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INTRODUCTION

In recent years, automata theorists have devoted a great deal of effort to the study
of two-way acceptors. Examples of such devices include the two-way pushdown
acceptor [8], the time-bounded Turing acceptor [10], and the tape-bounded Turing
acceptor [10]. A natural extension of these models is obtained by allowing the input
head to print on the input tape. A trivial example of the “extended” model is the linear
bounded acceptor (Iba). Recently, a nontrivial example of the “extended” model has
appeared in the literature [14]. The device, called a “writing pushdown acceptor,” is
essentially a two-way pushdown acceptor that can print on its input tape. In this
paper, we introduce and study another example of the extended model, namely,
the “writing stack acceptors” (WSA) and their associated family of languages, Fwsa -
(As its name indicates, a WSA is essentially a two-way nondeterministic stack acceptor
that can print on its input tape.) We also study the deterministic WSA (DWSA), the
nonerasing WSA (NEWSA), and the nonerasing deterministic WSA (NEDWSA), as
well as their associated families of languages Fpwss , Lnewsa > and Lnepwsa
respectively. In particular, we characterize the four families of languages in terms of
Turing machines and auxiliary pushdown Turing machines, both with exponential
tape storage.

The paper is divided into four sections. In section one, the notion of a WSA is
defined and its operation formalized. Also in section one, the f(«)-tape-bounded
auxiliary pushdown Turing machine (f(x)-APTM) as introduced in [2] is recalled
and its operation formalized. This device is essentially a f(x)-tape-bounded Turing
machine (f(«)-TM), together with a pushdown storage, which is not memory limited.
(In case the pushdown tape is nonerasing, the definition of f(«)-APTM degenerates to
that of f(a)-TM.)

* This research was supported in part by the National Science Foundation under Grant
No. GJ454.

168
© 1972 by Academic Press, Inc.



https://core.ac.uk/display/82018419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WRITING STACK ACCEPTORS 169

The main results of the paper are that

ZLowsa = Lwsa = U Lo aPTM

¢zl
and that
£ NEDWsA = & NEWSA = U Z 2% TM
cz=1

Phrased otherwise, the main results of the paper provide a characterization of the
exponential tape-bounded APTM and the exponential tape-bounded TM, each in
terms of WSA. Sections two and three develop the machinery necessary to present the
main results. Section four establishes the main results, as well as some AFL properties.

Throughout the paper we assume that the reader has a casual knowledge of formal
language theory. The reader is referred to [12] for all unexplained definitions and
notation.

1. FormALIZATION

In this section we define a writing stack acceptor (WSA), together with several
important subcases. We also recall the notion of an “auxiliary pushdown Turing
machine” (APTM). A WSA may be informally illustrated as in Fig. 1. It consists of
a two-way read-write input tape ¢a, - @, $; a finite state control (fsc); and a stack
tape (as distinguished from a pushdown tape) Y, -+ ¥, , where the top of stack is the
leftmost B, to the right of T} . (8 denotes the blank symbol.)

DEeFINITION. A writing stack acceptor (WSA) is an 8-tuple S = (K, 2, I, §, &,
9 Zy , F), where

(1) K and X are finite, nonempty sets (of states and inputs, respectively);

(2) T is an alphabet containing Z, but not the seven distinguished symbols
6, —1, E, ¢, $, B, I (the elements of I" — X are called stack symbols);

(3) 8 is afunction from K x (I'U {¢, $}) X I into the subsets of

Kx{T'ui{e$) x{—1,0,1} x{—-1,0,1}

such that for each gin K and Zin I’

(a) if 8(g, ¢, Z) contains (p, b, d, , d,) then b = ¢ and d; is in {0, 1}, and
(b) if &g, §, Z) contains (p, b, d; , d,) then b = $ and 4, is in {1, 0};

(4) 8gisa function from K X (I"U {¢, $}) X I'into the subsets of

Kx{Tule, ) x{—1,0, 1} x(T'v {41, E})
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such that for each¢in K'and Zin I

(a) if 84(q, ¢, Z) contains (p, b, d; , dy) then b = ¢ and d, is in {0, 1} and
(b) if 84(q, $, Z) contains (p, b, d , dy) then b = § and 4, is in {—1, 0};

(5) gois in K (the start state), Z, is in I (the initial stack symbol), and FC K
(the set of accepting states).

The special character f is called a blank. The characters ¢ and $ are called the left
and right end-markers, for the input. Note that neither ¢ nor § occur in Z. The initial
input to a WSA is an element of ¢Z+§. The next move function when the stack
head is not scanning the top of stack is denoted by 8. The next move function when the
stack head is reading B at the top of stack is denoted by 85 .

Agreement. The positions on the stack are numbered from right to left, beginning
with the leftmost B at position 0. The symbol y, unless specified otherwise, will denote
a word of the form y = ¥,Y,_; --- Y, ,! with each Y; in I', and will denote the stack
of S.

DerFINITION. A WSA S is said to be a deterministic WSA (DWSA) if 8(q, a, Z) and
84(g, a, Z) each contain at most one element for all (¢, @, Z) in K x (I'U {¢, $}) x I.

1 ¢ = 0 will denote the empty stack.
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Derinrtion. A WSA S is said to be nonerasing, abbreviated NEWSA, if for each
(0, Z)in K X (I'V {¢, $}) X I, (p, b, d, X) in 84(¢, a, Z) implies X =~ E. A non-
erasing DWSA is abbreviated as NEDWSA.

Notation. Let N denote the positive integers. For each positive integer n let

N, ={l,..,n}.
DErFINITION. A configuration of a WSA is any element of the set

U (K x ¢I'"2$ X N, x I'* x (N U{0})).

nz=3

DerFiNiTION.  Each configuration of the form (g, w, 7, y, 0) is called a top configura-
tion.

DeriNITION.  For each WSA S let — (or +—¢ when S is to be emphasized) be the
relation on the set of configurations defined as follows (for n > 3, @, = b, --- b,
wy = by b, bbb,y =Y, Y;,and b and each Y in I'):

(1) (B w1, 1,9, §) = (g we, 7, 3, m) if &(p, by, ;) contains (g, &, dy, dy),
r=1i-+td,andm =j + dy;
(2) Let C=(p,w,4%0), r=i-4dy, and let 8(p,b;,Y;) contain
(9,5, d,, X). Then
(8 Cr—(g, wy,7,3Z,0)if X = Z,
b) C—(gwy,n, Y, Y,,0)if X =E,
() Cr—(gwy,r,»0)if X =0,
(d) Cr—(gwy,r,y,NiIfX =1
Thus (2) implies that if .S is scanning 8 at the top of stack, §; will depend on Y, ,
the symbol to the left of 5.

Notation. Let

liandii(%andrisk—,

when S is to be emphasized) be, respectively, the transitive and reflexive-transitive
closure of +—.

DeriNiTiON.  Each configuration C such that (g, , ¢u$, 1, Z,, 0) %5 C is called an
S-confifuration.

DerinrTION. A word u in 2% is accepted by a WSA S if

(qo ’ ¢u$’ 1’ z() 4 0) '_*S_' (p’ ¢7)$’j’y’ m)
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for some p in F and some S-configuration (p, ¢v$, 7, y, m). The set of all words
accepted by S is denoted by T'(S).

Notation. Let Lysa(Lowsa s Fnewsa » L nepwsa) denote the family of all sets
accepted by some WSA (DWSA, NEWSA, NEDWSA)S.

An APTM may be informally illustrated as in Fig. 2. It consists of a two-way
read-only input tape ¢a, ‘- a,_,$; a finite state control (fsc); a pushdown tape (pdt)
Y, - Y, ; and %k two-way infinite cead/write work tapes.

a a. a | READ-ONLY
¢ 2 o o 0 i o o o n-1 $ l—— INPUT TAPE
A
FINITE
STATE
CONTROL
A 3 A
v
Y, e o ¢ Yy 8 B eese 4———?2?,?DOWN
v
* o o B ya B ® o o
k
READ-
_ WRITE
v WORK
TAPES
) 8 z 8 LI
FIGURE 2

Notation. For each set X, let Xz = X — {B}.

