the set of books in a library. This set

changes by the acquisition of new books (INSERI') and by discarding obsolete

books_ (DELETE). Also the books are charged out with different probabilities

(and these probabilities differ drastically from book to book). Furthermore,

the access probabilities vary over time, as reading habits change. This fact

could easily be accomodated for by counting the number of accesses to each

book. It is also conceivable that access probabilities can change drasti

cally sometimes. Consider a university library. Whenever a new term starts

there will be a rush for the standard text books. Also, it should be pos

sible to treat newly acquired books in different ways: the librarian might

want to make a guess at the importance of a new book. In conventional li

braries this is done by putting some new releases at a special shelf near

the entrance door.

We propose the following definitions to model this situation.

Given is a subset S = {B1 , ••• ,Bn} of an ordered universe U. With every

element Bi E S we associate a weight = access frequency) pi E :N • The

basic operations are (d E lZ , p E :N)

72

Member (X,S,d)

Insert (X,S,p)

Delete (X,S)

if x

then

else

s -<- s

s -<- s

E: s

return the information associated with x
and change the weight of x by d

say "no"

u {X}; the initial weight of X is p

- {X}.

REMARK. We do not assume that d is specified when the operation MEMBER

(X,S,d) is initiated. The case that d is a function of the old weight is

also conceivable.

In this series of lectures we shall study data structures which support

the three operations above efficiently. Since this is a formidable task, we

proceed in five stages.

STAGE 1. The uniform problem: (= first kind of dynamics), i.e. all weights

are equal to 1. In particular, d = O in the Member instruction and p = 1 in

the Insert instruction. This is the classic dictionary problem. Many solu

tions to this problem are known (AVL-trees, 2-3 trees, HB-trees, ...). We

will treat weight-balanced trees (Nievergelt and Reingold).

STAGE 2. The nonuniform static case; the initial weights pi are nonequal,

no Insert and Delete instructions are allowed, and d = 0 in Member instruc

tions. We will discuss how to construct Binary Search Trees and how to esti

mate their behavior.

STAGE 3. The nonuniform dynamic case I; this is as in stage 2, but we allow

d = ±1 in Member instructions. In stage 3 the second kind of dynamics comes

into play. However, access frequencies may only change slowly. We propose

Dynamic Binary Search Trees (D-trees) as a solution to this problem. D-trees

will be applied to digital search trees (TRIES).

STAGE 4. The uniform problem with the additional instructions Concatenate

and Split

Concatenate (Sl ,S2,S3) s3 -<- sl u S2; this operation is only applicable

if max s 1 < min s 2

Split (S,a,s 1 ,s 2) sl -<- {X E S; x ,,:; a}

s2 -<- {X E: S; x > a}

The sets s 1 ,s 2 (resp. S) cease to exist after execution of Concatenate

(resp. Split) .

73

STAGE 5. The nonuniform dynamic case II. The full repertoire of Member, In

sert and Delete operations is allowed. No restriction on d and p is placed.

We will show how to extend D-trees in order to cope with the full problem.

Finally we describe an application to sorting presorted files. Stages

and 3 will be discussed in some detail, only brief accounts are given

for the others.

STAGE 1: Weight Balanced Trees

In a binary tree a node has either two sons or no sons at all. Nodes with

no sons are called leaves and are drawn as rectangular boxes in subsequent

figures. Non-leaf nodes (internal nodes) are drawn as circles and subtrees

are drawn as triangles.

DEFINITION. Let T be a binary tree. If Tisa single leaf then the root

balance p(T) is 1/2, otherwise we define p(T) = !T~J/JTJ, where JT~J is the

number of leaves in the left subtree of T and JTI is the number of leaves

in tree T.

For the remainder of the paper a is a fixed constant, 0 S a ~ 1/2.

DEFINITION. A binary tree T is said to be of bounded balance a, or in the

set BB[a], if and only if

1. a~ p(T) s 1-a

2. T is a single leaf or both subtrees are of bounded balance a.

There are two ways of storing an ordered set S

tree T.

Leaf-oriented storage organization. The tree T has JsJ leaves. The leaves

are labelled from left to right by the elements of S. An internal node v is

labelled by the largest element in the left subtree of v. Label Bi in in

ternal node v corresponds to the query:

if X S B.
l.

then goto root of left subtree

else goto root of right subtree.

74

The leaf labelled Bi will be reached with all search arguments X such that

Bi-l < X ~Bi, if i < n, and Bn-l < X if i = n.

Node-oriented storage organization. The tree T has lsl internal nodes. The

internal nodes are labelled from left to right by the elements of S. Label

Bi in internal node v corresponds to the query:

case X ? B. in
l

< : goto root of left subtree

found

> : goto root of right subtree

Leaves correspond to unsuccessful searches in this case.

EXAMPLE. S {2,5,7,9,13}

v

Leaf-oriented Node-oriented

We search in a binary tree by comparing the search argument X with the

query in the root and then taking the appropiate action (= go to left

subtree, .•.). In our example the second leaf of the node-oriented tree will

be reached with all X such that 2 < X < 5. In the leaf-oriented tree nodes

u,v,w have balance 1/2, 2/5 and 2/3 respectively.

In the sequel we will always assume leaf-oriented storage organization

except when explicitly stated otherwise.

LEMMA 1. Let T E BB[a]. Then the depth of T (=length of longest path from

root to leaf) is at most 1 + (log !TI - 1)/log(l/(1-a)) where !TJ is the
number of leaves of T.

PROOF. Let v0 ,v1 , ..• ,vd be a longest path from the root v0 to a leaf vd.

Let w. be the number of leaves in the subtree with root v .. Then
i i

wi+l s (1-a) wi by the definition of BB[a] tree and hence 2 s wd-l s

s (1-a)d-l. w0 = (1-a)d-l JTI. Taking logarithms finishes the proof. 0

EXAMPLE. a= 1-!2/2 = 0.2928. Then 1/log(l/(1-a)) = 2.

75

As an immediate consequence of Lemma 1 we have that MEMBER (X,S,0) in

structions take time O(log Is!). Next we turn to INSERT (X,1) and DELETE (X)

instructions. We first perform a search for X; this search will end in the

leaf labelled Bi with Bi-l < X s Bi. In the case of the INSERT instruction

we are done if X =Bi. Otherwise we replace the leaf Bi \by the sub-

tree

In the case of a DELETE instruction we are done if X f Bi. Otherwise

X = Bi and leaf ~ is either the left of right son of its father. If

it is the left son then we replace

B.

by D. If it is the right son then we replace

~
by~ and furthermore we replace the interior node labelled B. (which

i

necessarily lies on the path from the root to leaf) by an interior

node labelled Bi-l. One problem remains. The new tree might not be in class

BB[a].

EXAMPLE. Suppose we want to insert 8 into set S. Also suppose a

~ 0.29 (this choice of a becomes clear later on). We obtain

76

w

13

and node w is out of balance; p(w) = 3/4 I [a, 1-a]. In general some nodes
on the path of search will be out of balance. Two operations (rotation and
double-rotation) exist to restore balance. The figures show operations to
the left about A. Symmetrical variants also exist.

Rotation

81+(1-81l8283

82(1-83)

1-8283

Let 81 ,82 (8 1 ,82 ,83) be the root-balances of nodes A,B(A,B,C) before the
rotation (double-rotation) . Then the balances of these nodes after the ro
tation (double-rotation) are as given in the figure above. Consider the
case of a rotation. Let x1 ,x2 ,x3 denote the number of leaves of the various
subtrees shown. Then 81 = x 1/(x 1+x2+x3) and 82 = x 2/(x2+x3). The balance
of node B after the rotation is

Sl + S2(x2+x3l/(xl+x2+x3>

s1 + s2 o-s1>.

The other nodes are treated analogously.

EXAMPLE CONTINUED. A double rotation about w yields

2

and this tree is in BB[1-l2/2J.

77

In general a tree is rebalanced by walking back from the (inserted or

deleted) leaf to the root and performing rotations and double rotations as

necessary. An exact statement can be found in

LEMMA 2. (Blum and Mehlhorn). Let 0 ~ o ~ 0.01. Then there exists a mono

tonically increasing function c with c(O) = 0, c(0.01) = 0.0045 such that:

if 1/4 <a< 1-/272 - c(o) then rotations and double rotations suffice to

rebalance a BB[a]-tree upon the insertion or deletion of a leaf.

More precisely: walk back from the inserted or deleted leaf to the root.

Say we reach node A and all subtrees below A are restored to be in BB[a].

CASE 1. p(A) E [a,1-a]; proceed to the father of A.

CASE 2. p(A) <a; let B the right son of A. If p(B) < 1/(2-a) +

+ o/([l+(l+o) (1-et)](2-a)) then a rotation else a double rotation rebalances

the tree, i . e.

p'(AJ,p'(B),p'(C) E [(l+o)a,1-(1-o)aJ.

Here p' denotes the balance after the rotation or double-rotation. Proceed

to the father' of A.

78

CASE 3. p(A) > 1 - a; symmetric to case 2.

PROOF. The lengthy but simple proof can be found in Blum and Mehlhorn. D

Lemma 2 with o = 0 shows that rotations and double-rotations along the

path of search suffice to rebalance a BB[a] tree after an insertion or de

letion. We obtain:

THEOREM (Nievergelt and Reingold, Blum and Mehlhorn). BB[a]-trees

(2/11 < a $ 1 - 12/2) support the instructions MEMBER, INSERT and DELETE

with processing time O(log !s!J per instruction.

REMARK. Theorem was first stated by Nievergelt and Reingold. The first

complete proof is due to Blum and Mehlhorn.

Note that up to O(log is!J rebalancing operations (=rotations, double

rotations) may be required after a single insertion or deletion. Experiments

show that on the average a constant number suffices. (Table 1 shows the

findings of Baer and Schwab.) It has been a long-standing open problem

whether this could actually be proven. The answer is theorem 2.

1. - 12)2

0.25

0

depth

12

14

22

average path

length

9.26

9.46

12.14

rebalancing

operations

426

206

0

TABLE I. (Baer and Schwab.) 1000 random insertions into an initially empty

tree were performed for different values of a. The depth, average path

length (see stage 2) of the resulting tree and total number of rebalancing

operations are shown.

THEOREM 2 (Blum and Mehlhorn). Let 2/11 < a < -12}2 - c(o) , 0 $ 0 $ 0.01

and c be defined as in Lemma 2. Then there is a constant d such that:

d.m rebalancing operation suffice to perform an arbitrary sequence of m in

sertions and deletions on an initially empty BB[a]-tree.
k 2 (d $ min {k - 1 + 3(1-a) /oa; k E JN, k::: 12}).

REMARK. For a = 1/4, o 0.01 we obtain d s 27. There is certainly room

for improvement.

