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INTRODUCTION 

In recent years, automata theorists have devoted a great deal of effort to the study 
of two-way acceptors. Examples of such devices include the two-way pushdown 
acceptor [8], the time-bounded Turing acceptor [10], and the tape-bounded Turing 
acceptor [10]. A natural extension of these models is obtained by allowing the input 
head to print on the input tape. A trivial example of the "extended" model is the linear 
bounded acceptor (lba). Recently, a nontrivial example of the "extended" model has 
appeared in the literature [14]. The device, called a "writing pushdown acceptor," is 
essentially a two-way pushdown acceptor that can print on its input tape. In this 
paper, we introduce and study another example of the extended model, namely, 
the "writing stack acceptors" (WSA) and their associated family of languages, oLCwsA. 
(As its name indicates, a WSA is essentially a two-way nondeterministic stack acceptor 
that can print on its input tape.) We also study the deterministic WSA (DWSA), the 
nonerasing WSA (NEWSA), and the nonerasing deterministic WSA (NEDWSA), as 
well as their associated families of languages ~DWSA, ~NEWSA, and &~ , 
respectively. In particular, we characterize the four families of languages in terms of 
Turing machines and auxiliary pushdown Turing machines, both with exponential 
tape storage. 

The paper is divided into four sections. In section one, the notion of a WSA is 
defined and its operation formalized. Also in section one, the f(c~)-tape-bounded 
auxiliary pushdown Turing machine (f(~)-APTM) as introduced in [2] is recalled 
and its operation formalized. This device is essentially a f(c~)-tape-bounded Turing 
machine (f(c~)-TM), together with a pushdown storage, which is not memory limited. 
(In case the pushdown tape is nonerasing, the definition off(c~)-APTM degenerates to 
that off(~)-TM.) 

* This research was supported in part by the National Science Foundation under Grant 
No. GJ454. 
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The main results of the paper are that 

and that 

~DWSA = <~WSA = U "t~2C~-APTM 
c>~l 

~176 = t~NEWSA = U ~02c~ 
c>~l 

Phrased otherwise, the main results of the paper provide a characterization of the 
exponential tape-bounded APTM and the exponential tape-bounded TM, each in 
terms of WSA. Sections two and three develop the machinery necessary to present the 
main results. Section four establishes the main results, as well as some AFL properties. 

Throughout the paper we assume that the reader has a casual knowledge of formal 
language theory. The reader is referred to [12] for all unexplained definitions and 
notation. 

1. FORMALIZATION 

In this section we define a writing stack acceptor (WSA), together with several 
important subcases. We also recall the notion of an "auxiliary pushdown Turing 
machine" (APTM). A WSA may be informally illustrated as in Fig. 1. It consists of 
a two-way read-write input tape Ca 2 ..- a~_i$; a finite state control (fsc); and a stack 
tape (as distinguished from a pushdown tape) Yt "'" Y1, where the top of stack is the 
leftmost fl, to the right of 711. (fl denotes the blank symbol.) 

DEFINITION. A writing stack acceptor (WSA) is an 8-tuple S = (K, 27, F, 3, 3a, 
qo, Z0, F), where 

(1) K and 27 are finite, nonempty sets (of states and inputs, respectively); 
(2) /1 is an alphabet containing 27, but not the seven distinguished symbols 

0, -- 1, E, r $, fl, I (the elements of F -- 27 are called stack symbols); 
(3) 8 is a function from K • (F u {r $}) • 1" into the subsets of 

K • (F•  {r $}) • {--1, 0, 1} • {--1, O, 1} 

such that for each q in K and Z in 1" 

(a) if 3(q, r Z) contains (p, b, d i , d~) then b = r and dl is in {0, 1}, and 
(b) if ~(q, $, Z) contains (p, b, d l ,  d~) then b = $ and d i is in {--1, 0}; 

(4) 3~ is a function from K • (1" w {r $}) • 1" into the subsets of 

K • (F V {r $}) • {--1, 0, 1} • (1" U {0, I, E}) 
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such that for each q in K and Z in _P 

(a) if 8B( q, r Z) contains (p, b, d l ,  d~) then b = r and d 1 is in {0, 1} and 
(b) if 80(q, $, Z) contains (p, b, dr ,  d2) then b = $ and d 1 is in {--1, 0}; 

(5) q0 is in K (the start state), Z 0 is in F (the initial stack symbol), and F _C K 
(the set of accepting states). 

The  special character fl is called a blank. The  characters r and $ are called the left 
and right end-markers, for the input. Note that neither r nor $ occur in Z'. The  initial 
input to a WSA is an element of r The  next move function when the stack 
head is not scanning the top of stack is denoted by 8. T he  next move function when the 
stack head is reading fl at the top of stack is denoted by 80. 

Agreement. The  positions on the stack are numbered from right to left, beginning 
with the leftmost fl at position 0. The  symbol y, unless specified otherwise, will denote 
a word of the form y = YtYt-1 "'" Y1,1 with each Yj i n / ' ,  and will denote the stack 
of S. 

DEFINITION. A WSA S is said to be a deterministic WSA (DWSA) if 8(q, a, Z) and 
Sa(q, a, Z) each contain at most one element for all (q, a, Z) in K • ( / '  t3 {r $}) • 1". 

1 t = 0 will denote the empty stack. 
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DEFINITION. A WSA S is said to be nonerasing, abbreviated NEWSA, if for each 
(q, a, Z) in K • (-P t3 {r $)) • F, (p, b, d, X) in 3~(q, a, Z) implies X 4: E. A non- 
erasing DWSA is abbreviated as NEDWSA. 

Notation. Let N denote the positive integers. For each positive integer n let 
Nn ~- {1,..., n}. 

DEFINITION. A configuration of a WSA is any element of the set 

O (K • r • N,  • / '* • (Nu{0))).  
n/>3 

DEFINITION. Each configuration of the form (q, w, j ,  y, 0) is called a top configura- 
tion. 

DEFINITION. For each WSA S let ~- (or F-- s when S is to be emphasized) be the 
relation on the set of configurations defined as follows (for n >/ 3, w 1 = b 1 "" bn , 
w~ =- bl "'" bi_xb'bi+l "'" bn , y = Yt  "'" Y1 ,  and b' and each Yj in / ' ) :  

(1) (p, wl, i, y, j) ~-- (q, w2, r, y, m) if ~(p, b~, Yi) contains (q, b', all, as) , 
r = i + d l , a n d m = j + d ~ ;  

(2) Let C = ( p , w  1 , i ,y ,0 ) ,  r = i + d l ,  and let go(P, bi,I/'1) contain 
(q, b', d 1 , X). Then 

(a) C ~-- (q, w 2 , r, y Z ,  0) if X = Z, 
(b) C~--  (q, w~, r, Y t " "  Y2,0) i f X  = E, 
(c) C~---(q, w 2 , r , y , O )  i fX - - - -O ,  
(d) C~-- (q ,  w 2 , r , y ,  1) i f X  = I .  

Thus (2) implies that if S is scanning fl at the top of stack, 30 will depend on Y1, 
the symbol to the left of ft. 

Notation. Let 

~- and ~ (~-s and * 

when S is to be emphasized) be, respectively, the transitive and reflexive-transitive 
closure of ~--. 

DEFINITION. Each configuration C such that (qo, r 1, Z o , 0) ~--s C is called an 
S-confifuration. 

DEFINITION. A word u in 27+ is accepted by a WSA S if 

(qo, r 1, z o , O) ~s (P, r  m) 



172 GIULIANO 

for some p in F and some S-configuration (p, r m). The set of all words 
accepted by S is denoted by T(S). 

Notation. Let ~WSA(~DWSA , ~NEWSA , "~NEDWSA) denote the family of all sets 
accepted by some WSA (DWSA, NEWSA, NEDWSA)S. 

An APTM may be informally illustrated as in Fig. 2. It consists of a two-way 
read-only input tape Caz "" an_~$; a finite state control (fsc); a pushdown tape (pdt) 
Yx "'" YJ ; and k two-way infinite cead/write work tapes. 

READ-ONLY 
INPUT TAPE 

FINITE 
STATE 

CONTROL 

B z ~'  

PUSHDOWN 
4 TAPE 

} k 
READ- 
WRITE 
WORK 
TAPES 

FIOUaE 2 

Notation. For each set X, let X~ = X -- {fi}. 

DEFINITION. An Auxiliary Pushdown Turing Machine (APTM) is an 8-tuple 
(K, 27, W, 3, qo, Zo, F, k), where 

(1) K and 27 are finite, nonempty sets (of states and input symbols, respectively), 
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(2) W is an alphabet containing Z', but not the special characters 0, E, r and $, 
(3) k is a positive integer, 
(4) 8 is a function from ~ K • (Z W {r $}) • W (k) • W B into the subsets of 

K • {--1, 0, 1} • (W0 • {--1, 0, 1}) (k) • (Wo w {0, E}), such that for each p in K, 
B i i n  W,  1 ~ < i ~ < k ,  a n d Y i n W B ,  

(a) if 8(p, r Bx ,..., B k , Y) contains (q, d, 0" 1 , . . . ,  0./c, X), then d is in {0, 1}, 
and 

(b) if $(p, $, B 1 ,..., Bk,  Y) contains (q, d, 0.t ..... 0.k, X), then d is  in {--1, 0}, 

(5) qo is in K (the start state), Z o is in Wo, and F_C K (the set of accepting 

states). 