DErINITION. An Auxiliaty Pushdown Turing Machine (APTM) is an 8-tuple
(K,Z,W,38,4q,, Z,,F, k), where
(1) K and Z are finite, nonempty sets (of states and input symbols, respectively),
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(2) W is an alphabet containing Z, but not the special characters 6, E, ¢, and §,
(3) kis a positive integer,
(4) 8 is a function from? K X (ZU {¢, §}) x W* x W, into the subsets of
K x{—1,0,1} x (W; x {—1,0, 1})® x (W, U {§, E}), such that for each p in K,
B;inW,1 <i< kand Yin Wy,
(a) if 8(p, ¢, By ..., By, Y) contains (g, d, oy ..., 0, X), then d is in {0, 1},
and
(b) ifé(p, $, B, ,..., By, Y) contains (¢, 4, oy ..., 0}, , X), then d is in {—1, 0},

(5) g is in K (the start state), Z; is in Wy, and F C K (the set of accepting
states).

The special characters ¢ and § are called the left and right end-markers, respectively,
for the input. Elements of W — X are called working symbols. Z, in (5) above is called
the initial working symbol.

DEFINITION. A deterministic APTM, abbreviated DAPTM, is an APTM in which
8(p, a, By ,..., By, Y) contains at most one element for all (p, a, By ,..., B;, Y) in
Kx2ui{e,$) x Wh x W,.

DrrintTION.  Let A4 be an APTM and | a distinguised symbol which is not in W.
Then a configuration is any element of
K x H, x H® x w*,
where .
Hy =1 ¢2§ U ¢ZH§ P U ¢ P Z*§ U ¢2* | 2+§
and
H, = BWe* 0 Wk M B U We* Wt
Agreement. Unless specified otherwise, the pdt will be denoted by the word
y=Y, Y, J=0,Y,in W,.

Notation. Let +— (or —4 when 4 is to be emphasized) be the binary relation on
arbitrary configurations defined as follows. Write

(Pray 1 a; @y, Uy O ey g [0, Yy o Y)

— (9: a, I\ai-{-d tdy ull I\ vl’,“w uk’ [\vk,$ ')’)

if (¢, d, 0y ,..., 01, X) is in 8(q, a;, By ,..., By, Y}), and the following two conditions
are satisfied:

2 W js the k-fold cartesian product.
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(1) Either
@ v=Y,YV,XifXisin W,
(o) y=Y, - Y,if X =86, or
() y=Y, Y, ,if X =E,

(2) For each j, 1 <j < &, with x; and y; in Wy*, B; in W, B; in W, and
o; = (B, dy),

(a) if (B;,d,)isin W, x {—1} and

;[ v; = X,B; B;y;,

then
u vy = X;1 B;B'y;,
(b) if (B/,d;)isin W, x {—1} and
u;Mv; =1 B;y,,
then
u' v/ =1 BBy;,
(¢) if (B, d;)isin W, x {0} and
u;Mv; = X; [ B;y;,
then
u/ Moy = X;I B/'y;,
() if (B;,d,)is in W, x {1} and
u;lv; = X, B;B;y;,
then
u/ v = X;B;/ 1 B;y;,
and
() if (By,d;)isin W, x {1} and
uj[\‘vj = XjrBj,
then

u/ v/ = X;Bj'I'B.

Notation. Let —* and #* (or —* and *, when 4 is to be emphasized) denote,
respectively, the transitive and reflective-transitive closure of —.

DerFINrTION.  Each configuration C such that (g, , I ¢u$, [ B,y M B Zp) Py C'is
called an A-configuration.
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DermviTioN.  Let 4 be an APTM and let # be in 2*. Then 4 is said to accept u if
(90> ¢u$, 1 Byes 1 By Z) 4 C for some configuration

C = (qulPvg,ull\vl,...,uk]‘vk, Yl e YJ)

with g in F. Let T(4) denote the set of all words accepted by A.

We now observe that by deleting the pdt component in the definitions of 8 and —
for APTM, we obtain a version of the familiar Turing machine. Specifically, we have
the

DerFINITION. A Turing Machine (with k work tapes), abbreviated (k tape) TM, is a
T-tuple T = (K, 2, W, §, g , F, k), where

(1) K,Z,W,q,,F, and kare as in an APTM, and
(2) 8 is a function from K X (ZU {g, $}) x W® x W, into the subsets of
K X {—1,0,1} x (Wg x {—1,0, 1})® x {6}.

The definition of deterministic TM (DTM) is obvious. We omit the formalization.

DeriNITION, Let f be a function from the positive integers into the positive
integers. Let 4 be an APTM such that for each word w in T(4), there exists some
computation (gq, ¢ I @8, I By 1 B, Zo)b—a " =4 (g, 01 [ Vgy g [ Oy U N 0y, Y0 Y)
with ¢ in F and | ;1 v; | < f(| w |)® for each j, 1 <j < k. Then 4 is said to be an
f(«)-tape-bounded APTM (f(x)-APTM).

Note that if a language L is accepted by some nonerasing f(«)-APTM, then L is
accepted by some f(o)-TM.

Notation. Let Zyy-partv » Lrw-artv » Lrw-prm > and Fyy 1y be the families
of languages accepted by, respectively, f(a)-DAPTM, f(«)-APTM, f(«)-DTM, and
f(e)-TM.

2. SimuLaTiON OF 2°=-Tare-BounDED DAPTM BY DWSA

In Sections 2 and 3 we show that the following four statements are equivalent for
an arbitrary language L:

(i) L = T(4) for some 241*-tape-bounded DAPTM 4 for some integer ¢; .
(i) L = T(A4) for some DWSA S.
(i) L = T(A4) for some WSA S.
(iv) L = T(A) for some 2¢*-tape-bounded APTM 4 for some integer c, .

3 Since an APTM cannot erase, the length of each storage tape cannot decrease during a
computation. For each word W, | W | denotes the length of W.
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In this section we prove that (i) implies (ii). It is trivial that (ii) implies (iii). In
Section 3 we prove that (iii) implies (iv). That (iv) implies (i) is a known result [2].

In constructing new WSA or new APTM we shall usually describe these machines
in an operational form only. It will be clear, however, from our description and from
standard techniques that a formal specification can readily be made.

We now consider the proof of (i) implies (ii). We first ask the reader to observe thata
DWSA can perform certain simple tasks.4

2.1. Given any integer c, a DWSA can move its stack head exactly 2¢* positions
into its stack, where w is the current input word.

Proof. By marking its input tape as in a LBA, any DWSA can “count” to 2¢%l,

2.2, Let c be any integer and D, any symbol not in I'. A DWSA can print a word of
the form

Wy = D12°|W|
on track two of the stack where w is the current input word.

Proof. Since any DWSA can “count” to 2°i%l, it can obviously print the word =, .

2.3. A DWSA S can be constructed with the following property. Let ¢ be a given
integer and w a given word. Let v denote the final subword on either track one or two of
the stack, with | v | = 2¢%1, Then S can print v on track one of the stack.

Proof. 1In either case, .S merely copies a block to the top of stack on track one
using its ability to count to 2¢1%l,

2.4, A DWSA S can be constructed with the following property. Let ¢ be an integer,
w an input word, 4 a new symbol, and y and z track two stack words, with | 2| = |y | =
2¢1wl, Then S, having y Az on track two of its stack, can determine whether or not z is
of the form xy for same x.

Proof. Here S again uses its ability to count to 2¢/*! and “compares” by repeatedly
erasing final symbols of z that match with final symbols of y. In any case, S always
erases up to symbol 4.

In 2.5, Theorem 2.1 and occasionally in Section 3, we shall order the words over some
alphabet. We thus recall the notion of lexicographical order.

DEeFINITION. Let B be any set, simply ordered under <. The relation <, called
the lexicographical order on B, is defined as follows. Let # = u; - u,, and

¢ The reader is referred to [7] for details.
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V= 0y 't Uy, M M, With each u;; and 0y; in B, 1 <72 <<m, 1 < j << n. Write
u & v if either
(a) uy; << vy, for the smallest § such that u,; £ v, , or

(b) uy; =vy,1 <j<<mandu % v

Notation. Let ¢ be given integer, 2 an alphabet, and e, an enumeration D ,..., D\
of the elements of 2. Let < be a lexicographical order on 7.8

25. A DWSA S can be constructed with the following property. Let G/, the i-th
word in the ordering < on D¥'™, be at the right of the stack on track two. Then S can
copy G, at the top of stack on track two, simultaneously replacing G, by G, on track two.

