Writing Stack Acceptors*

Joseph Alphonso Giuliano
Hughes Aircraft Co., Culver City, California 90232
Received September 15, 1971

Introduction

In recent years, automata theorists have devoted a great deal of effort to the study of two-way acceptors. Examples of such devices include the two-way pushdown acceptor [8], the time-bounded Turing acceptor [10], and the tape-bounded Turing acceptor [10]. A natural extension of these models is obtained by allowing the input head to print on the input tape. A trivial example of the "extended" model is the linear bounded acceptor (lba). Recently, a nontrivial example of the "extended" model has appeared in the literature [14]. The device, called a "writing pushdown acceptor," is essentially a two-way pushdown acceptor that can print on its input tape. In this paper, we introduce and study another example of the extended model, namely, the "writing stack acceptors" (WSA) and their associated family of languages, $\mathscr{L}_{\text {wsA }}$. (As its name indicates, a WSA is essentially a two-way nondeterministic stack acceptor that can print on its input tape.) We also study the deterministic WSA (DWSA), the nonerasing WSA (NEWSA), and the nonerasing deterministic WSA (NEDWSA), as well as their associated families of languages $\mathscr{L}_{\text {DWSA }}, \mathscr{L}_{\text {NEWSA }}$, and $\mathscr{L}_{\text {NEDWSA }}$, respectively. In particular, we characterize the four families of languages in terms of Turing machines and auxiliary pushdown Turing machines, both with exponential tape storage.

The paper is divided into four sections. In section one, the notion of a WSA is defined and its operation formalized. Also in section one, the $f(\alpha)$-tape-bounded auxiliary pushdown Turing machine ($f(\alpha)$-APTM) as introduced in [2] is recalled and its operation formalized. This device is essentially a $f(\alpha)$-tape-bounded Turing machine ($f(\alpha)$-TM), together with a pushdown storage, which is not memory limited. (In case the pushdown tape is nonerasing, the definition of $f(\alpha)$-APTM degenerates to that of $f(\alpha)$-TM.)

[^0]The main results of the paper are that

$$
\mathscr{L}_{\mathrm{DWSA}}=\mathscr{L}_{\mathrm{WSA}}=\bigcup_{c \geqslant 1} \mathscr{L}_{2^{c \alpha}-\mathrm{APTM}}
$$

and that

$$
\mathscr{L}_{\mathrm{NEDWSA}}=\mathscr{L}_{\mathrm{NEWSA}}=\bigcup_{c \geqslant 1} \mathscr{L}_{2^{c \alpha}-\mathrm{TM}}
$$

Phrased otherwise, the main results of the paper provide a characterization of the exponential tape-bounded APTM and the exponential tape-bounded TM, each in terms of WSA. Sections two and three develop the machinery necessary to present the main results. Section four establishes the main results, as well as some AFL properties.

Throughout the paper we assume that the reader has a casual knowledge of formal language theory. The reader is referred to [12] for all unexplained definitions and notation.

1. Formalization

In this section we define a writing stack acceptor (WSA), together with several important subcases. We also recall the notion of an "auxiliary pushdown Turing machine" (APTM). A WSA may be informally illustrated as in Fig. 1. It consists of a two-way read-write input tape $\psi a_{2} \cdots a_{n-1} \$$; a finite state control (fsc); and a stack tape (as distinguished from a pushdown tape) $Y_{t} \cdots Y_{1}$, where the top of stack is the leftmost β, to the right of T_{1}. (β denotes the blank symbol.)

Definition. A writing stack acceptor (WSA) is an 8-tuple $S=\left(K, \Sigma, \Gamma, \delta, \delta_{\beta}\right.$, $\left.q_{0}, Z_{0}, F\right)$, where
(1) K and Σ are finite, nonempty sets (of states and inputs, respectively);
(2) Γ is an alphabet containing Σ, but not the seven distinguished symbols $\theta,-1, E, \not, \$, \beta, I$ (the elements of $\Gamma-\Sigma$ are called stack symbols);
(3) δ is a function from $K \times(\Gamma \cup\{\varnothing, \$\}) \times \Gamma$ into the subsets of

$$
K \times(\Gamma \cup\{\varnothing, \$\}) \times\{-1,0,1\} \times\{-1,0,1\}
$$

such that for each q in K and Z in Γ
(a) if $\delta(q, \phi, Z)$ contains $\left(p, b, d_{1}, d_{2}\right)$ then $b=\phi$ and d_{1} is in $\{0,1\}$, and
(b) if $\delta(q, \$, Z)$ contains $\left(p, b, d_{1}, d_{2}\right)$ then $b=\$$ and d_{1} is in $\{-1,0\}$;
(4) δ_{β} is a function from $K \times(\Gamma \cup\{\varnothing, \$\}) \times \Gamma$ into the subsets of

$$
K \times(\Gamma \cup\{\varnothing, \$\}) \times\{-1,0,1\} \times(\Gamma \cup\{\theta, I, E\})
$$

Figure 1
such that for each q in K and Z in Γ
(a) if $\delta_{\beta}(q, q, Z)$ contains $\left(p, b, d_{1}, d_{2}\right)$ then $b=q$ and d_{1} is in $\{0,1\}$ and
(b) if $\delta_{\beta}(q, \$, Z)$ contains $\left(p, b, d_{1}, d_{2}\right)$ then $b=\$$ and d_{1} is in $\{-1,0\}$;
(5) q_{0} is in K (the start state), Z_{0} is in Γ (the initial stack symbol), and $F \subseteq K$ (the set of accepting states).

The special character β is called a blank. The characters \varnothing and $\$$ are called the left and right end-markers, for the input. Note that neither \notin nor $\$$ occur in Σ. The initial input to a WSA is an element of $\dot{\phi} \Sigma^{+} \$$. The next move function when the stack head is not scanning the top of stack is denoted by δ. The next move function when the stack head is reading β at the top of stack is denoted by δ_{β}.

Agreement. The positions on the stack are numbered from right to left, beginning with the leftmost β at position 0 . The symbol y, unless specified otherwise, will denote a word of the form $y=Y_{t} Y_{t-1} \cdots Y_{1},{ }^{1}$ with each Y_{j} in Γ, and will denote the stack of S.

Definition. A WSA S is said to be a deterministic WSA (DWSA) if $\delta(q, a, Z)$ and $\delta_{\beta}(q, a, Z)$ each contain at most one element for all (q, a, Z) in $K \times(\Gamma \cup\{\phi, \$\}) \times \Gamma$.
${ }^{1} t=0$ will denote the empty stack.

Definition. A WSA S is said to be nonerasing, abbreviated NEWSA, if for each (q, a, Z) in $K \times(\Gamma \cup\{c, \$\}) \times \Gamma,(p, b, d, X)$ in $\delta_{\beta}(q, a, Z)$ implies $X \neq E$. A nonerasing DWSA is abbreviated as NEDWSA.

Notation. Let N denote the positive integers. For each positive integer n let $N_{n}=\{1, \ldots, n\}$.

Definition. A configuration of a WSA is any element of the set

$$
\bigcup_{n \geqslant 3}\left(K \times ¢ \Gamma^{n-2} \$ \times N_{n} \times \Gamma^{*} \times(N \cup\{0\})\right) .
$$

Definition. Each configuration of the form $(q, w, j, y, 0)$ is called a top configuration.

Definition. For each WSA S let \vdash (or \vdash_{s} when S is to be emphasized) be the relation on the set of configurations defined as follows (for $n \geqslant 3, w_{1}=b_{1} \cdots b_{n}$, $w_{2}=b_{1} \cdots b_{i-1} b^{\prime} b_{i+1} \cdots b_{n}, y=Y_{t} \cdots Y_{1}$, and b^{\prime} and each Y_{j} in $\left.\Gamma\right)$:
(1) $\left(p, w_{1}, i, y, j\right) \vdash\left(q, w_{2}, r, y, m\right)$ if $\delta\left(p, b_{i}, Y_{j}\right)$ contains $\left(q, b^{\prime}, d_{1}, d_{2}\right)$, $r=i+d_{1}$, and $m=j+d_{2}$;
(2) Let $C=\left(p, w_{1}, i, y, 0\right), r=i+d_{1}$, and let $\delta_{\beta}\left(p, b_{i}, Y_{1}\right)$ contain $\left(q, b^{\prime}, d_{1}, X\right)$. Then
(a) $C \vdash\left(q, w_{2}, r, y Z, 0\right)$ if $X=Z$,
(b) $C \vdash\left(q, w_{2}, r, Y_{t} \cdots Y_{2}, 0\right)$ if $X=E$,
(c) $C \vdash\left(q, w_{2}, r, y, 0\right)$ if $X=\theta$,
(d) $C-\left(q, w_{2}, r, y, 1\right)$ if $X=I$.

Thus (2) implies that if S is scanning β at the top of stack, δ_{β} will depend on Y_{1}, the symbol to the left of β.

Notation. Let

$$
\vdash^{ \pm} \text {and } \vdash^{*}\left(\vdash_{s}^{+} \text {and } \vdash^{*},\right.
$$

when S is to be emphasized) be, respectively, the transitive and reflexive-transitive closure of \vdash.

Definition. Each configuration C such that $\left(q_{0}, \phi u \$, 1, Z_{0}, 0\right) \vdash^{*}{ }_{s} C$ is called an S-confifuration.

Definition. A word u in Σ^{+}is accepted by a WSA S if

$$
\left(q_{0}, \propto u \$, 1, z_{0}, 0\right) \vdash \frac{*}{s}(p, \Varangle v \$, j, y, m)
$$

for some p in F and some S-configuration ($p, \Varangle v \$, j, y, m$). The set of all words accepted by S is denoted by $T(S)$.

Notation. Let $\mathscr{L}_{\text {wSA }}\left(\mathscr{L}_{\text {DWSA }}, \mathscr{L}_{\text {NEWSA }}, \mathscr{L}_{\text {NEDWSA }}\right)$ denote the family of all sets accepted by some WSA (DWSA, NEWSA, NEDWSA)S.
An APTM may be informally illustrated as in Fig. 2. It consists of a two-way read-only input tape $\Varangle a_{2} \cdots a_{n-1} \$$; a finite state control (fsc); a pushdown tape (pdt) $Y_{1} \cdots Y_{J}$; and k two-way infinite cead/write work tapes.

Figure 2

Notation. For each set X, let $X_{\beta}=X-\{\beta\}$.
Definition. An Auxiliaty Pushdown Turing Machine (APTM) is an 8-tuple ($K, \Sigma, W, \delta, q_{0}, Z_{0}, F, k$), where
(1) K and Σ are finite, nonempty sets (of states and input symbols, respectively),
(2) W is an alphabet containing Σ, but not the special characters θ, E, $\&$, and $\$$,
(3) k is a positive integer,
(4) δ is a function from ${ }^{2} K \times(\Sigma \cup\{\varnothing, \$\}) \times W^{(k)} \times W_{\beta}$ into the subsets of $K \times\{-1,0,1\} \times\left(W_{\beta} \times\{-1,0,1\}\right)^{\left(k_{0}\right)} \times\left(W_{\beta} \cup\{\theta, E\}\right)$, such that for each p in K, B_{i} in $W, 1 \leqslant i \leqslant k$, and Y in W_{β},
(a) if $\delta\left(p, \notin B_{1}, \ldots, B_{k}, Y\right)$ contains $\left(q, d, \sigma_{1}, \ldots, \sigma_{k}, X\right)$, then d is in $\{0,1\}$, and
(b) if $\delta\left(p, \$, B_{1}, \ldots, B_{k}, Y\right)$ contains $\left(q, d, \sigma_{1}, \ldots, \sigma_{k}, X\right)$, then d is in $\{-1,0\}$,
(5) q_{0} is in K (the start state), Z_{0} is in W_{β}, and $F \subseteq K$ (the set of accepting states).

The special characters $¢$ and $\$$ are called the left and right end-markers, respectively, for the input. Elements of $W-\Sigma$ are called working symbols. Z_{0} in (5) above is called the initial working symbol.

Definition. A deterministic APTM, abbreviated DAPTM, is an APTM in which $\delta\left(p, a, B_{1}, \ldots, B_{k}, Y\right)$ contains at most one element for all $\left(p, a, B_{1}, \ldots, B_{k}, Y\right)$ in $K \times(\Sigma \cup\{\phi, \$\}) \times W^{(k)} \times W_{\beta}$.

Definition. Let A be an APTM and \upharpoonright a distinguised symbol which is not in W. Then a configuration is any element of

$$
K \times H_{1} \times H_{2}^{(k)} \times W^{*}
$$

where

$$
H_{\mathbf{1}}=\upharpoonright \phi \Sigma+\$ \cup \phi \Sigma+\$ \upharpoonright \cup \notin \Sigma^{+} \upharpoonright \Sigma^{*} \$ \cup \notin \Sigma^{*} \upharpoonright \Sigma+\$
$$

and

$$
H_{2}=\upharpoonright \beta W_{\beta}^{*} \cup W_{\beta} * \upharpoonright \beta \cup W_{\beta}^{*} \upharpoonright W_{\beta}^{+} .
$$

Agreement. Unless specified otherwise, the pdt will be denoted by the word $y=Y_{1} \cdots Y_{J}, J \geqslant 0, Y_{j}$ in W_{B}.

