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Spin-Transfer Torque Random Access Memory (STT-RAM) has been proved a promising

emerging nonvolatile memory technology suitable for many applications such as cache mem-

ory of CPU. Compared with other conventional memory technology, STT-RAM offers many

attractive features such as nonvolatility, fast random access speed and extreme low leakage

power.

However, STT-RAM is still facing many challenges. First of all, programming STT-RAM

is a stochastic process due to random thermal fluctuations, so the write errors are hard to

avoid. Secondly, the existing STT-RAM cell designs can be used for only single-port accesses,

which limits the memory access bandwidth and constraints the system performance. Finally,

while other memory technology supports multi-level cell (MLC) design to boost the storage

density, adopting MLC to STT-RAM brings many disadvantages such as requirement for

large transistor and low access speed. In this work, we proposed solutions on both circuit

and architecture level to address these challenges.

For the write error issues, we proposed two probabilistic methods, namely write-verify-

rewrite with adaptive period (WRAP) and verify-one-while-writing (VOW), for performance

improvement and write failure reduction.

For dual-port solution, we propose the design methods to support dual-port accesses for

STT-RAM. The area increment by introducing an additional port is reduced by leveraging
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the shared source-line structure. Detailed analysis on the performance/reliability degrada-

tion caused by dual-port accesses is performed, and the corresponding design optimization

is provided.

To unleash the potential of MLC STT-RAM cache, we proposed a new design through

a cross-layer co-optimization. The memory cell structure integrated the reversed stacking

of magnetic junction tunneling (MTJ) for a more balanced device and design trade-off. In

architecture development, we presented an adaptive mode switching mechanism: based on

application’s memory access behavior, the MLC STT-RAM cache can dynamically change

between low latency SLC mode and high capacity MLC mode.

Finally, we present a 4Kb test chip design which can support different types and sizes of

MTJs. A configurable sensing solution is used in the test chip so that it can support wide

range of MTJ resistance. Such test chip design can help to evaluate various type of MTJs

in the future.
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1.0 INTRODUCTION

The continuously increasing demand on system performance in recent years has greatly stim-

ulated the development of Chip-Multiprocessor (CMP). By integrating multiple processing

cores into one chip, the system performance can be dramatically increased without boosting

the clock frequency, therefore high power efficiency can be acheived . As the number of

cores in a CPU keep increasing, the bandwidth gap between CPU and off-chip main memory

becomes more severe. As a result, on-chip cache memory that offers high capacity and fast

accesses shows of paramount importance to fill this gap and improve the performance. In

modern CPU, the area and power consumption of a processor chip is dramatically affected by

the on-chip cache memory [5]. For many years, the on-chip cache memory is dominated by

static random access memomry (SRAM) because of its high performance. However, as fabri-

cation technology further scales down, SRAM suffers from large leakage power and degraded

reliability which severely limits its future application [6].

In recent years, emerging nonvolatile memory technologies have been extensively studied.

Examples include spin-transfer torque RAM (STT-RAM) [7][8][9], phase change memory

(PCM) [10] and resistive memory (ReRAM) [11]. Because of their non-volatility (data can

be kept without power supply), extremely low leakage power can be achieved. Table 1

compares the SRAM with the emerging nonvolatile memory. Among these technologies,

STT-RAM is believed to have the greatest potential in developing the next generation on-

chip cache memory [12][13][14] thanks to its high performance and good endurance. By

storing the data as the relative magnetic direction of magnetic tunnel junction (MTJ), STT-

RAM provides high density, fast access speed, zero standby power, as well as hardness to

1



Table 1: Comparison among different types of memory [1, 2, 3, 4]

SRAM STT-RAM PCM ReRAM

Nonvolatility No Yes Yes Yes

Cell Size > 100F 2 ∼ 40F 2 8− 16F 2 > 5F 2

Read Latency < 10ns < 10ns < 48ns < 10ns

Write Latency < 10ns 12.5ns 40-150ns ∼10ns

Dynamic energy low low mid low

Leakage Power high low low low

Endurance > 1015 1015 108 105

Maturity Product Early Product Early Product Test Chip

radiation-injected soft-errors. Therefore, it has attracted much attention from both academia

and industry world. In 2012, Everspin debuts first STT-RAM chip for high performance

storage systems[15], indicating the commerialization of such memory technology.

1.1 CHALLENGES:

However, we found that there are three major challenges which limit the performance and

reliability of STT-RAM based on-chip cache memory:

(1) Write errors: Programming STT-RAM is a stochastic process due to random ther-

mal fluctuations. Conventional worst-case (corner) design with a fixed write pulse period

cannot completely eliminate the write failures but maintain it at a low level by paying high

cost in hardware complexity and system performance. Although Error correction code (ECC)

can help reduce the error rates to some extent, it also introduce high latency and energy

cost. Therefore, a better solution that is tailored for write errors of STT-RAM is needed.

(2) Lack of dual-port functionality: Dual-Port memory design is very common for

SRAM based on-chip memory to improve the bandwidth and reduce the conflict. However,

the existing STT-RAM cell designs can be used for only single-port accesses, which con-

straints the system performance. Directly apply the dual-port design method from SRAM

to STT-RAM will cause the cell size increase significantly and unacceptable. A STT-RAM

based dual-port design method needs to be proposed.
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(3) Poor adaptivity to Multilevel cell design: The multi-level cell (MLC) design of

STT-RAM that stores two or more bits in one cell potentially has higher storage capacity

and faster system performance, attracting significant attention. However, the density im-

provement could be limited because of the large size of access transistor induced by high

write current amplitude requirement and asymmetry of switching behavior. Moreover, the

read and write accesses of existing MLC STT-RAM cache designs require two-step operation.

The system level evaluation shows that the long access latency could amortize the perfor-

mance speed brought by larger cache size, and even degrade the system performance for

some applications. Hence, optimization solution needs to be studied to unleash the potential

of MLC STT-RAM cache.

1.2 CONTRIBUTIONS:

To solve these issues that limit the performance of STT-RAM, we have made following

contribution in this work.

First of all, we analyzed the root cause of the STT-RAM write errors, then we found

that conventional deterministic method such as extending write pulse or using ECC bring too

much performance and energy overhead when solving the write errors. Therefore, we have

proposed two probabilistic design methods, Write-then-Read with Adaptive Period (WRAP)

and Verify-One-while-Writing (VOW) to solve these issues. WRAP uses recursive write-then-

verify solution to fully solve the write errors, the pulse width of each write is set dynamically

according to data pattern and temperature to achieve the most optimized performance.

VOW takes advantage of the asymmetry in STT-RAM write operation (i.e.,write-1 has

larger error rate) and only verify write-1 operation. Although VOW cannot eliminate the

write errors, it can maintain the write error to an extremely low range while achieving very

high performance.

Secondly, we proved that in order to support dual-port access with acceptable cost,

SRAM-like design method cannot be applied to STT-RAM design for the extremely large

area overhead. By leveraging the shared source-line array structure [16][17], we propose a
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STT-RAM design solution that supports dual-port accesses by paying a small cell area. In

our design, each STT-RAM cell has two BLs and a memory array shares a single grounded

SL. To meet the different access requirements of various applications, two types of designs

are presented. In a 2RW STT-RAM cell, both data access ports can support read and write

operations. In contrast, 1R/1W STT-RAM has one read-only port and one write-only port.

Separating the read and write accesses reduces the size requirement of access transistor,

therefore the even smaller cell area can be achieved. Furthermore, we analyze the reliability

of the proposed structures and present the design and layout optimization techniques for

density improvement.

Thirdly, we gave detailed analysis about the challenges on applying MLC design into

STT-RAM. Accordingly, we introduce the reverse MTJ connection [18][19] that has been

successfully utilized in SLC STT-RAM. The new device structure expands MLC cell design to

four types, providing different design tradeoffs. Our investigation shows that the cell design

with reverse MTJ connection results in the smallest area and continue the density advantage.

We also propose an architectural solutions that are adaptive to application’s requirement.

An application-aware speed enhancement (ASE) mode which dynamically trades off the cache

capacity and speed according to the behavior of applications is presented. On top of ASE,

the Cell Split Mapping (CSM) method divides all the cache lines into soft-ways and hard-

ways, and makes the soft-ways operated at fast read/write speed to further improve the

speed.

Finally, we present a 4Kb test chip design which can support different types and sizes of

MTJs. A configurable sensing solution is used in the test chip so that it can support wide

range of MTJ resistance. Such test chip design can help to evaluate various type of MTJs

in the future.