79

The proof of theorem 2 relies upon lemma 2. The key observation is that

the root-balances of nodes A,B,C after a rebalancing operation will be quite

a distance (at least oa) away from the critical values a and 1 - a. Hence a

large number of searches (about can where n is the current number of leaves

below such a node) can go through such a node without it being balanced

again. Proper counting of rebalancing operations and of the number of in

sertions and deletions gives the desired result. The details can be found

in Blum and Mehlhorn.

STAGE 2: BINARY SEARCH TREES.

In this section we treat the non-uniform static case; i.e. the initial

weights pi are non-equal, no Insert and Delete instructions are allowed and

d = 0 in Member instruction. The weights pi give rise to a probability dis

tribution in a natural way: Si+ pi/W where W = Lpi. In order to cope with

leaf- and node-oriented storage organization we treat a slightly more

general problem.

Given is a set S = {B 1 , ••. ,Bn} and 2n+1 probabilities

a 0 ,S1 ,a1 , •.. ,an-l'Sn,an: aj ~ 0, Si~ O and LSi + Laj = 1. Here Si is the

probability of accessing Bi and aj is the probability of accessing elements

X with Bj < X < Bj+l Let T be a node-oriented search tree for set S. (If

we want to talk about leaf-oriented search trees then we should set S. = 0
1.

for all i and a. =probability of access of B.). Let b. be the
J J 1.

depth of

node B. in T and let a. be the depth of leaf (B.,B. 1) in tree T. Then
1. J J J+

n n
p I

i=l
S. (b. +1) + L a a

i i j=O j j

is the weighted path length of tree T. It measures the average search time

in tree T. Note that bi + 1 are comparisons are required to find X = Bi and

aj comparisons are required to find X with Bj < X < Bj+l"

THEOREM 3 (Mehlhorn 77b) . There is a tree T such that

where H

bution.

b.
1.

a.
J

p

,<:;

5

,<:;

log 1/S.
1.

log 1/aj + 2

H(a0 ,s1 , ... ,sn,an) + 2La.
J

La. log a. is the entropy of the frequency distri-
J J

80

THEOREM 4 (Bayer). For every tree T

H ~ P + LS.[log e - 1 +log (P/LS.)].
i i

A tree satisfying the requirements of theorem 3 can be found in only linear

time (Fredman). From theorem 4 we infer that this tree is close to optimal.
Theorems 3 and 4 are alphabetic versions of Shannon's noiseless coding

theorem. Algorithms for the construction of optimal trees are due to

Hu/Tucker and Garsia/Wachs in the leaf-oriented case (Mehlhorn/Tsagarakis
show that the two algorithms are actually the same) and due to Knuth

2 in the node-oriented case. They have time complexity O(n log n) and O(n)
respectively. Extensions to non-binary trees can be found in Itai and

Altenkamp/Mehlhorn.

Theorem 4 is the most important one for what follows. It shows that
no tree can have weighted path length much less than the entropy of the

distribution of access probabilities and provides us with a yardstick for

near optimality. We close this section with an example. Gotlieb/Walker took
a text of 106 words and counted word frequencies. Then they constructed
(nearly) optimal binary search trees for the N most common words, N = 10,

100, 1000, 10 OOO, 100 OOO. Let PN be the weighted

11

log 500 5 log 10

log N

log N

path length of the tree constructed for the N most common words. The figure

(due to Gotlieb and Walker) suggests that PN + 11 for N + 00 • In view of

theorems 3 and 4 this observation may be explained analytically. Let Si be

the probability of occurrence of the i-th most frequent word. Then (cf.

Schwarz)

where c

and (by a simple calculation)

1/ l
i=l

1.12

Since by theorems 3 and 4 entropy and weighted path length are closely re

lated, this is an analytical explanation of the experiments.

STAGE 3. Dynamic Binary Search I (Mehlhorn 77c)

81

We are now ready to deal with the second kind of dynamics. We allow

weight changes of size ±1. Let S = {B 1 , •.. ,Bn} and let p. E JN be the weight
1. t

of Bi. Strictly speaking, we should add a superscript t: pi is then the

weight of object Bi at time t.

Several solutions were proposed, notably Allan/Munro, Baer, Unterauer,

Mehlhorn 77c. We describe the solution in Mehlhorn 77c, which is the only

one with a proven worst case bound. The solutions proposed by Baer, Unterauer

and Mehlhorn try to extend the BB[a] concept to weighted trees.

Suppose a= 1/5 and p 1 = 1, p 2 = 2, p 3 = 1. Consider the following tree.

We could define the

root-balances:

p(v) 1/(1+2) = 1/3

p(w) (1+2)/(1+2+1) 3/4

2

Executing MEMBER (B2 ,1J twice increases p 2 to 4 and we have p(w) =

= (1+4)/(1+4+1) = 5/6. Neither a rotation or a double-rotation (not even

applicable) will help us. Even worse, there is no BB[1/5] tree for weights

1,4,1. What should we do?

Baer and Unterauer suggest to give up on the strict BB[a] idea but re

tain the balancing operations rotation and double-rotation. Baer expresses

the hope and Unterauer proves (under reasonable probability assumptions)

that this will keep the tree nearly optimal on the average.

82

We follow a different approach. We stick to the strict BB[al idea but

give up the concept that an object B. E s has to be represented by a single
l

leaf of the tree. Why not represent object B2 by 2 leaves of weight 2 each

in our example? (See also van Leeuwen.) Then a double rotation helps and
gives

a tree in BB[1/5]. However, we have a new problem now. There are several

leaves labeled by B2 . The way out of this dilemma is the following: one

of these leaves "really" represents object B2 (the active 2-node below),

the others are only around to make rebalancing always possible (the non

active 2-nodes below). In other words, the non-active 2 nodes only serve

for bookkeeping purposes. We show below that it is not necessary to store

them explicitly (compact dynamic trees). Of course, there is no a-priori

bound on the number of times a certain object has to split. However, our

knowledge of the non-weighted case (= ordinary BB[a]-trees) tells us that

parts won't have to have weight less than one. It is therefore reasonable

to assume that an object of weight p consists of p "atoms" of weight 1.

We are now ready for the formal definition of D-trees

D-trees are an extension of BB[a]-trees. We imagine an object Bi of

weight pi to consist of pi leaves of weight 1. AD-tree for set Sis then

a BB[a]-tree T with W = p 1 + p 2 + ... + pn leaves. The leftmost p 1 leaves

are labelled by B1 , the next p 2 leaves are labelled by B2 , ...

DEFINITION.

a) A leaf labelled by B. is a j-leaf.
J

b) A node v of T is a j-node iff all leaves in the subtree with root v are

j-leaves and v's father does not have this property.

c) A node v of T is the j-joint iff all j-leaves are descendants of v and

neither of v's sons has this property.

d) Consider the j-joint v. p~ j-leaves are
J

to the left of v and p': j-leaves
J

are to the right of v. If p'. ;:,, p': then the
J J

j-node of minimal depth to
the left of v is active, otherwise th.e j-node of minimal depth to

the right of v is active.

e) The thickness th(v) of a node v is the number of leaves in the subtree

with root v.

83

Only parts of the underlying BB[a]-tree actually need to be stored, in

particular all proper descendants of j-nodes can be pruned. Only their num

ber is essential and is stored in the j-node. More precisely, a D-tree is

obtained from the BB[a]-tree by

1) pruning all proper descendants of j-nodes

2) storing in each node.

a) a query of the form "if X :,; B then go left else go right"

b) the type of the node: joint node, j-node or neither of above

c) its thickness

d) in the case of the j-joint the number of j-leaves in its left and

right subtree.

The queries are assigned in such a way as to direct a search for Bi to the

active i-node. More precisely, let v be any interior node of the D-tree

and let the active 1-node, ••• , j-node be to the left of v. Then the query

"if X $ B. then go left _else go right" is stored in v.
J--

The next figure shows a D-tree for the distribution (p1 ,p2 ,p3 ,p4 l =
(2,7,3,4) based on a tree in BB[1/4]. The j-nodes are indicated by squares,

active j-nodes by double lines, the thickness of j-nodes is written below

them and the distribution of j-leaves with respect to the j-joints is

written below the joint nodes. 2-joint

84

The following Lemma shows that D-trees are good search trees.

LEMMA 3. Let b. be the depth of the active j-node in tree T. Then b. ~ c 1 J J
log W/pj + c 2 where c 1 = 1/log (1/(1-a)), c 2 = 1 + c 1 .

EXAMPLE. For a = 1 - 12/2 we have c 1 = 2 and c 3 = 3. In the light of Theorem

4 we have that search time in D-trees is at most twice the search time in

optimum trees and usually much better (cf. experimental data below).

PROOF. Let v be the father of the active j-node. Then all j-leaves which are

on the same side of the j-joint as the active j-node are descendants of v.

Hence th(v) ~ pj/2. The argument of Lemma 1 will finish the proof. D

Next we have to address the question of how to maintain D-trees. The

answer i.s exactly as for BB[a]-trees, but be careful with the additional

D-tree information. Suppose we execute a MEMBER (B.,±1) instruction. The
J

search will end in the active j-node. we have to update the thickness of all

nodes on the path of search and the distribution of j-leaves with respect to
the j-joint. The j-joint lies on the path of search and so this is easily done.

Next we have to ascend the path of search from the active j-node to the

root and perform rotations and double-rotations as required. Since a double

rotation is two rotations

double rotation

to the left
about A

to the right

~ rotation to the left
~ about A

85

we only have to treat the case of a rotation. Let's call joint-nodes and

j-nodes special nodes. If no special node is involved in the rotation then

no additional actions are required. Suppose now, a special node is involved

in the rotation.

CASE 1. A j-node is involved. Then we have the following picture

and node B is a j-node before the rotation, i.e. trees x2 and x 3 do not

exist explicitly. We create them by splitting B into two j-nodes of thick-
r -,

ness Lth(B)/2~ and th(B)/2 respectively. What query should we assign to B

(Note that Bis an interior node now)?. Suppose first that neither A nor B

is the j-joint. Then A must be a left descendant of the j-joint. Otherwise

x 1 can only contain j-leaves and hence A would be a j-node and hence B would

not exist. So A must be a left descendant of the j-joint and hence the active

j-node lies to the right of A. But then it also lies to the right of B

(x3 could be it) and thus we only have to copy the query from A into B.

The discussion above also solves the case where B is the j-joint. Suppose

next that A is the j-joint. Then the active j-node will be to the left of

B after the split. Let Z be the nearest ancestor of A such that the left

link was taken out of Z during theh search. Copy Z's query into B. Z can be

found as follows: When the nodes on the path of search are stacked during

the search, th~y are also entered into either one of two linear lists: the

L-list or the R-list. The L-list contains all nodes which are left via their

left links and the R-list contains all nodes which are left via their right

links. Then Z is the first node on the L-list. This ends the discussion of

B being a j-node.