The  special characters r and $ are called the left and right end-markers, respectively, 
for the input. Elements of W --  2: are called working symbols. Z o in (5) above is called 
the initial working symbol. 

DEFINITION. A deterministic APTM,  abbreviated DAPTM,  is an A P T M  in which 
8(p, a, B 1 ..... Bk,  Y) contains at most one element for all (p, a, B 1 ,..., Bk,  Y) in 
K • 1 6 2  • W (k) • W~. 

DEFINITION. Let  A be an A P T M  and [" a distinguised symbol which is not in W. 
Then  a configuration is any element of 

where 

and 

K x H  1 X H~ k) X W*, 

//1 = [" r u r ? w r ? 2:*$ w r ;" s  

Agreement. Unless specified otherwise, the pat  will be denoted by the word 
y = Y l  "" Y~ , J >~ O, Y~ in W~ . 

Notat ion.  Let ~-- (or ~--n when A is to be emphasized) be the binary relation on 
arbitrary configurations defined as follows. Write 

(p ,  al "'" ~ ai "" an ,  Ul ~ v t  ..... uk ~ vk , ]11"'" YJ) 

~-- (q, al "'" ~ ai+a "'" an ,  u1' ~ vx',..., uk' ~ vk', 7) 

if (q, d, a 1 .... , ak, X) is in ~(q, a i ,  B t .... , Bk,  Yj), and the following two conditions 
are satisfied: 

2 W(k) is the k-fold cartesian product. 
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(1) Either 

(a) y = 111"'" Y j X  i f X  is in W~, 

(b) y = YI"'" YJ i f X  = 0, or 

( c ) ) ,  = I71"'" Yj_I if X = E, 

(2) For each j, 1 ~ j <~ k, with x~ and yj in WB* , B~ in WB, B s in W, and 

= ( B / ,  as), 

(a) if (Bs,  ds) is in W B • {--1} and 

u s ~ vj = XsB j ) Bsys ,  
then 

u s' [" v s' = X j  ~ BsBj'ys, 

(b) if (B/ ,  ds) is in W B • {--1} and 

us [" vs = t" Bjy j  , 
then 

u/  [" v /  = [" flBs' ys , 

(c) if (Bs', ds) is in W B • {0} and 

us r" vs = Xs [" Bsy~, 
then 

u s' [" v /  = X j  ~" B /y~ ,  

(d) if (B/ ,  ds) is in W~ • {1} and 

u s p v~ = X j  r" BsBjy j ,  
then 

u/  ~ v /  = X j B /  [" Bsy ~ , 
and 

(e) if (Bs', dj) is in W e • {1} and 

u~- r" Vs = Xj [" B ~ ,  
then 

u/  ~ v /  = X j B /  ~ 8. 

Notation. Let ~---+ and ~- (or ~---+ and ~-a when A is to be emphasized) denote, 
respectively, the transitive and reflective-transitive closure of ~--. 

DEFINITION. Each configuration C such that (qo, [" r [" fl,..., I" fl, Zo) ~-a C is 
called an A-configuration. 
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DEFINITION. Let A be an APTM and let u be in 27+. Then A is said to accept u if 
(qo, [" r ["/3,..., [" fl, Zo) ~3-4 C for some configuration 

C = (q, v 1 ~" v2,  ut [" v 1 ,..., u~ I" v ~ ,  I11"'" YJ) 

with q inF. Let T(A) denote the set of all words accepted by A. 
We now observe that by deleting the pdt component in the definitions of 8 and ~- 

for APTM, we obtain a version of the familiar Turing machine. Specifically, we have 
the 

DEFINITION. A Turing Machine (with k work tapes), abbreviated (k tape) TM, is a 
7-tuple T = (K, 27, W, 3, q0, F, k), where 

(1) K, 27, W, q0 ,F, and k are as in an APTM, and 
(2) 3 is a function from K • (27 u {r $}) X WIk) • W~ into the subsets of 

K X {--l,  0, l} X (W~ • {--1, 0, 1}) 'k' X {0}. 

The definition of deterministic TM (DTM) is obvious. We omit the formalization. 

DEFINITION. Let f be a function from the positive integers into the positive 
integers. Let A be an APTM such that for each word w in T(A), there exists some 
computation (qo, r ~ w$, ~ fl ..... P fi, Zo) ~--a "" ~--a (q, v! P v2, ul ~ Vl,..., uk ~ vk, YI "" YJ) 
with q i n F  and ] uj [" vj [ ~ f ( [  w [)3 for each j, 1 ~ j ~ k. Then A is said to be an 
f(a)-tape-bounded APTM (f(a)-APTM). 

Note that if a language L is accepted by some nonerasing f(a)-APTM, then L is 
accepted by somef(a)-TM. 

Notation. Let ~CPI(~)_DAPT ~ , "~I(~)-APTM, "L~'I(~)-mM, and ~(~)-TM be the families 
of languages accepted by, respectively, f(a)-DAPTM, f(a)-APTM, f(a)-DTM, and 
f(a)-TM. 

2. SIMULATION OF 2ca-TAPE-BOUNDED D A P T M  BY D W S A  

In Sections 2 and 3 we show that the following four statements are equivalent for 
an arbitrary language L: 

(i) L = T(A) for some 2~l~-tape-bounded DAPTM A for some integer q .  
(ii) L = T(A) for some DWSA S. 

(iii) L = T(A) for some WSA S. 
(iv) L = T(A) for some 2c2~-tape-bounded APTM A for some integer q .  

3 Since an A P T M  cannot erase, the length of each storage tape cannot decrease during a 
computation. For each word W, I W I denotes the length of W. 
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In this section we prove that (i) implies (ii). I t  is trivial that (ii) implies (iii). In  
Section 3 we prove that (iii) implies (iv). Tha t  (iv) implies (i) is a known result [2]. 

in constructing new WSA or new A P T M  we shall usually describe these machines 
in an operational form only. I t  will be clear, however, f rom our description and f rom 
standard techniques that a formal specification can readily be made. 

We now consider the proof of (i) implies (ii). We first ask the reader to observe that a 
DWSA can perform certain simple tasksA 

2.1. Given any integer c, a DWSA can move its stack head exactly 2cl wl positions 
into its stack, where w is the current input word. 

Proof. By marking its input tape as in a LBA, any DWSA can "count"  to 2cZ wl. 

2.2. Let c be any integer and D 1 any symbol not in I'. A DWSA can print a word of 
the form 

w I = Ol z~lwl 

on track two of the stack where w is the current input word. 

Proof. Since any DWSA can "count"  to 2cl wr, it can obviously print the word w 1 . 

2.3. A DWSA S can be constructed with the following property. Let c be a given 
integer and w a given word. Let v denote the final subword on either track one or two of 
the stack, with ] v [ = 2eJwl. Then S can print v on track one of  the stack. 

Proof. In  either case, S merely copies a block to the top of stack on track one 
using its ability to count to 2 clwl. 

2.4. A DWSA S can be constructed with the following property. Let c be an integer, 
w an input word, A a new symbol, andy  a n d z  track two stack words, with ] z ] ~ [y [ = 
2clwl. Then S, having y A z  on track two of its stack, can determine whether or not z is 

of the form xy for same x. 

Proof. Here S again uses its ability to count to 2cEwl and "compares"  by repeatedly 
erasing final symbols of z that match with final symbols of y. In  any case, S always 
erases up to symbol A. 

In  2.5, Theorem 2.1 and occasionally in Section 3, we shall order the words over some 
alphabet. We thus recall the notion of lexicographical order. 

DEFINITION. Let  B be any set, simply ordered under < .  T h e  relation 4 ,  called 
the lexicographical order on B+, is defined as follows. Let  u = Un "'" ul,~ and 

4 The reader is referred to [7] for details. 
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v = Vzx "'" v2~, m ~ n, with each uli and v2j. in B, 1 ~< i ~< m, 1 ~<j <~ n. Write 
u ~ v if either 

(a) ulj < v2~ for the smallestj such that ul~ # v~r or 
(b) Ulj = v z j , l  ~ j < ~ m ,  a n d u # v .  

Notation. Let c be given integer, ~ an alphabet, and e~ an enumeration D 1 ,..., DI~ I 
of the elements of ~ .  Let ~ be a lexicographical order on ~ 2~l~t. 

2.5;. A DWSA S can be constructed with the following property. Let G{, the i-th 
word in the ordering ~ on D ~~ be at the right of the stack on track two. Then S can 

copy Gi' at the top of stack on track two, simultaneously replacing Gi' by G~+ x on track two. 

Proof. S copies Gi' on track two as in 2.3; however, S replaces Gi' by G~+ 1 by 
counting in base I ~ l .  

THEOREM 2.1. For each 2cl*-tape-bounded DAPTM A,  there exists a DWSA S 
such that T (A)  = T(S) .  

Proof. Let u be in T(A)  and n = I r I.We shall construct S so that S simulatesA. 
In order to describe the computation of S, we need to introduce some notation and 
concepts. 