The remainder of the paper is organized as follows. Chapter 2 introduces the fundamental

of STT-RAM and summarize prior arts. Chapter 3 starts with the write error issue of

STT-RAM and then discusses the proposed solutions. Chapter 4 discusses the dual-port

design techniques, and Chapter 5 analyze the MLC design challenges and the corresponding

solutions. Chapter 6 discusses the 4Kb STT-RAM test chip that support different type

MTJ.
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2.0 PRELIMINARY

2.1 STT-RAM BASICS

The basic storage element in STT-RAM is magnetic tunneling junction (MTJ). Conceptu-

ally, an MTJ contains three layers as shown in Figure 1(a): two ferromagnetic layers are

respectively named as reference layer and free layer, which are separated by an oxide barrier,

e.g. MgO. The magnetization direction of the reference layer is fixed, but the magnetiza-

tion direction of the free layer can be switched through a spin polarized current [7]. For

example, a large current injected from the free layer to the reference layer can switch the

magnetization direction of the free layer to be parallel to that of the reference layer, and vice

versa. When the magnetization directions of the two ferromagnetic layers are parallel (P) or

anti-parallel (AP), the MTJ demonstrates a low- or high-resistance state, representing logic

‘0’ or ‘1’, respectively.
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Figure 1: (a) MTJ in parallel and anti-parallel states; (b) 1T-1J STT-RAM cell.
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Figure 1(b) illustrates the most popular STT-RAM cell structure consisting of one NMOS

transistor and one MTJ (1T-1J) [7][8]. The NMOS transistor, named as the access transistor,

connects to the MTJ’s reference layer and controls the accessibility of the MTJ. Since there

is only one set of WL, BL and SL, this cell structure can only be used for single-port memory

design. The MTJ pillar has a very small area so the NMOS transistor determines the area of a

STT-RAM cell. In other words, a small transistor is expected for high density. However, the

MTJ switching performance strongly relies on the switching current [20]. Reducing transistor

size reduces switching current through MTJ and hence degrades the write performance.

2.2 PRIOR ART

Following the progress in fabrication process development, utilizing STT-RAM as on-chip

storage has emerged as an attractive topic in embedded system and computer architecture

communities [7][8].

There were many circuit-level studies on process variation tolerance and write speed/energy

improvement. For example, a corner-aware dynamic gate voltage scheme [21] was proposed

to achieve constant current sensing under process variations. And a dual reference voltage

sensing scheme [22] was invented to maintain high read yield under process variations while

keeping acceptable read speed and energy. Using low threshold voltage device for select

transistor has been investigated to improve the write margin [23]. The high-leakage of low

threshold voltage devices was reduced by all-digital write driver. Farkhani et al. proposed

a write-assist technique which applies a negative voltage to the bitline when propgramming

logic 1 in order to balance the speeds of write-0 and write-1 operations [24].

Nearly all the previous works on STT-RAM focused on the single-port designs, such as

the most popular 1T-1J STT-RAM [7][8]. The cell structure with two transistors (2T-1J)
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have been presented by Chung [25]. However, the main motivation was to enhance the

writability and array density. The two transistors are controlled by the same WL and hence

the design still has only one port.

One major application of STT-RAM technology is on-chip cache so many architectural

level solutions have been investigated. Dong, et. al. analyzed the possibility of integrat-

ing STT-RAM atop of a single-core microprocessor as on-chip cache to replace the SRAM

technology [26]. Sun, et. al. proposed a 3D stacked STT-RAM cache layer on the top of

Chip Multiprocessor (CMP) [12]. The slow write speed and high write energy of STT-RAM

have been also addressed in many other researches. Zhou, et. al. proposed an early write

termination scheme to eliminate the unnecessary writes to STT-RAM cells and save write

energy [27]. A SRAM/STT-RAM hybrid cache hierarchy and its enhancements, such as

write buffering and data migration were also proposed in [12, 13]. The long read-penalty

issue when using STT-RAM as L1 cache were addressed by means of micro-architectural

modifications along with code transformation [28]. Li et al. proposed retention-relaxed

STT-RAM for L1 cache to improve the performance [29]. The data in retention-relaxed

STT-RAM requires refresh, the overhead of which was reduced through re-arranging data

layout at compile time. SRAM and STT-RAM hybrid cache structure to tradeoff system

performance and energy consumption has been widely studied [30].

Using STT-RAM for cache or register file designs in GPU has become a popular research

topic recently. For example, a high-retention and low-retention mixed STT-RAM based last-

level cache for GPU was proposed with a dynamic data migration scheme [31]. A hybrid

register file design combining SRAM and STT-RAM technologies was proposed to leverage

the wrap schedule on GPU with a wrap-aware write-back strategy [32]. Moroever, techniques

that increases the parallelism of read/write access as well as reduces the number of repeated

write access were investigated for better performance and energy of STT-RAM based register

file [33].

Since MLC STT-RAM was presented [34][35], it gained a lot of attentions for density

improvement. The MLC STT-RAM cache design in [36] utilizes a partially-protected scheme

to improve the energy efficiency while achieving target reliability requirement. A reschedul-

ing scheme was used to minimize the waiting time of issued wraps for MLC-based register

7



bank as presented in [37]. Jiang et al. investigated a line-paring method which divides the

parallel MLC design into read-fast-write-slow and write-fast-read-slow regions [38]. Previous

studies showed that of the two MLC STT-RAM cell structures, the parallel MLC [35] is more

sensitive to process variations and has poor reliability. The series MLC structure [34] demon-

strates overwhelming benefits in read and write reliability and great potential in commercial

usage [39].
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3.0 PROBABILISTIC DESIGN METHOD FOR STT-RAM

3.1 MOTIVATION

Unlike SRAM which suffers from radiation-injected soft-error, or DRAM which has low data

retention time because of leakage, data stored in the nonvolatile STT-RAM cells can remain

valid for a long time, e.g., several years after the write succeeds. During the writing, however,

the magnetization switching of a MTJ is a stochastic process influenced by random thermal

fluctuations, which causes unpredictable intermittent errors.

The conventional memory design takes into account the worst-case (corner) fabrication

and working conditions and utilizes error detection and correction techniques to dynamically

address runtime cache operation failures. Such a deterministic design methodology is not

sufficient in STT-RAM cache designs for several reasons: First, the worst-case guard-banding

works effectively only for deterministic failures, i.e., those induced by process variations.

However, the write failures induced by the stochastic magnetization switching of MTJs are

random and unpredictable. Second, the conventional error correcting code (ECC), such as

Hamming Code, has limited correction capability due to the short access latency requirement,

making it insufficient to protect an STT-RAM cache with a relatively high bit error rate

(BER). Third, the design philosophy to cover the worst conditions in process and operation

leads to overly-pessimistic design associated with high hardware and performance costs. This

situation will be further aggravated as technology scales down.

In this chapter, we focused on reducing or even eliminate the inevitable write failures in

STT-RAM caches with minimum hardware and performance costs.

As we shall show in Section 3.2.3, writing ‘1’ into an STT-RAM cell is more vulnerable to

fail than writing ‘0’ because of the asymmetric MTJ switching property and the unbalanced
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biasing conditions of the STT-RAM cell. Consequently, the write failure probability of a

memory block (block error rate, or BLER) is dependent on its data pattern, say, the number

of 1’s. The asymmetric switching property is even more severe after including process and

temperature variations.

We propose two probabilistic design techniques, namely, Write-then-Read with Adaptive

Period (WRAP) and Verify-One-while-Writing (VOW). WRAP is an extension of read-

verify-rewrite scheme, which has been adopted in previous works for write error elimina-

tion [40][41][42]. A long write pulse period determined by the corner condition usually is

applied in read-verify-rewrite scheme. Instead, our proposed WRAP can adaptively adjust

the write pulse period according to the Hamming weight of data to maximize performance

and energy benefit. In VOW, only one write operation is conducted, which stops after all

the 1’s of the cache block have been successfully written. A long write pulse period rarely

happens because (a) the 0 → 1 flipping bits usually occupy only a small portion of a cache

line; and (b) most of writing 1’s complete much earlier than the extreme case (or the tail

of the MTJ switching time distribution). In VOW, the actual write failures come only from

writing 0’s and the probability of such failures is extremely low.
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Figure 2: (a) MTJ switching time distribution under different currents. The the vertical

cursors represent the write failure probabilities at the corresponding write pulse period. (b)

and (c) Biasing conditions when writing ‘0’ and ‘1’, respectively.
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3.2 WRITE ERRORS OF STT-RAM

In this chapter, we built a small test circuit using HSPICE at 45nm technology node. The

PTM model [43] and the device data of 45nm× 90nm in-plane MTJ [44] were adopted. The

NMOS transistor size is W = 360nm/L = 45nm, and the power supply VDD is set to 1.0V.

3.2.1 Stochastic Switching of MTJ

The MTJ magnetization switching is a stochastic process influenced by the random thermal

fluctuations. As a result, the time for an MTJ device to complete magnetization switching

is not fixed but changes every time, even when the operating and environmental conditions

remain the same.

Fig. 2(a) shows the distribution of the required switching time for “P→AP” of a 45nm×

90nm in-plane MTJ [44] under different switching current amplitudes. The average switching

behavior and the switching variation are obtained by embedding Fokker-Planck equation of

the switching time distribution into the LLG stochastic differential equation [20]. It can be

observed that extending the write pulse period (i.e., duration of write current) can increase

the switching possibility and therefore reduce the write failure probability. Or, increasing

the switching current can decrease both mean and variation of the switching time, which also

helps to reduce write failures. However, this approach requires a larger NMOS transistor in

STT-RAM cell, making memory density lower.
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3.2.2 Asymmetric Switching Probability of STT-RAM

Device measurement results [45] showed that “P→AP” switching of a MTJ requires a higher

electrical excitation than “AP→P” switching. This means writing ‘1’ into a STT-RAM cell

requires a longer write pulse and/or a bigger switching current than writing ‘0’. Moreover, the

biasing conditions of STT-RAM cells during the two types of write operations are unbalanced

as illustrated in Fig. 2(b) and (c). When writing ‘1’ into a STT-RAM cell, the voltage drop

across MTJ increases the potential at the source of NMOS transistor. The reduced VGS and

the body effect degrades the driving ability of NMOS transistor and hence the switching

current through MTJ. The different switching time distributions of MTJ and the driving

currents in writing ‘0’ and ‘1’ operations lead to the asymmetric switching probability

of STT-RAM . We define the probability that a STT-RAM bit fails to switch to ‘0’ or ‘1’

as bit error rate 0 (BER0) or bit error rate 1 (BER1), respectively.