Notation. Let \vdash (or \vdash_{A} when A is to be emphasized) be the binary relation on arbitrary configurations defined as follows. Write

$$
\begin{aligned}
& \left(p, a_{1} \cdots \upharpoonright a_{i} \cdots a_{n}, u_{1} \upharpoonright v_{1}, \cdots, u_{k} \upharpoonright v_{k}, Y_{1} \cdots Y_{J}\right) \\
& \quad \vdash\left(q, a_{1} \cdots \upharpoonright a_{i+d} \cdots a_{n}, u_{1}^{\prime} \upharpoonright v_{1}^{\prime}, \ldots, u_{k}^{\prime} \upharpoonright v_{k}^{\prime}, \gamma\right)
\end{aligned}
$$

if $\left(q, d, \sigma_{1}, \ldots, \sigma_{k}, X\right)$ is in $\delta\left(q, a_{i}, B_{1}, \ldots, B_{k}, Y_{J}\right)$, and the following two conditions are satisfied:
${ }^{2} W^{(k)}$ is the k-fold cartesian product.
(1) Either
(a) $\gamma=Y_{1} \cdots Y_{J} X$ if X is in W_{B},
(b) $\gamma=Y_{1} \cdots Y_{J}$ if $X=\theta$, or
(c) $\gamma=Y_{1} \cdots Y_{J-1}$ if $X=E$,
(2) For each $j, 1 \leqslant j \leqslant k$, with x_{j} and y_{j} in $W_{B}{ }^{*}, \bar{B}_{j}$ in W_{β}, B_{j} in W, and $\sigma_{j}=\left(B_{j}{ }^{\prime}, d_{j}\right)$,
(a) if $\left(B_{j}, d_{j}\right)$ is in $W_{\beta} \times\{-1\}$ and

$$
u_{j} \upharpoonright v_{j}=X_{j} \bar{B}_{j} \upharpoonright B_{j} y_{j}
$$

then

$$
u_{j}^{\prime} \upharpoonright v_{j}^{\prime}=X_{j} \upharpoonright \bar{B}_{j} B_{j}^{\prime} y_{j}
$$

(b) if $\left(B_{j}^{\prime}, d_{j}\right)$ is in $W_{\beta} \times\{-1\}$ and

$$
u_{j} \upharpoonright v_{j}=\upharpoonright B_{j} y_{j}
$$

then

$$
u_{j}^{\prime} \upharpoonright v_{j}^{\prime}=\upharpoonright \beta B_{j}^{\prime} y_{j}
$$

(c) if $\left(B_{j}{ }^{\prime}, d_{j}\right)$ is in $W_{\beta} \times\{0\}$ and

$$
u_{j} \upharpoonright v_{j}=X_{j} \upharpoonright B_{j} y_{j}
$$

then

$$
u_{j}^{\prime} \upharpoonright v_{j}^{\prime}=X_{j} \upharpoonright B_{j}^{\prime} y_{j}
$$

(d) if $\left(B_{j}{ }^{\prime}, d_{j}\right)$ is in $W_{\beta} \times\{1\}$ and

$$
u_{j} \upharpoonright v_{j}=X_{j} \upharpoonright B_{j} \bar{B}_{j} y_{j}
$$

then

$$
u_{j}^{\prime} \upharpoonright v_{j}^{\prime}=X_{j} B_{j}^{\prime} \upharpoonright \bar{B}_{j} y_{j}
$$

and
(e) if $\left(B_{j}{ }^{\prime}, d_{j}\right)$ is in $W_{\beta} \times\{1\}$ and

$$
u_{j} \upharpoonright v_{j}=X_{j} \upharpoonright B_{j}
$$

then

$$
u_{j}^{\prime} \upharpoonright v_{j}^{\prime}=X_{j} B_{j}^{\prime} \upharpoonright \beta
$$

Notation. Let \vdash^{+}and \vdash^{*} (or \vdash^{+}and $\vdash^{*}{ }_{A}$ when A is to be emphasized) denote, respectively, the transitive and reflective-transitive closure of \vdash.

Definition. Each configuration C such that $\left(q_{0}, \upharpoonright c u \$, \upharpoonright \beta, \ldots,\left\lceil\beta, Z_{0}\right) \stackrel{*}{*}_{A} C\right.$ is called an A-configuration.

Definition. Let A be an APTM and let u be in Σ^{+}. Then A is said to accept u if $\left(q_{0}, \upharpoonright \phi u \$, \upharpoonright \beta, \ldots, \upharpoonright \beta, Z_{0}\right) \vdash_{A}^{*} C$ for some configuration

$$
C=\left(q, v_{1} \upharpoonright \nu_{2}, u_{1}\left\lceil v_{1}, \ldots, u_{k} \upharpoonright v_{k}, Y_{1} \cdots Y_{J}\right)\right.
$$

with q in F. Let $T(A)$ denote the set of all words accepted by A.
We now observe that by deleting the pdt component in the definitions of δ and \vdash for APTM, we obtain a version of the familiar Turing machine. Specifically, we have the

Definition. A Turing Machine (with k work tapes), abbreviated (k tape) TM, is a 7-tuple $T=\left(K, \Sigma, W, \delta, q_{0}, F, k\right)$, where
(1) K, Σ, W, q_{0}, F, and k are as in an APTM, and
(2) δ is a function from $K \times(\Sigma \cup\{\phi, \$\}) \times W^{(k)} \times W_{\beta}$ into the subsets of $K \times\{-1,0,1\} \times\left(W_{\beta} \times\{-1,0,1\}\right)^{(k)} \times\{\theta\}$.

The definition of deterministic TM (DTM) is obvious. We omit the formalization.
Definition. Let f be a function from the positive integers into the positive integers. Let A be an APTM such that for each word w in $T(A)$, there exists some computation $\left(q_{0}, \phi \upharpoonright w \$, \upharpoonright \beta, \ldots, \upharpoonright \beta, Z_{0}\right) \vdash_{A} \cdots \vdash_{A}\left(q, v_{1} \upharpoonright v_{2}, u_{1} \upharpoonright v_{1}, \ldots, u_{k} \upharpoonright v_{k}, Y_{1} \cdots Y_{J}\right)$ with q in F and $\mid u_{j}\left\lceil v_{j} \mid \leqslant f(|w|)^{3}\right.$ for each $j, 1 \leqslant j \leqslant k$. Then A is said to be an $f(\alpha)$-tape-bounded APTM $(f(\alpha)$-APTM).

Note that if a language L is accepted by some nonerasing $f(\alpha)$-APTM, then L is accepted by some $f(\alpha)$-TM.

Notation. Let $\mathscr{L}_{f(\alpha)-\text { DAPTM }}, \mathscr{L}_{f(\alpha)-\mathrm{APTM}}, \mathscr{L}_{f(\alpha)-\mathrm{DTM}}$, and $\mathscr{L}_{f(\alpha)-\mathrm{TM}}$ be the families of languages accepted by, respectively, $f(\alpha)$-DAPTM, $f(\alpha)$-APTM, $f(\alpha)$-DTM, and $f(\alpha)$-TM.

2. Simulation of $2^{c \alpha}$-Tape-Bounded DAPTM by DWSA

In Sections 2 and 3 we show that the following four statements are equivalent for an arbitrary language L :

(ii) $L=T(A)$ for some DWSA S.
(iii) $L=T(A)$ for some WSA S.
(iv) $L=T(A)$ for some $2^{c_{2} \alpha}$-tape-bounded APTM A for some integer c_{2}.

[^1]In this section we prove that (i) implies (ii). It is trivial that (ii) implies (iii). In Section 3 we prove that (iii) implies (iv). That (iv) implies (i) is a known result [2].

In constructing new WSA or new APTM we shall usually describe these machines in an operational form only. It will be clear, however, from our description and from standard techniques that a formal specification can readily be made.

We now consider the proof of (i) implies (ii). We first ask the reader to observe that a DWSA can perform certain simple tasks. ${ }^{4}$
2.1. Given any integer c, a DWSA can move its stack head exactly $2^{c|w|}$ positions into its stack, where w is the current input word.

Proof. By marking its input tape as in a LBA, any DWSA can "count" to $2^{c|w|}$.
2.2. Let c be any integer and D_{1} any symbol not in Γ. A DWSA can print a word of the form

$$
w_{1}=D_{1}^{z^{\varepsilon}|w|}
$$

on track two of the stack where w is the current input word.
Proof. Since any DWSA can "count" to $2^{c|w|}$, it can obviously print the word w_{1}.
2.3. A DWSA S can be constructed with the following property. Let c be a given integer and w a given word. Let v denote the final subword on either track one or two of

Proof. In either case, S merely copies a block to the top of stack on track one using its ability to count to $2^{c|w|}$.
2.4. A DWSA S can be constructed with the following property. Let c be an integer, w an input word, Δ a new symbol, and y and z track two stack words, with $|z| \geqslant|y|=$ $2^{c|w|}$. Then S, having $y \Delta z$ on track two of its stack, can determine whether or not z is of the form xy for same x.

Proof. Here S again uses its ability to count to $2^{c|w|}$ and "compares" by repeatedly erasing final symbols of z that match with final symbols of y. In any case, S always erases up to symbol Δ.
In 2.5, Theorem 2.1 and occasionally in Section 3, we shall order the words over some alphabet. We thus recall the notion of lexicographical order.

Definition. Let B be any set, simply ordered under $<$. The relation $<$, called the lexicographical order on B^{+}, is defined as follows. Let $u=u_{11} \cdots u_{1 m}$ and

[^2]$v=v_{21} \cdots v_{2 n}, m \leqslant n$, with each $u_{1 i}$ and $v_{2 j}$ in $B, 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n$. Write $u \ll v$ if either
(a) $u_{1 j}<v_{2 j}$ for the smallest j such that $u_{1 j} \neq v_{2 j}$, or
(b) $u_{1 j}=v_{2 j}, 1 \leqslant j \leqslant m$, and $u \neq v$.

Notation. Let c be given integer, \mathscr{D} an alphabet, and $e_{\mathscr{D}}$ an enumeration $D_{1}, \ldots, D_{|\mathscr{Q}|}$ of the elements of \mathscr{D}. Let \ll be a lexicographical order on $\mathscr{D}^{2^{c|w|}}$.
2.5. A DWSA S can be constructed with the following property. Let G_{i}^{\prime}, the i-th word in the ordering \ll on $D^{2^{c|w|}}$, be at the right of the stack on track two. Then S can copy G_{i}^{\prime} at the top of stack on track two, simultaneously replacing $G_{i}{ }^{\prime}$ by G_{i+1}^{\prime} on track two.

Proof. S copies $G_{i}{ }^{\prime}$ on track two as in 2.3; however, S replaces $G_{i}{ }^{\prime}$ by G_{i+1}^{\prime} by counting in base $|\mathscr{D}|$.

Theorem 2.1. For each $2^{\text {cla }}$-tape-bounded DAPTM A, there exists a DWSA S such that $T(A)=T(S)$.

Proof. Let u be in $T(A)$ and $n=|c u \$|$. We shall construct S so that S simulates A. In order to describe the computation of S, we need to introduce some notation and concepts.

Let $\Delta_{1}, \ldots, \Delta_{4}$ be new symbols and

$$
\mathscr{C}_{A}=\left\{C \mid\left(q_{0}, \phi \upharpoonright u \$, \upharpoonright \beta, \ldots, \upharpoonright \beta, Z_{0}\right) \vdash{ }_{A}^{*} C\right\} .
$$

For each C in \mathscr{C}_{A}, we now define a coded configuration C^{\prime}. Let

$$
C=\left(q, a_{1} \cdots \upharpoonright a_{i} \cdots a_{n}, u_{1} \upharpoonright v_{1}, \cdots, u_{k} \upharpoonright v_{k}, Y_{\mathbf{1}} \cdots Y_{J}\right)
$$

be an arbitrary element in \mathscr{C}_{A}, and let ν denote the word $\nu=\Delta_{1} u_{1} \upharpoonright v_{1} \Delta_{1} \cdots \Delta_{1} u_{k} \upharpoonright v_{k} \Delta_{1}$. Let ${ }^{5}$

$$
C^{\prime}=q_{1} a_{1} \cdots \upharpoonright a_{i} \cdots a_{n} \nu Y_{J} \Delta_{2}^{m},
$$

where m is such that

$$
\left|C^{\prime}\right|=2^{c_{2^{n}}}
$$

for some integer C_{2}. Let $\mathscr{C}_{A}{ }^{\prime}=\left\{C^{\prime} \mid C\right.$ in $\left.\mathscr{C}_{A}\right\}$ and $\mu=\left|\mathscr{C}_{A}{ }^{\prime}\right|$.
Let $\mathscr{D}=K \cup W_{\beta} \cup\left\{\uparrow, \Delta_{1}, \Delta_{2}\right\}$. Then,

$$
\mu \leqslant|\mathscr{D}|^{2^{\sigma_{2} 2^{n}}}
$$

${ }^{5} Y_{J}=\epsilon$ if $J=0$.

Let $e_{\mathscr{D}}$ be an enumeration $D_{1}, \ldots, D_{|\mathscr{D}|}$ of the elements of \mathscr{D}. For each t,

$$
1 \leqslant i \leqslant\left.|\mathscr{D}|\right|^{\varepsilon_{2^{2}}}
$$

let $G_{i}{ }^{\prime}$ be the i-th member of $\mathscr{C}_{A}{ }^{\prime}$ in a lexicographical ordering \ll of $\mathscr{C}_{A}{ }^{\prime}$.
We now introduce notation to label certain elements in $\mathscr{C}_{A}{ }^{\prime}$. Let

$$
C=\left(p, a_{1} \cdots \upharpoonright a_{i_{0}} \cdots a_{n}, u_{1} \upharpoonright v_{1}, \ldots, u_{k} \upharpoonright v_{k}, Y_{1} \cdots Y_{J}\right)
$$

$J \geqslant 1$ be in \mathscr{C}_{A}, and let π be the sequence C_{1}, \ldots, C_{r}, where

$$
C_{1}=\left(q_{0}, 申 \upharpoonright u \$, \upharpoonright \beta, \ldots, \upharpoonright \beta, Y_{1}\right), Y_{1}=Z_{0}, C_{r}=C
$$

and

$$
C_{j} \vdash C_{j+1}
$$

for $1 \leqslant j \leqslant r-1$. For each $j, 1 \leqslant j<J$, let $I I(j)$ be the two-element subsequence $C_{g(j)}, C_{g(j)+1}$, with $g(j)$ the largest integer, $1 \leqslant g(j)<r$ such that
(1) the pdt component in $C_{g(j)}$ is $Y_{1} \cdots Y_{j}$ and
(2) the pdt component in $C_{g(j)+1}$ is $Y_{1} \cdots Y_{j+1}$.

The stack of S is divided into two tracks. Let $\rho(\pi)$ denote the contents of the stack of S when A is in the configuration C_{r}. Let $\rho_{1}(\pi)$ and $\rho_{2}(\pi)$ denote tracks one and two, respectively, of $\rho(\pi)$. Let $\rho_{i}(\pi(j)), i=1,2$, denote the contents of track i when A is in the configuration $C_{g(j)+1}, 1 \leqslant j<J$. Then $\rho_{1}(\pi(j))$ is of the form

$$
\gamma_{1} C_{g(j)}^{\prime} \Delta_{4} C_{g(j)+1}^{\prime}
$$

and $\rho_{2}(\pi(j))$ is of the form

$$
\gamma_{2} G_{M(j)}^{\prime} \Delta_{4} G_{1}^{\prime}
$$

for some γ_{1} and γ_{2} with $\left|\gamma_{1}\right|=\left|\gamma_{2}\right|$, and $M(j)$ is some integer, $1 \leqslant M(j)<\mu$.
Let $l=r-g(J-1)-1$ and let π_{l}, when it exists, be the (not necessarily consecutive) sequence $C_{g(J-1)+2, \ldots,} C_{r}$, of elements in π with pdt component $Y_{1} \cdots Y_{J}$. For $l=0$, let

$$
\rho_{1}\left(\pi_{l}\right)=\rho_{2}\left(\pi_{l}\right)=\epsilon
$$

for $l \neq 0$ let

$$
\rho_{1}\left(\pi_{l}\right)=C_{g(J-1)+2}^{\prime} \Delta_{3} \cdots \Delta_{3} C_{r}^{\prime}
$$

and
$\rho_{2}\left(\pi_{l}\right)=G_{m(g(J-1)+2)}^{\prime} \Delta_{3} \cdots \Delta_{3} G_{m(r)}^{\prime}, \quad 1 \leqslant m(i)<M(J), \quad g(J-1)+2 \leqslant i<r$.