Let A 1 ,..., A 4 be new symbols and 

v A = { c  I (qo, r . . . . .  Zo) c} .  

For each C in Wa, we now define a coded configuration C'. Let 

C = (q, a 1 "" ~ ai "'" an, Ul ~ Vl  ,..., U~ ~ V k ,  Y I " "  YJ )  

be an arbitrary element in c~6~A, and let v denote the word v = Alu 1 ~ via x "" Alu k ~ v~d 1. 

LeO 

C' = qtal "'" ~ al "'" anvYs A2 m, 

where m is such that 

IC ' I  = 2  %" 

for some integer C~. Let <~A' = {C' I C in ~:A} and ~ = [ <~a' I. 
Let .@ = K u W e u {[', A1, A2}. Then, 

~< f ~ f  ~". 

5 Y I =  r  
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Let  e~ be an enumeration D~ ,..., DI~ I of the elements of ~ .  For each l, 

1 ~< i ~ [~12~"; 

let Gi' be the i-th member of~A' in a lexicographical ordering ~ of ~a ' .  
We now introduce notation to label certain elements in ~a ' .  Let  

C = (p,  a 1 ".. r" aio"" a , ,  u 1 ~ v 1 ,..., u k [" v k ,  Y1 "'" YJ), 

J ~> 1 be in c~a, and let rr be the sequence C 1 ,..., C , ,  where 

and 

c ,  = (qo , r ~ u$, ~ 3,.. . ,  P 3, Y , ) ,  Y ,  = z o  , c r = c ,  

Cj ~ Cj+ 1 

for 1 ~< j ~< r - -  1. For each j, 1 ~< j < J, let H ( j )  be the two-element subsequence 
Ca(j/, Ca(~)+l , with g( j )  the largest integer, 1 <~ g( j )  < r such that 

(1) the pdt component in Co(s) is Y1 "'" Ys and 
(2) the pdt component in Cg(j)+ 1 is Y1 "" Y~+I- 

The  stack of S is divided into two tracks. Let  p(~r) denote the contents of the stack 
of S when A is in the configuration Cr.  Let pl(~r) and p2(rr) denote tracks one and two, 
respectively, of p(rr). Let  pl (~r(j)), i = 1, 2, denote the contents of track i when A is 
in the configuration C~0.~+1,1 ~< j < J. Then  pl(rr(j)) is of the form 

and p2(rr(j)) is of the form 

7lUg(j) A4Co(j)+l , 

y2G'M(j) A4GI" 

for some 71 and Y2 with [ 71 ] = I r2 1, and M ( j )  is some integer, 1 ~ M ( j )  < t~. 

Let  l = r - - g ( J -  1) - 1 and let ~rz, when it exists, be the (not necessarily 
consecutive) sequence Coo_l)+Z ..... Cr ,  of elements in rr with pdt component Y1 "'" YJ- 
For l = 0, let 

for l =/= 0 let 

and 

DI(TT1) : Cg(d_l)+2 As  . . .  A3Cr"  ' 

p2(rrz) = GiCo(s_~)+2 > A3 "'" AaGI(~ > , 1 ~ m(i) < M(J ) ,  g ( J  - 1) + 2 ~ i < r. 
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The stack of S will record the A-computation to date, in the following sense. When A 

is in the configuration C~, then 

and 
pl(Tr) = p l (~ (1 ) )  .-. p l ( ~ ( J  - 1))p1(~,)  

p~ ( , )  = p ~ ( , ( 1 ) ) " ' "  0 ~ ( ~ ( ]  - 1))p~( . , ) .  

Note that each subword C' of p~(~) "lines up" with a corresponding G' in p2(~). We 
will sometimes denote subwords of p(Tr) by 

C~(j) A , ,  C~(j)+i A 3 , C / ,  

etc. 

G'M(j) A4 ,  GI" A 3 , G~(~) 

Intuitively, p(~) is a representation of pertinent information about the past behavior 
of A. It  also contains "guesses" about the future behavior of A. In particular, for 

j / >  1, each GM(j) represents the latest guess at the A-configuration occurring in case A 
erases YJ+i and thereby revisits Yj. Thus the symbols 

C~(~) 

Gi,(j) 

are of special interest to S, and so are flanked (on the right) with the symbol 

A a . 

A4 

Using this notation, we now describe how S updates its stack word p(rr) for each of the 
three possible moves of A on its pdt. The DWSA S will have each member of the 
8-tuple A and the sequence e~ in its fsc. Let 

C r' = qlal ... [, a i ... anVlY J /12 TM, 
where 

Vl = Aiui  ~ vl AI "'" AlUk ~ vk Ai  , 
with 

u~ p vj = x j /~  p Bj Yj 
for 1 ~ j < h ,  and 

m = 2 c2n - -  ] qiai ... [" ai "'" anv iY j  [. 

S proceeds as follows: 

(3) S reads C /  to obtain the k + 3-tuple T 1 = (qi, a i ,  BI  ,..., B k ,  Y j )  (by 
means of the [" markers in v 1 and in a i ... an) and stores T i in its fsc. 
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(4) S computes 8(7"1). 

Suppose 8(qx, a i ,  B 1 ..... Bk,  Yj) = 7'2, where 

Tz = (q2, a, al, . . . ,  ak,  X),.  

There are three possibilities for X: 

(a) X = Y~+I, a symbol in W~. Then  

Cr+ a = q2al . . .  ~ ai+a .. .  a~v2Yj+ 1/1~' ,  

with 

and 

m' = 2 c2n - -  I q2al "'" ~ ai+a "'" anv2YJ+1 l, 

v2 = A l u l '  ~ % ' /11  "'"/11uk' ~ vk'  /11, 

where each u / ~  v / d e p e n d s  on uj ~ vj and aj is as in the definition of ~---a �9 
Using 2.2, 2.3 and standard techniques, S can be constructed so that it simul- 

taneously prints 

A4Cr+I 

A~G 1' 

to the right of p(~r), given 

C r ' 

Gin(r) 

and T 2 . Then  S returns to (3) to continue this simulation. 

(b) X = E. 7 Then  

C~+ 1 = q2al . . .  ~ ai+a "* anv2Yj_a /1~', 

where v 2 and m' are as in (a). Let A4.~_ 1 denote the rightmost/14 symbol in p~(~r(J - 1)), 
1 <~ i ~ 2. First S enters its stack scanning for the symbol 

/14,J--1 

A4,J-1 

6 Recall that d is in {-- 1, 0, 1}, and aj is in W e • {-- 1, 0, 1} for each/', 1 ~< j ~ k. 
7 Note that this is the only case involving erasing in the proof. 
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Next, S reads the symbol YJ-1 from C~O_1) and stores YJ-1 in its fsc. Then S uses T 2 , 
YJ-1, and C r' to print 

A3C;+1 

/13C;+1 

to the right of its stack. Next, S checks if 

Cr+ 1 = G~(j_I) 

on track two of the stack. By 2.4, letting 

A4,j_ 1 : A, Y : G~4(j-1) , 

and letting C'r+ 1 be the final subword of Z, one of two possibilities must occur: 

t 
(i)  a~4( j_ l )  = C r +  1 . 

By 2.4, S erases every symbol to the right of 

A4,J-1 

~J4,J-1 

in the checking process. Then S erases 

and labels 

obsolete by printing 

A4.j-1 

Aa.j-1 

C'g(j_l) 

G'M(~-I) 

/I 3 
/1 a . 

B y  2.2, S can print G 1' to the right of p2(Tr). By 2.3, letting 

v = G~4(j-1), 

S can copy GMIJ_I~ from O~(~r), printing GMIJ_I) to the right on track one. Thus S can 
be constructed so that S prints 

G~I(j-1) 

G 1' 

to the right of the stack. Then S returns to (3) to continue the simulation. 

57x[6/2-6 
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(ii) G~(s_I) ~ C'r+ 1 . By 2.4, S erases every symbol to the right of 

A4,/-I 

/14j- 1 

in the checking process, leaving the rightmost subword of the stack in the form 

C~(j-1) A4,I-I 

G~tJ-x) A4.~-1 �9 

Then S erases 

A4,,/-I 
A4,J-1 

and labels 

C' u(~-i) 

obsolete by printing 

A3 

A 3 . 

By 2.5, S can print GM(I_I)+X to the right on track two. By 2.3, letting C~(~_1) : v, S 
can print C~(j_I) to the right on track one. Thus S prints 

C~(j-1) 

G~/(/-I)+I 

to the right of the stack. Then S returns to (3) to continue the simulation, beginning 
again with C~(~,_I) . 

(c) X : 0. Then 

t C,+I : q2al "'" P a~+~ ... a~v~Y1 AT, 

where v~ and m' are as in (a). Next, S prints 

A ' 3Cr+l 

A3GI', 

using the method of (a). Then S returns to (3) to continue the simulation. 
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If, in (a), (b), or (c), q2 is in F then S accepts, Now S can surely write the initial 
,4-configuration and initial "guess" 

c ;  
GI' , 

where 

and 

C1' : q0r ~ uS(A1 ~ B) ~ A1Zo A] ~'-(n+ak+~) 

! 