Fig. 3(a) shows the BER0 and BER1 of the STT-RAM design used in this work when

varying the write pulse period. The simulation results show that to obtain the same BER0

and BER1, writing ‘1’ requires a longer write pulse than writing ‘0’. Increasing temperature,

e.g., from 325K to 375K, degrades the transistor drivability and therefore the write current

amplitude through MTJ. Accordingly, higher BER’s are observed under high temperature.

Comparably, BER1 is more sensitive to temperature change than BER0. Moreover, process

variations (PVs) can aggravate the asymmetric switching. Fig. 4(a) shows the STT-RAM

write current distribution based on 5,000 Monte-Carlo simulations. The PV parameter was

obtained from [44]. PVs have a bigger impact on writing ‘1’ than writing ‘0’, and hence a

bigger deviation can be observed. Increasing the temperature from 325K to 375K further

exacerbates the current differences as shown in Fig. 4(b).

3.2.3 Block Error Rate (BLER)

We introduce block error rate (BLER) to denote the probability that a memory block

cannot be corrected and is identified as erroneous after applying error correction technique,

e.g., ECC. Both the data pattern and the applied ECC algorithm can affect BLER, as

demonstrated by the simulation of a 64-bit cache block in Fig. 3(b)
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– Data pattern: Because of the asymmetric switching probability of STT-RAM cells, the

more bits that switch from 0 to 1 (denoted as N0→1), the higher BLER is. Note that during

a write operation, unsuccessful MTJ switching happens in only those memory bits that need

to be switched, i.e., 0→1 or 1→0. If the original value of an STT-RAM cell equals the new

one, no error will be introduced.

– ECC: ECC has been widely utilized to protect the SRAM cells against soft errors. Al-

though STT-RAM cells are not subject to soft errors, we can still leverage ECC to tolerate

the intermittent write errors. Compared to Hamming code with single bit error correction,

Bose-Chaudhuri-Hocquenghem (BCH) cyclic code that corrects 2-bit errors can dramati-

cally reduce BLER. However, the associated hardware and performance overheads are much

higher.

3.3 PROBABILISTIC STT-RAM DESIGNS

Applying conventional deterministic (corner) methodology in STT-RAM design to minimize

intermittent write errors leads to large hardware and performance overheads. In this work,

we propose two probabilistic design techniques, namely, Write-verify-Rewrite with Adaptive

Period (WRAP) and Verify-One-while-Writing (VOW), to enhance STT-RAM cache per-

formance while eliminating the write errors or maintaining the write errors at a practically

negligible level.
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3.3.1 WRAP

Write-verify-rewrite is a straightforward approach to reduce write failures: after each write,

the stored data is immediately read out and compared to the input data. If they do not

match, a rewrite operation is performed. Such iteration is repeated till a successful write. In

theory, this design can eliminate all the write errors in STT-RAM caches with up to infinite

iterations. Previously Sun et al. presented a similar scheme by simply applying a fixed write

pulse period to all the write iterations [42]. However, as we shall show below, each write

has an optimal write pulse period τopt by trading-off the write pulse period and number of

iteration. According to the write data, WRAP can adaptively employ τopt and

hence improve the overall system performance.

3.3.1.1 The optimal write pulse period τopt In write-verify-rewrite, the total latency

of a successful write can be expressed as

Ttotal = Tperipheral + (Twrite + Tverify)×Niter,

Twrite = Tcharge + τ, Tverify = Tread + Tcompare. (3.1)

Here, Niter is the total number of iterations. The latency of each write Twrite includes the

write pulse period τ and the driver charge latency Tcharge. The verification overhead Tverify

comes from reading out the data (Tread) and comparing with the input (Tcompare). And

Tperipheral is the latency from the peripheral circuit such as H-tree routing and decoding.

Increasing τ results in a longer Twrite, but a smaller Niter due to the reduced BLER.

Fig. 5 shows the average Ttotal when varying τ . The optimal write pulse period τopt inducing

the shortest Ttotal exists and is significantly affected by N0→1: as N0→1 increases, τopt grows

to compensate the increased BLER per write.

Tracing N0→1 for each write is costly: it need read out the original data stored in the

cache block and compare it to the new data. The induced extra latency is too long to

be compensated by the shortened τopt. We propose using Hamming Weight to estimate

N0→1 of a write data in WRAP. Fig. 6 is a statistical analysis on the Hamming weight and

the average N0→1 of an 8MB STT-RAM L3 cache for the selected benchmarks. A linear

correlation between the Hamming weight and the average N0→1 can be observed.
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3.3.1.2 The τopt configuration in WRAP Simulation results indicate that most writes

have relatively small N0→1, say, < 20 for 64-bit cache sub-block. Recall that the change of

τopt is more severe when Hamming weight is small. To reduce design complexity of WRAP,

we divide the writing data into several groups based on Hamming weight range, for example,

0, 1, 2 ∼ 7, 8 ∼ 31, and 32 ∼ 64. Each group has one τopt.

Fig. 7(a) illustrates the design diagram of WRAP. The τopt configuration is affected by

both process variations and temperature fluctuation. The impact of process variations is

fixed and can be compensated by adding certain offsets based on post-silicon testing. In

contrast, the runtime temperature influence varies dynamically and highly depends on the

workload of the running program. On-chip temperature sensors [46] can be used to assist
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τopt selection. Accordingly, the τopt configuration of each cache bank is saved in a small

2-D lookup table as shown in Fig. 7(b). The two-dimensional indices are temperature and

Hamming weight. Different banks could have different τopt tables to account for process

variations.

3.3.1.3 Overheads of WRAP Different from the other write-verify-rewrite schemes,

WRAP utilizes τopt based on Hamming weight [40][41][42]. Since τopt is used to terminate the

write pulse, a write can start as usual. The latency induced by Hamming weight calculation

and look-up table searching is hidden behind the write operation and will not introduce

performance overhead.

The performance overhead due to extra data read and comparison in each write iteration

is inevitable. Fortunately, the read occurs to the same cache line as the corresponding write.

Table 2: Cache Access Latency Breakdowns

One-Time (ps) Tperipheral

H-tree 1101
Pre-Decoder 163
Row-Decoder 424

Iterative (ps)

Twrite
Driver Charge 70
Write Pulse Adaptive

Tread

SA Precharge 379
SA Sensing 803

Bitline & Mux 17
Tcompare Comparator 200
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A large portion of the peripheral circuitry latency in a regular cache read operation is not

necessary. Table 2 summarize the cache access latency breakdowns based on NVSim [47].

Only 1.47ns extra delay is required to perform the read and comparison for each iteration.

The chance of rewrite is determined by BLER. Our simulation results in Section 3.3.3

shall show that by properly setting τopt to control the occurrence of rewrites, rewrite iteration

will not degrade system performance much. In hardware implementation, a local finite state

machine (FSM) is assigned in a cache bank. The FSM contains only three states: idle, write

and verify. Our circuit experiment showed that τopt is always less than 16ns. A 5-bit counter

at 2GHz frequency is sufficient to control the pulse period.

3.3.2 VOW

WRAP checks data after each write. Its performance can be further improved if we are able

to perform the write and monitor the data in the cache line in parallel and immediately

terminate the write pulse once all the bits are successfully written. However, there are two

major implementation obstacles: (1) The current direction of ‘0’ and ‘1’ writes are opposite

and the STT-RAM cell could be in high or low resistance states. Thus, four possible bitline

voltages can be generated. Monitoring all the four possible bitline voltage changes requires
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a very complex sensing scheme. (2) A conventional sense amplifier has a precharge before

sensing. To monitor data change before a write is completed, we have to keep the loop of

“precharge-then-sense”, which will results in high dynamic energy overhead. In this work,

we propose a Verify-One-while-Writing (VOW) scheme to overcome these two obstacles.

3.3.2.1 Design concept From statistical point of view, write-0 usually completes much

earlier than write-1. In other words, during the same write pulse period, if all the write-1

bits have been successful, the probability of errant write-0 bits is extremely low. Based on

this observation, VOW verifies only the write-1 bits to reduce the sensing complexity while

maintaining the overall write failure rate within an acceptable level.

Fig. 8(a) illustrates the circuit diagram of VOW. An asymmetric sense amplifier is used

to monitor the 0→1 switching of the STT-RAM cell. For a write-1 bit with WriteBit¡X¿=1,

when the MTJ switches to ‘1’, the corresponding done¡X¿ goes to ‘1’. Once all the write-1

bits finish successfully, the write operation stops. For a write-0 bit with WriteBit¡X¿=0,

done¡X¿ is always‘1’. Fig. 8(b) shows the timeline of a write operation in VOW scheme.