The stack of S will record the A-computation to date, in the following sense. When A is in the configuration C_{r}, then

$$
\rho_{\mathbf{1}}(\pi)=\rho_{1}(\pi(1)) \cdots \rho_{1}(\pi(J-1)) \rho_{1}\left(\pi_{l}\right)
$$

and

$$
\rho_{2}(\pi)=\rho_{2}(\pi(1)) \cdots \rho_{2}(\pi(J-1)) \rho_{2}\left(\pi_{1}\right) .
$$

Note that each subword C^{\prime} of $\rho_{1}(\pi)$ "lines up" with a corresponding G^{\prime} in $\rho_{2}(\pi)$. We will sometimes denote subwords of $\rho(\pi)$ by

$$
\begin{aligned}
& C_{g(j)}^{\prime} \Delta_{4}, C_{g(i)+1}^{\prime} \Delta_{3}, C_{r}^{\prime}, \\
& G_{M(i)}^{\prime} \Delta_{4}, G_{1}{ }^{\prime} \quad \Delta_{3}, G_{m(r)}^{\prime}
\end{aligned}
$$

Intuitively, $\rho(\pi)$ is a representation of pertinent information about the past behavior of A. It also contains "guesses" about the future behavior of A. In particular, for $j \geqslant 1$, each $G_{M(j)}^{\prime}$ represents the latest guess at the A-configuration occurring in case A erases Y_{j+1} and thereby revisits Y_{j}. Thus the symbols

$$
\begin{aligned}
& C_{g(j)}^{\prime} \\
& G_{M(j)}^{\prime}
\end{aligned}
$$

are of special interest to S, and so are flanked (on the right) with the symbol

$$
\begin{aligned}
& \Delta_{4} . \\
& \Delta_{4}
\end{aligned}
$$

Using this notation, we now describe how S updates its stack word $\rho(\pi)$ for each of the three possible moves of A on its pdt. The DWSA S will have each member of the 8 -tuple A and the sequence $e_{\mathscr{g}}$ in its fsc. Let

$$
C_{r}^{\prime}=q_{1} a_{1} \cdots \upharpoonright a_{i} \cdots a_{n} \nu_{1} Y_{J} \Delta_{2}^{m},
$$

where

$$
\nu_{1}=\Delta_{1} u_{1} \upharpoonright v_{1} \Delta_{1} \cdots \Delta_{1} u_{k} \upharpoonright v_{k} \Delta_{1},
$$

with

$$
u_{j} \upharpoonright v_{j}=x_{j} \bar{B}_{j} \upharpoonright B_{j} Y_{j}
$$

for $1 \leqslant j \leqslant k$, and

$$
m=2^{c_{2} n}-\left|q_{1} a_{1} \cdots \upharpoonright a_{i} \cdots a_{n} \nu_{1} Y_{J}\right| .
$$

S proceeds as follows:
(3) S reads C_{r}^{\prime} to obtain the $k+3$-tuple $T_{1}=\left(q_{1}, a_{i}, B_{1}, \ldots, B_{k}, Y_{J}\right)$ (by means of the \upharpoonright markers in ν_{1} and in $a_{1} \cdots a_{n}$) and stores T_{1} in its fsc.
(4) S computes $\delta\left(T_{1}\right)$.

Suppose $\delta\left(q_{1}, a_{i}, B_{1}, \ldots, B_{k}, Y_{J}\right)=T_{2}$, where

$$
T_{2}=\left(q_{2}, d, \sigma_{1}, \ldots, \sigma_{k}, X\right)^{6}
$$

There are three possibilities for X :
(a) $X=Y_{J+1}$, a symbol in W_{β}. Then

$$
C_{r+1}^{\prime}=q_{2} a_{1} \cdots \upharpoonright a_{i+d} \cdots a_{n} \nu_{2} Y_{J+1} \Delta_{2}^{m^{\prime}}
$$

with

$$
m^{\prime}=2^{c_{2} n}-\left|q_{2} a_{1} \cdots\right| a_{i+a} \cdots a_{n} v_{2} Y_{J+1} \mid
$$

and

$$
v_{2}=\Delta_{1} u_{1}^{\prime} \upharpoonright v_{1}^{\prime} \Delta_{1} \cdots \Delta_{1} u_{k}^{\prime} \upharpoonright v_{k}^{\prime} \Delta_{1}
$$

where each $u_{j}{ }^{\prime} \upharpoonright v_{j}{ }^{\prime}$ depends on $u_{j} \upharpoonright v_{j}$ and σ_{j} is as in the definition of \vdash_{-}.
Using 2.2, 2.3 and standard techniques, S can be constructed so that it simultaneously prints

$$
\begin{gathered}
\Delta_{4} C_{r+1}^{\prime} \\
\Delta_{4} G_{1}^{\prime}
\end{gathered}
$$

to the right of $\rho(\pi)$, given

$$
\begin{gathered}
C_{r}^{\prime} \\
G_{m(r)}^{\prime}
\end{gathered}
$$

and T_{2}. Then S returns to (3) to continue this simulation.
(b) $X=E \cdot{ }^{7}$ Then

$$
C_{r+1}^{\prime}=q_{2} a_{1} \cdots \upharpoonright a_{i+d} \cdots a_{n} \nu_{2} Y_{J-1} \Delta_{2}^{m^{\prime}},
$$

where ν_{2} and m^{\prime} are as in (a). Let $\Delta_{4, J-1}$ denote the rightmost Δ_{4} symbol in $\rho_{i}(\pi(J-1))$, $1 \leqslant i \leqslant 2$. First S enters its stack scanning for the symbol

$$
\begin{aligned}
& \Delta_{4, J-1} \\
& \Delta_{4, J-1}
\end{aligned}
$$

[^3]Next, S reads the symbol Y_{J-1} from $C_{g(J-1)}^{\prime}$ and stores Y_{J-1} in its fsc. Then S uses T_{2}, Y_{J-1}, and $C_{r}{ }^{\prime}$ to print

$$
\begin{aligned}
& \Delta_{3} C_{r+1}^{\prime} \\
& \Delta_{3} C_{r+1}^{\prime}
\end{aligned}
$$

to the right of its stack. Next, S checks if

$$
C_{r+1}^{\prime}=G_{M(J-1)}^{\prime}
$$

on track two of the stack. By 2.4, letting

$$
\Delta_{4, J-1}=\Delta, \quad Y=G_{M(J-1)}^{\prime}
$$

and letting C_{r+1}^{\prime} be the final subword of Z, one of two possibilities must occur:

$$
\begin{equation*}
G_{M(J-1)}^{\prime}=C_{r+1}^{\prime} \tag{i}
\end{equation*}
$$

By $2.4, S$ erases every symbol to the right of

$$
\begin{aligned}
& \Delta_{4, J-1} \\
& \Delta_{4, J-1}
\end{aligned}
$$

in the checking process. Then S erases

$$
\begin{aligned}
& \Delta_{4, J-1} \\
& \Delta_{4, J-1}
\end{aligned}
$$

and labels

$$
\begin{array}{r}
C_{g(J-1)}^{\prime} \\
G_{M(J-1)}^{\prime}
\end{array}
$$

obsolete by printing

$$
\begin{aligned}
& \Delta_{3} \\
& \Delta_{3}
\end{aligned}
$$

By $2.2, S$ can print $G_{1}{ }^{\prime}$ to the right of $\rho_{2}(\pi)$. By 2.3 , letting

$$
v=G_{M(J-1)}^{\prime},
$$

S can copy $G_{M(J-1)}^{\prime}$ from $\rho_{2}(\pi)$, printing $G_{M(J-1)}^{\prime}$ to the right on track one. Thus S can be constructed so that S prints

$$
\begin{gathered}
G_{M(J-1)}^{\prime} \\
G_{1}^{\prime}
\end{gathered}
$$

to the right of the stack. Then S returns to (3) to continue the simulation.
571/6/2-6
(ii) $G_{M(J-1)}^{\prime} \neq C_{r+1}^{\prime}$. By $2.4, S$ erases every symbol to the right of

$$
\begin{aligned}
& \Delta_{4, J-1} \\
& \Delta_{4, J-1}
\end{aligned}
$$

in the checking process, leaving the rightmost subword of the stack in the form

$$
\begin{gathered}
C_{g(J-1)}^{\prime} \Delta_{4, J-1} \\
G_{M(J-1)}^{\prime} \Delta_{4, J-1}
\end{gathered}
$$

Then S erases

$$
\begin{aligned}
& \Delta_{4, J-1} \\
& \Delta_{4, J-1}
\end{aligned}
$$

and labels

$$
\begin{aligned}
& C_{g(J-1)}^{\prime} \\
& G_{M(J-1)}^{\prime}
\end{aligned}
$$

obsolete by printing

$$
\begin{aligned}
& \Delta_{3} \\
& \Delta_{3}
\end{aligned}
$$

By $2.5, S$ can print $G_{M(J-1)+1}$ to the right on track two. By 2.3, letting $C_{g(J-1)}^{\prime}=v, S$ can print $C_{g(J-1)}^{\prime}$ to the right on track one. Thus S prints

$$
\begin{aligned}
& C_{0(J-1)}^{\prime} \\
& G_{M(J-1)+1}^{\prime}
\end{aligned}
$$

to the right of the stack. Then S returns to (3) to continue the simulation, beginning again with $C_{g(J-1)}^{\prime}$.
(c) $X=\theta$. Then

$$
C_{r+1}^{\prime}=q_{2} a_{1} \cdots \upharpoonright a_{i+d} \cdots a_{n} \nu_{2} Y_{J} \Delta_{2}^{m^{\prime}},
$$

where ν_{2} and m^{\prime} are as in (a). Next, S prints

$$
\begin{aligned}
& \Delta_{3} C_{r+1}^{\prime} \\
& \Delta_{3} G_{1}^{\prime},
\end{aligned}
$$

using the method of (a). Then S returns to (3) to continue the simulation.

If, in (a), (b), or (c), q_{2} is in F then S accepts. Now S can surely write the initial A-configuration and initial "guess"

$$
\begin{aligned}
& C_{1}{ }^{\prime} \\
& G_{1}{ }^{\prime}
\end{aligned}
$$

where

$$
C_{1}^{\prime}=q_{0} ¢ \upharpoonright u \$\left(\Delta_{1} \upharpoonright B\right)^{k} \Delta_{1} Z_{0} \Delta_{2}^{\varepsilon_{2} 2^{n}-(n+3 k+4)}
$$

and

$$
G_{1}^{\prime}=D_{1}^{2_{2} 2^{n}}
$$

where B is a distinguished symbol treated as β.
Thus, by induction on the number of moves of A, S will accept $\Varangle u \$$ if and only if A accepts $¢ u \$$.

We now observe the following two facts:
(1) If L is an arbitrary language accepted by an arbitrary nonerasing $2^{c^{\alpha}-\text { tape- }}$ bounded DAPTM, then L is accepted by a $2^{\text {co }}$-tape-bounded DTM for the same constant c.
(2) In the proof of Theorem $2.1, S$ is nonerasing if A is nonerasing.

Observations (1) and (2) lead to
Theorem 2.2. For each $2^{\text {ca-tape-bounded }}$ DTM M, there exists a NEDWSA such that $T(S)=T(M)$.

3. Simulation of WSA by $2^{\alpha \alpha}$-Tape-Bounded APTM

In this section we demonstrate the implication of statement (iv) from statement (iii) as asserted at the beginning of section two.

Definition. For a given WSA S, a state-input of S is any member of

$$
\bigcup_{n \geqslant 3} K \times \phi \Gamma^{n-2} \$ \times N_{n}
$$

Notation. Given $m \geqslant 1$, let

$$
\frac{I}{m}
$$

be the relation defined as follows. For arbitrary configurations C and C^{\prime}, let

$$
C \stackrel{I}{m} C^{\prime}
$$

if there exist C_{1}, \ldots, C_{l}, with $C_{i}=\left(p_{i}, w_{i}, j_{i}, y_{i}, k_{i}\right)$ for each i, such that
(i) $C_{1}=C, C_{l}=C^{\prime}$,
(ii) $\left|\left\{k_{i} \mid k_{i}=1\right\}\right| \leqslant m$, and
(iii) for each $i, i<l, C_{i} \vdash C_{i+1}$ and $k_{i} \geqslant 1$.

Let

$$
C \vdash_{+}^{I} C^{\prime}
$$

if

$$
C \vdash_{m}^{I} C^{\prime}
$$

for some integer $m \geqslant 1$.
Intuitively,

$$
\frac{I}{m}
$$

relates the first and last configurations of an S computation in which (α) the stack head in each configuration, except possibly the last, is in the interior of the stack; and (β) throughout the total computation, the stack head scans position 1 at most m times.

Note that $C=C^{\prime}$ if $k_{1}=k_{2}=m=1$.
Notation. For each integer $m \geqslant 1$ and each S-configuration ($q, w, j, y Z, 1$), with Z in Γ, let $R_{m}(q, w, j, y Z)$, written R_{m}, denote the set

$$
\{(p, v, k) \mid(q, w, j, y z, 1) \stackrel{I}{m}(p, v, k, y z, 1)\} .
$$

Intuitively, R_{m} contains each state-input arising from the following computation. S starts in configuration ($q, w, j, y z, 1$), always stays in the stack interior, reads position 1 at most m times, and ends in configuration ($p, v, k, y z, 1$).

Definition. Let \mathscr{A} be a new symbol. Given S, w, and y in Γ^{+}, with $|w|=n$, the transition matrix $\mathscr{M}_{w, y}$ (or $\mathscr{M}_{s, w, y}$ when S is to be emphasized) is the function from $K \times N_{n}$ into the subsets of

$$
\{\mathscr{A}\} \cup\left(K \times \not \subset \Gamma^{n-2} \$ \times N_{n}\right)
$$

defined as follows for each (q, j) in $K \times N_{n}$:
(1) $\mathscr{M}_{w, v}(q, j)=\{\mathscr{A}\}$ if

$$
(q, w, j, y, 1) \stackrel{I}{+}(p, v, r, y, t)
$$

with p in F, and $(q, w, j, y, 1)$ is an S-configuration.
(2) If (1) does not apply and ($q, w, j, y, 1$) is an S-configuration, then

$$
\mathscr{M}_{w, y}(q, j)=\left\{(p, v, k) \mid(q, w, j, y, 1) \vdash_{m}(p, v, k, y, 0)\right\} .
$$

(3) If $(q, w, j, y, 1)$ is not an S-configuration, then $\mathscr{M}_{w, y}(q, j)=\phi$.

We shall only be concerned with $\mathscr{M}_{w, v}$ in which $(q, w, j, y, 1)$ is an S-configuration. Note that S accepts in (1).

Agreement. Hereafter in section four, w denotes a given word in $\phi \Gamma^{+} \$$ and $n=|w|=|\Varangle u \$| \geqslant 3$, where $\Varangle u \$$ is the initial input to S. Sometimes $a_{1} \cdots a_{n}$ is written in place of $w . y$ denotes a given word in Γ^{*}.