EXAMPLE. Rotation to the left about the 4-joint.

86

4-joint splitting 4-joint

The second possibility is that x 2 and x 3 are j-nodes and hence A is j-node

after the rotation. In this case x 1 and x 2 are deleted after the rotation.

EXAMPLE. Rotation to the left about the father of the active 2-node

2
rotation

2

CASE 2. A joint node is involved, i.e. either A or B is a joint node or

both. If B is a joint node then no additional actions are required. So let

us consider the case that A is the j-joint. Let p '., p''. be the distribution
J J

of j-leaves with respect to the j-joint A and let s be the thickness of the

root of x 2 • Ifs ? Pj then x 3 contains no j-leaves and hence A will be the

j-joint after the rotation. No action is required in this case.

If s < p''. then B will be the j-joint after the rotation. The distribu
J

tion of j-leaves with respect to B is p '. + s, p''. - s.
J J

CASE 2 .1. p '. + s ::;; p': - s. Then p '. ::;; p''. and the active j-node was to the
J J J J

right of A, in fact it was node x 2 • Also the active j-node will be to the

right of B after the rotation and it still is to the right of A. Hence we

only have to copy A's query into B.

87

CASE 2.2. p'. + s > p': - s. Then the active j-node will be to the left of B
J J

after the rotation, and hence it will be node x2 .

CASE 2.2.1. p'. $ p':. Then x 2 also was the active j-node before the rotation.
J J

No additional action is required in this case.

CASE 2 .2 .2. p '. > p':. Then the active j-node was to the left of A and hence
J J

to the left of B before the rotation. In this case B's query remains un-

changed, but A's query has to be changed. Suppose first that A's left son

is a j-node. Then A ceases to exist after the rotation and we are done.

Suppose next that A's left son is not a j-node. The next figure shows a

microscopic view of tree x 1 .

the active j-node

We only have to copy Z's query into A. Z can be found by a brute force

search. Note that th(z) 2 p'. 2 p./2. Note also that the thickness s of x3 is
J J

less than p': $ p./2. Since s = th(x3) 2 a•th(B) (the underlying tree is in
J J

BB[a]) and th(B) 2 (1-a)th(A) (a rotation to the left about A is performed)

we haves 2 a(l-a)th(a) and hence th(A) $ p./(2•a(1-a)). The argument used
J

in the proof of Lemma 1 shows that the depth of Z with respect to A is at

most log(a(l-a))/log(l-a).

REMARKS. For a= 1 - 12}2 we have log(a•(1-a))/log(1-a) Rl 4.4. Case 2.2.2

is not very likely to occur. In our simulations (several hundred thousand

MEMBER ,+1) instructions) it never occurred.

We summarize the discussion in

THEOREM 5 (Mehlhorn 77c). Consider a D-tree based on a BB[a]-tree with

2/11 < a $ 1 - 12';2. Let p~ be the weight of B. at time t, 1 $ i $ n and
t n t i i t t

let W = Li=l pi. A search for Bi at time t takes time c 1 log W /pi+ c 2 .

88

t t Also a weight change by ± 1 at time t takes time c 1 log W /pi + c 2 for some
small constants c 1 and c 2 •

EXAMPLE. Suppose we want to execute a MEMBER (B 2 ,+1) instruction. This would

increase the thickness of the active j-node from 2 to 3 and move the balance
parameter of the root (the active 2-joint) out of the range [1/4,3/4]. A

double-rotation (to the left) about the root is required. It is simulated

by a rotation to the right about the 3-joint followed by a rotation to the

left about the 2-joint. The rotation about the 3-joint requires no special

action since s = th(father of active 3-node) = 5 > 2 = number of 3-leaves

to the left of 3-joint. We obtain

same as
before

2-joint

3

3-joint

4-joint

Next we have to rotate about the 2-joint. We have P2 = 2, P2 = 6 and s 3.

and hence case 2.2.1 of above applies. We obtain

same as
before same as before

89

Having described the theory of D-trees to some extent the reader might be

interested in experimental data. H. Reinshagen and A. del Fabro programmed

D-trees and carried out the following experiments. They took an arbitrary

BB[l-12/2] tree with 200 leaves and p 1 = •.• = p 200 = 1. Then they executed

30 OOO MEMBER (,+1) instructions according to a fixed probability distribu

tion (distribution I: p. = 100i/(i! e 100i, distribution II: obtained by
l.

counting words starting with different 2 letter prefixes). The weighted path

length of the actual D-tree and the total number of rotations and double

rotations performed was recorded. The following table shows the

P -P p -P
of searches actual o,et .100 # ROT actual opt #ROT

p p
opt opt

0 48.6 0 22.9 0

100 35.7 34 14.5 52

500 19.8 51 9.9 148

1000 11.9 58 7.6 207

5000 1. 7 84 5.8 370

10000 . 1. 7 90 5.7 420

20000 1.8 93 5.7 440

30000 1. 7 96

deviation (in percent) of the actual weighted path length from the weighted

path length of the optimal tree for distribution I and II respectively. It

also shows the number of rotations and .double rotations required.

COMPACT D-TREES

Non-active j-nodes only serve bookkeeping purposes; they permit a uni

form treatment of rebalancing operations. In this section we indicate that

they need not to be stored explicitly: compact D-trees. We introduce com

pact D-trees by way of example, the full theory can be found in [Mehlhorn

77 c].

In compact D-trees only those nodes are actually stored which are es

sential for the searches: the active j-nodes, the branch nodes (i.e. nodes

having active descendants in both subtrees) and the joint-nodes. All other

nodes are deleted, however their thickness is remembered.

90

Consider the following example; p 1
of the D-tree

2-joint

100. The compact version

2-joint

0

50

The expression [0,50] on the right side of the edge from the 2-joint to the
active 1-node denotes that right subtrees of that path containing a total
number of 0 1-leaves and 50 2-leaves were deleted.

Compactification of (extended) D-trees to compact D-trees is a many
one mapping, i.e. in general many D-trees are represented by the same com
pact D-tree. The essential point is that one D-tree in the inverse image
of a compact tree with respect to the compactification mapping is computed
easily; in fact, reconstruction can be done locally.

Consider our example again. Say we want to exipand the edge ;{o,50]
again. The query of the top node of the edge beingR1,we know that [0,50]
represents 0 1-leaves and 50 2-leaves. The thickness of the bottom node is
1. Hence we might partition the 50 2-leaves into pieces of size 1,2,4,8,16,
19 and obtain a tree in BB[1/4]. For full details we refer the reader to
[Mehlhorn 77c]. Some further compactifications are possible: it is possible
to approximately reconstruct the edge labels during the search and to use
height-balanced trees instead of weight-balanced trees [Del Fabro/Mehlhorn].

91

STAGE 4. The uniform problem with the additional instructions: Concatenate

and Split. The traditional name for data structures supporting the instruc

tion Member, Insert, Delete, Concatenate and Split is Concatenable Queue.

It has long been known that height-balanced trees support the full reper

toire of Concatenable Queue operations with O(loglsl) processing time per

instruction. We show that weight-balanced trees also support the full reper

toire with the same time bound.

LEMMA (Mehlhorn 78) . BB[a]-trees support the full repertoire of concatenable

queue instructions with O(loglsll processing time per instruction.

STAGE 5. The nonuniform dynamic case II. We finally treat the full problem:

Member, Insert and Delete operations are allowed. No restriction on p and d

is placed. Using the techniques developed in stage 4 we extend D-trees to

cope with the full problem.

THEOREM 6 (Mehlhorn 78). Let 2/11 < a s 1-12/2 and let T be a D-tree for

set S = {B1 ,B2 , •.• ,Bn} based on a BB[a]-tree. Let pi be the weight of Bi

and let W = Epi.

a) The operation Member (Bi 1 S,d) takes time O(min[log W/min(pi,pi+d) ,n])

b) The operations Insert (X,S,p) and Delete (Bi 1 S) take time O(min(log W,n)).

Part a) of theorem 6 says that the execution time of the instruction

MEMBER {Bi 1 S,d) is at most proportional to the logarithm of the old access

probability W/pi or the new access probability W(pi+dl. (Since a compact

D-tree has depth at most n, execution time is also O(n)). In view of theorem

4 this is optimal up to a constant factor. Part b) is almost a corollary

of part a) if one observes that either the old weight (INSERT) or the new

weight (DELETE) is 0 in this case.

We are now at the end of a long journey. We finally arrived at a solu

tion to the problem posed in the introduction. We close with a brief dis

cussion of two applications.

AN APPLICATION TO TRIES

An alternative to searching based on key comparion is digital searching.

Here a key is identified by successive identification of its component

characters. One such method is the TRIE. A set of strings over some alphabet

6 is represented by its tree of prefixes. So every node of a trie corresponds

92

to a word over I= {a1 , ... ,ap}.

Several implementations of tries were proposed.

1) Each node of the trie is represented by a vector of length [II (Fredkin).

Identification of a character is done by indexing this vector. This

method is very fast (one access per character) but it uses a large amount

of storage.

2) Each node of the trie is represented by a linear list (Sussenguth) . In

a node w this list contains only those characters a E I such that wa is

a prefix of some key. Identification of a character is done by a linear

search through the list. This method is slow (up to JIJ comparisons per

character) but it saves storage space.

3) Each node of the trie is represented by a binary search tree (Clampton) .

In a node w of the trie this tree contains those characters a E I such

that wa is a prefix of some key. Identification of a character is by tree

searching. This method is a compn:Jomise in speed and space requirement.

* Let S = {B 1 , ••. ,B} c I be the set of keys and suppose that all keys
n -

are of equal length m (this is not essential but makes life easier), Is! = n.

Clampton proposed to use a balanced binary search tree for each node.

EXAMPLE.

for X =

k m-k
S={a1a. ;Os
m-1 J

a 1 aj takes time

k s m, 1 s j s p}. Then lsJ = m•p and a search

O(mlogp) o<Jsl •log p/pl.

We propose to use D-trees (or any other kind of nearly optimal search

* trees). More precisely, for w E I let

I {B. ; w is prefix of B.} J .
1 1

A node w of a TRIE is represented by a D-tree for the distribution

{pwa; a EI}. A key Bi= ailai 2 ... aim is identified by successively iden

tifying the character aik in the tree corresponding to the node

ail ... ai(k-l) of the tree. It takes time

to identify aik where c 1 ,c2 only depend on the balance parameter (cf.

lemma 3). Hence B. can be identified in time
1

93

Since log n comparisons are required in any scheme based on comparisons with

binary outcome and every character of the input has to be inspected we have

nearly optimal tries under implementation 3.