We do not enable the verifying at the beginning in order to preserve a safe pulse period for

write-0 bits, as illustrated by Verify En = 1. In this work, we delay the verification to 5.0ns

after initiating write operation to ensure BER0 ≤ 10−10. Further delaying verification offers

negligible improvement on BER0, but performance penalty increases.

3.3.2.2 Asymmetric SA w/ one-time precharge The sense amplifier (SA) design

in Fig. 9(a) is used to monitor the status of write-1 bits. Benefiting from the asymmetric

structure, it requires only one time precharge to keep track of 0→1 switching. Fig. 9(b)

shows the HSPICE simulation result. During precharging, OUT is pulled down to low and

OUT is pulled up to high. At the beginning of a sensing stage, MTJ may remain at low

resistance state. The voltage on IN is lower than that on Ref, and hence, OUT keeps low.

After the MTJ switching to high resistance state, the voltage on IN becomes higher than

Ref. The strong PMOS and NMOS force OUT and OUT to flip in less than 900ps. The

dynamic power consumption of a sensing is about 24fJ. The delay from OUT to the done is

less than 96ps.
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Figure 9: (a) The design diagram of one time precharge asymmetric sense amplifier; (b)

circuit simulation.

3.3.3 Evaluation of Proposed scheme

We use NVSim [47] to simulate 8MB STT-RAM with 16 banks and 64-byte cache line

under different write schemes. Eight benchmarks from Parsec [48] benchmark suite are

selected to represent various data patterns. The baseline is the deterministic STT-RAM

cache design with Hamming code, labeled as ‘Hamming’. Considering the encoding/decoding

complexity, a 64-byte block is divided into eight 64-bit sub-block, and (72, 64) Hamming

code is applied. For the entire 64-byte block, the encoding and decoding latencies are

0.7ns and 1.1ns, respectively. The corresponding energy consumptions are 120pJ and 160pJ,

respectively. WRAP and VOW scheme are also applied to the 64-bit sub-block level.

Table 3: Write latency breakdown and read latency/energy of a 8MB STT-RAM L3 cache

Hamming noECC WRAP VOW

Write

Pulse 325K 13.70 13.70 6.92a,b 6.47a

Period(ns) 375K 23.15 23.15 11.01a,b 7.85a

Peripheral (ns) 2.03 1.76
ECC (ns) 0.7 0
Verify (ns) 0 0 1.54a,b 1.00

Read Latency (ns) 5.57 3.99

Read Energy (nJ) 1.82 1.40

a Average value obtained from simulation.
b Re-write probability is taken into account.
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Figure 10: The error rates of Hamming and VOW at T=325K.

To explore the impact of process variations on the write current, the Monte-Carlo simula-

tions described in Section 3.2.2 are performed. For the deterministic designs, we set the write

current at −3σ corner. Accordingly, the write pulse period is 13.7ns to obtain BER1=10−6.

To evaluate the write latency of WRAP and VOW schemes, we run Monte-Carlo sim-

ulations to estimate the write current distribution and assign write current to sub-arrays.

Next, for each sub-array, we generate 100,000 switching times according to the switching

time distribution under the given current. For a write access with WRAP in the simulation,

we compare writing data to the orignal data and calculate N0→1, then a total N0→1 samples

of pre-generated switching time is randomly selected to obtain the switching behavior of

this write. If the maximum value among the selected samples is longer than τopt chosen by

WRAP, which indicate some bits are not successfully switched, then a re-write is issued.

VOW scheme also randomly selects N0→1 pre-generated switching time samples. Since the

VOW only terminated the pulse when all the write-‘1’s finish, the maximum value of the

samples (plus verification delay) is the write pulse period for the write operation.

We also implemented Recursive Write-Read-Verify scheme [42] (labeled as ‘RWRV’) for

comparison. RWRV uses the fixed pulse period for each write, while our proposed WRAP

can adaptively change the pulse period. The simulation method and overhead calculation of

those two schemes are same.

Error Rate: Fig. 10 shows the error rate of 64-bit sub-block obtained in Hamming and

VOW. In theory, RWRV and WRAP have BLER=0 by eliminating all the write errors. Note

that during the error rate calculation, only the bits that need to be flipped (i.e., 0 → 1 or
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1→ 0) are taken in to account. The average error rate of Hamming is ∼ 10−11, which means

that Hamming code with 1-bit correction ability is not strong enough to recover the write

errors in the conventional deterministic design. VOW can eliminate all the write-‘1’ errors.

And thanks to the significantly low error rate of write-‘0’, the error rate of VOW scheme can

be as low as 10−22 even without any ECC. Interestingly, the error rate of Hamming and VOW

have opposite trends. For example, among all the benchmarks, swaptions has the highest

error rate when using Hamming, but the lowest error rate under VOW. The error rate trend

of Hamming follows the distribution of N0→1 as previously discussed in Section 3.2.3. On the

contrary, VOW terminates the write pulse until all the write-1 bits complete. Statistically

as N0→1 increases, its average pulse period prolongs, which in turn reduces the write-0 error.

Write latency and energy: The average write latency of different schemes are compared

in Fig. 11. Hamming, as a deterministic design, has a fixed write pulse period determined by

the switching time distribution of STT-RAM even though most of the switching processes

will finish much earlier. Moreover, the latency overhead from ECC encoding further degrade

its write performance. WRAP can dynamically adjust the write pulse according to the data

pattern and hence the average write pulse is only ∼ 6.92ns, as summarized in Table 3. Even

the verify process brings in ∼ 1.54ns extra overhead on average, the overall write latency

is still about 40% less than Hamming. The rewrites happens only when the previous write

fails, which on average causes ∼ 5% degradation on write performance. Note that the data

in Table 3 and Fig. 11 already took the overhead caused by rewrite into account. Since

WRAP doesn’t need ECC, we build a ‘noECC’ scheme (for comparison only) which has the

same bank size as WRAP and no ECC delay. As shown in Fig. 11, WRAP can still achieve

34% write latency reduction over ‘noECC’. VOW has the best write performance because

it terminates write pulse immediately when all the write-1 are finished. The average write

latency of VOW is 52% and 47% shorter than Hamming and ‘noECC’, respectively.

Since our proposed WRAP and VOW have shorter write performance and don’t need

ECC, they can obtain lower write energy consumption than Hamming. As shown in Fig. 12,

an average 26% or 29% write energy reduction can be achieved by WRAP or VOW, re-

spectively. Even compared to noECC, WRAP and VOW can still gain 4% and 7% energy

reduction, respectively.
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Figure 11: Average write latency comparison at T=325K.
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Figure 13: Pulse period at Temperature Scenario (2) over Scenario(1).
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Read latency and energy: As shown in Table 3, the read latency of WRAP and VOW

is 22% shorter than ‘Hamming’. This is because these two probabilistic schemes has smaller

bank area since no ECC is needed. For the same reason, the read energy of the WRAP and

VOW are 17% less than Hamming.

Temperature Impact: To understand the impact of temperature variation on difference

schemes, we conduct simulations under two scenarios: (1) all the 16 banks operate at 325K;

(2) two banks work at 375K, four banks operate at 350K, and the temperature of the re-

maining banks is 325K.

After including temperature fluctuations, a deterministic design need further extend the

write pulse to maintain BER requirement as shown in Table 3. This is because the write

current drops at high temperature and the MTJ switching process has a larger variation, as

previously discussed in Section 3.2. In contrast, WRAP can adaptively reflect the temper-

ature impact on the optimal pulse period with assist of temperature sensors. Longer write

pulse period is applied to only the hotspot. VOW, on the other hand, can automatically

extend/shorten the pulse at high/low temperature until all the write-1 finish. The ratio of

average write pulse width between scenario (1) and (2) is shown in Fig. 13. On average,

the higher temperature in scenario (2) results in only 14% and 5% write pulse increments

for WRAP and VOW, respectively. For comparison, the write pulse width increment for

Hamming is 69%.

3.4 SUMMARY

In this chapter, we first investigate the stochastic switching behavior of MTJ’s under the

impacts of both process variations and temperature change. By exploiting the asymmet-

ric switching property of STT-RAM cells, two probabilistic design techniques, WRAP and

VOW, are proposed to enhance the performance while maintaining a very low write failure

probability. The simulation results show that, compared to the conventional fixed pulse

scheme protected by Hamming Code, WRAP can ensure zero write error with 40% of write

latency reduction and 26% of energy saving. When an average write failure probability as

low as 10−22 is acceptable, the VOW scheme can further increase the write latency reduction

to 52% and energy saving to 29%.

23



4.0 DUAL-PORT CELL DESIGN FOR STT-RAM

4.1 MOTIVATIONS

With the development of CMP and SOC (System-On-Chip), the large instruction and data

exchange among different memory hierarchies makes the memory accesses more and more

frequent. Often a memory array receives multiple requests from one or many cores at the

same time. The single-port memory which grants access to one request and stalls all the

others can lead to significant performance degradation. Therefore, the dual-port or multi-

port memory to reduce access conflicts and provide high memory bandwidth becomes a

popular approach [49][50][51]. For example, Dual-Port SRAM is used as buffer memory in

multimedia applications[52] or a data cache in a multi-core processor[53][54].