G 1 = D~ ~ 

where B is a distinguished symbol treated as ft. 

Thus, by induction on the number of moves of A, S will accept r if and only if .4 
accepts r 

We now observe the following two facts: 

(1) If L is an arbitrary language accepted by an arbitrary nonerasing 2*~-tape- 
bounded DAPTM, then L is accepted by a 2c~-tape-bounded D T M  for the same 
constant c. 

(2) In the proof of Theorem 2.1, S is nonerasing if.4 is nonerasing. 

Observations (1) and (2) lead to 

THEOREM 2.2. For each 2*~-tape-bounded DT M  M, there exists a NEDWSA 
such that T(S) = T(M). 

3. SIMULATION OF WSA BY 2ca-TAPE-BOUNDED APTM 

In this section we demonstrate the implication of statement (iv) from statement (iii) 
as asserted at the beginning of section two. 

DEFINITION. For a given WSA S, a state-input of S is any member of 

U K • r • Nn. 
n~3 

Notation. Given m >/ 1, let 

be the relation defined as follows. For arbitrary configurations C and C', let 

C ~#- C' 
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if there exist C 1 ,..., C~, with C i = (Pi, wi ,ji ,Yi ,  ki) for each i, such that 

(i) C I = C , C , = C ' ,  
(ii) ]{ki l ki = 1}[ ~ m, and 

(iii) for each i, i < l, Ci ~-- Ci+l and ki >/ 1. 

Let  

if 

for some integer m >~ 1. 
Intuitively, 

C~+ C', 

c c' 

I 

relates the first and last configurations of an S computation in which (c 0 the stack 
head in each configuration, except possibly the last, is in the interior of the stack; 
and (fl) throughout the total computation, the stack head scans position 1 at most 
m times. 

Note that C =  C ' i f k  1 = -k  2 ~ -m  = 1. 

Notation. For each integer m ~ 1 and each S-configuration (q, w, j ,  yZ, 1), with Z 
in / ' ,  let Rm(q, w, j, yZ), written R .... denote the set 

{(p, v, k)I (q, w,j, yz, 1) ~ (p, v, k, yz, 1)}. 

Intuitively, R., contains each state-input arising from the following computation. 
S starts in configuration (q,w,j, yz, 1), always stays in the stack interior, reads 
position 1 at most m times, and ends in configuration (p, v, k, yz, 1). 

DEFINITION. Let  d be a new symbol. Given S, w, and y in / '% with [ w [ = n, the 
transition matrix .///[w,u (or dr ~ when S is to be emphasized) is the function from 
K • Nn into the subsets of 

{d} w (K x r X N.)  

defined as follows for each (q,j) in K X Am: 

(1) ,#g~,,u(q,/) = {d}  if 

(q, w, j ,y ,  1) f14-+ (P' v, r ,y,  t), 

with p in F, and (q, w, j, y, 1) is an S-configuration. 
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(2) If (1) does not apply and (q, w , j , y ,  1) is an S-configuration, then 

Jgw.u(q,j) = {(p, v, k) [ (q, w, j ,  y, 1) ~-dm (p, v, k, y, O)}. 

(3) If  (q, w , j , y ,  1) is not an S-configuration, then ~lw,u(q,j) = r 

We shall only be concerned with ~gw.u in which (q, w, j, y,  1) is an S-configuration. 
Note that S accepts in (1). 

Agreement. Hereafter in section four, w denotes a given word in r and 
n = [ w [ = [ r [ >~ 3, where r is the initial input to S. Sometimes a 1 ... an is 
written in place of w. y denotes a given word in F*. 

Notation. Let  g = [ F [  and s = ] K [. Let  ~ be a lexicographical order on 
CFn-~$. Let  Mw. ~ = {./gw,~(q,J)](q,j) in K • Nn}. 

DEFINITION. The  set 
Bs,,,~ = {Mw.~ I w in r 

indexed by ~ on the index w, is called a block. 
We shall frequently write B u instead of Bs,~, ~ when S and n are understood. 
Intuitively, given B u and any top S-configuration, then A can "simulate" S for the 

case when S moves into its stack. That  is, given that 

(ql ,  Wl ,Jl  ,Y, O) k-- s (q2, W~ ,iS ,Y, 1), 

and given B , ,  then to determine the future of S, A needs the element M%,u,  of B~. 
In what follows we shall refer to several common words ("encoded forms"). 

DEFINITION. For  each m, 1 and each (q,j) in K • Am, the words /z(K • Nn), 
iz(K • r • N~), tz(R~), tz(~gw.u(q,j)), tz(Uw.u), and/z(B~) are called the encoded 
forms of, respectively, K • Nn,  K • r X Nn ,  Rm,  ~t'w,~(q,j) , Mw.~, and Bu.  

Notation. Let  e g be the enumeration ql ,..., qs of the elements of K. Let  

WI',... , W;n-2 

be the words of / 'n-2  in some order. For each i, let wi ~ r Let A 1 ,..., A o be seven 
new symbols. 

We now assemble all the necessary encoded forms in the 

Notation. Let 
I~(K • Nn) = Axv(q~ , 1)v(qa, 2) "" v(qs , n) Ax , 

where 

A ~ A n-j 1 <~ i <~ s, 1 ~ j <~ n. v ( q , , j ) = q ~  s e , 
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Let  

/z(K • r • AT,) =: A~vx(ql ,  w ~ ,  1)va(qx , w , ,  2) ... vx(q,, wg,_,, n) A 2 , 

where 

vx(q~, w~ , j )  = qiwz AsJ`a~-~, 1 ~ i ~ s, 1 ~ l ~ g.-2, 1 <~ j <~ n. 

Let  iz(R,~(q, w ,  j ,  y z ) ) ,  abbreviated/z(R,.) denote the word 

tz(R.,,) : A~v~(q x , w~ , 1)vz(ql , w t , 2) --" vz(q , , wo.-~ , n) ,5 ~, 

where 

if (q~, wz, k) is in R,. and 

~ ( q ,  , w ,  , k )  = ~(q, , ~ ,  , k )  

~2(q~, wz, k) = A] "+1 

otherwise. 
For given y in p+  and (q, j )  in K X Am, let 

tz(..r = v,(q, w , j ) Y v s ( q ~  , wx , 1)vs(ql, w x , 2) . . .  v s (q , ,  wo ,_ , ,  n), 

where 

(~) 
(~) 

Y = z~ r if.Ar~.~(q,j) = {.~}, and Y = A 7 otherwise 
va(qi ,  w z , k )  ~-  vl(q~,  w z , k )  if Y = A 7 and (q~, wz, k) is in .gt'~..(q,j), and 

v3(qi , w ,  , k )  = `aN  § 

otherwise. 

F o r y  in F +, let ~(Mw),) denote the word 

`a4 `a,tz(..Cgw.,(q~ , 1)) A4l~(.,Cgw.,(q I , 2)) `a4 "'" tz(.Ig,o.,(qo , n)) A4 A ,  

For  y ~ ~, let tt(Mw.y) = fl, a distinguished symbol denoting the blank symbol. 
For eachy  in F +, let/z(B~) denote the word 

As `a~(M~,,, y) Agt(M,,. ' , y) A3 "" A~(M,~ ._, , y) A s ,a s 

For y ~ E, let t,(Bv) = ft. 
F rom the form of v(By) it is easy to derive a positive integer C 2 such that 

I ~(B~)I < 2 ~ 

We now turn to the simulation of a WSA S by a 2c'~-tape-bounded A P T M  .4. For 
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ease of presentation and comprehension, this is done by a sequence of lemmas, each 
of which modifies a construction given in a previous lemma. Since the pdt of the 
APTM A is not required until the final construction, the preliminary lemmas will refer 
only to the input tape and the work tapes of A. For simplicity, each encoded form 
required in the procedure is stored on a separate work tape. 

and 

Notation.  Let T be a 10-tape TM and 

= (p,  uo t' vo ,..., ulo ~" Vlo) 

~'  = (p', uo' t vo',..., uio t v~0) 

be T-configurations such that 

For each i, 0 ~< i ~< 10, such that 

ui' ~ vi" ~ ui~vi 

(even though the i-th storage tape may have been altered and then reset during the 
computation), let 

(]) = u~' ~ vi'. 

The first lemma shows how A initially computes the words/~(K • N~) and 

~(K x r x N.). 

LEMMA 3.1. For each K ,  27, and F, there exists a positive integer C 1 and a 2cl"-tape - 

bounded T M  T 1 = (Kx, 27, W1,3 1 ,Pl ,F1,10),  with W 1 containing 1" and with two 
distinguished states ql and q~ in K 1 , satisfying the following: For each word w in r 
w = a x "" an,  with al = r and an = $, Jo in N n ,  and u in 27+, 

(qx, [" r ["/3, ["/3, a l . . .  r" ajo "'" a , ,  [" f l -"  ["/3) 

~r~ (q2 , (~,(~) ,  (~ ,  (~ ,  ua' ~ v, ' ,  (~ ,  @,  r" lz(K X N , ) ,  

~,(K • r • N.),  (1)u9' ~ vg', |  

where u~' ~ v 4' and u 9' ~ v o' are in H 2 .s 

Proof. We omit the straightforward proof2 

s Recall that 

9 See [7] for details. 
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Agreement.  Hereafter in Section 4, we shall call the input tape of .4 tape 0 and 
denote the contents of tape 0 by UoV o = r 

In Theorem 3.1, A must simulate S when S extends its stack, that is, when S prints 
some symbol Z at the top. A indirectly simulates S by, among other things, computing 
/~(Bvz) from/z(Bv) where y is the contents of the stack. This portion of the procedure is 
developed over the next three lemmas. 