Proof. S copies G;' on track two as in 2.3; however, S replaces G, by Gj,; by
counting in base | Z |.

TueoreMm 2.1. For each 2C%-tgpe-bounded DAPTM A, there exists a DWSA S
such that T(A4) = T(S).

Proof. Letubein T(A)andn = | ¢u$ |. We shall construct S so that S simulates 4.
In order to describe the computation of S, we need to introduce some notation and
concepts.

Let 4, ,..., 4, be new symbols and

(gA = {C I (‘Io , ¢l u$, I\Igr"’ [\B’ ZO) '_: C}

For each C in €4, we now define a coded configuration C'. Let
C=(qa " Da; " Gy, U oy g D Vs Y, Y)

be an arbitrary element in € ,,and let » denote the word v = 4yu, [ v,d; -+ Ay, [ v, 4.
Let’

C’ — qlal l\ai ngYJ A2m,
where m is such that

|C'] =2%

for some integer C,. Let €, ={C'|CinG pand p = |E, |.
Let & = KU Wy U{} 4,, 4,}. Then,

w<| 2P

53Y,;=¢if J=0.
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Let e be an enumeration D ,..., D4, of the elements of 2. For each s,
. e,n
1<i<|2 1Y,

let G;' be the i-th member of € ;' in a lexicographical ordering <€ of € /.
We now introduce notation to label certain elements in €. Let

C = (P: a; °° [\aio Ay, Uy I\ V1 5eeey Uy I\ Uk, Yl e Y])a
J = 1 bein%,, and let 7 be the sequence C, ,..., C, , where

Cl = (90 ) ¢ I\ u$; I\B,"'y Pﬁy Yl)y Yl = ZO y Cr == C)
and

Ci—Cin

for ] <j<{r—1. Foreachyj, 1 <j < ], let II(j) be the two-element subsequence
C,t) » Cotiya » With g(7) the largest integer, 1 < g(j) < r such that

(1) the pdt component in C,; is ¥, -+ ¥; and
(2) the pdt component in Cygy s Yy -+ Vi, -

The stack of S is divided into two tracks. Let p(r) denote the contents of the stack
of S when 4 is in the configuration C, . Let p,() and p,() denote tracks one and two,
respectively, of p(w). Let p, (=(j)), ¢ = 1, 2, denote the contents of track 7 when 4 is
in the configuration C,;y,;, 1 << j <C J. Then p,(#(j)) is of the form

71Co) 44Cot) 11 5
and py(m()) is of the form
Vszw(f) 4,G/

for some y, and y, with |y, | = |y, |, and M{(j) is some integer, 1 < M(j) < p.
Let I =7 —g(J—1)—1 and let =, when it exists, be the (not necessarily
consecutive) sequence C,;_q),». ... C, , of elements in 7 with pdt component Y -+ Y.

.....

Forl = 0, let
pi(m) = po(m) = .
forl £ 0Olet
Pl("l) = C;(141)+2 As Ascr',
and

pe(m) = G-+ 43 LGy, 1 <m(i) <M(]), g(J—-D+2<i<r
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The stack of S will record the A-computation to date, in the following sense. When 4
is in the configuration C, , then

pi(m) = pi(m(1)) - py(m(J — 1))ps(m1)
and

pelm) = pa(m(1)) =+ pal(m(] — 1))polm)-

Note that each subword C’ of p,(wr) “lines up” with a corresponding G’ in py(m). We
will sometimes denote subwords of p(w) by

C!;(.'i) A4 ’ C!;(f)+1 A3 ’ Cr,)
etc.
Gup 44, G 43, G
Intuitively, p(w) is a representation of pertinent information about the past behavior
of A. It also contains “‘guesses’ about the future behavior of A. In particular, for

J = 1, each G ;, represents the latest guess at the 4-configuration occurring in case 4
erases Y, and thereby revisits Y} . Thus the symbols

26)
G
are of special interest to S, and so are flanked (on the right) with the symbol

4,.
4,

Using this notation, we now describe how S updates its stack word p(«) for each of the
three possible moves of 4 on its pdt. The DWSA S will have each member of the
8-tuple 4 and the sequence e, in its fsc. Let

C/ =qa, - a; o an Y, 457,
where

v =du Moy dy e Ay o 4y,
with

u; [ v; = %;B; | B;Y;
for 1 <{j <4k, and
m=2%"—|qa - a; - an ¥yl

S proceeds as follows:

(3) S reads C,’ to obtain the & - 3-tuple Ty = (¢, 4;, By ,..., By, Y,) (by
means of the [ markers inv; and in g, *** @,) and stores T} in its fsc.
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(4) S computes §(T).
Suppose 8(qy, a;, By ,..., By, Y;) = T,, where
Ty ={(qs,d, 01,y 03, X,
There are three possibilities for X:

() X =Y,,,,asymbolin W;. Then

74 m'
Cri1 = ay M aya ap, Yy 4y,
with

’ CoM
m = 27" — [ gty [ @ypg 0t A Y54 ),
and
1 ! ’ ’
vo = Ay Mo Ay - Ay Moy 4y,

where each #;' | v/ depends on u; [ ¢; and o is as in the definition of — .
Using 2.2, 2.3 and standard techniques, S can be constructed so that it simul-
taneously prints

4,0,

4,Gy
to the right of p(w), given
c,’
()
and T . Then S returns to (3) to continue this simulation,
(b) X = E.7 Then
Crin = oty Mg o @y Yy 43

where v, and m’ are as in (a). Let 4, ,_; denote the rightmost 4, symbol in p;(=(] — 1)),
1 < 7 < 2. First S enters its stack scanning for the symbol

A4,J—1

Ay,

¢ Recall that disin {—1, 0,1}, and o;is in Wy X {—1,0, 1} foreachj, 1 <j < k.
7 Note that this is the only case involving erasing in the proof.



WRITING STACK ACCEPTORS 181

Next, S reads the symbol ¥;_,; from C;(,_y) and stores Y,_; in its fsc. Then S uses T,
Y, 1,and C, to print

45C744

4,Cria
to the right of its stack. Next, S checks if

Cria = Guu-n
on track two of the stack. By 2.4, letting
dy,5q = 4, YV = Gy »

4

and letting C;, be the final subword of Z, one of two possibilities must occur:

(©) Gy = Crya -
By 2.4, S erases every symbol to the right of
44,54
445

in the checking process. Then S erases

and labels

obsolete by printing

By 2.2, S can print Gy’ to the right of py(w). By 2.3, letting
v = Gpry) 5

S can copy Gyy(s_y) from py(r), printing G;_4) to the right on track one. Thus .S can
be constructed so that S prints

Ghr-p
G/

to the right of the stack. Then S returns to (3) to continue the simulation.

571/6/2-6
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(i) G-y 7 Cryq - By 2.4, S erases every symbol to the right of

A4,J—1

A 4,J-1
in the checking process, leaving the rightmost subword of the stack in the form
Cotr-p 4,01

Giuu-n A4,J—1 .
Then S erases

A4.J—1

44,54
and labels

Cou-p

Gumu—n
obsolete by printing
4y
4;.

By 2.5, S can print G, ;4,4 to the right on track two. By 2.3, letting C;, ;, = v, S
can print Cy;_;, to the right on track one. Thus S prints

Co—p)

Guu—nn

to the right of the stack. Then S returns to (3) to continue the simulation, beginning
again with Cj;_,, .

(¢) X =6. Then
Cri = gay "+ 1 Qg+ @Y1 A7,
where v, and m’ are as in (a). Next, S prints
o
4,GY,

using the method of (a). Then S returns to (3) to continue the simulation,
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If, in (a), (b), or (c), g, is in F then S accepts. Now S can surely write the initial
A-configuration and initial ¢“‘guess”

cy
Gy,
where
C, = qe¢lu$(d, By 4,Z, A§c2n—(n+3k+4)
and

G, = D} "
where B is a distinguished symbol treated as 8.