However, all the previous STT-RAM designs can support only single-port access [8][25].

For example, the popular one-transistor-one-MTJ cell structure contains only one set of

word-line (WL), bit-line (BL), and source-line (SL), which makes dual-port access impossible.

Considering the fact that writing to a STT-RAM cell takes longer time than programming

a SRAM cell, the stall of the pending accesses of STT-RAM will become even more severe,

especially when the port is occupied by write operations. Therefore, the dual-port or multi-

port STT-RAM cell design is necessary to enhance the system performance.

In dual-port SRAM designs [49][55], the additional port access is implemented by adding

two extra access transistors and one set of WL/BL to the six-transistor cell design. Un-

fortunately, as we shall show in Section 4.2, the same design method cannot be applied to

STT-RAM design for the extremely large area overhead. Therefore, new design techniques

for dual-port STT-RAM must be studied.
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Table 4: Simulation Parameters

Technology1 65nm

VDD 1.2V

MTJ geometry 65nm× 130nm

RP/RAP 1.88/3.77kΩ

AP→P Switching Current2 112µA

P→AP Switching Current2 142µA

1 The minimun channel length is 60nm.
2 At 10ns switching time.

In this chapter, we use 65nm CMOS technology [56] with a 65nm× 130nm in-plane MTJ

model calibrated against the experimental data [25]. The switching behavior of the MTJ is

modeled based on the Landau-Lifshitz-Gilbert equation [20]. The detailed parameters are

listed in Table 4.

4.2 DUAL-PORT STT-RAM DESIGN CHALLENGES

Figure 14(a) illustrates a typical SRAM design with two sets of read/write ports [49][55].

Compared to a single-port SRAM cell with six transistors, two more transistors (M1 and

M2) associated with the wordline control (WLB) and the data access connections (BLB and

BLB) of the second port, are inserted.

(a)

M1 M2

WLB

WLA
BLA

BLB BLB

BLA

(b) BLA

SLA

BLB

SLB

WLA
WLB

M1

M2

M3

M4

Figure 14: (a) A typical dual-port SRAM. (b) A 4T-1J dual-port STT-RAM.
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Figure 15: (a) When two cells with in a column is accessed by two ports. (b) Biasing

condition for 4T-1J.

By following the same design concept, Figure 14(b) shows a dual-port STT-RAM cell

with four transistors and one MTJ (4T-1J). Here, a duplicate pair of BL and SL provide the

access through the second port. Compared to the single-port STT-RAM cell in Figure 1(b),

three additional transistors (M1, M3, and M4) are needed for access control. Note that in a

STT-RAM array, the BL and SL are usually shared by entire column. For single-port cells,

only one memory cell within a column can be activated at a time. Therefore, one transistor

at SL terminal is sufficient to control the accessibility to one cell per column. In contrast, a

dual-port array may simultaneously access two cells within one column through Port-A and

Port-B, respectively, as illustrated in Figure 15(a). Determined by the operation type and

data pattern, the two concurrent accesses could have the different BL voltages. Thus, M1

and M3 are necessary to isolate BLA and BLB from each other.

Due to degraded biasing condition, the 4T-1J dual-port STT-RAM cell is functionally

correct by paying significant area overhead compared to the 1T-1J single-port design. As

shown in Figure 1(b), a conventional 1T-1J STT-RAM encounters VGS degradation induced

by the voltage drop on MTJ only in write-1 operations, which constrains the switching

current through MTJ. The 4T-1J dual-port STT-RAM has a symmetric cell structure: along

an access path, e.g., from BLA to SLA, two transistors M1 and M2 are turned on and

connected side by side of the MTJ. No matter in write-1 or write-0 operations, one of them

suffers from VGS degradation, as shown in Figure 15(b). In other words, the biasing condition
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Figure 16: Transistor width vs write-1 current and switching time of (a) 4T-1J STT-RAM;

(b) 2RW STT-RAM

of the access transistors in the 4T-1J cell is much worse than that of a 1T-1J design. We

have to enlarge all the access transistors to provide sufficient MTJ switching current in write

operations.

Figure 16(a) shows the relation between the write-1 current and the size of the access

transistors in the 4T-1J design, assuming all the four transistors are of the same size. Here,

the write-1 operation dominates the transistor size selection because of the asymmetric

P→ AP and AP→ P switching currents of the MTJ device used in this work. To obtain

the write time of 10ns, the access transistors’ width is approximately 1400nm. Integrating

four such large transistors into one memory cell leads to a cell area of 575F2, which is even

bigger than that of the dual-port SRAM design (e.g., 233F2 reported in [55]). It is not

acceptable to adopt such a large STT-RAM design for on-chip applications.

BLA BLB

WLA WLB

M1 M2

SL

(shared by row)

Figure 17: 2RW STT-RAM cell.
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4.3 STT-RAM DESIGN WITH TWO READ/WRITE PORTS

4.3.1 Design Concept

Previously, the shared SL for single-port STT-RAM array has been proposed by Zhao et.

al. to increase array density [16]. It also has been used to balance the write-0 and write-1

performance [17]. The basic design concept is that all the cells on the same row share the

same SL, then all the SLs are connected together and grounded (GND/0V).

In this work, we propose to reduce the cell area of dual-port STT-RAM design by utilizing

the shared SL structure. Figure 17 depicts the STT-RAM design with two read and write

ports (2RW). Please note in [16], the grounded (0V) SL is connected to the transistor, but

in the proposed 2RW design, the grounded SL is connected to the MTJ in order to support

Dual-Port. The write-1 operation requires a switching current from SL (GND) to BL, so

a negative voltage (VBLN) need be applied to BL. Such VBLN can be generated using level

converter[57].

The 2RW cell design can significantly reduce the cell area compare to 4T-1J. First, since

the SL is always connected to GND, isolating SLs of different memory cells is no longer

necessary. The transistors used for SL access control in STT-RAM cell can be removed.

Only two transistors M1 and M2 remain to enable/disable the access to Port-A and Port-B,

respectively. Thus, the number of transistors reduces to half of the 4T-1J dual-port design.

Second, the width of access transistors can greatly decrease because only one transistor

exists along the current path between BL and SL. Figure 16(b) shows the relation between

the write-1 current and the size of the access transistors in the proposed 2RW STT-RAM

design. The required transistor width to achieve the 10ns write time is 585nm, which is only

∼ 42% of the access transistor size of the 4T-1J STT-RAM cell. The area of a proposed

2RW cell is approximately 21% of the 4T-1J design.

4.3.2 Reliability Analysis

The voltage of the shared SL (VS) in the single-port STT-RAM array may not be ideal 0V

due to the existence of the parasitic resistance (RS) [16]. Figure 18 illustrates the scenario.
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When turning on WL and applying a certain voltage to BL, the variation on VS exists and

induces degradation on both read and write performance. For example, if VS is higher than

ideal 0V, the actual voltage drop across the BL and SL reduces. Consequently, the write-1

current becomes lower than the projected value obtained under the ideal condition. In read

operations, a higher/lower VS can decrease/increase the read-0/read-1 current. The reduced

difference between read-0 and read-1 currents could result in more read errors. VS variation

can also leads to higher possibility of read disturbance, i.e., unwanted ‘0’→‘1’ switch when

reading a cell which stored ‘0’ [8]. A negative VS will increase the read-0 current (IR0) and

bring it closer to the P→ AP switching current (IW1).

For the proposed 2RW STT-RAM design, the impact of the VS variation becomes even

more severe. First, the VS variation increases as the number of cells being accessed grows.

When both ports access the cells on the same row as illustrated in Figure 18, the number

of cells doubles compared to that of single-port STT-RAM array. So a larger VS variation

is expected. Moreover, we notice that in the single-port STT-RAM, the read operations

have a lower VS variation than the write operation. This is because the write requires a

bigger voltage amplitude applied to BL (|VB|) and the only port can perform either write or

read access. However, for the 2RW STT-RAM design, it is possible that the read and write

are conducted simultaneously through the two sets of ports. The interaction in between

Access by Port-A Access by Port-B

H L LH H

H L

L H L

n{B,W1,L}=3

VDD(Write-1)VREAD

VBLN(Write-0)

VREAD VDD(Write-1)

VBLN(Write-0)

VS

H L

H Cell at High Res. L Cell at Low Res.

LL

SL

 

 

+ΔVS

-ΔVS

Figure 18: Illustration of how the access pattern affect the VS.
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Table 5: Worst-Case analysis of the 2RW cell. Transistor width=585nm; VREAD = 0.14V;

VBLN = 0.50V.

Dual-Port Access

Ideal Current1 Worst-Case Pattern2 Worst Current Worst Vs

Write-1 142µA n{A,W1,L}=8,n{B,W1,L}=8 130µA 57.5mV

Write-0 112µA
n{A,W0,H}=1, n{A,W0,L}=7,

96µA −71.4mV
n{B,W0,L}=8

Read-1 29.0µA n{A,R,H}=8, n{B,W0,L}=8 35.7µA −32.1mV

Read-0 47.6µA n{A,R,L}=8, n{B,W1,L}=8 34.9µA 37.7mV

IW1-IR0 94.4µA
n{A,R,L}=1, n{A,R,H}=7,

83.7µA −31.5mV
n{B, W0, L}=8

1 VS = 0V for Ideal case.
2 Unlisted n indicates the corresponding value is 0.

degrades the VS variation of read operations. Third, the value of VS is also affected by the

MTJ resistance states of the cells being accessed. When the MTJ is at high resistance state,

the VS is more reluctant to be disturbed by VB.