Briefly, to compute/z(B~), A computes tz(Mw.~z ) for each w in r In turn, to 
compute/x(Mw.~), A computes tz(.Nfw.uz(q,j) ) for each (q , j )  in K • Am. In computing 
iz(. , l lw.~(q,j)),  A first computes tz(Rp(q, w , j ,  y Z ) )  where p = sng '~-2. Formally, we 
state this latter task as 

LEMMA 3.2. For each WSA S, there exists a positive integer c z and a 2c~-tape - 
bounded TM T 2 = (K2,27, W2,82 ,P2 ,F2,10),  with W 2 containing F and with two 
distinguished states ql and qg., satisfying the following: For each word w in r 
w = a 1 ... an ,  with a 1 = r andan = $, v(q , j )  in v ( K  • N~), jo  in N,~, u in S + , y  in I '*,  
and Z in F,  

(qx , ~ r [" Iz(Bv) , u S l" v2 , al "'" [" ajo "" an ,  u4 ~ v4 , u5 ~ vs , u6 ~ r e ,  

A~v(qt,  1) "'" {" v(q, j )  "'" v(q, , n) A t ,  F" # ( K  • r • N,,), 

u9 I" Vg, Ulo I" Vlo) 

@, (q~, @, @, @, @, u, '  ~ v4', u~' p %',  p t~(R(q, w, j ,  y Z )  

/llV(qx, 1) "'" v(q, j )  ~ "'" v(qs , n) A 1 , (~), ~), (~), 

where 

and 

are in H 2 for  i = 4, 5, 

and 

u2 ~ v2 , u6 ~ v6 , u9 ~ vg , Ulo ~ % 0 ,  ui ~ vi  

Ui t ~ Vi p 

max([ u2v 2 l, [ u4v4 l, [ usv5 [, I u6v6 l, 1u9% l, I UxoVl0 l) < 2c2'~, 

= $ng  n - 2  

Proof. The sequence of sets 1~ R1,..., Rp form an increasing chain of sets with the 
property that R i = Ri+ 1 for some i, then R~+ 1 = Rt for all j / >  1. Since there are at 
most p = sng ~-~ distinct state-inputs for S, there exists a positive integer io, 
1 ~< i o ~< p such that 

Rio = Rio+l  . . . . .  Rp. 

xo R e c a l l  t h a t  f o r  m > l ,  

Rm = ((p, v, h) I (q ,w, j ,  yZ,  1) ~-~  (p, v , k ,  yZ, I)}. 
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For each integer m < i0, Tz computes ~(Rm+l) , ultimately computing 

i~Rio ---- tL(Rp). 

The procedure is such that T 2 has to remember at most 

max{I t~(Rp)], I t~(B~)l} < 2 '~" 

cells. Thus T~ is a 2c2"-tape-bounded TM. 
We informally outline the operation of T~. The TM T 2 stores the 8-tuple S together 

with Z in its fsc. For each rn, n 1 ~ m < i o , T2 computes (see next paragraph) 
/~(R,,+a ) on tape 6 using only/~(R~) on tape 5,/~(Bu) on tape 1, and Z. Initially, T~ 
prints /~(R1)= (/~{(q, w,j)})  on tape 5. Upon computing /z(R,~+l), T~ checks if 
/~(R,~) =/~(R~+I ). If so [then/~(R~) = t~(Rp) and m = i0], T2 enters the final configu- 
ration. Otherwise, T~ replaces t~(Rm) by/~(R,~+I) and m by m + 1 and returns again to 
compute the new/~(R,~+x). In casey = ~, T 2 computes/~(R~+~) using only/~(R,~) and Z. 
In this case, T 2 ignores one step in the procedure. 

There remains to show how T 2 computes/z(R,,+a ). Let 

v2(q, w~, h) # A~ "+1 

be a word in/x(R,.) such that wt = b~ "" b,~, and 3(q, bk, Z) contains (q', bk', d, X) for 
some X in {--1, 0, 1}. Let x = b 1 "" bk_~bk'bk+~ "'" bn. T2 computes tL(R,~+I) on tape 6 
by executing the following steps for each 

A2n+l. ~(q, wt ,k)  # - 6  �9 

(1) v~(q, w t ,  k) is copied 12 to tape 6; 
(2) If X = 0 then vl(q', x, k + d) is copied 13 to tape 6; 
(3) I f X  = --1 (impossible i fy  = E) then each va(q" , w', l) is copied 14 to tape 6 

from ix(d/lx,v(q' , k + d)) in/~(Bv), with 

v " ' l ) # - s  �9 
3(q ' W , A2n+l 

The details for carrying out (1)-(3) are straightforward and are omitted. 
In the next portion of the procedure, A computes tz(M,~.,z) by computing 

i~(Jl~.~z(q,j)) for each (q, j)  in K • Nn. A uses I~(Rp(q, w , j ,  yZ ) ,  w, Z and t,(B~,) to 
accomplish this latter task. 

ix T3 stores the integer m in unary form on tape 4. 
1~ In  the corresponding position as on tape 5. 
13 T2 first locates the word on tape 8 to determine its position on tape 6. 
14 In  the corresponding position to the right of Y in .~x,~(q', k + d). 
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LEMMA 3.3. For each WSA S, there exists a positive integer cz and a 2c~*-tape- 
bounded TM Tz = (/s Wz, 3z, pz, Fa,  10), with Wz containing F and with two 
distinguished states qt and q~, satisfying the following: For each word w in r 
w = aa "'" an, withat = r anda. = $, Z i n F ,  y i nF* , j o inN ,~ ,  a n d u i n l  +, 

(q l ,  1" r [ '#(Bu) , u 2 ~ v2 , a 1 ... ~ ajo . . .  a ,  , u 4 ~ v4 , u5 ~ v~ , u6 ~ v6  , 

["/~(K • N,,), ["/z(K • r • N,~), u~ [" vo, Uao [" V~o ) 

~r (qz , @, ~),  ~ t~(M,o,,z), (~), u ; ~ v,', u~" ~ vs', u (  ~ vn', (~, @, u (  ~ v ( ,  (~), 

wh~e 

and 
U 2 ~" V 2 ,  UlO[" VlO, Ui[Vi  

U it ~ V i' 

are in H j o r  i in {4, 3, 6, 9}, andmax{[ u,v, l} < 2""~ for i in {2, 4, 5, 6, 9, 10}. 

Proof. Let c~ and the 10 tape TM T 2 be as given in Lemma 3.2. The work tapes 
of T3 are those of T~. The procedure is such that T 3 has to remember at most 

I ~(B~)I < 2 ~" 

cells. Thus T 3 is a 2c~-tape-bounded TM. Intuitively, T~ stores the 7-tuple T~ 
together with S and Z in its fse. T 3 computes tz(M~.~z) by computing t~(,,g~.~z(q,j)) 
for each ( q , j ) i n  K • N,,. To compute /z(./g~.~z(q,j)), Tz uses tz(Rp(q,w,j, yZ))  
(first computing the latter by Lemma 3.2), S, and/z(B~). In case y = e, T 3 computes 
tz(M~.z) using only tz(Rp(q, w,j ,  Z)) and S. In this case, T z ignores one step (indicated 
below) in the procedure. 

We now outline (steps (1)-(7)) the procedure for T 3 . For each i, 1 ~ i ~ 5, 
7 ~< i ~< 9, and d 2 in {--1, 0, 1}, let ri and (re, d2) be states in K 3 . Let g~o be the start 
configuration stated in the lemma. For convenience, we assume that tapes 2 and 9 are 
initially blank. Thus, 

~o = (q l ,  ~ r ? # ( B , ) ,  ~ fl, a l . . .  ~ ajo ...  an ,  u 4 ~ v~ ,..., u s ~ v6 ,  

A~v(q t , 1 ) ' "  v(q~, n) A~, ~ ~(K X r X N.), ~ fl, uxo ~ Vxo ). 

(1) ~o ~ - ~ l , w h e r e  

~r = (rl, @,(9,  z ,  ~ t~, | @, '~1 r ~(ql, 1) ---~(q,, n)"ti, |  |  | 

In steps (2)-(4), T 3 prepares to compute A~lx(cgw.~,z(q,j)) on tape 2 for the next 
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(first) v(q, j)  in v( • Am). Thus, let 1~ (q ' , j ' )  be the element immediately preceding 
(q , j )  in K • N~ in an ordering of K • N,~ in an ordering of K X N,~. Let 

)t = Adl~(.//g~o,~z(q 1 , 1)) Ad ... ddl~(./Atw,~z(q',j')). 

(2) c~ 1 ~- cg~, where 

V2 = (r~ , @,  (~ ,  AdZ ~ fl, @,.. . ,  @,  A i r ( q 1 , 1 ) ' "  

v(q,j)  ... (qs , n) A1 ,  @,  ~ vl(q, w , j ) ,  @) .  