We use D-trees to implement the nodes of a trie because we want to deal

with updates, i.e. insertions and deletions of names. Suppose we want to

insert a new name B into the set s. This amounts to increase pw by 1 for

all prefixes of B. Retaining near optimality is no problem since we used

D-trees to implement the nodes of a trie. Conversely, suppose we want to

delete a name B from the set S. This amounts to decrease pw by 1 for all

prefixes of B. Again retaining near optimality causes no problems. We thus

proved

THEOREM 7. Lets be a set of keys of m characters each. If a trie is used

to represent the set S and every node of the trie is implemented as a D

tree then searching for a key in s, inserting a new key into S and deleting

a key from s can be done in time O(loglsl+ m) and this is uptimal up to a

constant factor.

EXAMPLE continued. In the example above,. TRIES.+ D-trees guarantee that

searches never take more than O(m + log(m•p)) time units.

Note that TRIES + D-trees give execution times which are independent

of lrl. In database applications objects are often m-tuples (e.g. cities

given by geographical altitude and latitude). In these applications lrl =
is conceivable.

AN APPLICATION TO SORI'ING

Consider the problem of sorting a sequence xnxn_1 •.. x 1 by an insertion

sort. Insertion sort proceeds by successively inserting xi into its proper

position. Let

When xi is inserted into the sorted version of sequence xi_1 ••• x 1 then xi

has to be inserted after the fi-th position of that sequence. If the se-
2

quence is presorted, i.e. F = Efi is small with respect to n , then the

elements tend to be inserted near the front of the already sorted subse

quence. Using the concepts developed in stage 3, Fredman has shown that it

94

should be possible to sort the sequence with O(n log(F/n)) comparisons.

Later-on practical versions of Fredman's algorithm were developed by Guibas

et al., Brown/Tarjan and Mehlhorn 79. The algorithm described by Mehlhorn is

based on AVL-trees and has running time 26 n log F/n + 40n on the machine

described in Mehlhorn 77a (similar to MIX). Comparing this with Quicksort's

running time of 9n log n on the same machine gives

26 n log F/n + 40n ~ 9n log n

iff

F ~ 0.314
1.375

n

For presorted files the new method will be superior.

SUMMARY. New approaches to searching and sorting were discussed which ex

ploit the fact that in some applications search requests or sequences to

be sorted are non-random. More specifically a tree structure (D-trees) was

presented which supports searching in, inserting into, deleting from and

changing weights in a weighted set S in time optimal up to a constant factor.

Also a sorting method which sorts presorted input sequences in time strictly

less than n log n was presented.

REFERENCES

ALLAN, A. & I. MUNRO, Self organizing binary search trees, JACM, 25 (1978),

pp. 526-535.

ALTENKAMP, D. & K. MEHLHORN, Codes, unequal letter costs, unequal probabili

ties, 5th JCALP, 1978, Springer Lecture Notes in Computer Science

vol. 62, pp. 15-25, to appear JACM.

BAER, J.L., Weight-balanced trees, Proc. AFIPS, vol. 44 (1975), pp. 467-472.

BAER, J.L. & B. SCHWAB, A comparison of tree balancing algorithms, CACM 20

(1977) t 322-330.

BAYER, P., Improved bounds on the cost of optimal and balanced binary search

trees, techn. report, Dept. of Computer Science, MIT, 1975.

BLUM, N. & K. MEHLHORN, On the average number of balancing operations in

weight-balanced trees, 4th GI Conference on Theoretical Computer

Science, Aachen, 1979 (to appear).

BROWN, M.R. & R.E. TARJAN, A representation for linear lists with movable

finqers, 10th ACM STOC, 1978, p. 19-29.

CLAMP'l'ON, H.A., Randomized binary searching with tree structures, CACM

7, 3 (March 1964), 163-165.

DEL FABRO, A. & K. MEHLHORN, Further compactification of D-trees, in pre

paration.

FREDKIN, E., Trie memory, CACM 3, 9 (sept. 60) 1 490-499.

95

FREDMAN, M.L., Two applications of a probabilistic search technique: Sorting

X+Y and building balanced search trees, Proc. 7th Annual ACM

Symp. on Theory of Computing, Albuquerque, 1975, pp.240-244.

GARSIA, A.M. & M.L. WACNS, A new algorithm for minimum cost binary trees,

SICOMP 4 (1977), 622-642.

GOTLIEB, C.C. & W.A. WALKER, A top-down algorithm for contructing nearly

optimal lexicographical trees, in: R.C. Read (ed.), Graph Theory

and Computing, Academic Press, London, 1972, pp.303-323.

GUIBAS, L.J., E.M. MCCREIGHT, M.F. PLASS, J.R. ROBERTS, A new representation

for linear lists, 9th ACM STOC, 1977, 49-60.

HU, T.C. & A.C. TUCKER, Optimal computer search trees and variable length

alphabetic codes, SIAM J. Applied Math. 21, 1971.

ITAI, A., Optimal alphabetic trees, SICOMP 5 (1976), 9-18.

KNUTH, D.E., The art of computer programming, vol. 3, Sorting and searching,

Addison Wesley, 1973.

MEHLHORN, K., 77a, Effiziente Algorithmen, Teubner Studienbucher Informatik,

Stuttgart 1977.

MEHLHORN, K., 77b, Best possible bounds on the weighted path length o.f

optimum binary search trees, SICOMP 6 (1977) pp. 235-239.

MEHLHORN, K., 77c, Dynamic binary search, 4th Colloquium on Automata, Lan

guages and Programming Turku, 1977, Springer Lecture Notes in

Computer Science, vol. 52, pp. 323-336.

MEHLHORN, K., 78, Arbitrary weight changes in dynamic trees, Techn. Bericht,

Universitat des Saarlandes, May 1978.

MEHLHORN, K., 79, Sorting presorted files, 4th GI conference on Theoretical

Computer Science, Aachen, 1979 (to appear).

MEHLHORN, K. & M. TSAGARAKIS, On the isomorphism of two algorithms, Hu/Tucker

& Garsia/Wachs, 4 ieme colloque de Lille, Feb. 1979, Lille,

France.

NIEVERGELT, J. & E.M. REINGOLD, Binary search trees of bounded balance,

SICOMP 2 (1973) 33-43.

SCHWARTZ, E.S., A dictionary for minimum redundancy encoding, JACM 10 (1963),

413-439.

SUSSENGUTH, E.H., Use of tree structures for processing files, CACM 6 (1963)

272-279.

UNTERAUER, K., Optimierung gewichteter Binarbaume zur Organisation geord

neter dynamischer Dateien, Doktor-arbeit, TU Munchen, 1977.

VANLEEUWEN, J., On the construction of Huffman-trees, in: s. Michaelson &

R. Milner (eds), Automata, Languages and Programming (Proc. of

the 3rd Colloq.) Edinburgh Univ. Press, Edinburgh, 1976,

pp. 382-410.

THE FUNDAMENTAL THEOREM OF COMPLEXITY THEORY

(preliminary version)

1. Introduction ...

by A. MEYER & K. WINKLMANN

2. The fundamental theorem for Turing machine space

98

99

104 3. Proof of the fundamental theorem .

97

98

MATHEMATICAL CENTRE TRACTS 108 (1979), 97-112

THE FUNDAMENTAL THEOREM OF COMPLEXITY THEORY

(Preliminary version)

A.R. MEYER & K. WINKLMANN

MIT, Cambridge, USA

1 • INTRODUCTION

The amount of resources (such as time, space) used by an optimal pro

gram for a recursive function f describes the inherent computational com

plexity of the function. It is well-known, however, that there are recursive

functions which do not have optimal programs ("Speed-up Theorem", [Bf.67]).

While single functions are therefore not always adequate for describing the

complexity behavior of recursive functions, sequences of functions are: the

complexity of any recursive function can be described by a recursive se-

quence of "honest" functions. Conversely, any recursive sequence of "honest"

functions satisfying a few weak and simple properties does indeed describe

the complexity behavior of some total recursive function. Combined we refer

to these two results as the Fundamental Theorem of Complexity Theory. Both

the Speed-up Theorem of BLUM [Bf.67] and the Compression Theorem [Bf.67,HS65]

are corollaries to such a Fundamental Theorem. 2)

Such a Fundamental Theorem can be proven in an axiomatic setting, only

assuming that the use of resources satisfies the very general axioms of

BLUM [MF72]. This generality is necessarily paid for by the introduction of

"overhead" functions which somewhat obscure the statement of the Theorem.

Several versions of the Fundamental Theorem which have been given for speci

fic measures (time, space on various machine models [Ly75,SS75]) all either

use overhead functions in the statement of the Theorem or use unnecessary

assumptions (e.g. monotonicity of the sequences) when proving that all

"reasonable" candidates indeed describe the complexity of some recursive

function. In this paper we prove a version of the Fundamental Theorem for

Turing machine space which uses no overhead functions and only very weak

restrictions on what sequences of functions are considered "reasonable"

candidates for describing the complexity of some recursive function. We as

sume uniform computability of the sequences plus a few simple properties

1)
All footnotes appear at the end of the text.

99

which all complexity sequences (for Turing machine space) have.

In Section 2 we state the Fundamental Theorem for Turing machine space,

show that both Speed-up and Compression Theorems are corollaries, and dis

cuss the significance of such a Fundamental Theorem. In Section 3 we give

a proof of the Fundamental Theorem for Turing machine space.

2. THE FUNDAMENTAL THEOREM FOR TURING MACHINE SPACE

We use Turing machines with a single two-way read-only input tape, a

single one-way write-only output tape, and some constant number of worktapes.

Both input and output are written in binary, with special markers separating

multiple inputs. The worktape alphabet varies from machine to machine. Con

sider some fixed standard enumeration M0 ,M1 , ••• of these machines. ~i de

notes the function computed by Mi, and Si (x) denotes the "space" used by

Mi on input x, i.e. Si (x) is the number of different squares on worktape (s)

of M. visited by some read-write head during computation of M. on input x.
i i

If Mi does not halt on input x, however, we consider Si (x) to be undefined,

even if Mi "loops" within bounded space. Let Pn (respectively Rn) denote

the partial (resp. total) recursive functions of n arguments.

DEFINITION 1 [MF72]. For f E R1, a sequence p0 ,p1, ••• of total functions is

a space-complexity sequence for f if

(1) Vi 3j[~.=f A [S.=p. a.e.]],
J J i

and

(2) Vj[~.=f ~ 3i[S.~p. a.e.]]. 3 >
J J i

DEFINITION 2. A sequence p0 ,p1 , ••. of total recursive functions is a space

candidate sequence if

(3)

(4)

(5)

(6)

each p. is space-constructible, i.e. Vi 3j[S.=p,];
i J i

p0 ,p1 , ••• accommodates linear tape reduction,

i.e. Vi Ve > 0 3j[p. s rp./cl a.e.]; 4>
J i

p0 ,p1 , .•• accommodates parallelism, i.e. Vi,j 3k[pkSmin(pi,pj)

a.e.]; and

p0 ,p1 , ••• is uniformly computable; i.e. Ai,x[pi(x)] E R2 .