Thus, by induction on the number of moves of 4, S will accept ¢u$ if and only if 4
accepts ¢u§.
We now observe the following two facts:

(1) IfL is an arbitrary language accepted by an arbitrary nonerasing 2°*-tape-
bounded DAPTM, then L is accepted by a 2¢*-tape-bounded DTM for the same
constant c.

(2) Inthe proof of Theorem 2.1, S is nonerasing if 4 is nonerasing.

Observations (1) and (2) lead to

‘Taeorem 2.2. For each 2°-tape-bounded D'TM M, there exists a NEDWSA
such that T(S) = T(M).

3. StmuraTioN oF WSA BY 2¢-TapPE-BounDED APTM

In this section we demonstrate the implication of statement (iv) from statement (iii)
as asserted at the beginning of section two.

DeFINITION. For a given WSA S, a state-input of S is any member of

U K x ¢I'"2$ X N, .

n>=3

Notation. Given m > 1, let
!
o
be the relation defined as follows. For arbitrary configurations C and C’, let

Citc
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if there exist Cy ,..., C; , with C; == (p; , w;, J; , ¥; , k;) for each 7, such that
1) C,=¢CC =C,
(i) [k |k = 1}| < m, and
(i) foreachis, i <, C;+— Cyyyand k; > 1.

Let
I
Ct O,
if
1 '
Ce-C
for some integer m > 1.
Intuitively,
1
o

relates the first and last configurations ef an S computation in which («) the stack
head in each configuration, except possibly the last, is in the interior of the stack;
and (B) throughout the total computation, the stack head scans position 1 at most
m times.

Note that C = C' if by = ky = m = 1.

Notation. For each integer m > 1 and each S-configuration (g, w, j, yZ, 1), with Z
in I, let R,(q, w, j, yZ), written R,, , denote the set

{(prv, k)l (g, w592 1) % (p, v, &, y2, 1)}

Intuitively, R,, contains each state-input arising from the following computation.
S starts in configuration (g, w, , ¥2, 1), always stays in the stack interior, reads
position 1 at most m times, and ends in configuration (p, v, &, yz, 1).

DEerFINITION. Let o7 be a new symbol, Given S, w, and y in I, with | w | = #, the
transition mairix M, , (ot M., When S is to be emphasized) is the function from
K x N, into the subsets of

{A}U (K x ¢I'"2§ X N,)
defined as follows for each (g, 7) in K X N,,:
(1) Moy g)) ={L}if
(¢ 2,7, 9, ) = (p, 0,7, 3, 1),

with p in F, and (g, , j, ¥, 1) is an S-configuration,
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(2) If (1) does not apply and (g, w, j, , 1) is an S-configuration, then

M oo(0:) = (2,0, B) | (@ 2,1, 9, 1) b (B0, Ky 9, O))-
(3) If(q, w, 7,5, 1) is not an S-configuration, then .#, (g, j) = ¢.

We shall only be concerned with .#,, , in which (g, w, 7, ¥, 1) is an S-configuration.
Note that S accepts in (1).

Agreement. Hereafter in section four, w denotes a given word in ¢I+$ and
n=|w|=/|¢u$| > 3, where ¢u$ is the initial input to S. Sometimes a, -** a, is
written in place of w. y denotes a given word in I™*,

Notation. Let g =|I'| and s =] K|. Let < be a lexicographical order on
e"*§. Let My, y = {#1,,4(¢,7) | (/) in K X N}

DeriNiTION. The set
Bs,n.y - {Mw.u l w in ¢[‘n——2$},

indexed by <€ on the index w, is called a block.
We shall frequently write B, instead of B ,, , when S and # are understood.
Intuitively, given B, and any top S-configuration, then 4 can “simulate” S for the
case when .S moves into its stack. That is, given that

(41 » Wy ’jl ' Ys 0) ’_S— (‘12 » Wy 7j2 » I 1)’

and given B, , then to determine the future of S, 4 needs the element M, ,, , of B, .
In what follows we shall refer to several common words (“encoded forms”).

DrriNrTioN.  For each m, 1 and each (g,j) in K X N, , the words u(K x N,),
WK X ¢I'"2§ X N,), p(R,), M 4. (4, 1)), (M, ), and u(B,) are called the encoded
Jorms of, respectively, K X N, , K X ¢I"™2$ x N,,, R, , #,..(¢,])s My, ,and B, .

Notation. Let ex be the enumeration g, ,..., g, of the elements of K. Let

’ ’
Wy seny Wnos

be the words of I™~2 in some order. For each 7, let w; = ¢w;'$. Let 4, ,..., 4, be seven
new symbols,
We now assemble all the necessary encoded forms in the

Notation. Let
(K X Ny) = Ap(gs , D(g1,2) g, , 1) 4y,
where

g f) =47 457, 1<i<s 1<j<n
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Let
p(K X ¢I'" 2§ X N,) = 4y (g, , w,, 1vy(qy, @y 2) =+ vi(g, » Wpn-a s ) 4y,
where
v(@e,wi,j) = qu 45 477, 1<i<s, 1<I<g™? 1<j<n
Let u(R,(¢, w, j, ¥3)), abbreviated u(R,,) denote the word

B(R,) = 4p(q, Dyy(g,, wy 5 2) - v(q, Wn-s n)4d,,

where

vo(gi» wi, B) = 1(qs, w1 k)
if (¢; , w,, k) is in R, and

Vz(Qx‘ s Wy, k) = Aﬁ"“
otherwise.

For given y in I't and (¢,j) in K X N,,, let

i“("”w_,(q’j)) = V](q’ w’j)sz(ql y Wy I)Va(ql » Wiy 2) Vs(q, s Wyn-s» ”)?
where

() Y=oAif A, (¢]7) ={}, and Y = 4, otherwise
(B) vslg:» w1, k) = wi(gi,wy, B)if Y = 4; and (s, w;, k) is in Ay (g, f), and

2n+1
AG

Va(qi y Wy k) =
otherwise.

For y in I't, let u(M,,,) denote the word
A, Ap( M (g1 5 1)) A M (g1, 2)) dy - (A . 4(9s 1)) 4,4,

For y = ¢, let u(M,.,) = B, a distinguished symbol denoting the blank symbol.
For each y in I'*, let u(B,) denote the word

Ay (Mo, 9) Ap(M,, , 3) By -+ DM _,,9) 43 s

Fory = ¢, let u(B,) = B.
From the form of u(B,) it is easy to derive a positive integer C, such that

| u(B,)] < 2%

We now turn to the simulation of a WSA S by a 2**-tape-bounded APTM A. For
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ease of presentation and comprehension, this is done by a sequence of lemmas, each
of which modifies a construction given in a previous lemma. Since the pdt of the
APTM A4 is not required until the final construction, the preliminary lemmas will refer
only to the input tape and the work tapes of 4. For simplicity, each encoded form
required in the procedure is stored on a separate work tape.

Notation. Let T be a 10-tape TM and

G = (p, 4o Vg 5urry hyo I U3o)
and

G = (P, g’ I V'senr U0 | Vo)
be T-configurations such that

¢ g
For each , 0 < ¢ < 10, such that
u/ Mo = ulv;

(even though the i-th storage tape may have been altered and then reset during the

computation), let
@ = ui, ]\ Z)i'.

The first lemma shows how 4 initially computes the words (K X N,,)and

p(K X ¢I'2§ X N,).

LemMA 3.1. For each K, Z, and T, there exists a positive integer Cy and a 261*-tape-
bounded TM T, = (K, , %, Wy, 8,, p, ,Fy , 10), with W, containing I' and with two
distinguished states q, and g5 in K, , satisfying the following: For each word w in ¢I'$,
w=a, " a,,witha, = ¢anda, = $, j,in N, , and u in X+,

(g1, M eu$, M B, M Byay M@, an, BT B)
(4, © D, @ @, 1’1 24, ) P (K X N,
M (K X ¢Im2$ X N,), Vuy’ M vy, 40),
where u, ' v, and uy | vy are in H, 8

Proof. We omit the straightforward proof.®

8 Recall that
H, = MBWp* U Wg* B Wg* | Wt
% See [7] for details.



188 GIULIANO

Agreement. Hereafter in Section 4, we shall call the input tape of A tape 0 and
denote the contents of tape 0 by %z, = ¢u$.