Here, we use n{A/B,R/W1/W0,H/L} to represent the number of the cells under certain ac-

cess pattern. The subscript A/B indicates Port-A or Port-B access. R/W1/W0 describes

the operation modes, including read, write-1, or write-0. H/L represents the high or low

resistance states of MTJ. For example, n{B,W1,L} is the number of the cells that are with low

MTJ resistance and conducting write-1 operations through Port-B.

Without loss of generality, we studied the current through a 2RW STT-RAM cell when it

is accessed through Port-A. Table 5 summarizes its worst-case current and the corresponding

access patterns in read and write operations. In the experiment, we assume a SL is shared

by 32 columns, and each port accesses only 8 cells by using column selection, which is very

common to support set-associative cache. The RS of such setup is set to 27.5Ω according to

[16]. The worst-case scenario happens when all the 16 cells being accessed fall on the same

row. For comparison purpose, the currents under the ideal condition when VS is exactly 0V

are also presented.

The simulation results show that write-1 and write-0 currents drop from 142µA and

112µA projected under the ideal condition to 130µA and 96µA in the worst scenario, respec-
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Figure 19: Ideal and worst-case current of 2RW cell versus: (a) Transistor Width; (b) VBLN;

(c) VREAD.

tively. The write current degradation means the design cannot meet the target of a 10ns

switching time. The situation for read operation is even worse: ideally the read-0 current is

18.6µA more than the read-1 current. However, in the worst-case combination, the read-0

current turns to be less than that the read-1 current, which can result in read decision errors.

One possibly way to solve this is to increase the read voltage (Section 4.3.3). The margin

between read-0 current and P→ AP switching current (IW1 − IR0) reduces from 94.4µA to

83.7µA under worst-case, which indicate higher possibility of read disturbance. Please note

the “worst-case” for the IW1 − IR0 occurs when IR0 reach its highest value.

In Table 5, we also show the results when disabling Port-B, which is indeed equivalent

to single-port access. The results show that the second set of access ports results in 8µA

degradation on both write-1 and write-0 currents in the worst-case condition. The difference

between read-0 and read-1 currents dramatically drops 17.3µA due to the interaction between

read and write in dual-port accesses.
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4.3.3 The Cell Configuration and The Operating Setup

Previously we demonstrate that the variation of VS is exaggerated by the dual-port access,

which must be considered when determining the access transistor size in cell design and

setting up the operating conditions, i.e., the read and write voltages.

For the given MTJ device in Table 4, the write-1 operation is critical in transistor size

selection. To compensate the current degradation under the worst-case access pattern, we

have further increase the transistor width. The simulation result in Figure 19(a) shows that

to maintain the write-1 current at 142µA in the worst-case condition, the access transistor

grows to 715nm in width.

The negative voltage (VBLN) for write-0 operations also needs to be adjusted to compen-

sate the impact of VS variation. With the access transistor width of 715nm, Figure 19(b)

shows that |VBLN| should increase to 0.58V to obtain the 112µA write-0 current in the worst-

case condition. Figure 19(c) demonstrates the relation between the read voltage (VRead) and

the current difference in read-1 and read-0 operations. The negative value of current differ-

ence indicates that the read-0 produces a smaller current than the read-1, which will result in

inevitable read decision error. Increasing VRead can significantly improves the read current

difference. On the other hand, the higher read-0 current can increase the chance of read

disturbance.

MTJ

GND to 

MTJ

BLA

BLB

WLA

WLB

GND

25l

25l

BL to 

Diffusion

WLA<0>

WLB<0>

WLB<1>

WLA<1>

(a) (c)

WLA<0>

WLB<0>

WLB<1>

WLA<1>

MTJ

(b)

16l

25l

Figure 20: (a) 2RW layout. (b) The directly tiled layout. (c) The optimized layout with

shared diffusion.
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4.3.4 Layout Design

Figure 20(a) shows the layout of the proposed 2RW STT-RAM cell, where λ is half of the

feature size (F). Based on the analysis in the previous section, the access transistor width

is 715nm (11F). The two access transistors in one cell can share the diffusion area, which is

connected to the MTJ.

Figure 20(b) shows that when directly tiling up the cells on a column, the diffusion

area of two adjacent cells cannot be shared. Because WLA and WLB are driven from two

separate decoders, WLB < 0 > and WLA < 1 > could be turned on at the same time. In

such operation situation, sharing the diffusion area can results in current flowing through

the two MTJs, which is not allowable. In contrast, we can safely share the diffusion area by

vertically flipping the bottom cell as shown in Figure 20(c). The shared diffusion is controlled

by WLB < 0 > and WLB < 1 >. They are driven by the same decoder and won’t be turned

on simultaneously. As a result, the height of a memory cell greatly reduces from 25λ to 16λ.

The area of the optimized cell in Figure 20(c) is 100F2, which is about 42% of the area of

a 2RW SRAM design (233F2) reported in [55]. Comparing to the single-port 1T-1J cell which

obtains same write performance with our MTJ parameter (72F2) [58], the area overhead of

introducing an additional port is about 39%.

4.4 STT-RAM DESIGN WITH 1-READ/1-WRITE PORT

4.4.1 Design Concept

Some dual-port SRAM designs restrict the port functionality [50][51]: one support read

operations only and the other is for writes only. Such designs with 1-read/1-write port

(1R1W) can alleviate the degradation of static noise margin, compared to 2RW design.

Similarly, the 1R1W design concept can be applied to the dual-port STT-RAM to reduce

the impact of VS variation. Figure 21 illustrates the access pattern when constraining the

port functionality to 1R1W. Not like writes through two port aggravate the VS variation

in 2RW STT-RAM, a write in 1RW design can be accompanied to only a read through
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the other port. Since the read voltage is much lower than the write voltage, VS reduces

compared to the 2RW case. Moreover, the positive VREAD tends to bring VS to the positive

direction, which actually improves the write-0 current strength. Therefore, the worst-case

access patterns for the write operations in 1R1W STT-RAM is redefined as shown in Table 6.

The patterns for read operations remain the same as the 2RW design in Table 5.

4.4.2 Transistor Sizing and Operating Voltage

Benefiting from the improved worst-case write current, the 1R1W design can shrink the

transistor sizes to achieve the same write performance as the 2RW design. For example, if

assuming the two access transistors are of the same dimension and setting VRead to 0.24V ,

our simulation shows that the transistors can reduce to 670nm.

Moreover, if utilizing the different sizes to the read access transistor (WR) and the write

access transistor (WW), the design could be further reduced. On one hand, the increased

resistance induced by a smaller WR helps reduce the VS variation, which in turn alleviates the

sizing requirement for WW. On the other hand, the smaller read access transistor degrades

the read current difference IRdiff , which could lead to more read errors. To maintain IRdiff

when decreasing transistor sizes, we can increase VREAD, which however exaggerates the VS

variation.

For a given WR, we proposed the following design flow to obtain the minimum WW and

hence the most area-efficient configuration:

H L

H L

H L

VREAD

VBLN(Write-0)

VDD(Write-1)

VS

SL

 

 

+ΔVS

-ΔVS

Figure 21: Access pattern of 1R1W.
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Table 6: Worst-case access patterns for write operations in 1R1W.

Worst-Case Pattern

Write-1 n{A,W1,L}=8, n{B,R,L}=8

Write-0 n{A,W0,H}=1, n{A,W0,L}=7, Port-B idle.

1 Assuming Port-A is write only and Port-B is read only.

Step 0: Randomly choose a VREAD.

Step 1: With the given WR and VREAD, sweep WW till it meets the write-1 current target

in the worst-case pattern.

Step 2: Find the VBLN to achieve the write-0 current target under the worst-case configu-

ration, when WR, VREAD and WW are fixed.

Step 3: Get the VRead to achieve the IRdiff target for the given WW, VBLN and WR.

Step 4: Repeat the iteration from Step 1 to Step 3 until WW and VREAD converge to certain

values.

Figure 22 shows the minimum WW and the corresponding VREAD under different WR.

Here, we set the targeted IRdiff as 10µA and the write time as 10ns for both write-0 and

write-1. The result shows that reducing WR from 660nm to 540nm helps relax the sizing

requirement of WW due to the increased equivalent resistance of read access transistor.

However, WW starts to increase when further decreasing WR because the the higher VREAD

becomes the dominating factor. As the width of the cell layout is determined by WW, the

smallest 1R1W STT-RAM cell can be obtained when WW = 660nm and WR = 540nm. The

corresponding VREAD and VBLN are 0.27V and −0.53V, respectively.

4.4.3 Comparison of 2RW and 1R1W STT-RAM Designs

We compared the proposed 2RW and 1R1W STT-RAM designs by following the worst-case

design methodology and the results are summarized in Table 7. Thanks to the smaller

transistors, the cell area of a 1R1W STT-RAM cell is only 92.3% of that of the 2RW design.
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Figure 22: The minimum WW and VREAD under different WR.