Notation. Let $g=|\Gamma|$ and $s=|K|$. Let \ll be a lexicographical order on $\phi \Gamma^{n-2} \$$. Let $M_{w, y}=\left\{\mathscr{M}_{w, y}(q, j) \mid(q, j)\right.$ in $\left.K \times N_{n}\right\}$.

Definition. The set

$$
B_{S, n, y}=\left\{M_{w, y} \mid w \text { in } ¢ \Gamma^{n-2} \$\right\},
$$

indexed by \ll on the index w, is called a block.
We shall frequently write B_{y} instead of $B_{S, n, y}$ when S and n are understood.
Intuitively, given B_{y} and any top S-configuration, then A can "simulate" S for the case when S moves into its stack. That is, given that

$$
\left(q_{1}, w_{1}, j_{1}, y, 0\right) \vdash_{s}\left(q_{2}, w_{2}, j_{2}, y, 1\right)
$$

and given B_{y}, then to determine the future of S, A needs the element $M_{w_{2}{ }^{2} y}$, of B_{y}.
In what follows we shall refer to several common words ("encoded forms").
Definition. For each $m, 1$ and each (q, j) in $K \times N_{n}$, the words $\mu\left(K \times N_{n}\right)$, $\mu\left(K \times \Varangle \Gamma^{n-2} \$ \times N_{n}\right), \mu\left(R_{m}\right), \mu\left(\mathscr{M}_{w, y}(q, j)\right), \mu\left(M_{w, y}\right)$, and $\mu\left(B_{y}\right)$ are called the encoded forms of, respectively, $K \times N_{n}, K \times \Varangle \Gamma^{n-2} \$ \times N_{n}, R_{m}, \mathscr{M}_{w, y}(q, j), M_{w, y}$, and B_{y}.

Notation. Let e_{K} be the enumeration q_{1}, \ldots, q_{s} of the elements of K. Let

$$
w_{1}^{\prime}, \ldots, w_{g^{n-2}}^{\prime}
$$

be the words of Γ^{n-2} in some order. For each i, let $w_{i}=\Varangle w_{i}{ }^{\prime} \$$. Let $\Delta_{1}, \ldots, \Delta_{0}$ be seven new symbols.

We now assemble all the necessary encoded forms in the
Notation. Let

$$
\mu\left(K \times N_{n}\right)=\Delta_{1} \nu\left(q_{1}, 1\right) \nu\left(q_{1}, 2\right) \cdots \nu\left(q_{s}, n\right) \Delta_{1}
$$

where

$$
\nu\left(q_{i}, j\right)=q_{i} \Delta_{5}^{j} \Delta_{6}^{n-j}, \quad 1 \leqslant i \leqslant s, \quad 1 \leqslant j \leqslant n
$$

Let

$$
\mu\left(K \times \not \subset \Gamma^{n-2} \$ \times N_{n}\right)=\Delta_{2^{2}}\left(q_{1}, w_{1}, 1\right) v_{1}\left(q_{1}, w_{1}, 2\right) \cdots v_{1}\left(q_{g}, w_{q^{n-1}}, n\right) \Delta_{2},
$$

where

$$
v_{1}\left(q_{i}, w_{l}, j\right)=q_{i} w_{l} \Delta_{5}^{j} \Delta_{8}^{n-j}, \quad 1 \leqslant i \leqslant s, \quad 1 \leqslant l \leqslant g^{n-2}, \quad 1 \leqslant j \leqslant n
$$

Let $\mu\left(R_{m}(q, w, j, y z)\right)$, abbreviated $\mu\left(R_{m}\right)$ denote the word

$$
\mu\left(R_{m}\right)=\Delta_{2_{2}} v_{2}\left(q_{1}, w_{1}, 1\right) \nu_{2}\left(q_{1}, w_{1}, 2\right) \cdots \nu_{2}\left(q_{2}, w_{g^{n-2}}, n\right) \Delta_{2},
$$

where

$$
\nu_{2}\left(q_{i}, w_{l}, k\right)={ }_{1}\left(q_{i}, w_{l}, k\right)
$$

if $\left(q_{i}, w_{l}, k\right)$ is in R_{m} and

$$
\nu_{2}\left(q_{i}, w_{l}, k\right)=\Delta_{6}^{2 n+1}
$$

otherwise.
For given y in Γ^{+}and (q, j) in $K \times N_{n}$, let

$$
\mu\left(\mathscr{M}_{w . v}(q, j)\right)=v_{1}(q, w, j) Y \nu_{3}\left(q_{1}, w_{1}, 1\right) v_{3}\left(q_{1}, w_{1}, 2\right) \cdots v_{3}\left(q_{8}, w_{g^{n-2}}, n\right)
$$

where
($\alpha) \quad Y=\mathscr{A}$ if $\mathscr{M}_{w . v}(q, j)=\{\mathscr{A}\}$, and $Y=\Delta_{7}$ otherwise
(β) $v_{3}\left(q_{i}, w_{i}, k\right)=v_{1}\left(q_{i}, w_{i}, k\right)$ if $Y=\Delta_{7}$ and $\left(q_{i}, w_{i}, k\right)$ is in $\mathscr{M}_{w, y}(q, j)$, and

$$
\nu_{3}\left(q_{i}, w_{l}, k\right)=\Delta_{8}^{2 n+1}
$$

otherwise.
For y in Γ^{+}, let $\mu\left(M_{w)_{y}}\right)$ denote the word

$$
\Delta_{4} \Delta_{4} \mu\left(\mathscr{M}_{w, v}\left(q_{1}, 1\right)\right) \Delta_{4} \mu\left(\mathscr{M}_{w, v}\left(q_{1}, 2\right)\right) \Delta_{4} \cdots \mu\left(\mathscr{M}_{w, v}\left(q_{s}, n\right)\right) \Delta_{4} \Delta_{4}
$$

For $y=\epsilon$, let $\mu\left(M_{w, v}\right)=\beta$, a distinguished symbol denoting the blank symbol.
For each y in Γ^{+}, let $\mu\left(B_{\nu}\right)$ denote the word

$$
\Delta_{3} \Delta_{3} \mu\left(M_{w_{1}}, y\right) \Delta_{3} \mu\left(M_{w_{2}}, y\right) \Delta_{3} \cdots \Delta_{3} \mu\left(M_{w_{g n-8}}, y\right) \Delta_{3} \Delta_{3}
$$

For $y=\epsilon$, let $\mu\left(B_{y}\right)=\beta$.
From the form of $\mu\left(B_{y}\right)$ it is easy to derive a positive integer C_{2} such that

$$
\left|\mu\left(B_{\nu}\right)\right|<2^{c_{3} 2^{n}} .
$$

ease of presentation and comprehension, this is done by a sequence of lemmas, each of which modifies a construction given in a previous lemma. Since the pdt of the APTM A is not required until the final construction, the preliminary lemmas will refer only to the input tape and the work tapes of A. For simplicity, each encoded form required in the procedure is stored on a separate work tape.

Notation. Let T be a 10 -tape TM and

$$
\mathscr{C}=\left(p, u_{0} \upharpoonright v_{0}, \ldots, u_{10} \upharpoonright v_{10}\right)
$$

and

$$
\mathscr{C}^{\prime}=\left(p^{\prime}, u_{0}^{\prime} \upharpoonright v_{0}^{\prime}, \ldots, u_{10}^{\prime} \upharpoonright v_{10}^{\prime}\right)
$$

be T-configurations such that

$$
\mathscr{C} \vdash^{*} \mathscr{C}^{\prime}
$$

For each $i, 0 \leqslant i \leqslant 10$, such that

$$
u_{i}^{\prime} \upharpoonright v_{i}^{\prime}=u_{i} \upharpoonright v_{i}
$$

(even though the i-th storage tape may have been altered and then reset during the computation), let

$$
(i)=u_{i}^{\prime} \upharpoonright v_{i}^{\prime} .
$$

The first lemma shows how A initially computes the words $\mu\left(K \times N_{n}\right)$ and

$$
\mu\left(K \times \Varangle \Gamma^{n-2} \$ \times N_{n}\right)
$$

Lemma 3.1. For each K, Σ, and Γ, there exists a positive integer C_{1} and a $2^{C_{1 \alpha}-t a p e-~}$ bounded TM $T_{1}=\left(K_{1}, \Sigma, W_{1}, \delta_{1}, p_{1}, F_{1}, 10\right)$, with W_{1} containing Γ and with two distinguished states q_{1} and q_{2} in K_{1}, satisfying the following: For each word w in $\phi \Gamma^{+} \$$, $w=a_{1} \cdots a_{n}$, with $a_{1}=\varnothing$ and $a_{n}=\$, j_{0}$ in N_{n}, and u in Σ^{+},

$$
\begin{aligned}
& \left(q_{1}, \upharpoonright \psi u \$, \upharpoonright \beta, \upharpoonright \beta, a_{1} \cdots \upharpoonright a_{j_{0}} \cdots a_{n}, \upharpoonright \beta \cdots \upharpoonright \beta\right) \\
& \quad{\stackrel{\vdash}{T_{1}}}_{*}^{(} q_{2},(0),(1),(2),(3), u_{4}^{\prime} \upharpoonright v_{4}^{\prime},(5),(6), \upharpoonright \mu\left(K \times N_{n}\right) \\
& \left.\quad \upharpoonright \mu\left(K \times ¢ \Gamma^{n-2} \$ \times N_{n}\right),{ }^{(1)} u_{9}^{\prime} \upharpoonright v_{9}^{\prime},(10)\right)
\end{aligned}
$$

where $u_{4}{ }^{\prime} \upharpoonright v_{4}{ }^{\prime}$ and $u_{9}{ }^{\prime} \upharpoonright v_{9}{ }^{\prime}$ are in $H_{2} .{ }^{8}$
Proof. We omit the straightforward proof. ${ }^{9}$
${ }^{8}$ Recall that

$$
H_{2}=\upharpoonright \beta W_{\beta} * \cup W_{\beta} * \upharpoonright \beta \cup W_{\beta}^{*} \uparrow W_{\beta}+
$$

${ }^{9}$ See [7] for details.

Agreement. Hereafter in Section 4, we shall call the input tape of A tape 0 and denote the contents of tape 0 by $u_{0} v_{0}=\phi u \$$.

In Theorem 3.1, A must simulate S when S extends its stack, that is, when S prints some symbol Z at the top. A indirectly simulates S by, among other things, computing $\mu\left(B_{v z}\right)$ from $\mu\left(B_{y}\right)$ where y is the contents of the stack. This portion of the procedure is developed over the next three lemmas.

Briefly, to compute $\mu\left(B_{y z}\right), A$ computes $\mu\left(M_{w, y z}\right)$ for each w in $ф \Gamma^{n-2} \$$. In turn, to compute $\mu\left(M_{w, y z}\right), A$ computes $\mu\left(\mathscr{M}_{w, y z}(q, j)\right)$ for each (q, j) in $K \times N_{n}$. In computing $\mu\left(\mathscr{M}_{w, y z}(q, j)\right), A$ first computes $\mu(R \rho(q, w, j, y Z))$ where $\rho=s n g^{n-2}$. Formally, we state this latter task as

Lemma 3.2. For each WSA S, there exists a positive integer c_{2} and a $2^{c_{2} \alpha}$-tapebounded TM $T_{2}=\left(K_{2}, \Sigma, W_{2}, \delta_{2}, p_{2}, F_{2}, 10\right)$, with W_{2} containing Γ and with two distinguished states q_{1} and q_{2}, satisfying the following: For each word w in $¢ \Gamma^{+} \$$, $w=a_{1} \cdots a_{n}$, with $a_{1}=\varnothing$ and $a_{n}=\$, v(q, j)$ in $v\left(K \times N_{n}\right), j_{0}$ in N_{n}, u in Σ^{+}, y in Γ^{*}, and Z in Γ,

$$
\begin{aligned}
& \left(q_{1}, \upharpoonright c u \$, \upharpoonright \mu\left(B_{y}\right), u_{2} \upharpoonright v_{2}, a_{1} \cdots \upharpoonright a_{j_{0}} \cdots a_{n}, u_{4} \upharpoonright v_{4}, u_{5} \upharpoonright v_{5}, u_{8} \upharpoonright v_{6}\right. \\
& \quad \Delta_{1} v\left(q_{1}, 1\right) \cdots \upharpoonright v(q, j) \cdots v\left(q_{s}, n\right) \Delta_{1}, \upharpoonright \mu\left(K \times ¢ \Gamma^{n-2} \$ \times N_{n}\right) \\
& \left.\quad u_{9} \upharpoonright v_{9}, u_{10} \upharpoonright v_{10}\right) \\
& {\stackrel{\sigma}{T_{2}}}_{*}^{*}\left(q_{2}, \text { (0), (1),(2),(3), } u_{4}^{\prime} \upharpoonright v_{4}^{\prime}, u_{5}^{\prime} \upharpoonright v_{5}^{\prime}, \upharpoonright \mu(R(q, w, j, y Z)\right. \\
& \left.\Delta_{1} v\left(q_{1}, 1\right) \cdots v(q, j) \upharpoonright \cdots v\left(q_{s}, n\right) \Delta_{1}, \text { (B), (9), (10) }\right),
\end{aligned}
$$

where

$$
u_{2} \upharpoonright v_{2}, u_{6} \upharpoonright v_{6}, u_{9} \upharpoonright v_{9}, u_{10} \upharpoonright v_{10}, u_{i} \upharpoonright v_{i}
$$

and

$$
u_{i}^{\prime} \upharpoonright v_{i}^{\prime}
$$

are in H_{2} for $i=4,5$,

$$
\max \left\{\left|u_{2} v_{2}\right|,\left|u_{4} v_{4}\right|,\left|u_{5} v_{5}\right|,\left|u_{6} v_{6}\right|,\left|u_{9} v_{9}\right|,\left|u_{10} v_{10}\right|\right\}<2^{c_{2} n}
$$

and

$$
\rho=s n g^{n-2}
$$

Proof. The sequence of sets ${ }^{10} R_{1}, \ldots, R_{\rho}$ form an increasing chain of sets with the property that $R_{i}=R_{i+1}$ for some i, then $R_{j+1}=R_{i}$ for all $j \geqslant 1$. Since there are at most $\rho=s n g^{n-2}$ distinct state-inputs for S, there exists a positive integer i_{0}, $1 \leqslant i_{0} \leqslant \rho$ such that

$$
R_{i_{0}}=R_{i_{0}+1}=\cdots=R_{\rho}
$$

${ }^{10}$ Recall that for $m \geqslant 1$,

$$
R_{m}=\left\{(p, v, k)\left\{(q, w, j, y Z, 1) \vdash_{m}^{\prime}(p, v, k, y Z, 1)\right\} .\right.
$$

For each integer $m<i_{0}, T_{2}$ computes $\mu\left(R_{m+1}\right)$, ultimately computing

$$
\mu R_{i_{0}}=\mu\left(R_{\rho}\right)
$$

The procedure is such that T_{2} has to remember at most

$$
\max \left\{|\mu(R \rho)|,\left|\mu\left(B_{y}\right)\right|\right\}<2^{c_{2} n}
$$

cells. Thus T_{2} is a $2^{c_{2} \alpha}$-tape-bounded TM.
We informally outline the operation of T_{2}. The TM T_{2} stores the 8-tuple S together with Z in its fsc. For each $m,{ }^{11} 1 \leqslant m<i_{0}, T_{2}$ computes (see next paragraph) $\mu\left(R_{m+1}\right)$ on tape 6 using only $\mu\left(R_{m}\right)$ on tape $5, \mu\left(B_{y}\right)$ on tape 1 , and Z. Initially, T_{2} prints $\mu\left(R_{1}\right)=(\mu\{(q, w, j)\})$ on tape 5 . Upon computing $\mu\left(R_{m+1}\right), T_{2}$ checks if $\mu\left(R_{m}\right)=\mu\left(R_{m+1}\right)$. If so [then $\mu\left(R_{m}\right)=\mu\left(R_{\rho}\right)$ and $\left.m=i_{0}\right], T_{2}$ enters the final configuration. Otherwise, T_{2} replaces $\mu\left(R_{m}\right)$ by $\mu\left(R_{m+1}\right)$ and m by $m+1$ and returns again to compute the new $\mu\left(R_{m+1}\right)$. In case $y=\epsilon, T_{2}$ computes $\mu\left(R_{m+1}\right)$ using only $\mu\left(R_{m}\right)$ and Z. In this case, T_{2} ignores one step in the procedure.