(After printing l(q, w , j )  on tape 9, T a begins a loop by entering r 2 . Initially, v(q,j)  -=- 

v(ql ,  1).) 
(3) (g~ ~-- cga, where 

V a = (r a , @,  (~), Aa~ A4 ~ ~,(Jt/w,uz(q,j)) ,  (~,.. . ,  | 
and 

~o(dd w.~z(q, j ) )  = v~(q, w, j )  ATvd(ql , w~ , 1) .." vd(q~ , wg,_2 , n) 

each 

Pd(qi' Wf;, k)  = /]2"+1 

(T 3 prints an "empty"  copy of i~(,/gw,uz(q,j)) on tape 2.) 
(4) cg 3 ~-- (d4, where 

(~4 = (r4 , @, ' " ,  @,  u4' ~ v4', us', ~ vs', ~ ~(Rp), Alv(qx , 1)""  (q,j)  

n) | | | 

and the initial and final configurations are as in Lemma 3.2. (For the next (first) 
v(q, j)  in K • N~,  with w, y,  and Z fixed, T a computes bc(Rp).) 

The next step is executed for each 

k) "+1 

in ~(Rp).  
(5) Let/~('///~,uz(q,J)) generically denote any word of the form 

va(q, w , j )  ATv,'(q ~ , w~ , 1) "- v,'(q, , wo._2 , n), 

where for each (qi ,  w t ,  k), either 

(i) vd'(q i , wt , k) = vd(qi , wt , k) or 

t k n k (ii) u 4 (q,, wt,  k) = qiwtA 5 A 6 

z5 (q,,j,) = )t = , i f  (q,j) = (qt ,  1 ) .  
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and v4'(qi, wt ,  k) has been inserted into i~(dlw.uz(q,j) ) during the / - th  pass, 0 ~< l ~ p 
of step 5. For 1 = 0, that is, initially, 

tz(dl~.~z(q,j)) = t~(,/gw.~,z(q,j)). 

(a) c~ 4 ~- c~5, where 

~5 = (rs,  @, (~, A4A A,  ~ iz(dg'.vz(q,j)),  @,..., @, 71 

is the next (first) subword in/~(R) such that 

A 2n+1 v2(p, wt , k) @ -n  , 

and 71~(P, w, , k)72 = t*(Rp). 
(b) I f p  is inF ,  then c~ 5 ~- cd 9 , where 

% = (,o, @, ~ ,  A~A ~ ~ ~l(q, ~ , i )d~(q l ,  ,oi, 1) -.. 

v4(q, , wg,_~ , n) @,..., @, 71v2(p, w t, k) ~ 72, (~, (~, ~ A%n+l, |  

Then  T a proceeds to step 7. (After setting Jg~o.uz(q,j) = {d},  T a overprints tape 9 
with A 2n+1 

6 "1 

Next, let w t ---- b~..- b~, ~(p, b k , Z)  contain (q", bk', d l ,  d~), and 

v = b 1 "" bk_lbk'bk+ 1 ... b n . 
(c) (#5 ~- ~n ,  where 

v~ = ((r~ ,d~), @,..., @, ~I~(P, ~, , k) ; ~,~ , (~, |  ~ ~l(q", ~, k + ,tl), | 

(After computing 3(p, bk, Z), T a prints vl(q", v, k + dl) on tape 9 and enters state 

(~o, a~).) 

Several cases arise. If  q" is not in F and d 2 = 0 then T a ignores this case since, by 
definition, v2(q", v, k + dl) would be a member of/~(Rp+I) =-/~(Ro). There  remain 
three cases to consider, namely, q" in F, q" not in F and d~ = 1, and q" not in F and 

d2 : --1. 

(d) q" is in F. Then  ~6 FS- c(0, where ~9 is as in (5b). 
(e) q" is not in F and d 2 = 1. Then  using 

v(K • r • N.), 

T a copies vl(q", v, k + dl) from tape 9 to tape 2. That  is, T a inserts va(q", v, k + dx) 
into t~(Jd~.uz(q,j) ) (since (q", v, k - /d~) is a member of dgw.uz(q,j)), using tape 8 to 
determine its position. Then,  T~ proceeds to step 6. 
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(f) q" is not i n F  and d 2 = 1. (This is not possible i f y  = E.) Then  T a reads the 

symbol Y in I* (~ . , (q" ,  k + dl)) on tape 1 (obviously, T a can find Iz(J/g~.u(q", k q- da)) 
in/*(r) on tape 1). I f  Y = ag then T a overprints the symbol A 7 in t,(Jt/'w,~z(q,j)) with 
ag and goes to step 7. If  16 Y J :  ~r T3 goes to step 6. 

A2n+l (6) If  v2(p, w, ,  k) is not the last subword in ~(Rp) such that v2(p, w t ,  k) ~ - n  , 

then T 3 goes to step 5. I f  v2(p, w t ,  k) is the last, T 3 goes to step 7. 
(7) If  the symbol scanned on tape 7 (see step 4) is not A1, then T 3 returns to step 2. 

Otherwise, T a enters the final configuration stated in the lemma. 
The  next lemma says that A can compute b~(Brz) given b~(Br) and Z. To  accomplish 

this, A computes ~(Mw.uZ) for each w in r --  2~. 

LEMMA 3.4. For each WSA S, there exists a positive integer C 2 and a 2c=~-tape - 
bounded T M  T 4 = (K 4 , 27, W4,84 ,  P4, F4,10) ,  with W4 containing 1" and with two 
distinguished states ql and q2, satisfying the following: For each word w in r 

w = a t "'" an, with a I = r and an = $, Z in F, y in *, Jo in N n ,  and u in 2 %  

(ql,  ? r ? ~(Br), u2 ~ v2, al "'" ~ aj o "'" an,  Ua ? % ,  u5 ~ %, u6 ~ %,  

~(K X Nn), ~ >(K • r • Nn), Uo P vg, ulo ~ %0) 

where 
Ul0 ~ Vl0, Ui ~ Vi 

and 
Uj  ~ Vi I 

are in H 2 for i in {2, 4, 5, 6, 9}, and 

max{I lgiV i 1} < 2 c2" 

for i in {2, 4, 5 ,6 ,9 ,  10}. 

Proof. Let cz and the 10 tape T M  T 3 be as given in Lemma 3.3. The  work tapes 
of 7"4 are those of T a . The  procedure is such that each work tape of T a has to store at 

most 

[ t~(Br)l < 2 c~" 

cells. Thus, T a is a 2c=~-tape-bounded TM.  Intuitively, T 4 stores the 7-tuple T 3 
together with S and Z in its fsc. I f y  @ E then the initial contents of tapes 2 and 10 

t6 All other values in dt'~.u(q", k + dl) can be ignored. In particular, any state-inputs must, 
by definition be in Rp. 

57I/6/z-7 
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are ignored, that is, overprinted with a symbol treated as/3. It  thus suffices to consider 
only the case where 

u2 P v2 = ul0 ~" vl0 = r" 3 ,  
that is, the casey = �9 

For each j ,  1 ~ j ~ gn-2, 7"4 computes wj on tape 9, T 4 computes t z (Mwj ,  Z )  on 
tape 2 (using Lemma 3.3), and then T a prints I , ( M ~ ,  Z)  A s on tape 10. As usual, we 
omit the straightforward details. 

THEOREM 3.1. For each WSA S there exists a positive integer C 2 and a 2c2"-tape - 
bounded A P T M  A such that T ( A )  = T(S) .  

Proof. Let  u be in T ( S )  and n = ] r [ /> 3. The  pdt of A is hereafter referred 
to as tape 11. Let  C 2 be the positive integer and T a the l0 tape T M  as given in 
L e m m a  3.4. The  A P T M  A will include the fsc and the l0 work tapes of T a together 
with tape 11. A stores the 8-tuple S in its fsc. 

T h e  definition o f f ( ~ ) - A P T M  together with the fact that T 4 is a 2c2~-tape-bounded 
T M  implies that A is a 2c2~-tape-bounded APTM.  

We now show how A "simulates" S on r Let/-/~'  be a sequence of S-configura- 
tions C1',... , C'  where 

Cl' = (q0, r 1, Zo,  0), 

and 

C1' --- ( P i ,  wi , j i  , Y i ,  ki), 1 ~ i ~ a, 

C / ~ -  CI+I 

for 1 ~< i ~< a. L e t / / ,  be the subsequence C 1 ,..., C , ,  1 ~< r ~< a, of top S-configura- 
tions in H~ .  Tha t  is, Ct is the l-th 1 ~< l ~< r, member  of H ,  if and only if kt = 0 and 
I{C/[k~ = O ,  1 ~<j~</}[  = l .  