In Theorem 3.1, 4 must simulate .S when S extends its stack, that is, when S prints
some symbol Z at the top. 4 indirectly simulates .S by, among other things, computing
w(B,.) from p(B,) where y is the contents of the stack. This portion of the procedure is
developed over the next three lemmas.

Briefly, to compute u(B,,), 4 computes u(M,, ,,) for each w in ¢I™2§. In turn, to
compute u(M,, ,.), A computes u(A, ,.(q, 7)) for each (¢, 7) in K X N,, . In computing
(A 4:(q,7)), A first computes p(Rp(q, w, j, yZ)) where p = sng"2. Formally, we
state this latter task as

Lemma 3.2, For each WSA S, there exists a positive integer ¢, and a 2°%*-tape-
bounded TM T, = (K, , 2, W,,8,, ps, Fs, 10), with W, containing I" and with two
distinguished states q, and q,, satisfying the following: For each word w in ¢I'*§,
w=a, " a,, witha, = ¢anda, = §,v(q, ) inv(K X N,),join N, ,uin 2+, yinI'*,
and Zin T,

(Quf\?ﬁ“&rﬂ(By)»uzrvz,% '"Pa,-o'“an,it,;l\%,usrvs,%F%,
Al"(Qli 1) = Pwgg) - g, m) Al s P (K X g2 X N,),

Uy [ 0, Uy [ Uyg)
% (g2, @, @, @, @, ug' M v, 45’ I 05, I w(R(g, w, j, yZ)
AIV(QI ’ 1) v(%]) P V(Qs y n) Al , s @) ),

where
U [ Vg, U [ Vg, Ug [ Vg, Uy [ Vyg s % [ s
and
u' Mo
arein H, fori = 4, 5,

max{| uyv, |, | ug0y |, | U5 |, | 105 |, | #0g |, | 419019 [} < 277,
and
p= Sngn—z

Proof. The sequence of sets!® R,,..., R, form an increasing chain of sets with the
property that R; = R,,, for some ¢, then R, ., = R, for all j >> 1. Since there are at
most p = sng”2 distinct state-inputs for S, there exists a positive integer i,
1 < 15 << p such that

R;

0]

= Ryyy = = Rp.

1% Recall that for m > 1,
Rm = {(py v, k) | (Qr w)jy .’)’Z» 1) *_fn (?) v, k> yZ) 1)}'
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For each integer m < 7,, T, computes u(R,, ), ultimately computing

uR;, = u(Rp).

The procedure is such that T, has to remember at most

max{| p(Rp)}, | p(B,)|} < 2"

cells. Thus T, is a 2%*-tape-bounded TM.

We informally outline the operation of T, . The TM T, stores the 8-tuple S together
with Z in its fsc. For each m 1 < m < 4,, T, computes (see next paragraph)
#{(R,.;,) on tape 6 using only p(R,,) on tape 5, p(B,) on tape 1, and Z. Initially, T}
prints p(R,) = (u{(g, w,/)}) on tape 5. Upon computing u(Ry.), T» checks if
p(R,) = w(Rpma)- If so [then p(R,,) = p(Rp) and m = 4], T, enters the final configu-
ration. Otherwise, T, replaces p(R,,) by u(R,4,) and m by m 4 1 and returns again to
compute the new u(R,,.,). In case y = ¢, T, computes (R, ,,) using only u(R,,) and Z.
In this case, T, ignores one step in the procedure.

There remains to show how T, computes pu(R,,,,). Let

VZ(Q? Wy, k) #* A§n+1

be a word in p(R,,) such that w, = b, - b, , and 8(g, b;, , Z) contains (¢’, b;', d, X) for
some X in {—1,0, 1}. Letx = b, -~ by_4b;'bs1, -+ b, . T, computes p(R,,,) on tape 6
by executing the following steps for each

V2(q’ We k) #* A§n+1:

(1) (g, w, , k) is copied?® to tape 6;

(2) If X = O then v(q’, x, & + d) is copied® to tape 6;

(3) If X = —1 (impossible if y = ¢) then each vy(q”, @', [) is copied!* to tape 6
from (A, (¢, k + d)) in p(B,), with

vo(g", w', 1) # AFH

The details for carrying out (1)—(3) are straightforward and are omitted.

In the next portion of the procedure, 4 computes u(M, ,z) by computing
u( M ., 2(q, 7)) for each (g,7) in K X N, . 4 uses u(Rp(g, w, j, yZ), w, Z and p(B,) to
accomplish this latter task.

11 T, stores the integer m in unary form on tape 4.

12 In the corresponding position as on tape 5.

13 T, first locates the word on tape 8 to determine its position on tape 6.
14 In the corresponding position to the right of Y in .4, (¢’, k 4 d).
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Lemma 3.3, For each WSA S, there exists a positive integer c, and a 2¢-tape-
bounded TM T, = (K, 2, Wy, 84, ps, Fy, 10), with W, containing I' and with two
distinguished states q; and g, , satisfying the following: For each word w in ¢I't§,
w=a, " a,,witha, =¢tanda, = $,ZinI',yinI'*, j,in N, ,and uin 2+,

(91, D ¢ul, M p(By), up P vg, aq o D@ o @y, Uy [ 0y, U5 [ 05, g D D
MK X Np), P (K X ¢I=2§ X N,), ug P vy, tgg | 9y0)

}';'k: (9, ©’ @) M (Mo, y2),s ®’ uy Mg, ug’ M og, ug 1 oy, @) ’ uy I vy, @)’

where
u vy, Uy 0y9 5 u; Mo,
and
uil I\ ‘Z)i,

arein H, for 1in {4, 3, 6, 9}, and max{| u;v; |} << 2% foriin{2, 4,5, 6,9, 10}.

Proof. Let ¢, and the 10 tape TM T, be as given in Lemma 3.2. The work tapes
of T, are those of T, . The procedure is such that T’; has to remember at most

| w(B,)] < 2%

cells. Thus T is a 2¢2-tape-bounded TM. Intuitively, T, stores the 7-tuple T,
together with S and Z in its fsc. Ty computes u(M,, ,z) by computing u(#,, ,2(¢, 7))
for each (¢,7) in K X N,,. To compute u(#, ,2(4,7)), Ty uses u(Rp(g, w, §, yZ))
(first computing the latter by Lemma 3.2), S, and u(B,). In case y = €, T; computes
w(My, z) using only u(Rp(g, w, j, Z)) and S. In this case, T ignores one step (indicated
below) in the procedure.

We now outline (steps (1)-(7)) the procedure for Ty. For each i, 1 < 7 < 5,
7<i<9,andd,in{~—1,0, 1}, let r; and (74 , d,) be states in K, . Let %, be the start
configuration stated in the lemma. For convenience, we assume that tapes 2 and 9 are
initially blank. Thus,

%0 = (41 ’ r ¢u$y F.U'(By)> [‘ﬁ, al F ajo i an ’ u4 I\ 7)4 yeeey us F '06 >y
Mgy, 1) (g, m) 4y, P (K X ¢I™72§ X N), 1B, tgq [ 040)-
(1) €,+—%,, where
%1 = (yl > @s @» Ad B, @»'“» @’ Al ¥ V(Ql s 1) - v(?s > ”) Al s ’ ®> )

In steps (2)-(4), T, prepares to compute A u(# ., ,2(q, 7)) on tape 2 for the next
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(first) »(g,7) in ¥ X N,). Thus, let®® (¢, ;') be the element immediately preceding
(¢:) in K X N, in an ordering of K X N, in an ordering of K X N, . Let

A= Ad"(ﬂw.yZ(QI > l)) 4, A4:“'(‘//lw,1lz(ql’j’))‘
(2) €+ €., where

Co = (12, @r @7 AAT B, ®""’ @’ Ap(gy, 1) -+
Mg, 7) - (gs» ) 4y, @, 1 (g w5 7), @0)-

After printing ,(q, w, /) on tape 9, T begins a loop by entering 7, . Initially, (g, j) =
p J p g ¥, W4, J

V(Ql ’ l))
(3) €€, where

€= (13, @: @: 4. A0 f"e(‘ﬂw.uz(qrj))’ @""’ ®)

and

a“a(‘//lw_yz(q’j)) = Vl(q’ w, ) A7V4(q1 » Wy s 1) e V4(qs » Wyn—z s )
each

vy(gi, we, k) = A%”“.