There remains to show how T_{2} computes $\mu\left(R_{m+1}\right)$. Let

$$
\nu_{2}\left(q, w_{t}, k\right) \neq \Delta_{6}^{2 n+1}
$$

be a word in $\mu\left(R_{m}\right)$ such that $w_{t}=b_{1} \cdots b_{n}$, and $\delta\left(q, b_{k}, Z\right)$ contains $\left(q^{\prime}, b_{k}^{\prime}, d, X\right)$ for some X in $\{-1,0,1\}$. Let $x=b_{1} \cdots b_{k-1} b_{k} b_{k+1} \cdots b_{n} . T_{2}$ computes $\mu\left(R_{m+1}\right)$ on tape 6 by executing the following steps for each

$$
\nu_{2}\left(q, w_{t}, k\right) \neq \Delta_{6}^{2 n+1}:
$$

(1) $\nu_{2}\left(q, w_{t}, k\right)$ is copied ${ }^{12}$ to tape 6 ;
(2) If $X=0$ then $\nu_{1}\left(q^{\prime}, x, k+d\right)$ is copied ${ }^{13}$ to tape 6 ;
(3) If $X=-1$ (impossible if $y=\epsilon$) then each $v_{3}\left(q^{\prime \prime}, w^{\prime}, l\right)$ is copied ${ }^{14}$ to tape 6 from $\mu\left(\mathscr{M}_{x, y}\left(q^{\prime}, k+d\right)\right)$ in $\mu\left(B_{y}\right)$, with

$$
\nu_{3}\left(q^{\prime \prime}, w^{\prime}, l\right) \neq \Delta_{\mathbf{6}}^{2 n+1}
$$

The details for carrying out (1)-(3) are straightforward and are omitted.
In the next portion of the procedure, A computes $\mu\left(M_{w, y z}\right)$ by computing $\mu\left(\mathscr{M}_{w, y z}(q, j)\right)$ for each (q, j) in $K \times N_{n} . A$ uses $\mu\left(R \rho(q, w, j, y Z), w, Z\right.$ and $\mu\left(B_{y}\right)$ to accomplish this latter task.

[^4]Lemma 3.3. For each WSA S, there exists a positive integer c_{2} and a $2^{c_{2} \alpha}$-tapebounded TM $T_{3}=\left(K_{3}, \Sigma, W_{3}, \delta_{3}, p_{3}, F_{3}, 10\right)$, with W_{3} containing Γ and with two distinguished states q_{1} and q_{2}, satisfying the following: For each word w in $¢ \Gamma+\$$, $w=a_{1} \cdots a_{n}$, with $a_{1}=\phi$ and $a_{n}=\$, Z$ in Γ, y in Γ^{*}, j_{0} in N_{n}, and u in Σ^{+},

$$
\begin{aligned}
& \left(q_{1}, \upharpoonright c u \$, \upharpoonright \mu\left(B_{y}\right), u_{2} \upharpoonright v_{2}, a_{1} \cdots \upharpoonright a_{j_{0}} \cdots a_{n}, u_{4} \upharpoonright v_{4}, u_{5} \upharpoonright v_{5}, u_{6} \upharpoonright v_{6}\right. \\
& \left.\quad \upharpoonright \mu\left(K \times N_{n}\right), \upharpoonright \mu\left(K \times ¢ \Gamma^{n-2} \$ \times N_{n}\right), u_{9} \upharpoonright v_{9}, u_{10} \upharpoonright v_{10}\right) \\
& \quad \vdash_{T}^{*}\left(q_{2},(0),(1), \upharpoonright \mu\left(M_{w, y}\right),(3), u_{4}^{\prime} \upharpoonright v_{4}^{\prime}, u_{5}^{\prime} \upharpoonright v_{5}^{\prime}, u_{6}^{\prime} \upharpoonright v_{6}^{\prime},(7),(8), u_{9}^{\prime} \upharpoonright v_{\theta}^{\prime},(10)\right)
\end{aligned}
$$

where

$$
u_{2} \upharpoonright v_{2}, \quad u_{10} \upharpoonright v_{10}, \quad u_{i} \upharpoonright v_{i}
$$

and

$$
u_{i}^{\prime} \upharpoonright v_{i}^{\prime}
$$

are in H_{2} for i in $\{4,3,6,9\}$, and $\max \left\{\left|u_{i} v_{i}\right|\right\}<2^{c_{2} n}$ for i in $\{2,4,5,6,9,10\}$.
Proof. Let c_{2} and the 10 tape TM T_{2} be as given in Lemma 3.2. The work tapes of T_{3} are those of T_{2}. The procedure is such that T_{3} has to remember at most

$$
\left|\mu\left(B_{y}\right)\right|<2^{c_{2} n}
$$

cells. Thus T_{3} is a $2^{C_{2} \alpha}$-tape-bounded TM. Intuitively, T_{3} stores the 7-tuple T_{2} together with S and Z in its fsc. T_{3} computes $\mu\left(M_{w, y z}\right)$ by computing $\mu\left(\mathscr{M}_{w, y Z}(q, j)\right)$ for each (q, j) in $K \times N_{n}$. To compute $\mu\left(\mathscr{M}_{w, y z}(q, j)\right), T_{3}$ uses $\mu\left(R_{\rho}(q, w, j, y Z)\right)$ (first computing the latter by Lemma 3.2), S, and $\mu\left(B_{y}\right)$. In case $y=\epsilon, T_{3}$ computes $\mu\left(M_{w, z}\right)$ using only $\mu\left(R_{\rho}(q, w, j, Z)\right)$ and S. In this case, T_{3} ignores one step (indicated below) in the procedure.

We now outline (steps (1)-(7)) the procedure for T_{3}. For each $i, 1 \leqslant i \leqslant 5$, $7 \leqslant i \leqslant 9$, and d_{2} in $\{-1,0,1\}$, let r_{i} and $\left(r_{6}, d_{2}\right)$ be states in K_{3}. Let \mathscr{C}_{0} be the start configuration stated in the lemma. For convenience, we assume that tapes 2 and 9 are initially blank. Thus,

$$
\begin{aligned}
\mathscr{C}_{0}= & \left(q_{1}, \upharpoonright c u \$, \upharpoonright \mu\left(B_{y}\right), \upharpoonright \beta, a_{1} \cdots \upharpoonright a_{j_{0}} \cdots a_{n}, u_{4} \upharpoonright v_{4}, \cdots, u_{6} \upharpoonright v_{6},\right. \\
& \left.\upharpoonright \Delta_{1} \nu\left(q_{1}, 1\right) \cdots v\left(q_{s}, n\right) \Delta_{1}, \upharpoonright \mu\left(K \times \Varangle \Gamma^{n-2} \$ \times N_{n}\right), \upharpoonright \beta, u_{10} \upharpoonright v_{10}\right) .
\end{aligned}
$$

$$
\begin{equation*}
\mathscr{C}_{0} \vdash \mathscr{C}_{1}, \text { where } \tag{1}
\end{equation*}
$$

$$
\mathscr{C}_{1}=\left(r_{1}, \text { (0) , (1) }, \Delta_{4} \upharpoonright \beta,(3), \ldots,(6), \Delta_{1} \uparrow v\left(q_{1}, 1\right) \cdots v\left(q_{s}, n\right) \Delta_{1}, \text { (8), (9), (10) }\right)
$$

In steps (2)-(4), T_{3} prepares to compute $\Delta_{4} \mu\left(\mathscr{M}_{w, y z}(q, j)\right)$ on tape 2 for the next
(first) $v(q, j)$ in $v\left(\times N_{n}\right)$. Thus, let ${ }^{15}\left(q^{\prime}, j^{\prime}\right)$ be the element immediately preceding (q, j) in $K \times N_{n}$ in an ordering of $K \times N_{n}$ in an ordering of $K \times N_{n}$. Let

$$
\lambda=\Delta_{4} \mu\left(\mathscr{M}_{w, y} z\left(q_{1}, 1\right)\right) \Delta_{4} \cdots \Delta_{4} \mu\left(\mathscr{M}_{w, y z}\left(q^{\prime}, j^{\prime}\right)\right)
$$

(2) $\mathscr{C}_{1} \stackrel{ }{ }^{*} \mathscr{C}_{2}$, where

$$
\begin{aligned}
\mathscr{C}_{2}= & \left(r_{2},(0),(1), \Delta_{4} \lambda \upharpoonright \beta,(3), \cdots,(6), \Delta_{1} v\left(q_{1}, 1\right) \cdots\right. \\
& \left.\upharpoonright \nu(q, j) \cdots\left(q_{s}, n\right) \Delta_{1},(8), \upharpoonright v_{1}(q, w, j), \text { (10) }\right) .
\end{aligned}
$$

(After printing ${ }_{1}(q, w, j)$ on tape $9, T_{3}$ begins a loop by entering r_{2}. Initially, $\nu(q, j)=$ $\nu\left(q_{1}, 1\right)$.)
(3) $\mathscr{C}_{2} * \mathscr{C}_{3}$, where

$$
\mathscr{C}_{3}=\left(r_{3},(1),(1), \Delta_{4} \lambda \Delta_{4} \upharpoonright \mu_{e}\left(\mathscr{M}_{w, y z}(q, j)\right),(3), \ldots,(10)\right.
$$

and

$$
\mu_{\theta}\left(\mathscr{M}_{w, y Z}(q, j)\right)=\nu_{1}(q, w, j) \Delta_{7^{\prime}} v_{4}\left(q_{1}, w_{1}, 1\right) \cdots v_{4}\left(q_{s}, w_{g^{n-2}}, n\right)
$$

each

$$
\nu_{4}\left(q_{i}, w_{t}, k\right)=\Delta_{6}^{2 n+1}
$$

(T_{3} prints an "empty" copy of $\mu\left(\mathscr{M}_{w, y z}(q, j)\right)$ on tape 2.)
(4) $\mathscr{C}_{3} \stackrel{*}{\stackrel{*}{\mathscr{C}_{4}} \text {, where }}$

$$
\begin{aligned}
\mathscr{C}_{4}= & \left(r_{4},(0), \ldots,(3), u_{4}^{\prime} \upharpoonright v_{4}^{\prime}, u_{5}^{\prime}, \upharpoonright v_{5}^{\prime}, \upharpoonright \mu(R \rho), \Delta_{1} \nu\left(q_{1}, 1\right) \cdots(q, j)\right. \\
& \left.\upharpoonright \cdots \nu\left(q_{s}, n\right) \Delta_{1},(8),(9),(10)\right)
\end{aligned}
$$

and the initial and final configurations are as in Lemma 3.2. (For the next (first) $\nu(q, j)$ in $K \times N_{n}$, with w, y, and Z fixed, T_{3} computes $\mu\left(R_{\rho}\right)$.)

The next step is executed for each

$$
\nu_{2}\left(p, w_{t}, k\right) \neq \Delta_{6}^{2 n+1}
$$

in $\mu\left(R_{\rho}\right)$.
(5) Let $\mu\left(\mathscr{M}_{w, y Z}^{\prime}(q, j)\right)$ generically denote any word of the form

$$
\nu_{1}(q, w, j) \Delta_{7^{\prime}} \nu_{4}^{\prime}\left(q_{1}, w_{1}, 1\right) \cdots v_{4}^{\prime}\left(q_{s}, w_{g^{n-2}}, n\right)
$$

where for each $\left(q_{i}, w_{t}, k\right)$, either

$$
\begin{aligned}
& \text { (i) } \nu_{4}^{\prime}\left(q_{i}, w_{t}, k\right)=v_{4}\left(q_{i}, w_{t}, k\right) \text { or } \\
& \text { (ii) } \nu_{4}^{\prime}\left(q_{i}, w_{t}, k\right)=q_{i} w_{t} \Delta_{5}^{k} \Delta_{6}^{n k} \\
& { }^{15}\left(q^{\prime}, j^{\prime}\right)=\lambda=\epsilon \text { if }(q, j)=\left(q_{1}, 1\right) .
\end{aligned}
$$

and $\nu_{4}^{\prime}\left(q_{i}, w_{t}, k\right)$ has been inserted into $\mu\left(\mathscr{M}_{w, y z}^{\prime}(q, j)\right)$ during the l-th pass, $0 \leqslant l \leqslant \rho$ of step 5 . For $l=0$, that is, initially,

$$
\mu\left(\mathscr{M}_{w, y z}^{\prime}(q, j)\right)=\mu_{e}\left(\mathscr{M}_{w, y z}(q, j)\right) .
$$

(a) $\mathscr{C}_{4} \vdash^{*} \mathscr{C}_{5}$, where

$$
\begin{aligned}
\mathscr{C}_{5}= & \left(r_{5},\left(0,(1), \Delta_{4} \lambda \Delta_{4} \upharpoonright \mu\left(\mathscr{M}_{w, y z}^{\prime}(q, j)\right),(3), \ldots,(5), \gamma_{1}\right.\right. \\
& \left.\upharpoonright \nu_{2}\left(p, w_{t}, k\right) \gamma_{2},(7), \ldots,(10)\right), \nu_{2}\left(p, w_{t}, k\right)
\end{aligned}
$$

is the next (first) subword in $\mu(R)$ such that

$$
\nu_{2}\left(p, w_{t}, k\right) \neq \Delta_{6}^{2 n+1}
$$

and $\gamma_{1} \nu_{2}\left(p, w_{t}, k\right) \gamma_{2}=\mu(R \rho)$.
(b) If p is in F, then $\mathscr{C}_{5},^{*} \mathscr{C}_{8}$, where

$$
\begin{aligned}
\mathscr{C}_{9}= & \left(r_{0}, \text { (0) , (1) }, \Delta_{4} \lambda \Delta_{4} \upharpoonright \nu_{1}(q, w, j) \mathscr{A}_{\nu_{4}}\left(q_{1}, w_{1}, 1\right) \cdots\right. \\
& \left.\nu_{4}\left(q_{s}, w_{g^{n-2}}, n\right)(3), \ldots, \text { (5), } \gamma_{1} \nu_{2}\left(p, w_{t}, k\right) \upharpoonright \gamma_{2}, \text { (7), (8), } \upharpoonright \Delta_{6}^{2 n+1}, \text { (10) }\right) .
\end{aligned}
$$

Then T_{3} proceeds to step 7. (After setting $\mathscr{A}_{w, y Z}(q, j)=\{\mathscr{A}\}, T_{3}$ overprints tape 9 with $\Delta_{6}^{2 n+1}$.)

