41 research outputs found

    Design and Code Optimization for Systems with Next-generation Racetrack Memories

    Get PDF
    With the rise of computationally expensive application domains such as machine learning, genomics, and fluids simulation, the quest for performance and energy-efficient computing has gained unprecedented momentum. The significant increase in computing and memory devices in modern systems has resulted in an unsustainable surge in energy consumption, a substantial portion of which is attributed to the memory system. The scaling of conventional memory technologies and their suitability for the next-generation system is also questionable. This has led to the emergence and rise of nonvolatile memory ( NVM ) technologies. Today, in different development stages, several NVM technologies are competing for their rapid access to the market. Racetrack memory ( RTM ) is one such nonvolatile memory technology that promises SRAM -comparable latency, reduced energy consumption, and unprecedented density compared to other technologies. However, racetrack memory ( RTM ) is sequential in nature, i.e., data in an RTM cell needs to be shifted to an access port before it can be accessed. These shift operations incur performance and energy penalties. An ideal RTM , requiring at most one shift per access, can easily outperform SRAM . However, in the worst-cast shifting scenario, RTM can be an order of magnitude slower than SRAM . This thesis presents an overview of the RTM device physics, its evolution, strengths and challenges, and its application in the memory subsystem. We develop tools that allow the programmability and modeling of RTM -based systems. For shifts minimization, we propose a set of techniques including optimal, near-optimal, and evolutionary algorithms for efficient scalar and instruction placement in RTMs . For array accesses, we explore schedule and layout transformations that eliminate the longer overhead shifts in RTMs . We present an automatic compilation framework that analyzes static control flow programs and transforms the loop traversal order and memory layout to maximize accesses to consecutive RTM locations and minimize shifts. We develop a simulation framework called RTSim that models various RTM parameters and enables accurate architectural level simulation. Finally, to demonstrate the RTM potential in non-Von-Neumann in-memory computing paradigms, we exploit its device attributes to implement logic and arithmetic operations. As a concrete use-case, we implement an entire hyperdimensional computing framework in RTM to accelerate the language recognition problem. Our evaluation shows considerable performance and energy improvements compared to conventional Von-Neumann models and state-of-the-art accelerators

    A Construction Kit for Efficient Low Power Neural Network Accelerator Designs

    Get PDF
    Implementing embedded neural network processing at the edge requires efficient hardware acceleration that couples high computational performance with low power consumption. Driven by the rapid evolution of network architectures and their algorithmic features, accelerator designs are constantly updated and improved. To evaluate and compare hardware design choices, designers can refer to a myriad of accelerator implementations in the literature. Surveys provide an overview of these works but are often limited to system-level and benchmark-specific performance metrics, making it difficult to quantitatively compare the individual effect of each utilized optimization technique. This complicates the evaluation of optimizations for new accelerator designs, slowing-down the research progress. This work provides a survey of neural network accelerator optimization approaches that have been used in recent works and reports their individual effects on edge processing performance. It presents the list of optimizations and their quantitative effects as a construction kit, allowing to assess the design choices for each building block separately. Reported optimizations range from up to 10'000x memory savings to 33x energy reductions, providing chip designers an overview of design choices for implementing efficient low power neural network accelerators

    Flexible Computing Systems For AI Acceleration At The Extreme Edge Of The IoT

    Get PDF
    Embedding intelligence in extreme edge devices allows distilling raw data acquired from sensors into actionable information, directly on IoT end-nodes. This computing paradigm, in which end-nodes no longer depend entirely on the Cloud, offers undeniable benefits, driving a large research area (TinyML) to deploy leading Machine Learning (ML) algorithms on micro-controller class of devices. To fit the limited memory storage capability of these tiny platforms, full-precision Deep Neural Networks (DNNs) are compressed by representing their data down to byte and sub-byte formats, in the integer domain. However, the current generation of micro-controller systems can barely cope with the computing requirements of QNNs. This thesis tackles the challenge from many perspectives, presenting solutions both at software and hardware levels, exploiting parallelism, heterogeneity and software programmability to guarantee high flexibility and high energy-performance proportionality. The first contribution, PULP-NN, is an optimized software computing library for QNN inference on parallel ultra-low-power (PULP) clusters of RISC-V processors, showing one order of magnitude improvements in performance and energy efficiency, compared to current State-of-the-Art (SoA) STM32 micro-controller systems (MCUs) based on ARM Cortex-M cores. The second contribution is XpulpNN, a set of RISC-V domain specific instruction set architecture (ISA) extensions to deal with sub-byte integer arithmetic computation. The solution, including the ISA extensions and the micro-architecture to support them, achieves energy efficiency comparable with dedicated DNN accelerators and surpasses the efficiency of SoA ARM Cortex-M based MCUs, such as the low-end STM32M4 and the high-end STM32H7 devices, by up to three orders of magnitude. To overcome the Von Neumann bottleneck while guaranteeing the highest flexibility, the final contribution integrates an Analog In-Memory Computing accelerator into the PULP cluster, creating a fully programmable heterogeneous fabric that demonstrates end-to-end inference capabilities of SoA MobileNetV2 models, showing two orders of magnitude performance improvements over current SoA analog/digital solutions