(T prints an “empty” copy of u(#,, ,z(g, j)) on tape 2.)
(4) €;+~%,, where

Cy = (14, @ses @, uy' 1 vy, ug', [ o', [ (Rp), Ap(q1, 1) = (g.4)
Pee V(Qs s n) 4,, ’ @’ @)

and the initial and final configurations are as in Lemma 3.2. (For the next (first)
¥(g,j) in K X N, , with w, y, and Z fixed, T, computes u(Rp).)
The next step is executed for each

vo( P, Wy s k) # A§n+l

in u(Rp).
(5) Let u(#+,,,2(g, ) generically denote any word of the form

V1(Q> w, ]) A7V4,(q1 sy Wy 1) V4,(qs y Wyn—g » n),
where for each (g; , w, , k), either
() va'(qi, wes k) = vy(gs, e, k) or
(i) vy(g,w;, k) = qu, 45" A5

B(g,j) =Ar=¢€if (g7) = (@, ])
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and v,'(¢; , w; , k) has been inserted into u(4,, , (g, j)) during the I-th pass, 0 < I <p
of step 5. For [ = (, that is, initially,

au'( 1,/).112(%]‘)) = V‘e(///w.wl(q’j))'

(a) €.+ %, where

%5 = (7‘5 ’ @r @’ 4 A4 ¥ ?"(ﬂ:v,vl(q’j))’ @)'“) @: %1
r Vz(P» wt ’ k)72 ] @)"') ®)> Vz(P: wt ] k)

is the next (first) subword in u(R) such that

vo( P,y , k) # A3,
and yy(p, we , k)y, = p(Rp).
(b) IfpisinF, then €5+ %, , where

Gy = (0, @, D, dsA 44 vi(q, 2, j)Hvy(qy , wy 5 1) =+
V(gs > Wyns s 1) @heees B, vy, 5 B) Py, @, @), 1 47, Q).
Then T, proceeds to step 7. (After setting #,, ,2(q,7) = {&}, T3 overprints tape 9
with 42"*1)
Next, let w, = by -+ b, , 8(p, b, , Z) contain (¢, &, d; , d5), and

0 = by by ybybyyy by
(c) €5+ %, , where

o = ((rs +42), @""’ @) yve( B Wi, R) Iy s ®’ ’ Moi(g’s 0, & + dy), )

(After computing 8(p, b, , Z), T prints »y(q”, v, k 4- d;) on tape 9 and enters state
(76, ds).)

Several cases arise. If ¢” is not in F and d, = 0 then T} ignores this case since, by
definition, vy(q”", v, X 4- d;) would be a member of u(R,,;) = p(R,). There remain
three cases to consider, namely, ¢" in F, ¢ not in F and d, = 1, and ¢” not in F and
dy, = —1.

(d) ¢"isinF. Then % - %, , where %, is as in (5b).
(e) ¢ isnotinF and d, = 1. Then using

H(K X ¢I‘n—2$ X Nn)7

T copies »{g", v, k -+ d,) from tape 9 to tape 2. That is, T} inserts »,(¢", v, & + d)
into u(A4., ,7(q, 7)) (since (¢°, v, k + d,) is a member of &4, ,,(q, f)), using tape 8 to
determine its position. Then, T; proceeds to step 6.
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(f) ¢"isnotinF and d, = 1. (This is not possible if y = e.) Then T} reads the
symbol Y in p(A4, ,(q", k -+ dy)) on tape 1 (obviously, T} can find w(#, ,(q", & + dy))
in u(y) on tape 1). If ¥ = o then T; overprints the symbol 4, in p(A,, ,7(g, 7)) With
&7 and goes to step 7. If18 ¥V £ o7, T} goes to step 6.

(6) If vo(p, w, , k) is not the last subword in u(R,) such that vy(p, w, , k) 7 45",
then T goes to step 5. If vy(p, w; , &) is the last, T goes to step 7.

(7) If the symbol scanned on tape 7 (see step 4) is not 4, , then T returns to step 2.
Otherwise, T, enters the final configuration stated in the lemma.

The next lemma says that 4 can compute u(Byz) given u(By) and Z. To accomplish
this, 4 computes u(M,, ,z) for each win ¢I'n — 25 .

LemMa 3.4, For each WSA S, there exists a positive integer C, and a 2¢>*-tape-
bounded TM T, = (K,, Z, W, , 8, ps,Fy, 10), with W, containing I' and with two
distinguished states q, and gy, satisfying the following: For each word w in ¢I't$,
w=a, " ay,witha, = ¢anda, = $,ZinT,yin*, jyin N,, and uin 2™,

(911I\¢u$;[\,u(BY);u2r‘02ya1"'[\ajo"‘an)u4r1)4’u5l\’05)u6rv6a
MK X N), P (K X ¢ 28 X N,,), 1y [ 0y, tg9 [ 0g9)

‘% (QZ ’ @y @} u2, P 7)2,’ @’ u4l l\ 714,’ u5/ F 7)5,’ u(il l\ 7)6’) @; 7 ugl [\ 7}9,’ P M(BYZ)):
where
o[ 105 u; P o;
and
! !

u; [,
are in H, for i in{2, 4, 5, 6, 9}, and
max{] u;v; [} < 2°"
foriin{2,4,5,6,9,10}.

Proof. Let ¢, and the 10 tape TM T} be as given in Lemma 3.3. The work tapes
of T, are those of T, . The procedure is such that each work tape of T, has to store at
most

| W(By)] < 2%

cells. Thus, T, is a 2¢=*-tape-bounded TM. Intuitively, T, stores the 7-tuple T}
together with S and Z in its fsc. If ¥ e then the initial contents of tapes 2 and 10

16 Al other values in #,,(q", kK + d;) can be ignored. In particular, any state-inputs must,
by definition be in Rp.

571/6/2~7



194 GIULIANO

are ignored, that is, overprinted with a symbol treated as 8. It thus suffices to consider
only the case where

Uyl vy = [ vy =B,
that is, the case y = .

For each j, 1 <j < g"% T, computes w; on tape 9, T, computes (M, , Z) on
tape 2 (using Lemma 3.3), and then T, prints u(M,, , Z) 45 on tape 10. As usual, we
omit the straightforward details.

TueEOREM 3.1. For each WSA S there exists a positive integer C, and a 2€2-tape-
bounded APTM A such that T(A) = T(S).

Proof. Let u bein T(S) and n = | ¢u$ | > 3. The pdt of 4 is hereafter referred
to as tape 11. Let C, be the positive integer and 7, the 10 tape TM as given in
Lemma 3.4. The APTM A4 will include the fsc and the 10 work tapes of T, together
with tape 11. A4 stores the 8-tuple S in its fsc.

The definition of f(a)-APTM together with the fact that T, is a 2¢2*-tape-bounded
TM implies that 4 is a 2¢»*tape-bounded APTM.

We now show how A4 “simulates” S on ¢u$. Let II,” be a sequence of S-configura-
tions Cy',..., C" where

Cll =(q0’¢u$y1>20)0)r Cl, :(pi’wi’ji)yi;ki)) 1 <i<°‘7
and

’ 14
C; 5 Ci+1

for 1 < ¢ < a. Let I1, be the subsequence C, ,..., C,, 1 < 7 < o, of top S-configura-

’

tions in IT_ . That is, C; is the I-th 1 < I < 7, member of 11, if and only if 2, = 0 and

G/ 1y =0, 1 <j < B =1
Let C, = (g, w,5,%,0), wherey = Y, --- ¥, , £ > 0. Let
{= th"(BYt)Yt—ll"'(Bng,_l) Y2IJ-(BY‘«-~Y2)Y1P~(B Y)
fort > 0 and let { = e for ¢ = 0. Corresponding to C, , let €, be the 4-configuration
((g, Y1), I ¢u$, I w(By), g 1 05, a4y 1@ " @y, Uy [ Oy 5eesy Uy [ Dy, O),
where (g, Y,) is a new state, w, [ 9, is in H,, , u,, [ v, 1s in H,, for 4 < m < 10,

max{| w0, |, | Uy | 4 < m < 10} < 2",

andasusual, w = a, = a, .
The APTM A indirectly “simulates’ S in the following sense. When S is at the top
configuration C,, A4 is at the corresponding configuration €, . Also, 4 codes each
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component of C, and the topmost symbol Y, of the stack of S as follows: g and Y are
in the fsc, w and position § are represented by

al ...[\aj ...an

on tape 3, and y is represented both in u(By) on tape 1 and in { on tape 11.