Next, let $w_{t}=b_{1} \cdots b_{n}, \delta\left(p, b_{k}, Z\right)$ contain $\left(q^{\prime \prime}, b_{k}{ }^{\prime}, d_{1}, d_{2}\right)$, and

$$
v=b_{1} \cdots b_{k-1} b_{k}{ }^{\prime} b_{k+1} \cdots b_{n}
$$

(c) $\mathscr{C}_{5} \imath^{*} \mathscr{C}_{6}$, where

$$
\mathscr{C}_{6}=\left(\left(r_{6}, d_{2}\right),(0), \ldots,(5), \gamma_{1} \nu_{2}\left(p, w_{t}, k\right) \upharpoonright \gamma_{2},(7),(8), \upharpoonright \nu_{1}\left(q^{\prime \prime}, v, k+d_{1}\right),(10)\right) .
$$

(After computing $\delta\left(p, b_{k}, Z\right), T_{3}$ prints $\nu_{1}\left(q^{\prime \prime}, v, k+d_{1}\right)$ on tape 9 and enters state $\left(r_{6}, d_{2}\right)$.)
Several cases arise. If $q^{\prime \prime}$ is not in F and $d_{2}=0$ then T_{3} ignores this case since, by definition, $\nu_{2}\left(q^{\prime \prime}, v, k+d_{1}\right)$ would be a member of $\mu\left(R_{\rho+1}\right)=\mu\left(R_{\rho}\right)$. There remain three cases to consider, namely, $q^{\prime \prime}$ in $F, q^{\prime \prime}$ not in F and $d_{2}=1$, and $q^{\prime \prime}$ not in F and $d_{2}=-1$.
(d) $q^{\prime \prime}$ is in F. Then $\left.\mathscr{C}_{6}\right|^{*} \mathscr{C}_{9}$, where \mathscr{C}_{9} is as in (5b).
(e) $q^{\prime \prime}$ is not in F and $d_{2}=1$. Then using

$$
\mu\left(K \times \not \subset \Gamma^{n-2} \$ \times N_{n}\right)
$$

T_{3} copies $\nu_{1}\left(q^{\prime \prime}, v, k+d_{1}\right)$ from tape 9 to tape 2 . That is, T_{3} inserts $\nu_{1}\left(q^{\prime \prime}, v, k+d_{1}\right)$ into $\mu\left(\mathscr{M}_{w, y z}^{\prime}(q, j)\right)$ (since $\left(q^{\prime \prime}, v, k+d_{1}\right)$ is a member of $\left.\mathscr{M}_{w, y z}(q, j)\right)$, using tape 8 to determine its position. Then, T_{3} proceeds to step 6.
(f) $q^{\prime \prime}$ is not in F and $d_{2}=1$. (This is not possible if $y=\epsilon$.) Then T_{3} reads the symbol Y in $\mu\left(\mathscr{M}_{v, v}\left(q^{\prime \prime}, k+d_{1}\right)\right)$ on tape 1 (obviously, T_{3} can find $\mu\left(\mathscr{M}_{v, y}\left(q^{\prime \prime}, k+d_{1}\right)\right)$ in $\mu(\gamma)$ on tape 1). If $Y=\mathscr{A}$ then T_{3} overprints the symbol Δ_{7} in $\mu\left(\mathscr{M}_{w, y z}^{\prime}(q, j)\right)$ with \mathscr{A} and goes to step 7 . $\mathrm{If}^{16} Y \neq \mathscr{A}, T_{3}$ goes to step 6.
(6) If $\nu_{2}\left(p, w_{t}, k\right)$ is not the last subword in $\mu\left(R_{p}\right)$ such that $\nu_{2}\left(p, w_{t}, k\right) \neq \Delta_{6}^{2 n+1}$, then T_{3} goes to step 5. If $v_{2}\left(p, w_{t}, k\right)$ is the last, T_{3} goes to step 7.
(7) If the symbol scanned on tape 7 (see step 4) is not Δ_{1}, then T_{3} returns to step 2. Otherwise, T_{3} enters the final configuration stated in the lemma.

The next lemma says that A can compute $\mu\left(B_{Y Z}\right)$ given $\mu\left(B_{Y}\right)$ and Z. To accomplish this, A computes $\mu\left(M_{w, y Z}\right)$ for each w in $\varphi \Gamma n-2_{\$}$.

Lemma 3.4. For each WSA S, there exists a positive integer C_{2} and a $2^{C_{2} \alpha \text {-tape- }}$ bounded TM $T_{4}=\left(K_{4}, \Sigma, W_{4}, \delta_{4}, p_{4}, F_{4}, 10\right)$, with W_{4} containing Γ and with two distinguished states q_{1} and q_{2}, satisfying the following: For each word w in $¢ \Gamma^{+} \$$, $w=a_{1} \cdots a_{n}$, with $a_{1}=\Varangle$ and $a_{n}=\$, Z$ in Γ, y in ${ }^{*}, j_{0}$ in N_{n}, and u in Σ^{+},

$$
\begin{aligned}
& \left(q_{1}, \upharpoonright c u \$, \upharpoonright \mu\left(B_{Y}\right), u_{2} \upharpoonright v_{2}, a_{1} \cdots \upharpoonright a_{j_{0}} \cdots a_{n}, u_{4} \upharpoonright v_{4}, u_{5} \upharpoonright v_{5}, u_{6} \upharpoonright v_{6},\right. \\
& \left.\upharpoonright \mu\left(K \times N_{n}\right), \upharpoonright \mu\left(K \times \phi \Gamma^{n-2} \$ \times N_{n}\right), u_{9} \upharpoonright v_{9}, u_{10} \upharpoonright v_{10}\right) \\
& {\stackrel{+}{T_{4}}}_{*}^{*}\left(q_{2},(0),(1), u_{2}{ }^{\prime} \upharpoonright v_{2}^{\prime},(3), u_{4}{ }^{\prime} \upharpoonright v_{4}{ }^{\prime}, u_{5}{ }^{\prime} \upharpoonright v_{5}^{\prime}, u_{6}{ }^{\prime} \upharpoonright v_{6}{ }^{\prime} \text {, (7), (8), } u_{9}{ }^{\prime} \upharpoonright v_{9}{ }^{\prime}, \upharpoonright \mu\left(B_{Y Z}\right)\right) \text {, }
\end{aligned}
$$

where

$$
u_{10} \upharpoonright v_{10}, \quad u_{i} \upharpoonright v_{i}
$$

and

$$
u_{i}^{\prime} \upharpoonright v_{i}^{\prime}
$$

are in H_{2} for i in $\{2,4,5,6,9\}$, and

$$
\max \left\{\left|u_{i} v_{i}\right|\right\}<2^{c_{2} n}
$$

for i in $\{2,4,5,6,9,10\}$.
Proof. Let c_{2} and the 10 tape TM T_{3} be as given in Lemma 3.3. The work tapes of T_{4} are those of T_{3}. The procedure is such that each work tape of T_{4} has to store at most

$$
\left|\mu\left(B_{Y}\right)\right|<2^{c_{2} n}
$$

cells. Thus, T_{4} is a $2^{C_{2} \alpha}$-tape-bounded TM. Intuitively, T_{4} stores the 7 -tuple T_{3} together with S and Z in its fsc. If $y \neq \epsilon$ then the initial contents of tapes 2 and 10
${ }^{16}$ All other values in $\mathscr{M}_{0, y}\left(q^{\prime \prime}, k+d_{1}\right)$ can be ignored. In particular, any state-inputs must, by definition be in $R \rho$.

571/6/2-7
are ignored, that is, overprinted with a symbol treated as β. It thus suffices to consider only the case where

$$
u_{2} \upharpoonright v_{2}=u_{10} \upharpoonright v_{10}=\upharpoonright \beta
$$

that is, the case $y=\epsilon$.
For each $j, 1 \leqslant j \leqslant g^{n-2}, T_{4}$ computes w_{j} on tape $9, T_{4}$ computes $\mu\left(M_{w_{j}}, Z\right)$ on tape 2 (using Lemma 3.3), and then T_{4} prints $\mu\left(M_{w_{j}}, Z\right) \Delta_{3}$ on tape 10. As usual, we omit the straightforward details.

Theorem 3.1. For each WSA S there exists a positive integer C_{2} and a $2^{C_{2}{ }^{\alpha} \text {-tape- }}$ bounded APTM A such that $T(A)=T(S)$.

Proof. Let u be in $T(S)$ and $n=|\not \subset u \$| \geqslant 3$. The pdt of A is hereafter referred to as tape 11. Let C_{2} be the positive integer and T_{4} the 10 tape TM as given in Lemma 3.4. The APTM A will include the fsc and the 10 work tapes of T_{4} together with tape 11. A stores the 8 -tuple S in its fsc.

The definition of $f(\alpha)$-APTM together with the fact that T_{4} is a $2^{C_{2} \alpha}$-tape-bounded TM implies that A is a $2^{C_{2} \alpha}$-tape-bounded APTM.

We now show how A "simulates" S on $¢ u \$$. Let $\Pi_{\alpha}{ }^{\prime}$ be a sequence of S-configurations $C_{1}{ }^{\prime}, \ldots, C^{\prime}$ where

$$
C_{1}^{\prime}=\left(q_{0}, \phi u \$, 1, Z_{0}, 0\right), \quad C_{1}^{\prime}=\left(p_{i}, w_{i}, j_{i}, y_{i}, k_{i}\right), \quad 1 \leqslant i \leqslant \alpha
$$

and

$$
C_{i}^{\prime}{ }_{-} C_{i+1}^{\prime}
$$

for $1 \leqslant i \leqslant \alpha$. Let Π_{r} be the subsequence $C_{1}, \ldots, C_{r}, 1 \leqslant r \leqslant \alpha$, of top S-configurations in Π_{α}. That is, C_{l} is the l-th $1 \leqslant l \leqslant r$, member of Π_{r} if and only if $k_{l}=0$ and $\left|\left\{C_{j}{ }^{\prime} \mid k_{j}=0,1 \leqslant j \leqslant l\right\}\right|=l$.
Let $C_{r}=(q, w, j, y, 0)$, where $y=Y_{t} \cdots Y_{1}, t \geqslant 0$. Let

$$
\zeta=Y_{t} \mu\left(B_{Y_{t}}\right) Y_{t-1} \mu\left(B_{Y_{t} Y_{t-1}}\right) \cdots Y_{2} \mu\left(B_{Y_{t} \cdots Y_{2}}\right) Y_{1} \mu\left(B_{Y}\right)
$$

for $t>0$ and let $\zeta=\epsilon$ for $t=0$. Corresponding to C_{r}, let \mathscr{C}_{r} be the A-configuration

$$
\left(\left(q, Y_{1}\right), \upharpoonright u \$, \upharpoonright \mu\left(B_{Y}\right), u_{2} \upharpoonright v_{2}, a_{1} \cdots \upharpoonright a_{j} \cdots a_{n}, u_{4} \upharpoonright v_{4}, \ldots, u_{10} \upharpoonright v_{10}, \zeta\right)
$$

where $\left(q, Y_{1}\right)$ is a new state, $u_{2} \upharpoonright v_{2}$ is in $H_{2}, u_{m} \upharpoonright v_{m}$ is in H_{2} for $4 \leqslant m \leqslant 10$,

$$
\max \left\{\left|u_{2} v_{2}\right|,\left|u_{m} v_{m}\right| 4 \leqslant m \leqslant 10\right\}<2^{c_{2} n}
$$

and as usual, $w=a_{1} \cdots a_{n}$.
The APTM A indirectly "simulates" S in the following sense. When S is at the top configuration C_{r}, A is at the corresponding configuration \mathscr{C}_{r}. Also, A codes each
component of C_{r} and the topmost symbol Y_{1} of the stack of S as follows: q and Y_{1} are in the fsc, w and position j are represented by

$$
a_{1} \cdots \upharpoonright a_{j} \cdots a_{n}
$$

on tape 3 , and y is represented both in $\mu\left(B_{Y}\right)$ on tape 1 and in ζ on tape 11 .
We will show that, given the top S-configuration C_{r}, if S can accept u before or upon returning its stack head to the top in some configuration C_{r+1}, A will accept u. If on the other hand, without accepting, S chooses to enter a new top-configuration C_{r+1}, A will enter a configuration \mathscr{C}_{r+1}, simulating S in the above sense. Using a straightforward induction on r, the number of top S-configurations, it will then follow that $T(S)=T(A)$, proving our assertion.

Initially, A is in

$$
\mathscr{C}_{0}=\left(p_{0}, \upharpoonright \downarrow u \$, \upharpoonright \beta, \ldots, \upharpoonright \beta, Z_{0}\right)
$$

and S is in $C_{1}=\left(q_{0}, \phi u \$, 1, Z_{0}, 0\right)$. First, $\mathscr{C}_{0} *_{A} \mathscr{C}_{1}$, where

$$
\mathscr{C}_{1}=\left(\left(q_{0}, Z_{0}\right), \upharpoonright c u \$, \upharpoonright \mu\left(B_{z_{0}}\right), u_{2} \upharpoonright v_{2}, \upharpoonright ¢ u \$, u_{4} \upharpoonright v_{4}, \ldots, u_{10} \upharpoonright v_{10},\left(Z_{0} \mu B_{z_{0}}\right)\right)
$$

by copying the input to tape 3 and using $y=\epsilon$ in Lemma 3.4 to obtain the encoded block $\mu\left(B_{Z_{0}}\right)$.