Let  C r = (q, w,j ,  y,  0), where y = Yt "" Yx, t > /0 .  Let  

= Yt tz(By,)Yt_l l~(By,  y ,_ , ) . . .  Y2Iz(By, . . .y~)YIIz(By) 

for t ~ 0 and let ~ = �9 for t = O. Corresponding to Cr ,  let c~ r be the A-configuration 

((q, Y1), [" r p tz(By),  u 2 ~ v2 , al "" [" aj "" an,  u a F" v4 ,..., Ulo r" "/)10, ~), 

where (q, Y1) is a new state, u s [" v2 is in H2,  um r" vm is in H~ for 4 ~< m ~< 10, 

max{I u2v2 t, i UmVm [ 4 ~ m ~ I0} < 2 %', 

and as usual, w = al "'" a~. 
The  A P T M  A indirectly "simulates" S in the following sense. When S is at the top 

configuration C~, A is at the corresponding configuration cg~. Also, A codes each 
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component of C, and the topmost symbol Y1 of the stack of S as follows: q and I/'I are 
in the fsc, w and posi t ionj  are represented by 

a 1 " "  [, a t , . .  a n 

on tape 3, andy  is represented both in iz(Br) on tape 1 and in ~ on tape 11. 
We will show that, given the top S-configuration C , ,  if S can accept u before or 

upon returning its stack head to the top in some configuration C,+a, A will accept u. I f  
on the other hand, without accepting, S chooses to enter a new top-configuration Cr+ 1 , 
A will enter a configuration W r+l, simulating S in the above sense. Using a straight- 
forward induction on r, the number of top S-configurations, it will then follow that 
T(S )  = T(A) ,  proving our assertion. 

Initially, A is in 
C~o = (Po, [" r ?/3,..., ["/3, Zo) 

and S is in C 1 = (qo, r 1, Zo,  0). First, c~ o ~-A C~l, where 

% = ((qo, Zo), ~ r ~ ~(Bzo), u2 ~ v2, ~ r u, ~ ~, ,  , . . . ,  Ulo ~ vlo, (Zo~Bzo)) 

by copying the input to tape 3 and using y ----- ~ in Lemma 3.4 to obtain the encoded 

block i~( B zo ). 
To  see how A can simulate S from C~ to C~+1, let (p, Z, i) denote a new state for 

each p in K, Z in F, and i = 2, 3. Let  S and A be in the configurations, respectively, 
C~ and ~ .  A nondeterministically chooses a member of 8(q, a s , Y1) from its fsc 
(aj is obtained from tape 3). There  are four 17 possibilities for the fourth component of 

Be(q, a t ,  YI). 

(1) 8~(q, a s , Y1) contains (ql', a / ,  d, 0). If  ql' is in F, then A also accepts. 
Otherwise, 

where 

g'r+l = ((ql', Y1), @,  (~,  (~ ,  al "'" aj' [" as+a-,  a,~ , @ ..... 1(1~, ~) 

(2) 8~(q, a j ,  Y1) contains (ql', a j ,  d, 1). Then  S enters its stack in configuration 
(qx', x , j  + d, y ,  1). If  S can accept before or upon returning its stack head to the top, 
then A will be made to accept. Otherwise, for each next possible top S-configuration of 
the form C~+ x = (q(, w 2 , j2 ,  Y, 0), A will simulate S by entering an associated 
configuration of the form 

((q2', Y1), @, (~), (~), 61"'" [" b~, ".. 6 , ,  @ ..... (~, ~), 

,7 Recall that $t~ is a function from K • (F v0 {r $}) • F into the subsets of 

K • ( rW {r $}) x {--1, 0, 1} • (Fro {0, I, E}). 
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where 

First, c~ ~--A c~2', where 
b 1 ... b n ---_ w 2 �9 

((q~', I /1 ,2) ,  @, (~, (~, a~ ... a /  [" a~+a "" a, , @,..., |  ~). 

Next, to determine all possibilities for S, with S in configuration (ql', x, j + d, y,  1), 
A uses tz(dg'x.u(ql', j + d)) in I~(By) on tape 1 (obviously, A can find tz(X/g~.~(ql',j + d))). 
Two cases arise for t~(~'x.u(ql', j -[- d)): 

(a) Y = d ,  so that S accepts before or upon returning to a top-configuration. 
Then  A is to accept. 

(b) Y = A v . Then  S cannot accept before or upon reaching the top of stack. S 
may or may not return to a top-configuration. In this case, A nondeterministically 
chooses some state input (q2', w~, J2) to the right of Y in/~(~'~.~(q~', j + d)). Thus, in 
case (b), 

(~2t ~'A (~r+l 

(After choosing (qz', w 2 , J2), A copies w 2 to tape 3, moving tape 3 head to position J2 �9 
Then  A goes to state (q2', Y1)') 

(3) ~t~(q, ai,  Yx) contains (qx', aj,  d, Z) where Z is in F. Then  C r v--- s Cr+ 1 = 
(ql', x , j  q7 d, yZ ,  0). If  ql' is i nF ,  then A also accepts. Otherwise, A simulates S as 
follows: First 

fir ~ ~ ' ,  

where 

~a' = ((ql', Z, 3), @, (~, (~, e l . . .  a /  ~" ai+d "" an, 4,..., |  ~). 

Next, holding tape 11 fixed, using the other 11 tapes and the states as in Lemma 3.4, 

4 3' t~-Ac~4' , 
where 

qff4' = ((ql', Z), @, (~, u 2' [" v2', @, u 4' [" v4',... , u e' [" re' , ~), @, u 9' [" u9' , [" tz(Brz), ~). 

Finally, 

eft4' ~-a c~r+l ' 

where 

~r+l = ((ql', z ) ,  @ ..... |  ~Z(B~z)). 

(The tz(Brz) is obtained from tape 10.) 



WRITING STACK ACCEPTORS 197 

(4) ~o(q, a j ,  Y1) c~ (q~', a j ,  d, E). Then 

Cr W C,+ 1 = (qt', x , j  + d, Y, . . .  Y~, 0) 19. 

If ql' is in F, then A also accepts. Otherwise, 

where 

c#~+~ = ((q(, Y2), @, [" t~Byc.-Y~ , @ ,  a t ' "  a /  ~ a~+,~ ... an,  @, . . . ,  1@, p'Y~t~(Br,...r~)) 

with 

p' = YtlzBytY~_llZBr~yt_I ... Y31~Brv..r3 

for t  >~ 3 andp' = Efor t  ~< 2. 

Thus, if 

Cr ~ Cr+l = (ql', X, j + d, Y , " "  Y2,0) ,  

and S accepts, then A accepts. Otherwise, A simulates S by entering the associated 
configuration ~r+l �9 

It follows that A will accept u if and only if S accepts u during any computation, and 
thus T ( A )  = T(S) .  

Observe that in the proof of Theorem 3.1, A is nonerasing if S is nonerasing. By the 
comment made after the definition off(~)-APTM at the end of section one, i l l  is an 
arbitrary language accepted by an arbitrary nonerasing 2c~-APTM, then L is accepted 
by a 2c~-TM, for the same constant c. Hence there immediately follows: 

THEOREM 3.2. For each NEWSA S, there exists a positive integer C 2 and a 2c~- tape  - 
bounded TM M such that T ( M )  = T(S ) .  

4. MAIN RESULTS AND CONSEQUENCES 

Using the results established in Sections 2 and 3, we now prove our main results. 
We also exhibit some AFL properties of ~-q~ and ~~ A . 

18 Note that this is the only occurrence of erasing in the construction of A. 
xgift = l t h e n Y ~ "  Y2 = e. 
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DEFINITION. Let A = (K, 23, W, 8, qo, F, k) be a D T M  and let ,o be in T(A). If  
c~ 0 ,..., c~ m is a sequence of configurations such that 

(do = (q0, r t w$, t/3 ..... t/3), ~ ,  ~ v ,+l  

for each i, 0 ~< i < m, the state-component of ~,~ is in F, and for each i, 0 ~< i < m, 
the state-component of cg i is not in F, then ~o ,..., cgm is called a shortest accepting 
computation on w. 

Since A is deterministic, each word w in T(A) has a unique shortest accepting 
computation. 

DEFINITION. Let f be a nondecreasing function. A D T M  A ----(K, 23, W, 8, 
q0, F, k) is called af(a)-time-bounded D T M  if it has the following property: For each 
word w in T(A), if ~o ..... c~ is the shortest accepting computation on w, then 

r <~f(I w I)- 

Notation. For each nondecreasing function f ( @  let 

~ T I M E  
f(c~)--DTM 

denote the family of languages accepted by somef(a)-time-bounded DTM. 

Notation. For each nondecreasing functionf(a), let Two (f(a)) ~- 2 Its). 

Agreement. In this section, the symbol c (subscripted or not) always denotes a 
positive integer. 

We need the following result from [2]. 

LEMMA 4.1 [2]. 
- -  - -  ~ TIME 

~(~x)--DAPTM - -  ~(c~)--APTM - -  U TWO(elf(Ix))--DTM 
el>~l 

for each nondecreasing functionf(n) >/ log z n. 

COROLLARY 4.1.  

__ = ~ T I M E  
~Two(0~)-DAPTM - -  ~Two(ea)-APTM U Two(e I TWO(et~))--DTM 

e l ~ l  

for each c. 
Corollary 4.1, together with Theorems 2.1 and 3.1, leads to our first result. 

THEOREM 4.1.  

~WSA ~ ~176 = U ~ " 
e>~l 
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Proof. 