The amplitude of VBLN is smaller too. The reduced transistors and |VBLN| indicates that the

1R1W design has the less write current in the non-worst-case condition and hence consumes

less write energy than the 2RW design. Interestingly, although the VREAD is higher for

1R1W, the worst-case difference between read-‘0’ current and P→ AP switching current

(IW1 − IR0) is still improved, which indicates lower possibility of read disturbance. This is

because smaller WW and VBLN reduce the VS drift toward negative direction, which is the

main reason for the excessive IR0. In summary, 1R1W cell can achieve smaller area, less

energy waste and smaller possibility of read disturbance, with the cost of restricted port

functionality.

4.5 SUMMARY

In this chapter, we firstly propose the dual-port STT-RAM design, which can provide higher

data bandwidth. We found that the dual-port design based on the conventional 1T-1J STT-

RAM is not feasible because of the large cell area. Accordingly, we propose to leverage the

shared SL design to simplify the cell structure and reduce the memory cell area. Two types
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Table 7: Comparison between 2RW and 1R1W

2RW 1R1W

Worst-case write time 10ns

Worst-case IRdiff 10µA

Transistor Width
both WW = 660nm

715nm WR = 540nm

Cell Size 100F2 92.3F2

Area overhead over
39% 28%

Single-Port STT

VREAD 0.24V 0.27V

IVBLN −0.58V −0.53V

IW1-IR0 77.8µA 82.4µA

of the dual-port STT-RAM design, 2RW and 1R1W, are presented. Furthermore, the related

design issues, including reliability, cell configuration, operating setup, and layout techniques,

have been considered and discussed.
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5.0 MLC STT-RAM DESIGNS

5.1 MOTIVATION

Compared to single-level cell (SLC) design, multilevel cell (MLC) that stores two or even

more bits in one memory cell is more efficient in data storage density. The MLC design

has been successfully adopted in Flash memory and PCM technologies by dividing the

threshold voltage of Flash and the resistance range of PCM cell into multiple levels, re-

spectively [59][60]. The use of MLC in STT-RAM cache design has also been investigated.

For example, Chen et al. examined the read/write scheme and proposed a set remapping so-

lution to extend its life time [61]. Zhang et al. compared series and parallel MLC STT-RAM

designs, concluding that series MLC STT-RAM is more resilient to process variations [39].

Jiang et al. addressed the performance issue through line paring and line swapping methods

particularly for parallel MLC STT-RAM design [38]. Nevertheless, a number of circuital

and architectural challenges remain unsolved in MLC design, including the limited density

benefit and the degraded performance induced by multi-step accesses.

An SLC STT-RAM cell is composed of an MTJ for data storage and an NMOS transistor

for access control. Its area is mainly determined by the transistor size, the selection of

which shall take many factors into consideration, including the MTJ resistance, the MTJ

switching current requirement, the biasing condition of the transistor, etc. Unlike MLC

PCM which obtains multiple logic bits by partitioning resistance range without changing

the cell structure, MLC STT-RAM design need insert an extra MTJ pillar to represent the

second logic bit. The change in cell structure greatly complicates the design trade-off and

makes the use of the minimal-sized selective transistor very difficult. In fact, our evaluation

shows that the conventional MLC structure [61][39][34] even is in danger of losing the density
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competition to SLC design. We note that the reverse MTJ stacking has been successfully

utilized in SLC STT-RAM [18][19]. In this work, we explore its use in MLC design. The

new device structure expands the design space of MLC STT-RAM. Our simulations show

that the new cell structure made of reverse MTJ connection can achieve the smallest area

and continue the density advantage.

Besides the storage capacity, the access speed is another key metric in cache design.

By nature, accessing an MLC design is slower than SLC, simply because its logic detection

in a read operation requires two sensing stages and writing an MLC cell involves two-step

programming. At the system level, the enlarged storage capacity and prolonged access

latency of MLC STT-RAM have contradictory impacts on the overall system performance.

The winner is determined by application’s requirement. Those with large datasets benefit

from the high cache capacity that reduces cache miss rate and costly accesses to main

memory. In contrast, applications with small data sets may suffer from the long read and

write latencies, performing even worse than the system integrated with SLC STT-RAM

cache.

We observed that an MLC STT-RAM cache can support the SLC operation mode, which

provides fast accesses but sacrifices half of its storage capacity. Based on it, an architec-

tural level solution, named as application-aware speed enhancement (ASE), was proposed:

according to application’s memory access behavior, the MLC STT-RAM cache dynamically

changes between the MLC mode with high capacity and the SLC mode that offers low ac-

cess latency. Furthermore, we presented a cell split mapping (CSM) method, which divides

a cache line into a fast and a low regions to reduce the mode switching cost. To fully take

advantage of the proposed architecture solutions, new data migration policies that allocate

frequently used data to fast regions were also studied.

5.2 FUNDAMENTALS OF STT-RAM

MLC STT-RAM is developed by integrating two MTJs into one single cell. For example,

parallel MLC STT-RAM divides the free layer of an MTJ into a hard domain and a soft
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Figure 23: (a) MTJ in parallel and anti-parallel states. (b) A single-level cell (SLC) STT-

RAM design.

domain to represent two logic bits [35]. This design demonstrates poor reliability due to

its high sensitivity to process variations [39]. Instead, series MLC STT-RAM that stacks

two MTJs in series is more feasible and has been widely accepted [34]. Its cell structure is

illustrated in Fig. 24(a).

No matter in a parallel or serial MLC cell, the two MTJ pillars representing different

logic bits have different areas. As shown in Fig. 24(a), we name the data stored in the small

and big MTJs as soft-bit and hard-bit, respectively. Because both the resistance-area product

(RA) and critical switching current density (JC) remain constant in a given magnetic process,

the soft-bit has a larger resistance value but requires a smaller switching current IC than the

hard-bit.
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Figure 24: The serial MLC STT-RAM design. (a) The conventional structure; (b) two-step

write operation; (c) two-step read operation.
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Table 8: The Key Design and Device Parameters

RA (Ω · µm2) 4.88 JC,1→0 (MA/cm2) 2.13

Soft-bit area (nm2) 32×64 JC,0→1 (MA/cm2) 3.20

Hard-bit area (nm2) 45×90 IC,Soft,1→0 (µA) 34.31

TMR 105% IC,Soft,0→1 (µA) 51.47

VDD(V) 1.2 IC,Hard,1→0 (µA) 67.86

Feature Size (nm) 32 IC,Hard,0→1 (µA) 101.80

Fig. 24(b) summarizes the write procedure of an MLC STT-RAM. Programming an MLC

cell needs two stages. First, apply a current larger than the hard-bit critical current (i.e.,

IWH > IC,Hard), which inevitably switches both the hard-bit and soft-bit. Then a smaller

current that satisfies IC,Soft < IWS < IC,Hard is deployed to switch only the soft-bit. Reading

data from an MLC STT-RAM requires two sensing steps too: first detect the soft-bit; then

according to the value of the soft-bit, apply another reference voltage to detect the hard-bit

data. The procedure is shown in Fig. 24(c).

In this work, we adopted 32nm PTM CMOS model [43] and the MTJ parameters

from [62] for circuit analysis. The area ratio of the two MTJs is set to 2 in order to balance

the difference of adjacent resistance states [39]. The key design and device parameters are

summarized in Table 8.

5.3 MLC STT-RAM CELL DESIGN EXPLORATION

5.3.1 Design Challenges of Conventional MLC STT-RAM

Higher density is the major motivation to promote MLC design. In STT-RAM, the MTJ

pillar is realized at the minimal allowable dimension to reduce the switching current require-

ment. Hence, the cell area is mainly determined by the selective transistor. On the one

hand, a small transistor is preferred to improve data storage density. On the other hand, the
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Figure 25: Illustrations of switching current change when writing 1 to hard-bit in (a) the

conventional MLC, and (b) SR-MLC.

transistor must be large enough to provide sufficient current to switch MTJ during program-

ming. In an MLC STT-RAM cell, an extra MTJ is introduced to stand for the second logic

bit. The structural modification, however, exacerbates the size requirement of the selective

transistor for the following two reasons:

(1) Increased switching current requirement. Two MTJs in an MLC cell must be in

different areas in order to differentiate the two logic bits. The soft-bit uses the smallest

pillar which is the same as that in SLC design. The hard-bit size increases properly [39].

Note that JC is fixed and IC increases proportionally with MTJ area. So IC,Hard for hard-bit

programming is much bigger than IC,Soft required for soft-bit switching, as shown in Table 8.

(2) Aggravated asymmetry in write operation. As illustrated in Fig. 23(b), the current

flows from SL to BL direction when writing logic 1 (write-1 ) to an SLC STT-RAM cell.

The voltage drop on MTJ causes VGS degradation and limits the drivability of the selec-

tive transistor. Comparably, write-0 is easier and faster because VGS = VDD. Moreover,

the required MTJ switching current in write-1 and write-0 operations are different, usually

JC,0→1 > JC,1→0 [8]. This scenario is called as asymmetric writes. MLC design with more

MTJs stacking in series increases the overall resistance. Thus, VGS degradation becomes

worse and the current from SL to BL direction further reduces.