To see how A can simulate S from C_{r} to C_{r+1}, let (p, Z, i) denote a new state for each p in K, Z in Γ, and $i=2,3$. Let S and A be in the configurations, respectively, C_{r} and \mathscr{C}_{r}. A nondeterministically chooses a member of $\delta\left(q, a_{3}, Y_{1}\right)$ from its fsc (a_{j} is obtained from tape 3). There are four ${ }^{17}$ possibilities for the fourth component of $\delta_{\beta}\left(q, a_{j}, Y_{1}\right)$.
(1) $\delta_{\beta}\left(q, a_{j}, Y_{1}\right)$ contains $\left(q_{1}^{\prime}, a_{j}^{\prime}, d, \theta\right)$. If q_{1}^{\prime} is in F, then A also accepts. Otherwise,

$$
\mathscr{C}_{r} \vdash_{A} \mathscr{C}_{r+1}
$$

where

$$
\mathscr{C}_{r+1}=\left(\left(q_{1}^{\prime}, Y_{1}\right),(0),(1),(2), a_{1} \cdots a_{j}^{\prime} \upharpoonright a_{j+d} \cdots a_{n}, \text { (4) }, \ldots,(10), \zeta\right)
$$

(2) $\delta_{\beta}\left(q, a_{j}, Y_{1}\right)$ contains $\left(q_{1}{ }^{\prime}, a_{j}{ }^{\prime}, d, 1\right)$. Then S enters its stack in configuration ($q_{1}{ }^{\prime}, x, j+d, y, 1$). If S can accept before or upon returning its stack head to the top, then A will be made to accept. Otherwise, for each next possible top S-configuration of the form $C_{r+1}=\left(q_{2}{ }^{\prime}, w_{2}, j_{2}, y, 0\right), A$ will simulate S by entering an associated configuration of the form

$$
\begin{gathered}
\left(\left(q_{2}^{\prime}, Y_{1}\right),(0),(1),(2), b_{1} \cdots \upharpoonright b_{j_{2}} \cdots b_{n},(4), \cdots,(10), \zeta\right), \\
{ }^{17} \text { Recall that } \delta_{\beta} \text { is a function from } K \times(\Gamma \cup\{£, \$\}) \times \Gamma \text { into the subsets of } \\
K \times(\Gamma \cup\{¢, \$\}) \times\{-1,0,1\} \times(\Gamma \cup\{\theta, I, E\}) .
\end{gathered}
$$

where

$$
b_{1} \cdots b_{n}=w_{2}
$$

First, $\mathscr{C}_{r} \vdash_{A} \mathscr{C}_{2}{ }^{\prime}$, where

$$
\left(\left(q_{1}^{\prime}, Y_{1}, 2\right),(0),(1),(2), a_{1} \cdots a_{j}^{\prime} \upharpoonright a_{j+d} \cdots a_{n}, \text { (4) }, \ldots, \text { (10), } \zeta\right)
$$

Next, to determine all possibilities for S, with S in configuration $\left(q_{1}{ }^{\prime}, x, j+d, y, 1\right)$, A uses $\mu\left(\mathscr{M}_{x, y}\left(q_{1}{ }^{\prime}, j+d\right)\right)$ in $\mu\left(B_{Y}\right)$ on tape 1 (obviously, A can find $\mu\left(\mathscr{M}_{x, y}\left(q_{1}{ }^{\prime}, j+d\right)\right)$). Two cases arise for $\mu\left(\mathscr{M}_{x, y}\left(q_{1}{ }^{\prime}, j+d\right)\right)$:
(a) $Y=\mathscr{A}$, so that S accepts before or upon returning to a top-configuration. Then A is to accept.
(b) $Y=\Delta_{7}$. Then S cannot accept before or upon reaching the top of stack. S may or may not return to a top-configuration. In this case, A nondeterministically chooses some state input ($\left.q_{2}^{\prime}, w_{2}, j_{2}\right)$ to the right of Y in $\mu\left(\mathscr{M}_{x, y}\left(q_{1}^{\prime}, j+d\right)\right.$). Thus, in case (b),

$$
\mathscr{C}_{2}^{\prime} \vdash_{A}^{*} \mathscr{C}_{r+1}
$$

(After choosing $\left(q_{2}{ }^{\prime}, w_{2}, j_{2}\right), A$ copies w_{2} to tape 3 , moving tape 3 head to position j_{2}. Then A goes to state ($q_{2}{ }^{\prime}, Y_{1}$).)
(3) $\delta_{\beta}\left(q, a_{j}, Y_{1}\right)$ contains $\left(q_{1}{ }^{\prime}, a_{j}^{\prime}, d, Z\right)$ where Z is in Γ. Then $C_{r} \vdash_{s} C_{r+1}=$ ($q_{1}{ }^{\prime}, x, j+d, y Z, 0$). If $q_{1}{ }^{\prime}$ is in F, then A also accepts. Otherwise, A simulates S as follows: First

$$
\mathscr{C}_{r}: \mathscr{A}_{\boldsymbol{A}} \mathscr{C}_{3}^{\prime}
$$

where

$$
\mathscr{C}_{3}^{\prime}=\left(\left(q_{1}^{\prime}, Z, 3\right), \text { (0), (1), (2), } a_{1} \cdots a_{j}^{\prime} \wedge a_{j+d} \cdots a_{n}, 4, \ldots, \text { (10), } \zeta\right) .
$$

Next, holding tape 11 fixed, using the other 11 tapes and the states as in Lemma 3.4,

$$
\mathscr{C}_{3}^{\prime} \vdash_{A}^{*} \mathscr{C}_{4}^{\prime}
$$

where

$$
\mathscr{C}_{4}^{\prime}=\left(\overline{\left(q_{1}^{\prime}, Z\right)},(0),(1), u_{2}^{\prime} \upharpoonright v_{2}^{\prime},(3), u_{4}^{\prime} \upharpoonright v_{4}^{\prime}, \ldots, u_{6}^{\prime} \upharpoonright v_{6}^{\prime},(7), \text { (8) }, u_{9}^{\prime} \upharpoonright u_{9}^{\prime}, \upharpoonright \mu\left(B_{Y Z}\right), \zeta\right) .
$$

Finally,

$$
\mathscr{C}_{4}^{\prime} \dot{t}_{A}^{*} \mathscr{C}_{r+1}
$$

where

$$
\mathscr{C}_{r+1}=\left(\left(q_{1}^{\prime}, Z\right),(0), \ldots,\left(10, \zeta Z\left(B_{Y Z}\right)\right) .\right.
$$

(The $\mu\left(B_{Y Z}\right)$ is obtained from tape 10.)
(4) $\delta_{\beta}\left(q, a_{j}, Y_{1}\right)$ contains $^{18}\left(q_{1}{ }^{\prime}, a_{j}{ }^{\prime}, d, E\right)$. Then

$$
C_{r}{ }_{s} C_{r+1}=\left(q_{1}^{\prime}, x, j+d, Y_{i} \cdots Y_{2}, 0\right)^{19}
$$

If q_{1}^{\prime} is in F, then A also accepts. Otherwise,

$$
\mathscr{C}_{r} \vdash^{*} \mathscr{C}_{r+1}
$$

where
$\mathscr{C}_{r+1}=\left(\left(q_{1}{ }^{\prime}, Y_{2}\right),(0),\left\lceil\mu B_{Y_{t} \cdots Y_{2}},(2), a_{1} \cdots a_{j}{ }^{\prime} \upharpoonright a_{j+d} \cdots a_{n}\right.\right.$, (4), \ldots, (10), $\left.\rho^{\prime} Y_{2 \mu} \mu\left(B_{Y_{t} \cdots Y_{2}}\right)\right)$
with

$$
\rho^{\prime}=Y_{t} \mu B_{Y_{t}} Y_{t-1} \mu B_{Y_{t} Y_{t-1}} \cdots Y_{3} \mu B_{Y_{t} \cdots Y_{3}}
$$

for $t \geqslant 3$ and $\rho^{\prime}=\epsilon$ for $t \leqslant 2$.
Thus, if

$$
C_{r} \leftarrow_{s} C_{r+1}=\left(q_{1}^{\prime}, x, j+d, Y_{t} \cdots Y_{2}, 0\right)
$$

and S accepts, then A accepts. Otherwise, A simulates S by entering the associated configuration \mathscr{C}_{r+1}.

It follows that A will accept u if and only if S accepts u during any computation, and thus $T(A)=T(S)$.

Observe that in the proof of Theorem 3.1, A is nonerasing if S is nonerasing. By the comment made after the definition of $f(\alpha)$-APTM at the end of section one, if L is an arbitrary language accepted by an arbitrary nonerasing $2^{c \alpha}-\mathrm{APTM}$, then L is accepted by a $2^{c_{\alpha}-T M}$, for the same constant c. Hence there immediately follows:

Theorem 3.2. For each NEWSA S, there exists a positive integer C_{2} and a $2^{C_{2} \alpha}$-tapebounded TM M such that $T(M)=T(S)$.

4. Main Results and Consequences

Using the results established in Sections 2 and 3, we now prove our main results. We also exhibit some AFL properties of $\mathscr{L}_{\text {WSA }}$ and $\mathscr{L}_{\text {NEWSA }}$.

[^5]Definition. Let $A=\left(K, \Sigma, W, \delta, q_{0}, F, k\right)$ be a DTM and let w be in $T(A)$. If $\mathscr{C}_{0}, \ldots, \mathscr{C}_{m}$ is a sequence of configurations such that

$$
\mathscr{C}_{0}=\left(q_{0}, \propto \upharpoonright w \$, \upharpoonright \beta, \ldots, \upharpoonright \beta\right), \quad \mathscr{C}_{i} \vdash \mathscr{C}_{i+1}
$$

for each $i, 0 \leqslant i<m$, the state-component of \mathscr{C}_{m} is in F, and for each $i, 0 \leqslant i<m$, the state-component of \mathscr{C}_{i} is not in F, then $\mathscr{C}_{0}, \ldots, \mathscr{C}_{m}$ is called a shortest accepting computation on w.
Since A is deterministic, each word w in $T(A)$ has a unique shortest accepting computation.

Definition. Let f be a nondecreasing function. A DTM $A=(K, \Sigma, W, \delta$, $\left.q_{0}, F, k\right)$ is called a $f(\alpha)$-time-bounded DTM if it has the following property: For each word w in $T(A)$, if $\mathscr{C}_{0}, \ldots, \mathscr{C}_{r}$ is the shortest accepting computation on w, then $r \leqslant f(|w|)$.

Notation. For each nondecreasing function $f(\alpha)$, let

$$
\mathscr{L}_{f(\alpha)-\mathrm{DTM}}^{\mathrm{TIME}}
$$

denote the family of languages accepted by some $f(\alpha)$-time-bounded DTM.
Notation. For each nondecreasing function $f(\alpha)$, let Two $(f(\alpha))=2^{f(\alpha)}$.
Agreement. In this section, the symbol c (subscripted or not) always denotes a positive integer.

We need the following result from [2].
Lemma 4.1[2].

$$
\mathscr{L}_{f(\alpha)-\mathrm{DAPTM}}=\mathscr{L}_{f(\alpha)-\mathrm{APTM}}=\bigcup_{\mathrm{c}_{1} \geqslant 1} \mathscr{L}_{\mathrm{TWO}\left(c_{1}(\alpha)\right)-\mathrm{DTM}}^{\mathrm{TIME}}
$$

for each nondecreasing function $f(n) \geqslant \log _{2} n$.
Corollary 4.1.

$$
\mathscr{L}_{\mathrm{TWO}(\alpha \alpha)-\mathrm{DAPTM}}=\mathscr{L}_{\mathrm{TWO}((\alpha)-\mathrm{APTM}}=\bigcup_{c_{1} \geqslant 1} \mathscr{L}_{\mathrm{TWO}\left(e_{1} \mathrm{TWO}(c \alpha)\right)-\mathrm{DTM}}^{\mathrm{TIME}}
$$

for each \boldsymbol{c}.
Corollary 4.1, together with Theorems 2.1 and 3.1, leads to our first result.

Theorem 4.1.

$$
\mathscr{L}_{\mathrm{WSA}}=\mathscr{L}_{\mathrm{DWSA}}=\bigcup_{c \geqslant 1} \mathscr{L}_{\mathrm{TWO}(\mathrm{cc})-\mathrm{APTM}} .
$$

Proof.

$$
\begin{aligned}
\bigcup_{c \geqslant 1} \mathscr{L}_{\mathrm{TWO}(e \alpha)-\mathrm{DAPTM}} & \subseteq \mathscr{L}_{\mathrm{DWSA}}, \text { by Theorem 2.1 } \\
& \subseteq \mathscr{L}_{\mathrm{WSA}} \\
& \subseteq \bigcup_{c \geqslant 1} \mathscr{L}_{\mathrm{TWo}(c \alpha)-\mathrm{APTM}}, \text { by Theorem 3.1 } \\
& =\bigcup_{c 0 n 1} \mathscr{L}_{\mathrm{TWo}(c a)-\mathrm{DAPTM}}, \text { by Corollary } 4.1 .
\end{aligned}
$$

Thus

$$
\mathscr{L}_{\mathrm{WSA}}=\mathscr{L}_{\mathrm{DWSA}}=\bigcup_{c \geqslant 1} \mathscr{L}_{\mathrm{TWO}(\alpha)-\mathrm{ATPM}}
$$

To continue, we need the following result from [15].
Lemma 4.2. ${ }^{19}$

$$
\mathscr{L}_{f(\alpha)-\mathrm{TM}} \subseteq \mathscr{L}_{(f(\alpha))^{2}-\mathrm{DTM}}
$$

for any nondecreasing function f such that $f(n) \geqslant \log _{2} n$.
Corollary 4.2. For each $c, \mathscr{L}_{\text {Two }(c \alpha)-\mathrm{TM}} \subseteq \mathscr{L}_{\text {Two }(2 c \alpha) \text {-DTM }}$.
Corollary 4.2, together with Theorems 2.2 and 3.2, leads to our second result.
Theorem 4.2.

$$
\mathscr{L}_{\text {NEWSA }}=\mathscr{L}_{\text {NEDWSA }}=\bigcup_{c \geqslant 1} \mathscr{L}_{\text {TWo(}(\alpha)-\mathrm{TM}}
$$

Proof.

$$
\begin{aligned}
\bigcup_{c \geqslant 1} \mathscr{L}_{\mathrm{TWO}(c \alpha)-\mathrm{DTM}} & \subseteq \mathscr{L}_{\mathrm{NEDWSA}}, \text { by Theorem } 2.2, \\
& \subseteq \mathscr{L}_{\mathrm{NEWSA}} \\
& \subseteq \bigcup_{c \geqslant 1} \mathscr{L}_{\mathrm{TWO}(\alpha \alpha)-\mathrm{TM}}, \text { by Theorem 3.2, } \\
& \subseteq \bigcup_{c \geqslant 1} \mathscr{L}_{\mathrm{TWO}(2 c \alpha)-\mathrm{DTM}}, \text { by Corollary } 4.2 \\
& \subseteq \bigcup_{c \geqslant 1} \mathscr{L}_{\mathrm{TWO}(c \alpha)-\mathrm{DTM}}
\end{aligned}
$$

[^6]Thus

$$
\mathscr{L}_{\mathrm{NEDWSA}}=\mathscr{L}_{\mathrm{NEWSA}}=\bigcup_{c \geqslant 1} \mathscr{L}_{\mathrm{TWO}(\alpha)-\mathrm{TM}}
$$

Remark. If we generalize our model to one in which the input tape length can grow to $f(n), f$ any constructible ${ }^{20}$ nondecreasing function, then similar results hold. Specifically, let $f(n) n$ be any constructible nondecreasing function. Define a " $f(n)$-WSA" to be a two-tape device in which the input tape is a two-way read-write $f(n)$-tape-bounded work tape and the second tape is a stack tape. Define acceptance by final state only. Denote the family of language accepted by $f(n)$-WSA by $\mathscr{L}_{f(n) \text {-wsA }}$. Then the results of the previous sections show that

$$
\mathscr{L}_{f(n)-\mathrm{DWSA}}=\mathscr{L}_{f(n)-\mathrm{WSA}}=\bigcup_{c \geqslant 1} \mathscr{L}_{\mathrm{Two}(e f(\alpha))-\mathrm{APTM}}
$$

and that

$$
\mathscr{L}_{y(n)-\mathrm{NEDWSA}}=\mathscr{L}_{f(n)-\mathrm{NEWSA}}=\mathscr{L}_{U_{c} \geqslant 1 \text { Two }(\epsilon f(\alpha)-\mathrm{TM}} .
$$

Theorems 4.1 and 4.2 provide characterizations of $\mathscr{L}_{\text {WSA }}$ and $\mathscr{L}_{\text {NEWSA }}$ in terms of known families of languages. It is natural to inquire as to the closure properties of these two families, that is, their invariance under certain language operations. Recently, the notion of an "AFL"has been introduced [3] in order to unify the study of closure properties of families of languages. Thus it is natural to investigate these properties of $\mathscr{L}_{\text {WSA }}$ and $\mathscr{L}_{\text {NEWSA }}$ within the framework of "AFL" theory.