100

This definition of space-candidate sequences captures the intuitive

notion of sequences which "can reasonably be expected to be space-complexity

sequences". It is easy to verify from our definitions that every uniformly

computable space-complexity sequence for a recursive function f is a space

candidate sequence: Property (3) of space-candidate sequences follows from

Property (1) of space-complexity sequences, Property (4) follows from the

fact that a linear reduction of the space used can always be achieved by

increasing the size of the worktape alphabet (cf. [HU69,HS65]), and Proper

ty (5) is a consequence of the fact that given two machines, Mi and Mj, both

computing the same function f, there is a third machine, ~\' which also com
putes f and does so in space min(S. ,S.). A straightforward choice for M

l J k
would be a machine which allocates increasing amounts of space for simulating

both M. and M. (suppressing their output) until one of them is seen to ter-1 J
minate within the allocated space; ~then would run Mi or Mj, whichever

terminated, again, this time printing its output.

DEFINITION 3. Let p 0 ,p1 , ... and q0 ,q1 , ... be two sequences of total func

tions. lxl denotes the length of the binary representation of the number x
and f_gf_ (x)

a. p 0 ,p1 , •.. is decreasing if Vi[pi+l s;pi].

b. p 0 ,p 1 , •.• is of growth at least f_gf_ if Vi 3c[pi ~ !__f_gf_/cJ].

DEFINITION 4. Two sequences p 0 ,p1 , ...

equivalent if Vi 3j[p. s; q, a.e.] and
l J

and q0 ,q1 , •..

Vi 3j[q. s; p.
l J

of total functions are

a.e.]. We write

DEFINITION 5. A total recursive function f is of space complexity at least

s if Vi[~i=f ~ 3c[Si ~ Ls/c~]].

The following Lemma 1 justifies the above definition of equivalence

between sequences. It follows easily from our definitions; we do not give

a proof.

LEMMA 1. Let p 0 ,p1 , ... and q 0 ,q1 , ... be two sequences of total functions.

If p 0 ,p1 , ... = q 0 ,q1 , ... then for all total recursive functions f, p0 ,p1 , ...

is a space-complexity sequence for f if and only if q0 ,q 1 , ••. is.

Clearly = is an equivalence relation among sequences of total functions.

As a converse to Lemma 1 it is easy to verify that any two complexity

101

sequences of a single total recursive function are equivalent. This natural

ly yields a partition of all total recursive functions into classes of func

tions with the same "complexity", where "complexity" can be defined as an

equivalence class of complexity sequences under :. Informally speaking,

Part 1 of the Fundamental Theorem below says that every imaginable kind of

complexity of total recursive functions indeed does occur. Part 2 says that

each such complexity can be described by a uniformly computable and decreas

ing complexity sequence.

FUNDAMENTAL THEOREM

1. Every space-candidate sequence p 0 ,p1 , .•. of growth at least lgl is a

space-complexity sequence for some 0-1 valued total recursive function

f. Moreover, a program for such an f can be found effectively from a

program for p 0 ,p1 , ••••

2. Every total recursive function f that is of space-complexity at least lgi

has a decreasing space-complexity sequence p0 ,p1 , ••• which is also a

space-candidate sequence. Moreover, a program for such a p 0 ,p1 , .•• can

be found effectively from a program for f.

We give a proof of this Fundamental Theorem in the next Section. In

the remainder of this Section we first show that both the Compression and

the Operator Speed-up Theorem (from [Bl167] and [MF72] respectively) are

corollaries to this Fundamental Theorem, and then illustrate the significance

of such a Fundamental Theorem with two examples.

COROLLARY 1 (COMPRESSION THEOREM). Let p be any space-constructible (i.e.

3j[S.=p]) total function of growth at least fgl. Then there is a total re
J

cursive function f of space complexity p, i.e. an f for which p0 ,p1, •••

with p 1 = rp/(i+l)I is a complexity sequence.

PROOF. Immediate from the first part of the Fundamental Theorem. 0

The assumption that p be a space-constructible function is essential

for the Compression Theorem. This is shown by the following Theorem, which

is due to BORODIN [Bo72].

GAP THEOREM [Bo72]. For any r E R2 with r(x,y) > y there is a function

t E R1 such that

\t'i \t'x > i-,[t(x) s S.(x) s r(x,t(x))].
l.

102

PROOF. The desired t can be defined by

t(x) min {y: \fi < x [y s; S. (x)
1

s r(x,y)]}.

It is not hard to verify that t E R1 • We omit the details. 0

We remark that the strong form of compression given in Corollary 1

actually holds for all space-constructible p, not just total ones of growth

at least fgl. Corollary 1 was first observed by TRACHTENBROT [Tr70] and

later independently by BORODIN et.al [BCH69] and MEYER [MC71].

DEFINITION 5. A mapping F from P 1 to P 1 is an effective operator if there

is an a E R1 such that \fi[F(~i) = ~a(i)]. Fis total if \fi[~i total~ F(~i)
total].

COROLLARY 2 (OPERATOR SPEED-UP,[MF72]). For any total effective operator F,

there is a total recursive 0-1 valued function f that has F-speed-up, i.e.

f E R1 is 0-1 valued and \fi[~.=f ~ 3j[~.=f A [F(S.) s s. a.e.]]].
1 J J 1

PROOF. The Corollary follows from the first part of the Fundamental Theorem

if we can show how to construct a uniformly computable candidate sequence

p 0 ,p1 , ... of growth at least fgf(x) with the property \filpi 2 F(pi+l) a.e.l.

We do this using a technique from [MF72] (see also [Yo73]).

Define a function W by

w<f,i,x)
{ O, if 3n < i[Sf(O,n) 2 x],

max {W (f ,j ,y) ,F (Ax max(~f (i+1,x) ,Sl (i+1,x))) (x):

x 2 j > i, x 2 y}, otherwise.

(As usual we think of undefined values as being infinite and use the ob-

vious conventions about inequalities and maxima involving such values. Tech

nically ~i and Si are in P 1 , so our use of two arguments, e.g. Sl(O,n), is

to be regarded as an abbreviation for Sl (pair(O,n)) where pair(x,y) is the

integer which codes the binary representations of x and y concatenated with

a separating symbol.) ~ is a partial recursive function. Therefore, by the

Recursion Theorem (cf.[Ro67l), an l 0 with ~lo = Ai,xw(l0 ,i,x) can be found

effectively. Define p. =AX max(~f0 (i,x) ,Sf (i,x)).
1 0

To prove that p 0 ,p1 , ... is a candidate sequence with the desired proper-

ties consider the functions ri defined by ri (x) ~lo (i,x) = ~(l0 ,i,x).

From the definition of w we have

r. (x)
l.

{ 0, if 3n < i[Slo(O,n) ~ x],

maxfr.(y),F(hmax(r. 1 Cx),Sl (i+l,x)))(x):
J i+ 0

x ~ j > i,x ~ y}, otherwise.

103

We first show that each ri and therefore each pi is total. Assume that

r 0 is not total, i.e. assume that r 0 (n0) is undefined for some n0 . Then all

ri with i > n0 are defined by the first clause of (*) and are therefore

total. But then rn is also total because both clauses of (*) yield finite
0

values for rno· By induction r 0 is total. This implies that each ri, in-

cluding r 0 itself, is defined by the second clause of (*) on all but finite

ly many arguments. Hence, for r 0 to be total, rj(y) has to be defined for

all j and y. Hence all the ri are total.

Clearly p0 ,p1 , ••• is uniformly computable, and each pi is space-con

structible by definition because max(~.,S.) is obviously space-constructible
J J

for any j.

Without loss of generality we may assume that F(t) ~ max(2•t,lgl) for

all t € R1 • Then both the fact that p 0 ,p1 , .•• is of growth at least lgl and

Properties (4) and (5) of space-candidate sequences follow from Vi[pi~F(pi+l)

a.e.], which is therefore all that is left to prove.

As pointed out above, each ri is defined by the second clause of (*)

on all but finitely many arguments. Hence Vi[ri ~ F(AX max(ri+l (x) ,s,t0 Cx))

a.e.]. By the definition of pi, this yields Vi[pi ~ ri ~ F(pi+l) a.e.]. D

The next and final Corollary observes that restricting the computa

tional tasks under consideration from computing arbitrary total recursive

functions to deciding membership in recursive sets, i.e. to computing 0-1

valued total recursive functions, does not result in any loss of possible

complexity behaviors·.

COROLLARY 3. For any total recursive function f that is of space complexity

at least lgl there is a 0-1 valued total recursive function g of the same

complexity as f, i.e. a function g such that every complexity sequence for

f is also a complexity sequence for f and vice versa. Moreover, a program

for such an g can be found effectively from a program for f.

104

PROOF. By Part 2 of the Fundamental Theorem there is a complexity sequence

p 0 ,p 1 , •.. for f which is a space-candidate sequence; by Part there is a

0-1 valued total recursive function g which has p 0 ,p 1 , ..• as a complexity

sequence; and, by the remark after Lemma 1, if two functions share one com

plexity sequence then they share all their complexity sequences. D

We now illustrate the power of the Fundamental Theorem with two ex

amples.

To get an example of a function with a rather "pathological" complexity

behavior, define

t. (x)
l

lgl(x), otherwise.

t 0 (x) = 2x on all arguments, but ti (x) = 2x only on every (2i)th argument x

and is equal to lgl(x) in between; ti+l is obtained from ti by "erasing"

every other of these exponential "spikes." Informally, the first part of

the Fundamental Theorem (applied with pi = lti/(i+1)1) says that there is

a total recursive function f which can be computed in logarithmic space

(in the length of the input) just about everywhere, but that every program

for f has infinitely many exponential "bursts" in complexity despite the

fact that we can "thin out" those bursts as much as we like. The function f

is an example of a function with "i.o.-speed-up" S), that is, speed-up on

infinitely many (but not necessarily almost all) arguments, as opposed to

the "a.e.-speed-up" treated in Corollary 1.

In contrast to such pathological complexity properties, the Fundamental

Theorem also yields examples of functions with "well-behaved" complexities.

Applying the first part of the Fundamental Theorem with p. = 1JxJ 2/(i+1)1
l

shows that there are total recursive functions whose tape complexity is

exactly quadratic in the length of the input (up to the ever-present pos

sibility of linear tape reduction).

3. PROOF OF THE FUNDAMENTAL THEOREM

Before we give a proof of the Fundamental Theorem we establish a lemma

(Lemma 4) which allows us to assume that all candidate sequences are of an

especially "nice" type. Lemmas 2 and 3 only serve to prove Lemma 4; their

proofs are straightforward from the definitions and we omit them.