We will show that, given the top S-configuration C, , if S can accept u before or
upon returning its stack head to the top in some configuration C, ., , 4 will accept u. If
on the other hand, without accepting, S chooses to enter a new top-configuration C, , ,
A will enter a configuration %, , simulating .S in the above sense. Using a straight-
forward induction on r, the number of top S-configurations, it will then follow that
T(S) = T(A), proving our assertion.

Initially, 4 is in

Go = (po, 1 1%, 1 B 1 B, Zo)

and Sis in C; = (qq , ¢u$, 1, Z,, 0). First, €, +~, €, , where

€1 = (90, Zo), | ¢u$, [\M(Bzo): uy [ Vg, [ ¢u$, 1y 1 Vg e, Uso I V105 (ZO#BZ,,))

by copying the input to tape 3 and using y = ¢ in Lemma 3.4 to obtain the encoded
block u(Bz).

To see how A can simulate S from C, to C,,;, let (p, Z, i) dencte a new state for
eachpin K, Zin I', and ¢ = 2, 3. Let S and 4 be in the configurations, respectively,
C, and %, . A nondeterministically chooses a member of 8(q, a;, Y,) from its fsc
(a; is obtained from tape 3). There are four'? possibilities for the fourth component of

Sﬂ(q’ a;, Yl)-
(1) 8(¢, a;, Yy) contains (¢, a/,d, 8). If ¢ is in F, then A also accepts.
Otherwise,
(gr ‘7 %77+1
where

1 = (¢ Y1), @s @» ®’ ayay N ajg e ay, @a-"’ @) 0

(2) (g, a; , Yy) contains (¢,, a;, d, 1). Then S enters its stack in configuration
(q1s %, 7 + d, 3, 1). If S can accept before or upon returning its stack head to the top,
then A will be made to accept. Otherwise, for each next possible top S-configuration of
the form C,,; = (¢, wa,J2,¥,0), A will simulate S by entering an associated
configuration of the form

((42,: Yl)’ @1 @’ ®’ bl |\ba‘2 < by, @"", ®v g)’

17 Recall that 8 is a function from K x (I' U {¢, $}) x I'into the subsets of
Kx (IT'u{e,$) x{—1,0,1} x I"v {61, E}).
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where
by by, = w,.
First, €, +—4 €,', where

((Q1” Yl > 2)) @, @) @; a; aj, I\ Ajyg " Ay, @9"', @, C)

Next, to determine all possibilities for S, with S in configuration (¢,’, %, j + d, ¥, 1),
Ausesu( A, (¢, ] + d))in u(By)on tape 1 (obviously, 4 can find {4, (¢,',] + d)))-
Two cases arise for u(#, (q,, 7 + d)):

(a) Y = o, so that .S accepts before or upon returning to a top-configuration.
Then 4 is to accept.

{(b) Y = A4, . Then S cannot accept before or upon reaching the top of stack. .S
may or may not return to a top-configuration. In this case, 4 nondeterministically
chooses some state input (g,’, @, , j») to the right of ¥ in pu(4#,, {¢,’, 7 + d)). Thus, in
case (b),

%21 }—):' gﬁhl
(After choosing (g, w, , j5), A copies w, to tape 3, moving tape 3 head to position j, .
Then A goes to state (g,’, Y7).)
(3) 8s(q, a;, Y,) contains (¢, a;', d, Z) where Z is in I'. Then C, — C,; =
(¢a'y %, +d,vZ,0). If ¢’ is in F, then A also accepts. Otherwise, 4 simulates S as
follows: First

C, = Gy,

4
where

%' =(0,%,3),0 O @, a0/ M aj,0 " a5, 4., @, 0).
Next, holding tape 11 fixed, using the other 11 tapes and the states as in Lemma 3.4,

%31 % (64,,
where
%41 = ((qll’ Z)’ @) ®’ u2’ l\ ‘212’, @) u4, [\ 7)4’,"') usl [\ ‘ve,a @y ’ usl |\ u9/) [\ ,LL(Byz), C)
Finally,
%4: % gr-{-l >
where
(gT+1 = ((QI’7 Z)! @)"', ’ CZ(BYZ))'
(The u(Byz) is obtained from tape 10.)
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(4) 84, a;, Yy) contains'® (¢,, a;’, d, E). Then
¢, s Con=1{(0"%j+d Y, Y, 0"

If g,/ is in F, then 4 also accepts. Otherwise,

*
%r = %r-ﬂ ’

where

%r-ﬂ = ((ql,! Yy), @> r #BY;-“Yg ’ @7 ap @ Mgy s @?"" > P/Y2!~"(BY¢-~-Y2))
with

p = Ytl"BYth—llJ’BYth_l YsHBYt---y,,
fort > 3andp’ = efort < 2.

Thus, if

C, L Con= (g, %] +4d Y, Y,;,0),
and S accepts, then A accepts. Otherwise, 4 simulates S by entering the associated
configuration %, .

It follows that A will accept u if and only if S accepts # during any computation, and
thus T(A4) = T(S).

Observe that in the proof of Theorem 3.1, 4 is nonerasing if S is nonerasing. By the
comment made after the definition of f(«)-APTM at the end of section one, if L is an
arbitrary language accepted by an arbitrary nonerasing 2°>-APTM, then L is accepted
by a 2¢=-TM, for the same constant ¢. Hence there immediately follows:

THEOREM 3.2. For each NEWSA S, there exists a positive integer Cy and a 2€~tape-

bounded TM M such that T(M) = T(S).

4, MaiNn ResurLts aND CONSEQUENCES

Using the results established in Sections 2 and 3, we now prove our main results.
We also exhibit some AFL properties of Lwgs and FLnpwsa -

18 Note that this is the only occurrence of erasing in the construction of 4.
¥Ift=1then Y, Y, = e
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Derintrion, Let 4 = (K, 2, W, 8, ¢y, F, k) be a DTM and let w be in T(4). If
%y »--» Em 1s a sequence of configurations such that

%0 = (‘Io y €7 w$) [\B""’ [‘ﬁ), %z — giﬂ

for each 7, 0 <{ ¢ < m, the state-component of €, is in F, and for each 7, 0 < 7 < m,
the state-component of %; is not in F, then € ,...,%,, is called a shortest accepting
computation on w.

Since 4 is deterministic, each word = in 7(A) has a unique shortest accepting
computation.

DeriNiTION. Let f be a nondecreasing function. A DTM 4 = (K, 2, W, 3,
4o » F, k) is called a f(«)-time-bounded DTM if it has the following property: For each
word w in T(4), if %, ,..., €, is the shortest accepting computation on w, then

r<f(lw)).
Notation. For each nondecreasing function f(a), let

TIME
gf(u)—-DTM

denote the family of languages accepted by some f(a)-time-bounded DTM.
Notation. For each nondecreasing function f(«), let Two (f(a)) = 27,

Agreement. In this section, the symbol ¢ (subscripted or not) always denotes a
positive integer.
We need the following result from [2].

Lemma 4.1]2].

TIME
"Zf(a)—DAPTM = "g.pf(a)—APTM = U Z. Two(c,f(x))-DTM
¢zl

for each nondecreasing function f(n) > log, n.

COROLLARY 4.1.

— _ TIME
Z Two(ca)-DAPTM — £ Twolca)-APTM = U &L Two{c, TWO(¢c))-DTM
¢y 21

for each c.
Corollary 4.1, together with Theorems 2.1 and 3.1, leads to our first result.

THEOREM 4.1.

$WSA = gDWSA = U frwo(ca)-APTM .
cz=1
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Proof.
691 Zrwolce)-DAPTM & FLDwsa » by Theorem 2.1
C Lwsa
C ) Zrwolca)-ap™m > by Theorem 3.1
e>1
= {J Ztwolca)-DapTM , by Corollary 4.1.
Thus .