    Abstraction Raising in General-Purpose Compilers

    Get PDF

    Refresh Triggered Computation: Improving the Energy Efficiency of Convolutional Neural Network Accelerators

    Full text link
    To employ a Convolutional Neural Network (CNN) in an energy-constrained embedded system, it is critical for the CNN implementation to be highly energy efficient. Many recent studies propose CNN accelerator architectures with custom computation units that try to improve energy-efficiency and performance of CNNs by minimizing data transfers from DRAM-based main memory. However, in these architectures, DRAM is still responsible for half of the overall energy consumption of the system, on average. A key factor of the high energy consumption of DRAM is the refresh overhead, which is estimated to consume 40% of the total DRAM energy. In this paper, we propose a new mechanism, Refresh Triggered Computation (RTC), that exploits the memory access patterns of CNN applications to reduce the number of refresh operations. We propose three RTC designs (min-RTC, mid-RTC, and full-RTC), each of which requires a different level of aggressiveness in terms of customization to the DRAM subsystem. All of our designs have small overhead. Even the most aggressive RTC design (i.e., full-RTC) imposes an area overhead of only 0.18% in a 16 Gb DRAM chip and can have less overhead for denser chips. Our experimental evaluation on six well-known CNNs show that RTC reduces average DRAM energy consumption by 24.4% and 61.3%, for the least aggressive and the most aggressive RTC implementations, respectively. Besides CNNs, we also evaluate our RTC mechanism on three workloads from other domains. We show that RTC saves 31.9% and 16.9% DRAM energy for Face Recognition and Bayesian Confidence Propagation Neural Network (BCPNN), respectively. We believe RTC can be applied to other applications whose memory access patterns remain predictable for a sufficiently long time

    Tuning the Computational Effort: An Adaptive Accuracy-aware Approach Across System Layers

    Get PDF
    This thesis introduces a novel methodology to realize accuracy-aware systems, which will help designers integrate accuracy awareness into their systems. It proposes an adaptive accuracy-aware approach across system layers that addresses current challenges in that domain, combining and tuning accuracy-aware methods on different system layers. To widen the scope of accuracy-aware computing including approximate computing for other domains, this thesis presents innovative accuracy-aware methods and techniques for different system layers. The required tuning of the accuracy-aware methods is integrated into a configuration layer that tunes the available knobs of the accuracy-aware methods integrated into a system

    Circuit and Architecture Co-Design of STT-RAM for High Performance and Low Energy

    Get PDF
    Spin-Transfer Torque Random Access Memory (STT-RAM) has been proved a promising emerging nonvolatile memory technology suitable for many applications such as cache mem- ory of CPU. Compared with other conventional memory technology, STT-RAM offers many attractive features such as nonvolatility, fast random access speed and extreme low leakage power. However, STT-RAM is still facing many challenges. First of all, programming STT-RAM is a stochastic process due to random thermal fluctuations, so the write errors are hard to avoid. Secondly, the existing STT-RAM cell designs can be used for only single-port accesses, which limits the memory access bandwidth and constraints the system performance. Finally, while other memory technology supports multi-level cell (MLC) design to boost the storage density, adopting MLC to STT-RAM brings many disadvantages such as requirement for large transistor and low access speed. In this work, we proposed solutions on both circuit and architecture level to address these challenges. For the write error issues, we proposed two probabilistic methods, namely write-verify- rewrite with adaptive period (WRAP) and verify-one-while-writing (VOW), for performance improvement and write failure reduction. For dual-port solution, we propose the design methods to support dual-port accesses for STT-RAM. The area increment by introducing an additional port is reduced by leveraging the shared source-line structure. Detailed analysis on the performance/reliability degrada- tion caused by dual-port accesses is performed, and the corresponding design optimization is provided. To unleash the potential of MLC STT-RAM cache, we proposed a new design through a cross-layer co-optimization. The memory cell structure integrated the reversed stacking of magnetic junction tunneling (MTJ) for a more balanced device and design trade-off. In architecture development, we presented an adaptive mode switching mechanism: based on application’s memory access behavior, the MLC STT-RAM cache can dynamically change between low latency SLC mode and high capacity MLC mode. Finally, we present a 4Kb test chip design which can support different types and sizes of MTJs. A configurable sensing solution is used in the test chip so that it can support wide range of MTJ resistance. Such test chip design can help to evaluate various type of MTJs in the future

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters
    corecore