105

LEMMA 2. Let p0 ,p1 , •.• be a candidate sequence and lets E R1 be positive.

Then r 0 ,r1 , ••• with ri = rmin{s(j) •pj: j ~ i}/(i+l)I is a candidate sequence

and p0 ,p1 , ••• : r 0 ,r1 , •.••

LEMMA 3. Let p0 ,p1 , ••• , q0 ,q1 , ••• and r 0 ,r1 , ••• be three sequences of total

functions, Po•Pl•··· = q0 ,q1 , ••• and pi~ ri ~qi a.e. for each i. Then

Po•P1•··· : rO,rl, ••. : qO,ql'""" •

LEMMA 4. Let q0 ,q1 , ••. be a space-candidate sequence of at least lgl growth.

Then there is a sequence p 0 ,p1 , ••• of total .functions with the following

four properties:

a. qO,ql, ••• : pO,pl, ••• ;

b. p 0 ,p1 , ••. is decreasing;

c. Vi,i'[i ~ i' implies (i'+l)•p., ~ (i+l)•p.+i']; and
l. l.

d. 3k Vi,x[$k(i,x) =pi (x) A Sk(i,x) ~ (i+l)•pi(x) A Sk(i+l,x) ~ Sk(i,x)];

moreover, such a k can be found effectively from a program for Ai,x[qi(x)].

PROOF. Define s(i) = min{j: $. = S. = q.}. Such programs s(i) exist by
~~- J J l.

Property (3) of candidate sequences. Consider the sequence r 0 ,r1 , •.• com-

puted by the following program e with inputs i and x:

Program e:

STEP 1. Mark off lgl(x) tape squares. Find the smallest j such that

3y""7[$. (y) S.(y) = q, (y)] cannot be verified within the marked-off space.
J J l. 6)

Write down this smallest j on a worktape. Call it j 0 .

STEP 2. Compute $j0 (x) or qi (x} (using the universal function for q0 ,q1 , •••

to compute qi (x)), whichever can be done in less space, writing the result

on a worktape. Call the result s.

STEP 3. Output the larger of s,r1g ii, and the space used so far by this

program; halt.

End of program e.

We define the desired sequence p0 ,p1 , ••• by

106

Proof of Property a. For every i it follows from the fact that qi is total
that the number j 0 computed in Step 1 of program e is ultimately, i.e. for
all large enough x, equal to s(i). Hence for all such large enough x the
value s computed in Step 2 of

cl> s (i) (x) (or, more precisely,

program e is qi (x) , possibly computed as

as cp (s(i),x) where u is some universal u
space no machine) and certainly computed in more than S (s(i) ,xl, which for

u
any straightforward choice of u is no more than s(i)•Ss(i) (x) = s(i) •qi (x).
So the sequence r 0 ,r1 , ... computed by the above program e satisfies

for each i and hence

lmin{q,: j s i}/(i+l)I s lmin{r.: j s i}/(i+l)I s J J

s lmin{s(j)•q.: j s i}I a.e.
J

Property b. is an immediate consequence of the definition of p 0 ,p 1 , ...

Proof of c. From the definition of p, we get min{r.: j s i} s (i+1)•p{ s
J_ J •

min{r.: j s i} + i for all i.
J

Combining this with the obvious fact

in i yields (i'+l)•pi' s min{rj: j S

(i+l) •pi + i'.

that min{r.: j s i} is
J

i'} + i' s min{r.: j S
J

non-increasing

i} + i' $

Proof of d. The following program d with inputs i and x computes

min{r.(x): j s i}.
J

Program d:

STEP 1. Sets to 1.

STEP 2. Uses tape squares to see if {j: j s min(i,2s) A r.(xl S s} = 0. If
J

so, then increase s by 1 and repeat Step 2; otherwise outputs and halt.

End of program d.

It is easy to see that this program d computes min{r.(xl: j s i} in
J

those instances where the output is ans with is 2s. If the output is an

107

s with i > 2s then s = min{rj(x): j s 2s} and since rj(x) ~ llog2 jl for

all j, which is evident from the Ilg ii-term in Step 3 of program e, we have

s s min{r.(x): 2s < j s i} and therefore again s = min{r.(x): j s i}. Note
J J

that both programs e and d are (or can easily made to be) "honest," i.e. the

number of tape squares they use is no more than their output value. Using

this program d for min{rj: j s i}, a program k for pi= lmin{rj: j s i}/

(i+1)1 with the properties given in part d, can be written in a straight

forward way: Use program d to compute z = min{r.: j s i} in space z, then
J

compute lz/(i+l)i, which can be done in no additional space. D

With Lemma 4 completed, both parts of the Fundamental Theorem can now

be proven using standard techniques, the first part by a standard speed-up

construction (cf. [Bl67,EB75,Ly75,MF72]) and the second part by exhibiting

a straightforward computation of a complexity sequence for a given total

recursive function f.

Proof of the Fundamental Theorem

1. We show how to construct a program for a total recursive 0-1 value func

tion f from a given program for a candidate sequence p 0 ,p1 , ••. such that

p 0 ,p1 , .•. is a complexity sequence for f. Applying Lemma 1, we may assume

that p 0 ,p1, ... has properties b., c., and d. listed in Lemma 4.

Consider the following program t with input x:

Program t:

STEP 1. As far as possible within lgl(x) tape squares execute this program

recursively on inputs 0,1,2,3, ... to find and write down as many elements

as possible of the set C = {j: j gets cancelled by this program on some in

put}.

STEP 2. Let A= {j: j s lg('.(x) A S.(x) < p.(x) A j i c}. If A is empty then
J : J

output 0 and halt; otherwise output 1.:. ~min A(x) and consider min A as

cancelled. Halt.

End of program t.

Define f = ~t. f clearly is a 0-1 valued total recursive function.

We first show that p 0 ,p1 , ... satisfies Property (1) of complexity se

quences for f, i.e. we show that f can be computed in space pi a.e. for each

i. We achieve this by modifying, for each i, the program t so that the

108

resulting program ti uses no more than pi space. Notice that the only place

where program t substantially exceeds the space bound pi is in Step 2 when

predicates Sj(x) < pj(x) are checked for j <i. (Remember that p 0 ,p 1 , ... is

assumed to have properties b and c from Lemma 4.)

Let A(x) denote the set A defined in Step 2 on input x. For any

j, j E A(x) for only finitely many x. To see this we consider two cases: If

j gets cancelled by program t on some input, then this fact will be detected

and j will be put into the set C in Step 1 on all large enough inputs x and

therefore j will not be put into A anyrnore; if, on the other hand, j never

gets cancelled then it cannot show up in A anyrnore after all those indices

which are smaller than j and which do get cancelled on some input are in C:

if j did still show up in A it would then be the minimum and therefore be

cancelled, contradicting our assumption.

Hence for each i the predicate \j,x[j E A(x) A j < i] can be represent

ed as a finite table and hence be computed without using any worktape space.

(These finite tables cannot be found effectively from the indices i, cf.

[Bl71].) To compute f in space pi we use program t with the modification

that in order to determine whether or not j E A(x) for some j < i we con

sult this finite table, using no worktape space at all. Call this modified

program ti. ti uses no more than space £.gf(x) in Step 1 and (i+l) •pi +

2•lgf(x) in Step 2. This bound for Step 2 is derived by the following three

observations, keeping j_n mind that the set A need not be computed, only its

minimum needs to be found:

a. fgf(x) space is (more than) enough to record values of j ~ lgf (x) in the

control of Step 2.

b. By Lemma 4, d, there is a program k which computes p.(x) in space no more
J

than (i+l) •pi (x) for all j ~i.

c. With straightforward simuJ_ation techniques the predicate S. (x) < p. (x)
J J

can be decided within space j•p.(x) for all j. Using Lemma 4, c, we get
J

j •pj (x) ~ (j+l) •pj (x) ~ (i+l) •pi (x) + j ~ (i+l) •p, (x) + lgf.(x)
l

for all i ~ j ~ .f__g.[(x) .

Thus, altogether ti uses no more than ci•pi (x) for some constant ci

since pi is of growth at least lgl. Applying linear tape reduction and

the fact that pi is space-constructible shows that there is a program

that computes fin space exactly pi.

109

To prove that p0 ,p1 , ••• satisfies Property (2) of complexity sequences

for f we prove the statement that if Si < pi i.e., then i gets cancelled

by program t. Simply choose x such that Si (x) < pi (x) and x is large enough

that all j < i which ever get cancelled by t are in C when Step 1 is per

formed with input x. Then i will be cancelled at step 2 of program t on in

put x, unless of course it already has been cancelled and is in C.

Finally, if i gets cancelled by program t on input x, then cpi (x) is

defined and f(x)

Thus cpi = f implies that i never gets cancelled, which implies Si ~ pi

a.e.

This finishes the proof of the first part of the Fundamental Theorem.

2. Given a program k for f, a complexity sequence r 0 ,r1 , ..• for f is com

puted by the following program h with inputs i and x:

Program h:

If cpi ff f can be detected within lgl(x) tape squares, then output Sk(x);

otherwise output min(Sk(x) ,Si (x)).

End of program h.

Define ri = Axcf>h(i,x).

Since Sk is total, each ri is total. We finish the proof by verifying

that r 0 ,ri•··· is a complexity sequence for f.

Proof of Property (1). If cpi = f then f can obviously be computed in space

ri = min(Sk,Si) by running cpk and cpi in parallel; if cpi ~ f then we distin

guish between two cases: either there is an x with <Pi (x) ~ f (x) and both

values defined, or there is no such x. In the first case, <Pi ~ f will be

detected in lgl(x) space for all large enough x, and from then on ri = Sk,

and again f can be computed in space ri by patching program k with a finite

table. In the second case, ri = min(Sk,Sil and f can be computed in that

much space again by running cpk and cpi in parallel (which computes f because

there is no x with cp i (x) defined and ·~ i (x) ~ f (x)) •

Proof of Property (2). If cpj = f then sj ~ min(Sk,Sj) = rj. r 0 ,r1 , •.. is a

uniformly computable space-complexity sequence for f and hence, by the

remarks following Definition 2, also a space-candidate sequence. Define

Pi= min{rj: j ~ i}. Then p0 ,p1, ••• is a decreasing space-candidate sequence

and equivalent to r 0 ,r1 , .•.. 0

110

The definitions of complexity and candidate sequences can be generalized

to partial recursive functions by adding the requirement that the domains of

all the p, 's are contained in the domain of f {cf. [Bl75,Ly75,Le73,Le74,
1.

Be76]).

Footnotes

1) Research sponsored by NSF Grants MCS77-19754 and MCS77-19754A02.