Lwsa = Lowsa = U gTWo(crx)—ATPM .
czl

To continue, we need the following result from [15].

LEmMma 4.2.1°

-g;(a)—TM c -g(f(a))“‘—DTM

for any nondecreasing function f such that f(n) = log, n.

CoROLLARY 4.2. For each ¢, Lrwotea)—tm & L rwol2ea)—DTM -
Corollary 4.2, together with Theorems 2.2 and 3.2, leads to our second result.

THEOREM 4.2.
Lnpwsa = E'nppwsa = U Lrwoled-T™ -
c=1
Proof.
U Zrwolew-pTM C L NEDWSA » DY Theorem 2.2,

cz1

(—: gNEWSA

C U “Zrwotewr—1™ » by Theorem 3.2,

c=1

C |J “Zrwotacwr-n1M > by Corollary 4.2,

cz=1

c U gTWO(ca)—DTM .

¢zl

13 The notion of acceptance in [15] differs trivially from that given here, but the result still
holds.
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Thus

&z NEDWSA = Z NEWSA — U £ Twolca)—TM -
[2=3}

Remark. If we generalize our model to one in which the input tape length can grow
to f(n), f any constructible?® nondecreasing function, then similar results hold.
Specifically, let f(n) » be any constructible nondecreasing function. Define a
“f(n)-WSA” to be a two-tape device in which the input tape is a two-way read-write
f(n)-tape-bounded work tape and the second tape is a stack tape. Define acceptance by
final state only. Denote the family of language accepted by f(n)-WSA by Z;()_wsa -
Then the results of the previous sections show that

Z(n)—DWSA = "Zf(n)—WSA == U & Two(cf(e))—APTM

(=30

and that

"?}(n)—NEDWSA = Z(n)—NEWSA = $Uc>1 Two(cf{a))—TM *

Theorems 4.1 and 4.2 provide characterizations of Lyga and Lypwsa in terms of
known families of languages. It is natural to inquire as to the closure properties of
these two families, that is, their invariance under certain language operations. Recently,
the notion of an ““AFL”has been introduced [3] in order to unify the study of closure
properties of families of languages. Thus it is natural to investigate these properties of
Lwsa and FLypwsa within the framework of “AFL” theory.

By way of introduction and for completeness, we recall the definition of an “AFL”,

DErFINITION.  An abstract family of languages (AFL) is a pair (X, &), or £ when X
is understood, where
(1) Z'is an infinite set of symbols
(2) for each L in & there is a finite set Z;, C X such that L C X} *,
(3) & is closed under the operation of U, ., +, inverse homomorphism, e-free
homomorphism, and intersection with regular sets,
(4) L # o forsomel in 2.
In the sequel we shall assume that the reader has had a casual acquaintance with the
subject of AFL theory.
We first consider whether #yg, and Pypwsa are principal® AFL. We shall show
that both are principal AFL.

20 Let a be a distinct symvol in W. A nondecreasing function f is said to be construciible if
there exists a f(n)-DTM A = (K, Z, W, 8, q, , {g}, 1) such that for each integer n > 3,

(0, €1 a8, 1 B) i (g, ¢a™ 2 1 §, a""=2 1 B).

21 A principal AFL is an AFL generated by a single language, i.e., it is the smallest AFL
containing the given language.
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We first consider s, . The following result is noted after Corollary 3.5 in [1].

LemMA 4.3. Let f be any superadditive® deterministic time-constructible®® non-
decreasing function such that f(2n)/f(n) = max{(1 + c)", (f(#n))?} for some integer c
and all sufficiently large integers n. For each positive integer ¢ let Lpprrive(s(cq)) be the
family of all languages accepted within time-bound f(x)*® by a deterministic Turing
machine M having a single tape. (Here M accepts by both final state and empty storage
tape.) Then

U &z DETTIME(f(ca))
c=1

is a principal AFL,

ProrosITION 4.1. Pysa 15 a principal AFL.

Proof. By Corollary 4.1 and Theorem 4.1,

TIME
ZWSA = U U gTwo(cl Twol(cea))-DTM

¢ 2l ¢yl

TIME
= U £ Two(Twolca))-DTM -+
(=31

It is obvious that our f(cn) is superadditive. As pointed out after Definition 3.2 of [1],
“deterministic time-constructible” includes the “real-time” functions in [17]. In [17]
it is shown that our f(¢n) is a “‘real-time” function. Clearly, f(2n)/ f(n) = max{(1 4- ¢)",
(f (n))} for some integer ¢ and all sufficiently large #. Thus f(cn) satisfies the hypothesis
to Lemma 4.3. Thus, by Lemma 4.3, #ys, is a principal AFL.

We now consider Fygwsa - The fact that £ gwsa 1s a principal AFL is a conse-
quence of Theorem 3.3 in [1], restated here as

LemmA 4.5. Let f by any superadditive deterministic-tape-constructible® nondecreasing
function. Let Lpprrapss) be the family of all languages accepted within tape-bound f(a)
by a deterministic Turing machine M having a one-way read-only input tape without

22 A nondecreasing function f is superadditive if (i) f(n) > n for some 7, and all n < n,;
and (ii) for every ny and ny , f(n;) + f(ne) < f(ny + m).

28 We are omitting the definitions of “deterministic time-constructible” and “accepted within
time-bound” since a presentation would require a lengthy formalization which is not used in
the body of our argument.

2 We are omitting the definitions of ‘‘deterministic tape-constructible’” and ‘“‘accept within
f(@)-tape-bound”’ since a presentation would require a lengthy formalization which is not used
in our argument.
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endmarkers and a finite number of storage tapes. (Here M accepts by both final state and
empty storage tapes.) Then

U &z DETTAPE(f(ca))

[ >3 %

is a principal AFL.

PROPOSITION 4.2. Fngwsa 1S a principal AFL.

Proof. For each ¢, let f(cn) = 2°». Clearly, f(cn) is superadditive. In {11, p. 149],
it is noted that f(cn) is “deterministic tape-constructible”. Furthermore, using well-
known techniques, it can be shown that

U 2. DETTAPE(f(cn)) — U g}(cn)—DTM .

cz=1 cz1

Thus, by Lemma 4.5, #ygwsa is 2 principal AFL.

Lemma 4.6. Let M’ and M” be WSA(NEWSA). Then there exists a WSA(NEWSA)M
such that T(M) = T(M"Yn T(M").

Proof. Since the construction of M involves a well-known argument®, we omit the
proof.
Combining Propositions 4.1 and 4.2 and Lemma 4.6, we have

THEOREM 4.3. Pywsa and Lnrwsa are each intersection closed principal AFL.

It is shown in the proof of Theorem 1.2 in [6] that an AFL which is intersection
closed is also closed under e-free substitution?®. Thus we have

COROLLARY 4.3. Pwsa and Lnpwsa are each e-free substitution closed AFL.
We conclude with several open questions:

(1) Is Pwsa = Lnpwsa true?
(2) Does there exist a constructible tape function f that characterizes, in some

sense, the family Pyga !
(3) Is it true that for each WSA A there exists a halting?” WSA A’ such that
T(A) =T(A')?

2% For example, see Lemma 2.7 in [13].

26 Let L C Z,*. For each a in 2, let L, C I+, Let s be the function defined by s(¢) = {¢},
s(@) = L, for each a in 2, , and s(a, -** ;) = s(a;) *** s(a;) foreach 2 > 1 and a;in 2, . Then s
is called an e-free substitution. A family £ of languages is said to be closed under e-free substitution
if s(L) is in & for each L C Z,* in % and each e-free substitution s such that s(a) is in & for
eachain Z; .

27 A WSA A is said to be halting if for each word w A either accepts or rejects w.
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(4) Is Pysa closed under complementation ?
(5) Let Zynsa denote the family of languages accepted by two-way nondeter-

ministic stack acceptors (with a read-only input tape). Then,

() Is ZL,nsa properly contained in Pygy ?
(b) Are Pynsa and PLypwsa incomparable ?

Note that if the answer to (1) is “yes” then the answer to (2) is “‘yes”. Also if the

answer to (3) is “‘yes”” then the answer to (4) is “yes”. It is easily shown that P\gwsa is
closed under complementation. Thus if the answer to (4) is “no” then the answer to (1)
is “no”.
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