By way of introduction and for completeness, we recall the definition of an "AFL".
Definition. An abstract family of languages (AFL) is a pair (Σ, \mathscr{L}), or \mathscr{L} when Σ is understood, where
(1) Σ is an infinite set of symbols
(2) for each L in \mathscr{L} there is a finite set $\Sigma_{L} \subseteq \Sigma$ such that $L \subseteq \Sigma_{L}{ }^{*}$,
(3) \mathscr{L} is closed under the operation of $\cup, \ldots+$, inverse homomorphism, ϵ-free homomorphism, and intersection with regular sets,
(4) $L \neq \varnothing$ for some L in \mathscr{L}.

In the sequel we shall assume that the reader has had a casual acquaintance with the subject of AFL theory.

We first consider whether $\mathscr{L}_{\text {WSA }}$ and $\mathscr{L}_{\text {NEWSA }}$ are principal ${ }^{21}$ AFL. We shall show that both are principal AFL.
${ }^{20}$ Let a be a distinct symvol in W. A nondecreasing function f is said to be constructible if there exists a $f(n)$-DTM $A=\left(K, \Sigma, W, \delta, q_{0},\{q\}, 1\right)$ such that for each integer $n \geqslant 3$,

$$
\left(q_{0}, \not \subset a^{n-2} \$, \upharpoonright \beta\right) \vdash_{-A}^{*}\left(q, \notin a^{n-2} \upharpoonright \$, a^{f(n-2)} \upharpoonright \beta\right) .
$$

${ }^{21}$ A principal AFL is an AFL generated by a single language, i.e., it is the smallest AFL containing the given language.

We first consider $\mathscr{L}_{\text {WSA }}$. The following result is noted after Corollary 3.5 in [1].
Lemma 4.3. Let f be any superadditive ${ }^{22}$ deterministic time-constructible ${ }^{23}$ nondecreasing function such that $f(2 n) \mid f(n) \geqslant \max \left\{(1+c)^{n},(f(n))^{c}\right\}$ for some integer c and all sufficiently large integers n. For each positive integer c let $\mathscr{L}_{\text {Dettime(f(cas)) }}$ be the family of all languages accepted within time-bound $f(\alpha)^{23}$ by a deterministic Turing machine M having a single tape. (Here M accepts by both final state and empty storage tape.) Then

$$
\bigcup_{c \geqslant 1} \mathscr{L}_{\text {DETTIME }(f(c \alpha))}
$$

is a principal AFL.
Proposition 4.1. $\mathscr{L}_{\text {WSA }}$ is a principal AFL.
Proof. By Corollary 4.1 and Theorem 4.1,

$$
\begin{aligned}
\mathscr{L}_{\mathrm{WSA}} & =\bigcup_{c_{1} \geqslant 1} \bigcup_{c_{2} \geqslant 1} \mathscr{L}_{\mathrm{TWO}\left(c_{1} \operatorname{TWO}\left(c_{2} \alpha\right)\right)-\mathrm{DTM}}^{\mathrm{TIME}} \\
& =\bigcup_{c \geqslant 1} \mathscr{L}_{\mathrm{TWO}(\operatorname{TWo}(\epsilon \alpha))-\mathrm{DTM}}^{\mathrm{TIME}}
\end{aligned}
$$

It is obvious that our $f(c n)$ is superadditive. As pointed out after Definition 3.2 of [1], "deterministic time-constructible" includes the "real-time" functions in [17]. In [17] it is shown that our $f(c n)$ is a "real-time" function. Clearly, $f(2 n) / f(n) \geqslant \max \left\{(1+c)^{n}\right.$, $\left.(f(n))^{c}\right\}$ for some integer c and all sufficiently large n. Thus $f(c n)$ satisfies the hypothesis to Lemma 4.3. Thus, by Lemma 4.3, $\mathscr{L}_{\text {wsA }}$ is a principal AFL.

We now consider $\mathscr{L}_{\text {NEWSA }}$. The fact that $\mathscr{L}_{\text {NEWSA }}$ is a principal AFL is a consequence of Theorem 3.3 in [1], restated here as

Lemma 4.5. Letf by any superadditive deterministic-tape-constructible ${ }^{24}$ nondecreasing function. Let $\mathscr{L}_{\text {DETTAPE } f)}$ be the family of all languages accepted within tape-bound $f(\alpha)$ by a deterministic Turing machine M having a one-way read-only input tape without

[^7]endmarkers and a finite number of storage tapes. (Here M accepts by both final state and empty storage tapes.) Then
$$
\bigcup_{c \geqslant 1} \mathscr{L}_{\mathrm{DETTAPE}(f(c \alpha))}
$$
is a principal AFL.
PROPOSITION 4.2. $\mathscr{L}_{\text {NEWSA }}$ is a principal AFL.
Proof. For each c, let $f(c n)=2^{c n}$. Clearly, $f(c n)$ is superadditive. In [11, p. 149], it is noted that $f(c n)$ is "deterministic tape-constructible". Furthermore, using wellknown techniques, it can be shown that
$$
\bigcup_{c \geqslant 1} \mathscr{L}_{\mathrm{DETTAPE}(f(c n))}=\bigcup_{c \geqslant 1} \mathscr{L}_{f(c n)-\mathrm{DTM}} .
$$

Thus, by Lemma $4.5, \mathscr{L}_{\text {NEWSA }}$ is a principal AFL.
Lemma 4.6. Let M^{\prime} and $M^{\prime \prime}$ be WSA(NEWSA). Then there exists a WSA(NEWSA) M such that $T(M)=T\left(M^{\prime}\right) \cap T\left(M^{\prime \prime}\right)$.

Proof. Since the construction of M involves a well-known argument ${ }^{25}$, we omit the proof.

Combining Propositions 4.1 and 4.2 and Lemma 4.6, we have
Theorem 4.3. $\mathscr{L}_{\text {WSA }}$ and $\mathscr{L}_{\text {NEWSA }}$ are each intersection closed principal AFL.
It is shown in the proof of Theorem 1.2 in [6] that an AFL which is intersection closed is also closed under ϵ-free substitution ${ }^{26}$. Thus we have

Corollary 4.3. $\mathscr{L}_{\text {WSA }}$ and $\mathscr{L}_{\text {NEWsA }}$ are each ϵ-free substitution closed AFL.
We conclude with several open questions:
(1) Is $\mathscr{L}_{\text {wSA }}=\mathscr{L}_{\text {NEWSA }}$ true?
(2) Does there exist a constructible tape function f that characterizes, in some sense, the family $\mathscr{L}_{\text {WSA }}$?
(3) Is it true that for each WSA A there exists a halting ${ }^{27}$ WSA A^{\prime} such that $T(A)=T\left(A^{\prime}\right)$?

[^8](4) Is $\mathscr{L}_{\text {WSA }}$ closed under complementation?
(5) Let $\mathscr{L}_{2 \mathrm{NSA}}$ denote the family of languages accepted by two-way nondeterministic stack acceptors (with a read-only input tape). Then,
(a) Is $\mathscr{L}_{2 \mathrm{NSA}}$ properly contained in $\mathscr{L}_{\mathrm{WSA}}$?
(b) Are $\mathscr{L}_{2 \text { NSA }}$ and $\mathscr{L}_{\text {NEWSA }}$ incomparable?

Note that if the answer to (1) is "yes" then the answer to (2) is "yes". Also if the answer to (3) is "yes" then the answer to (4) is "yes". It is easily shown that $\mathscr{L}_{\text {NEWSA }}$ is closed under complementation. Thus if the answer to (4) is "no" then the answer to (1) is "no".

References

1. R. V. Book, S. A. Greinbach, and B. Wegbriet, "Tape- and Time-Bounded Turning Acceptors and AFL's," pp. 92-99, Second Annual ACM Symposium on Theory of Computing, May, 1970, Northampton, MA.
2. S. A. Cook, "Variations on Pushdown Machines," pp. 229-232, Proceedings of the ACM Symposium on Theory of Computing, May, 1969, Marina del Rey, CA.
3. S. Ginsbury and S. Greiback, Abstract families of languages, in "Studies in Abstract Families of Languages," pp. 1-32, Memoir No. 87, American Mathematical Society, Providence, RI, 1969.
4. S. Ginsburg and S. A. Greibach, Principal AFL, J. Comput. System Sci. 4 (1970), 308-338.
5. S. Ginsburg, S. A. Greibach, and M. A. Harrison, Stack automata and compiling, J. Assoc. Comput. Mach. 14 (1967), 172-201.
6. S. Ginsburg, S. Greibach, and J. Hopcroft, Pre-AFL, in "Studies in Abstract Families of Languages," pp. 41-51, Memoir No. 87, American Mathematical Society, Providence, RI, 1969.
7. J. A. Giuliano, "Writing Stack Acceptors," Thesis, University of Southern California, Los Angeles, CA, 1971.
8. J. N. Gray, M. A. Harrison, and O. Ibarra, Two-way pushdown automata, Information and Control 11 (1967), 30-70.
9. J. Hartmanis, P. M. Lewis II, and R. E. Stearns, "Computational Complexity of Recursive Sequences," pp. 82-90, Proceedings of the Fifth Annual Symposium on Switching Circuit Theory and Logical Design, Princeton, IEEE New Jersey, 1965.
10. J. Hartmanis and R. E. Stearns, On the computational complexity of algorithms, Trans. Amer. Math. Soc. 117 (1965), 285-306.
11. F. C. Hennie and R. E. Stearns, Two-tape simulation of multitape turning machines, J. Assoc. Comput. Mach. 13 (1966), 533-546.
12. J. Hopcroft and J. Ullman, "Formal Languages and Their Relation to Automata," Addison-Wesley, Reading, MA, 1969.
13. J. Hopcroft and J. D. Ullman, "Relations Between Time and Tape Complexities," J. Assoc. Comput. Mach. 15 (1968), 414-427.
14. G. Mager, Writing pushdown acceptors, J. Comp. Syst. Sci. 3 (1969), 276-318.
15. W. Savitch, Relationships between non-deterministic and deterministic tape complexities, J. Comput. System Sci. 4 (1970), 177-192.
16. R. Stearns, J. Hartmanis, and P. M. Lewis II, "Hierarchies of Memory Limited Computations," IEEE Conference Record on Switching Circuit Theory and Logical Design, 1965.
17. H. Yamada, Real-time computation and recursive functions not real-time computable, IRE Trans. EC-11 (1962), 753-760.

[^0]: * This research was supported in part by the National Science Foundation under Grant No. GJ454.

[^1]: ${ }^{3}$ Since an APTM cannot erase, the length of each storage tape cannot decrease during a computation. For each word $W,|W|$ denotes the length of W.

[^2]: ${ }^{4}$ The reader is referred to [7] for details.

[^3]: ${ }^{6}$ Recall that d is in $\{-1,0,1\}$, and σ_{j} is in $W_{\beta} \times\{-1,0,1\}$ for each $j, 1 \leqslant j \leqslant k$.
 ${ }^{7}$ Note that this is the only case involving erasing in the proof.

[^4]: ${ }^{11} T_{2}$ stores the integer m in unary form on tape 4.
 ${ }^{12}$ In the corresponding position as on tape 5.
 ${ }^{13} T_{2}$ first locates the word on tape 8 to determine its position on tape 6.
 ${ }^{14}$ In the corresponding position to the right of Y in $\mathscr{M}_{x, y}\left(q^{\prime}, k+d\right)$.

[^5]: ${ }^{18}$ Note that this is the only occurrence of erasing in the construction of A.
 ${ }^{19}$ If $t=1$ then $Y_{t} \cdots Y_{2}=\epsilon$.

[^6]: ${ }^{18}$ The notion of acceptance in [15] differs trivially from that given here, but the result still holds.

[^7]: ${ }^{22}$ A nondecreasing function f is superadditive if (i) $f(n) \geqslant n$ for some n_{0} and all $n \leqslant n_{0}$; and (ii) for every n_{1} and $n_{2}, f\left(n_{1}\right)+f\left(n_{2}\right) \leqslant f\left(n_{1}+n_{2}\right)$.
 ${ }^{23}$ We are omitting the definitions of "deterministic time-constructible" and "accepted within time-bound" since a presentation would require a lengthy formalization which is not used in the body of our argument.
 ${ }^{24}$ We are omitting the definitions of "deterministic tape-constructible" and "accept within $f(\alpha)$-tape-bound" since a presentation would require a lengthy formalization which is not used in our argument.

[^8]: ${ }^{25}$ For example, see Lemma 2.7 in [13].
 ${ }^{26}$ Let $L \subseteq \Sigma_{1}{ }^{*}$. For each a in Σ_{1}, let $L_{a} \subseteq \Sigma^{+}$. Let s be the function defined by $s(\epsilon)=\{\epsilon\}$, $s(a)=L_{a}$ for each a in Σ_{1}, and $s\left(a_{1} \cdots a_{k}\right)=s\left(a_{1}\right) \cdots s\left(a_{k}\right)$ for each $k \geqslant 1$ and a_{i} in Σ_{1}. Then s is called an ϵ-free substitution. A family \mathscr{L} of languages is said to be closed under $\epsilon-$ free substitution if $s(L)$ is in \mathscr{L} for each $L \subseteq \Sigma_{1} *$ in \mathscr{L} and each ϵ-free substitution s such that $s(a)$ is in \mathscr{L} for each a in Σ_{1}.
 ${ }^{27}$ A WSA A is said to be halting if for each word $w A$ either accepts or rejects w.