2) There is a long history of research resulting in the formulation and suc

cessive refinements of such a Fundamental Theorem. Early work was done by

Blum [Bl67], Hartmanis and Stearns [HS65], and Rabin [Ra59,60]. Meyer and

Fischer [MF72] show that the complexity of any recursive function can be

described by a recursive sequence of "honest" functions. This observation is

attributed independently to Kolmogorov by Levin [Le73,Le74] and is also im

plicit in Blum's results on "pseudo-speedup" [Bl71]. The results in the case

of partial, as opposed to total, functions are considered in detail in

[B 75,Be76]. Meyer and Fischer [MF72] also provide a partial converse to

their observation mentioned above. This converse is strengthened by Schnorr

and Stumpf [SS75], see also [Ly75]. Versions of the Fundamental Theorem for

Turing machine space are given by Lynch [Ly75] and Schnorr [SS75], and for

random-access machine time and space in [SS75]. A version of the Fundamental

Theorem like the one given in the present paper has been proven previously

by Levin [Le73,Le74].

3) "a.e." stands for "almost everywhere," meaning "on all but finitely many

arguments."

4) la! denotes the smallest integer n with n ~ a. Similarly, LaJ denotes the

largest integer n with n ~ a.

5) "i.o." stands for "infinitely often."

6) We assume that this minimal j can be written down in space lgl{x). Other

wise we could write down min{j 0 ,lgl(x)). This does not affect the proof at

all.

REFERENCES

[Be76] BENNISON, V., On the computational complexity of recursively enumer

able sets, PhD Thesis, University of Chicago (August 1976).

[BS78] BENNISON, V. & R.I. SOARE, Some lowness properties and computational

complexity sequences, Theoretical Computer Science 6,3 (1978),

233-254.

111

[Bl67] BLUM, M., A machine-independent theory of the complexity of recursive

functions, Journal of .the ACM, 14, 2 (April 1967), 322-336.

[Bi.71] BLUM, M., On effective procedures for speeding up algorithms, Journal

of the ACM, 18, 2 (April 1971), 290-305.

[Bf.75] BLUM, M., On defining t9e complexity of partial recursive functions,

unpublished preprint (1975).

[Bo72] BORODIN, A., Computational complexity and the existence of complexity

gaps, Journal of the ACM, 19, 1 (January 1972), 158-174.

[BCH69] BORODIN, A., R. CONSTABLE & J. HOPCROFT, Dense and non-dense families

of complexity classes, IEEE Conf. Ree. on Switch. and Aut.

Th. (1969) I 7-19.

[EB75] VAN EMDE BOAS, P., Ten years of speed-up, Math. Foundations of Comp.

Sci. 1975, Springer Leet. Notes in Comp. Sci., vol. 32, 13-29.

[HS65] HARTMANIS, J. & R.E. STEARNS, On the computational complexity o.f al

gorithms, Trans. AMS 117 (1965), 285-306.

[HU69] HOPCROFT, J.E. & J.D. ULLMAN, Formal Languages and Their Relation to

Automata, Addison-Wesley, Reading: 1969.

[Le73] LEVIN, L.A., On storage capacity for algorithms, Soviet Math. Dokl.

14, (1973), 1464-1466.

[Le74] LEVIN, L.A., Complexity of Computation of Computable Functions, in:

Complexity of Computations and Algorithms, Kozmidiadi, Maslov,

and Petri (eds). "Mir". Moscow (1974).

[Ly75] LYNCH, N., Helping: Several formalizations, Journal of Symbolic Logic,

40, 4 (December 1975), 555-566.

[MC71] MEYER, A.R. & E.M. MCCREIGHT, Computationally complex and pseudo

random zero-one valued functions, in: Theory of Machines and

Computations, Z. Kohavi and A. Paz, eds. Academic Press, New York

(1971), 19-42.

[MF72] MEYER, A.R. & P.C. FISCHER, Computational speed-up by effective

operators, Journal of Symbolic Logic, 37, 1 (March 1972), 55-68.

[Ra59] RABIN, M.O., Speed of computation and classification of recursive

sets, Third Conv. Scient. Societies Israel (1959), 1-2.

112

[Ra60] RABIN, M.O., Degree of difficulty of computing a function and a par

tial ordering of recursive sets, Tech. Rep. 2, Dept. of Math.,

Hebrew University, Jerusalem (1960).

[Ro67] ROGERS, H., Theory of Recursive Functions and Effective Computability,

McGraw-Hill. New York: 1967.

[SS75] SCHNORR, C.P. & G. STUMPF, A characterization of complexity sequences,

Zeitschrift fur math. Logik und Grundlagen der Mathematik, 21

(1975), 47-56.

[Tr67] TRACHTENBROT, B.A., Complexity of algorithms and computations, (in

Russian), Novosibirsk Univ. (1967).

[Tr70] TRACHTENBROT, B.A., On autoreducibility, Soviet Math. Dokl. 11,3

(1970), 814-817.

[Yo73] YOUNG, P.R., Easy constructions in complexity theory: gap and speed

up theorems, Proc. AMS. 37,2 (Feb. 1973), 555-563.

OTHER TITLES IN THE SERIES MATHEMATICAL CENTRE TRACTS

A leaf let containing an order-form and abstracts of all publications men
tioned below is·available at the Mathematisch Centrum, Tweede Boerhaave
straat 49, Amsterdam-1005, The Netherlands. Orders should be sent to the
same address.

MCT T. VAN DER WALT, Fixed and almost fixed points, 1963. ISBN 90 6196
002 9.

MCT 2 A.R. BLOEMENA, Sampling from a graph, 1964. ISBN 90 6196 003 7.

MCT 3 G. DE LEVE, Generalized Markovian decision processes, part I: Model
and method, 1964. ISBN 90 6196 004 5.

MCT 4 G. DE LEVE, Generalized Markovian decision processes, part II: Pro
babilistic background, 1964. ISBN 90 6196 005 3.

MCT 5 G. DE LEVE, H.C. TIJMS & P.J. WEEDA, Generalized Markovian decision
processes, Applications, 1970. ISBN 90 6196 051 7.

MCT 6 M.A. MAURICE, Compact ordered spaces, 1964. ISBN 90 6196 006 1.

MCT 7 W.R. VAN ZWET, Convex transformations of random variables, 1964.
ISBN 90 6196 007 X.

MCT 8 J.A. ZONNEVELD, Automatic numerical integration, 1964. ISBN 90 6196
008 8.

MCT 9 P.C. BAAYEN, Universal morphisms, 1964. ISBN 90 6196 009 6.

MCT 10 E.M. DE JAGER, Applications of distributions in mathematical physics,
1964. ISBN 90 6196 010 X.

MCT 11 A.B. PAALMAN-DE MIRANDA, Topological semigroups, 1964. ISBN 90 6196
011 8.

MCT 12 J.A.TH.M. VAN BERCKEL, H. BRANDT CORSTIUS, R.J. MOKKEN & A. VAN
WIJNGAARDEN, Formal properties of newspaper Dutch, 1965.
ISBN 90 6196 013 4.

MCT 13 H.A. LAUWERIER, Asymptotic expansions, 1966, out of print; replaced
by MCT 54 and 67.

MCT 14 H.A. LAUWERIER, Calculus of variations in mathematical physics, 1966.
ISBN 90 6196 020 7.

MCT 15 R. DoORNBOS, Slippage tests, 1966. ISBN 90 6196 021 5.

MCT 16 J.W. DE BAKKER, Formal definition of programming languages with an
application to the definition of ALGOL 60, 1967. ISBN 90 6196
022 3.

MCT 17 R.P. VAN DE RIET, Fornrula manipulation in ALGOL 60, part 1, 1968.
ISBN 90 6196 025 8.

MCT 18 R.P. VAN DE RIET, Fornrula manipulation in ALGOL 60, part 2, 1968.
ISBN 90 6196 038 x.

MCT 19 J. VAN DER SLOT, Some properties related to compactness, 1968.
ISBN 90 6196 026 6.

MCT 20 P.J. VAN DER HOUWEN, Finite difference methods for solving partial
differential equations, 1968. ISBN 90 6196 027 4.

MCT 21 E. WATTEL, The compactness operator in set theory and topology,
1968. ISBN 90 6196 028 2.

MCT 22 T.J. DEKKER, ALGOL 60 procedures in numerical algebra, part 1, 1968.
I~BN 90 6196 029 0.

MCT 23 T.J. DEKKER & W. HOFFMANN, ALGOL 60 procedures in numerical algebra,
part 2, 1968. ISBN 90 6196 030 4.

MCT 24 J.W. DE BAKKER, Recursive procedures, 1971. ISBN 90 6196 060 6.

MCT 25 E.R. PAERL, Representations of the Lorentz group and projective
geometry, 1969. ISBN 90 6196 039 8.

MCT 26 EUROPEAN MEETING 1968, Selected statistical papers, part I, 1968.
ISBN 90 6196 031 2.

MCT 27 EUROPEAN MEETING 1968, Selected statistical papers, part II, 1969.
ISBN 90 6196 040 1.

MCT 28 J. OOSTERHOFF, Combination of one-sided statistical, tests, 1969.
ISBN 90 6196 041 X.

MCT 29 J. V'.ERHOEFF, Error detecting decimal codes, 1969. ISBN 90 6196 042 8.

MCT 30 H. BRANDT CORSTIUS, Excercises in computational linguistics, 1970.
ISBN 90 6196 052 5.

MCT 31 W. MoLENAAR, Approximations to the Poisson, binomial and hypergeo
metric distribution functions, 1970. ISBN 90 6196 053 3.

MCT 32 L. DE HAAN, On regular variation and its application to the weak
convergence of sample extremes, 1970. ISBN 90 6196 054 1.

MCT 33 F.W. STEUTEL, Preservation of infinite divisibility under mixing
and related topics, 1970. ISBN 90 6196 061 4.

MCT 34 I. JUHASZ, A. V'.ERBEEK & N.S. KROONENBERG, Cardinal functions in
topology, 1971. ISBN 90 6196 062 2.

MCT 35 M.H. VAN EMDEN, An analysis of complexity, 1971. ISBN 90 6196 063 0.

MCT 36 J. GRASMAN, On the birth of boundary layers, 1971. ISBN 90 6196064 9.

MCT 37 J.W. DE BAKKER, G.A. BLAAUW, A.J.W. DuIJVESTIJN, E.W. DIJKSTRA,
P.J. VAN DER HOUWEN, G.A.M. KAMSTEEG-KEMPER, F.E.J. KRUSEMAN
ARETZ, W.L. VAN DER POEL, J.P. SCHAAP-KRUSEMAN, M.V. WILKES &
G. ZOUTENDIJK, MC-25 Informatica Symposium, 1971.

ISBN 90 6196 065 7.

MCT 38 W.A. V'.ERLOREN VAN THEMAAT, Automatic analysis of Dutch compound words,
1971. ISBN 90 6196 073 8.