Thus 

U "~Two(ea)-DAPTM C "~DWSA , by T h e o r e m  2.1 
c>~l 

_C ~~ A 

_C ~ ~q~Two(~)-AeTM, by Theorem 3.1 
e~>l 

= ~ ~Two(c~)-DAPTM, by Corollary 4.1. 
cOn1 

~WSA 7___ .V(PDWSA ~_ U ~(~Two(cc0-ATPM �9 
c>/1 

To continue, we need the following result from [15]. 

LEMMA 4.2.1~ 

'~:(ct)--TM ~ t~($(ct))'a-DTM 

for any nondecreasing function f such that f(n) >~ log2 n. 

COROLLARY 4.2. For each c, .WTWOt,~)_TM _C .t~TWo(2ea)_DTM . 
Corollary 4.2, together with Theorems 2.2 and 3.2, leads to our second result. 

THEOREM 4.2. 

Proof. 

~ = ~NEDWSA ~ U ~176 " 
e~>l 

~) .,WTWOtc~)_DT M C s by Theorem 2.2, 
e>~l 

_C ~eN~wsA 

C U ~Two(~)-TM, by Theorem 3.2, 
c>~l 

_C U ~fTwo(~)-DTM, by Corollary 4.2, 
c~>l 

C ~ .s176 M . 
c~>l 

18 The  notion of acceptance in [15] differs trivially from that  given here, but  the result still 
holds. 
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Thus 

~NEDWSA = ~NEWSA = U ~/:~Two(ca)-TM " 
c>~l 

Remark. If  we generalize our model to one in which the input tape length can grow 
to f(n), f any constructible 2~ nondecreasing function, then similar results hold. 
Specifically, let f(n) n be any constructible nondecreasing function. Define a 
'~(n)-WSA" to be a two-tape device in which the input tape is a two-way read-write 
f(n)-tape-bounded work tape and the second tape is a stack tape. Define acceptance by 
final state only. Denote the family of language accepted byf(n)-WSA by 5r A . 
Then the results of the previous sections show that 

and that 

~(n)-NEDWSA ~ ~(n)-NEWSA ~ ~gUc>~I TWO(CI(a))-TM ~ 

Theorems 4.1 and 4.2 provide characterizations of ~WSA and ~NEWSA in terms of 
known families of languages. It  is natural to inquire as to the closure properties of 
these two families, that is, their invariance under certain language operations. Recently, 
the notion of an "AFL"has  been introduced [3] in order to unify the study of closure 
properties of families of languages. Thus it is natural to investigate these properties of 
~WSA and tot~NEWS A within the framework of "AFL"  theory. 

By way of introduction and for completeness, we recall the definition of an "AFL".  

DEFINITION. An abstract family of languages (AFL) is a pair (Z, .~), or s when Z 
is understood, where 

(1) Xis an infinite set of symbols 
(2) for each L in 5r there is a finite set Z L _C X such that L C ZL* , 
(3) s is closed under the operation of u , . ,  + ,  inverse homomorphism, c-free 

homomorphism, and intersection with regular sets, 
(4) L @- ~ for someLins  

In the sequel we shall assume that the reader has had a casual acquaintance with the 
subject of AFL theory. 

We first consider whether s176 A and 5qNEWS A are principal 21 AFL. We shall show 
that both are principal AFL. 

2o Let a be a distinct symvol in W. A nondecreasing function f is said to be constructible if 
there exists a f(n)-DTM A = (K, l ,  W, 3, q0, {q}, 1) such that for each integer n > 3, 

(qo , r ~ an-e$, P 8) ~ - a  (q, Ca n-2 P $, a ltn-2~ ~ 8). 

~1 A principal A FL  is an A F L  generated by a single language, i.e., it is the smallest AFL  
containing the given language. 
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We first consider ~WSA �9 The following result is noted after Corollary 3.5 in [1]. 

LEMMA 4.3. Let f be any superadditive 2z deterministic time-constructible 2a non- 
decreasing function such that f(2n)/f(n) >/max{(1 + c) •, (f(n)) c) for some integer c 
and all sufficiently large integers n. For each positive integer c let ~DETTIMEq(c~)) be the 
family of all languages accepted within time-bound f(~)23 by a deterministic Turing 
machine M having a single tape. (Here M accepts by both final state and empty storage 
tape.) Then 

U ~(~DETTIME(/(ca)) 
c>~l 

is a principal AFL. 

PROPOSITION 4.1. -WWSA is aprincipal AFL. 

Proof. By Corollary 4.1 and Theorem 4.1, 

o~ TIME 
~ W S A  = U U TWO(C 1 TWO(ega))-DTM 

c t ~ 1 % ~ 1  

- -  ,.~T1ME 
- -  U Two(Two(ca)) DTM" 

It is obvious that ourf(cn) is superadditive. As pointed out after Definition 3.2 of [1], 
"deterministic time-constructible" includes the "real-time" functions in [17]. In [17] 
it is shown that ourf(cn) is a "real-time" function. Clearly,f(2n)/f(n) ~ max{(1 + c) n, 
(f(n)) c} for some integer c and all sufficiently large n. Thusf(cn) satisfies the hypothesis 
to Lemma 4.3. Thus, by Lemma 4.3, ~CPws A is a principal AFL. 

We now consider ~NEWSA �9 The fact that "~NEWSA is a principal AFL is a conse- 
quence of Theorem 3.3 in [1], restated here as 

LEMMA 4.5. Let f by any superadditive deterministic-tape-constructible 2~ nondecreasing 
function. Let ~*aDETTAPE(:) be the family of all languages accepted within tape-bound f (c 0 
by a deterministic Turing machine M having a one-way read-only input tape without 

22 A nondecreasing function f is superadditive if (i) f(n) >~ n for some no and all n ~< no ; 
and (ii) for every nl and n2 ,f(nl) + f(n2) <~ f(nl + n~). 

23 We  are omitt ing the definitions of  "determinis t ic  t ime-const ruct ib le"  and "accepted within 
t ime -bound"  since a presentat ion would require a lengthy formalization which is not  used in 
the body of  our argument.  

24 We are omitt ing the definitions of "determinis t ic  tape-construct ible"  and "accept  within 
f ( a ) - t a pe - bound"  since a presentat ion would require a lengthy formalization which is not  used 
in our argument.  
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endmarhers and a finite number of storage tapes. (Here M accepts by both final state and 
empty storage tapes.) Then 

U ~DETTAPE(/(ca)) 
c~>l 

is a principal A F L .  

PROPOSITION 4.2. ~eNEWS A is a principal A F L .  

Proof. For  each c, let f (cn)  = 2 on. Clearly, f (cn)  is superadditive.  In  [11, p. 149], 

it is noted tha t f (cn)  is "determinis t ic  tape-construct ible".  Fur thermore ,  using well- 

known techniques, it can be shown that 

U *~DETTAPE(f(cn)) = U ~I(en)-DTM" 
c~>l c~>1 

Thus,  by  Lemma 4.5, -WN~WSA is a principal A F L .  

LEMMA 4.6. Let M '  and M "  be WSA(NEWSA) .  Then there exists a W S A ( N E W S A ) M  

such that T ( M )  = T(M' )  n T(M").  

Proof. Since the construction of M involves a well-known argument 25, we omit the 

proof. 
Combining Propositions 4.1 and 4.2 and Lemma 4.6, we have 

THEOREM 4.3. ~aws A and ~aNEWSA are each intersection closed principal AFL.  

I t  is shown in the proof of Theorem 1.2 in [6] that an A F L  which is intersection 
closed is also closed under  e-free substitution 2e. Thus  we have 

COROLLARY 4.3. *LPWSA and "~NEWSA a r e  each e-free substitution closed A F L .  
We conclude with several open questions: 

(1) Is .Wws A = ~NEWSA true ? 
(2) Does there exist a constructible tape function f that characterizes, in some 

sense, the family Sews A ? 
(3) Is it true that for each W S A  A there exists a halting 27 W S A  A'  such that  

T(A)  = T(A' )  ? 

26 For example, see Lemma 2.7 in [13]. 
2e Let L _C 271". For each a in 271, let La _C 27+. Let s be the function defined by s(c) = {c), 

s(a) = La for each a in 2:1, and s(al "'" a~) = s(al) "'" s(ak) for each k /> 1 and a~ in 271. Then s 
is called an c-free substitution. A family .~ of languages is said to be closed under c-free substitution 
if s(L) is in .LP for each L _C 221" in ~ and each E-free substitution s such that s(a) is in Z "~ for 
each a in 271 �9 

~v A WSA .4 is said to be halting if for each word w .4 either accepts or rejects w. 
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(4) Is -WwsA closed under complementation ? 
(5) Let ~ S A  denote the family of languages accepted by two-way nondeter- 

ministic stack acceptors (with a read-only input tape). Then, 

(a) Is *t~2NSA properly contained in ~WSA ? 
(b) Are "~2NSA and "~NEWSA incomparable ? 

Note that if the answer to (I) is "yes" then the answer to (2) is "yes". Also if the 
answer to (3) is "yes" then the answer to (4) is "yes". It is easily shown that .LPsEws A is 
closed under complementation. Thus if the answer to (4) is "no" then the answer to (1) 
is "no". 
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