MCT 39 H. BAVINCK, Jacobi series and approximation, 1972. ISBN 90 6196 074 6.

MCT 40 H.C. TIJMS, Analysis of (s,S) inventory models, 1972. ISBN9061960754.

MCT 41 A. V'.ERBEEK, Superextensions of topological spaces, 1972. ISBN 90
6196 076 2.

MCT 42 W. V'.ERVAAT, Success epochs in Bernoulli trials (with applications in
number theory), 1972. ISBN 90 6196 077 O.

MCT 43 F.H. RUYMGAART, Asymptotic theory of rank tests for independence,
1973. ISBN 90 6196 081 9.

MCT 44 H. BART, Meromorph'ic operator valued functions, 1973 .• ISBN 906196 082 7.

MCT 45 A.A. BALKEMA, Monotone transfoY'l'Tlations and limit laws, 1973.
ISBN 90 6196 083 5.

MCT 46 R.P. VAN DE RIET, ABC ALGOJ,, A portable language for formula manipu
lq;tion systems, part 1: The "language, 1973. ISBN 90 6196 084 3.

MCT 47 R.P. VAN DE RIET, ABC ALGOL, A portable "language for formula manipu
lation systems, part 2: The compiler, 1973. ISBN 906196 0851.

MCT 48 F.E.J • .KRUSEMAN ARETZ, P.J.W. TEN HAGEN & H.L. OUDSHOORN, An ALGOL
60 compiler in ALGOL 60, Text of the MC-compiler for the
EL-X8, 1973. ISBN 90 6196 086 X.

MCT 49 H. KOK, Connected orderable spaces, 1974. ISBN 90 6196 088 6.

MCT 50 A. VAN WIJNGAARDEN, B.J. MAILLOUX, J.E.L. PECK, C.H.A. KOSTER,
M. SINTZOFF, C.H. LINDSEY, L.G.L.T. MEERTENS & R.G. FISKER
(Eds),. Revised report on the algorithmic language AI,GOL 68,
.1976. ISBN 90 6196. 089 4.

MCT 51 A. HORDIJK, Dynamic programming and Markov potential theory, 1974.
ISBN 90 6196 095 9.

MCT 52 P.C. BAAYEN (ed.), Topological structures, 1974. ISBN 90 6196 096 7.

MCT 53 M.J. FABER, Metrizability in generalized ordered spaces, 1974.
ISBN 90 6196 097 5.

MCT 54 H.A. LAUWERIER, Asymptotic analysis, part 1, 1974. ISBN90 6196 098 3.

MCT 55 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 1: Theory
of designs, finite geometry and coding theory, 1974.
ISBN 90 6196 099 1.

MCT 56 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 2: graph
theory, foundations, partitions and combinatorial geometry,
1974. ISBN 90 6196 100 9.

MCT 57 M. HALL JR. & J.H. VAN LINT (Eds), Combinatorics, part 3: Combina
torial group theory, 1974. ISBN 90 6196 101 7.

MCT 58 W. ALBERS, Asymptotic expansions and the deficiency concept in sta
tistics, 1975. ISBN 90 6196 102 5.

MCT 59 J.L. MIJNHEER, Sample path properties of stable processes, 1975.
ISBN 90 6196 107 6.

MCT 60 F. GOBEL, Queueing models involving buffers, 1975. ISBN 90 6196 108

* MCT 61 P. VAN EMDE BoAS, Abstract resource-bound classes, part 1.
ISBN 90 6196 109 2.

* MCT 62 P. VAN EMDE BoAS, Abstract resource-bound classes, part 2.
ISBN 90 6196 110 6.

MCT 63 J.W. DE BAKKER (ed.), Foundations of computer science, 1975.
ISBN 90 6196 111 4.

MCT 64 W.J. DE SCHIPPER, Syrrunetric closed categories, 1975. ISBN90 6196
112 2.

MCT 65 J. DE VRIES, Topological transfoY'l'Tlation groups 1 A categorical ap
proach, 1975. ISBN 90 6196 113 O.

MCT 66 H.G.J. PIJLS, Locally convex algebras in spectral theory and eigen
function expansions, 1976. ISBN 90 6196 114 9.

4.

* MCT 67 H.A. LAUWERIER, Asymptotic analysis, part 2.
ISBN 90 6196 119 X.

MCT 68 P.P.N. DE GROEN, Singularly perturbed differential operators of
s.econd order, 1976. ISBN 90 6196 120 3.

MCT 69 J.K. LENSTRA, Sequencin,g by enumerative methods, 1977.
ISBN 90 6196 125 4.

MCT 70 W.P. DE RoEVER JR., Recursive program schemes: semantics and proof
theory, 1976. ISBN 90 6196 127 0.

MCT 71 J.A.E.E. VAN NUNEN, Contracting Markov decision processes, 1976.
ISBN 90 6196 129 7.

MCT 72 J.K.M. JANSEN, Simple periodic and nonperiodic Lame functions and
their applications in the theory of conical waveguides,1977.
ISBN 90 6196 130 0.

MCT 73 D.M.R. LEIVANT, Absoluteness of intuitionistic logic, 1979.
ISBN 90 6196 122 x.

MCT 74 H.J.J. TE RIELE, A theoretical and computational study of general
ized aliquot sequences, 1976. ISBN 90 6196 131 9.

MCT 75 A.E. BROUWER, Treelike spaces and related connected topological
spaces, 1977. ISBN 90 6196 132 7.

MCT 76 M. REM, Associons and the closure statement, 1976. ISBN 90 6196 135 1.
MCT 77 W.C.M. KALLENBERG, Asymptotic optimality of likelihood ratio tests in

exponential families, 1977 ISBN 90 6196 134 3.

MCT 78 E. DEJONGE, A.C.M. VAN ROOIJ, Introduction to Riesz spaces, 1977.
ISBN 90 6196 133 5.

MCT 79 M.C.A. VAN ZUIJLEN, Empirical distributions and ra:nkstatistics, 1977.
ISBN 90 6196 145 9.

MCT 80 P.W. HEMKER, A numerical study of stiff two-point boundary problems,
1977. ISBN 90 6196 146 7.

MCT 81 K.R. APT & J.W. DE BAKKER (eds), Foundations of computer science II,
part I, 1976. ISBN 90 6196 140 8.

MCT 82 K.R. APT & J.W. DE BAKKER (eds), Foundations of computer science II,
part II, 1976. ISBN 90 6196 141 6.

MCT 83 L.S. VAN BENTEM JUTTING, Checking Landau's "Grundlagen" in the
AUTOMATE system, 1979 ISBN 90 6196 147 5.

MCT 84 H.L.L. BUSARD, The translation of the elements of Euclid from the
Arabic into Latin by Hermann ofCarinthia (?)books vii-xii, 1977.
ISBN 90 6196 148 3.

MCT 85 J. VAN MILL, Supercompactness and Wallman spaces, 1977.
ISBN 90 6196 151 3.

MCT 86 S.G. VAN DER MEULEN & M. VELDHORST, Torrix I, 1978.
ISBN 90 6196 152 1.

* MCT 87 S.G. VAN DER MEULEN & M. VELDHORST, Torrix II,
ISBN 90 6196 153 x.

MCT 88 A. SCHRIJVER, Matroids and Zinking systems, 1977.
ISBN 90 6196 154 8.

MCT 89 J.W. DE RoEVER, Complex Fourier transformation and analytic
functionals with unbounded carriers,. 1978.
ISBN 90 6196 155 6.

* MCT 90 L.P.J. GROENEWEGEN, Characterization of optimal strategies in dy-
namic games, . ISBN 90 6196 156 4.

* MCT 91 J.M. GEYSEL, Transcendence in fields of positive characteristic,
• ISBN 90 6196 157 2.

MCT 92 P.J. \~EDA, Finite generalized Markov prograrroning,1979.
ISBN 90 6196 158 0.

MCT 93 H.C. TIJMS (ed.) & J. WESSELS (ed.), Narkot' decision theory, 1977.
ISBN 90 6196 160 2.

MCT 94 A. BIJLSMA, Simultaneous approximations in transcendental number
theory, 1978. ISBN 90 6196 162 9.

MCT 95 K.M. VAN HEE, Bayesian control of Markov chains, 1978.
ISBN 90 6196 163 7.

* MCT 96 P.M.B. VITANYI, Lindenmayer systems: structure, languages, and
growth functions, . ISBN 90 6196 164 5.

* MCT 97 A. FEDERGRUEN, Markovian control problems; functional equations
and algorithms, . ISBN 90 6196 165 3.

MCT 98 R. GEEL, Singular perturbations of hyperbolic type, 1978.
ISBN 90 6196 166 l

MCT 99 J.K. LENSTRA, A.H.G. RINNOOY KAN & P. VAN EMDE BOAS, Interfaces
between computer science and operations research, 1978.
ISBN 90 6196 170 X.

MCT 100 P.C. BAAYEN, D. VAN DULST & J. OOSTERHOFF (Eds), Proceedings bicenten
nial congress of the Wiskundig Genootschap, part 1, 1979.
ISBN 90 6196 168 8.

MCT 101 P.C. BAAYEN, D. VAN DuLST & J. OOSTERHOFF (Eds), Proceedings bicenten
nial congress of the Wiskundig Genootschap, part 2,1979.
ISBN 90 9196 169 6.

MCT 102 D. VAN DULST, Reflexive and superreflexive Banach spaces, 1978.
ISBN 90 6196 171 8.

MCT 103 K. VAN HARN, Classifying infinitely divisible distributions by
functional equations,1978 . ISBN 90 6196 172 6.

MCT 104 J.M. VAN WOUWE, Go-spaces and generalizations of metrizability,1979.
ISBN 90 6196 173 4.

* MCT 105 R. HELMERS, Edgeworth expansions for linear combinations of order
statistics, . ISBN 90 6196 174 2.

MCT 106 A. ScHRIJVER (Ed.), Packing and covering in combinatories, 1979.
ISBN 90 6196 180 7.

MCT 107 C. DEN HEIJER, The numerical solution of nonlinear operator
equations by imbedding methods, 1979. ISBN 90 6196 175 O.

* MCT 108 J.W. DE BAKKER & J. VANLEEUWEN (Eds), Foundations of computer
science III, part I, • ISBN 90 6196 176 9.

* MCT 109 J.W. DE BAKKER & J. VANLEEUWEN (Eds), Foundations of computer
science III, part II • ISBN 90 6196 177 7.

MCT 110 J.C. VAN VLIET, ALGOL 68 tra:nsput, part I,1979 • ISBN 90 6196 178 5.

MCT 111 J.C. VAN VLIET, ALGOL 68 tra:nsput, part II: An implementation model,
1979. ISBN 90 6196 179 3.

AN ASTERISK BEFORE THE NUMBER MEANS "TO APPEAR"