The conventional MLC STT-RAM design in Fig. 24(a) is mainly constrained by the

“write-1 to hard-bit” operation. First, it requires the highest switching current (IC,Hard,0→1).

Moreover, the selective transistor is under the weakest biasing condition and produces the
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lowest driving current when the soft-bit is 1. Even the soft-bit originally stores 0, large IWH1

will quickly flip it to 1, bringing the design into the worst-case condition. The scenario is

illustrated in Fig. 25(a).

During the following evaluation, the transistor of baseline SLC cell is set as 4.5F, which

is sufficient to write logic 0 and 1 into an MTJ with an area of 32nm× 64nm. F represents

the technology feature size, which is 32nm in this work. Further reducing the transistor size

does not increase density because the layout design rules, e.g., metal wire and via connection

of BL and SL, start dominating the cell area [58].

We simulated the driving current when writing 1 or 0 to the hard-bit of an MLC STT-

RAM under the worst-case conditions. As can be seen in Fig. 26, enlarging the selective

transistor helps improve the driving current. However, the conventional MLC with a tran-

sistor of 9F (2× of that of SLC) cannot supply sufficient driving current to flip hard-bit to

1 (IWH1 < IC,Hard,0→1). Further increasing the transistor size results in an even lower data

density than SLC STT-RAM cache, which is meaningless.

5.3.2 Exploring More MLC STT-RAM Cell Structures

The conventional MLC structure in Fig. 24(a) have two MTJs in regular connection. In

fact, it is not the only possible cell structure. The free layer in MTJ can also be fabricated

underneath the reference layer to form a reverse connection [18]. The reverse connection has
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Figure 26: The hard-bit write current provided in different MLC STT-RAM cell designs. (a)

write-1 current; (b) write-0 current. F = Feature Size (32nm)
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Figure 27: Other available MLC cell structures: (a) Soft-bit reversed (SR-MLC); (b) Hard-bit

reversed (HR-MLC); (c) Soft- and hard-bit reversed (SHR-MLC).

been successfully utilized in SLC STT-RAM for cell area reduction [19]. Fig. 27 shows three

new MLC STT-RAM cell designs. Based on the stacking connections of the soft- and hard-

bits, we name these designs as soft-bit reversed (SR-MLC), hard-bit reversed (HR-MLC),

and soft- and hard-bits reversed (SHR-MLC), respectively.

Since device characteristic is solely determined by material engineering, the change in

MTJ connection does not affect the switching current requirement. So programming a

hard-bit is still more difficult than its corresponding soft-bit. For comparison purpose, we

simulated the driving currents when writing 1 or 0 to the hard-bit of these MLC designs

under the worst-case conditions. The results are shown in Fig. 26.

It can be seen that reversing MTJ connection helps alleviate the asymmetry in write

operations. For example, the worst-case condition of IWH1 in an SR-MLC cell is relaxed

Table 9: Margins between the driving current of MLC design with a 4.5F transistor and the

required MTJ switching current

∆IWH1 ∆IWH0

Conv. MLC −23.37µA 86.65µA

SR-MLC 12.80µA 42.47µA

HR-MLC 90.58µA 0.23µA

SHR-MLC 27.29µA 25.05µA
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when the soft-bit is 0. This is because even the initial logic of the soft-bit is 1, writing

1 to the hard-bit will quickly switch the soft-bit to 0 and raise IWH1 up. The scenario is

illustrated in Fig. 25(b). Compared to conventional MLC design, the worse-case IWH1 of

SR-MLC grows much faster as the selective transistor size increases. As a trade-off, IWH0

is smaller than that of the conventional design, but still more than sufficient to conduct a

successful write-0 to hard-bit.

HR-MLC reverses the hard-bit, resulting in the change of IWH1’s direction from SL→ BL

to BL→ SL. Therefore, when writing 1 to the hard-bit, the selective transistor does not

suffer from VGS degradation. The amplitude of IWH1 grows even higher than that of SR-HLC.

However, its IWH0 degrades significantly and can barely exceed IC,Hard,1→0.

Table 9 summarizes the write current margins provided by four MLC designs over the

required MTJ switching current, such as

∆IWH1 = IWH1 − IC,Hard,0→1, and

∆IWH0 = IWH0 − IC,Hard,1→0.

The size of selective transistor is set to 4.5F, corresponding to twice data density over the

baseline SLC. The result showed that all the three new MLC cell designs in Fig. 27 can

supply sufficient driving currents under the worst-case write operation conditions. Among

the four possible MLC STT-RAM cell structures, SHR-MLC achieves the most balanced

current margins for both IWH1 and IWH0.

Fig. 28 compares the write performance of all the four cells for both write-1 and write-0

operations. Because all the four types of cells have the same latency requirement on soft-bit

writing, only the hard-bit write latency is presented in the figure. When setting the select

transistor size at 4.5F , the SHR-MLC design has the most balanced performance for both

write-1 and write-0. The SR-MLC requires shorter write-0 latency than SHR-MLC, but its

write-1 latency is much higher especially at smaller transistor size. Therefore the SHR-MLC

provides the best overall write performance among all the four types of cell structures. The

hard-bit write energy comparison among the four types of cells is presented in Fig. 29. For

each design, the longer latency requirement of the write-1 and write-0 operations is adopted

for the energy calculation. SHR-MLC demonstrates the lowest energy consumption mainly

because it has the shortest overall write time.
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(b) write-0 operations. F = Feature Size (32nm)
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Moreover, reversing the MTJ connection helps alleviate the read disturbance and there-

fore improve the read stability, with the MTJ parameters used in this work. For a MLC cell,

the read disturbance mainly happens to the soft-bit because the current density received at

the soft-bit is always twice larger than the current density of the hard-bit. When the soft-bit

is reversed, the read current from BL to SL is along the direction of the soft-bit’s write-1

operation. The required current to switch the soft-bit becomes IC,Soft,0→1 = 51.47µA, which

is much larger than IC,Soft,1→0 = 34.31µA in the conventional cell structure. It implies that

in the design with reversed soft-bit is more resilient to read disturbance.

The read stability can also be affected by the amplitude of read current (or more precisely,

the ratio of the read current and the critical switching current Iread/IC), which in turn affects

the sense margin. We calibrate the relation of the sense margin and Iread/IC for four cell

designs. According to cell structures, IC = IC,Soft,0→1 for SR-MLC and SHR-MLC, while

IC = IC,Soft,1→0 for Conventional MLC and HR-MLC. The results in Fig. 30 show that at

any given Iread/IC, the SR-MLC and SHR-MLC designs have higher sense margins. In other

words, under the same possibility of read disturbance, these two types of cells can tolerate

high read current.

Based on previous analysis, the SHR-MLC cell provides best read/write performance

and smallest cell area with the parameters in Table 9, and therefore, be adopted in the

following discussion at architecture level. It is worthwhile to mention that this conclusion

is not general, but determined by given device characteristics, including MTJ resistance,

TMR, and critical switching current. Detailed analysis shall be performed based on given

MTJ parameters before a choice of cell type is made.

5.3.3 Observations and Motivation

From system perspective, the major motivation of promoting the use of MLC STT-RAM

cache is to increase the capacity and hence reduce the cache miss rate. Though the two-

step read/write prolongs cache access latency, it is expected that the reduction in costly

main memory accesses can amortize the impact and eventually enhance the overall system

performance. However, it is not always the case.
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5.4 APPLICATION-AWARE SPEED ENHANCEMENT SCHEME

First of all, the large variety of applications behave differently and demonstrate different

data access patterns. Although some of them need occupy a large amount of data and

demand big cache capacity, many others constrain data accesses within only a small data set

that can fit into a limited cache space. For the latter cases, increasing cache capacity does

not have a significant impact on the cache miss rate. Moreover, many applications show a

streaming-like data access behavior: data fetched from lower level memory hierarchy will be

accessed only once and then evicted. The cache miss rate in these applications is always

relatively higher and usually independent of cache capacity.

Second, even within a single application, the usage of different cache sets could be very

different. For example, Fig. 31 presents the set-based miss-rate of h264ref in a 4-way L2

cache. Many sets obtain a close-to-zero miss rate, implying that these locations unlikely

benefit from capacity increase. Considering these factors, directly replacing SLC STT-RAM

cache with MLC could result in system performance degradation for many applications. This

has been observed in our simulations that shall be discussed in Section 5.6.

By observing the MLC STT-RAM design and read/write operation mechanism in Fig. 24,

we found that a serial MLC can support SLC-like accesses: (1) reading data from a soft-bit

needs only one sensing stage because the soft-bit itself determines if the total resistance falls

into the lower-half or the higher-half range; (2) programming a soft-bit requires only a small

current IWS which does not affect the corresponding hard-bit. Based on the observations

at circuit and architectural levels, in this work, we proposed an application-aware speed

enhancement (ASE) scheme for MLC STT-RAM design.
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Figure 31: Miss rate statistic at different sets of a 4-way L2 cache for h264ref.
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Figure 32: The set-based ASE scheme.

5.4.1 Application-aware Speed Enhancement (ASE)

Our approach enables two types of access modes for each cache set. In MLC mode, full

storage capacity is provided but a read/write operation need two steps to complete. The

cache set can also switch to SLC mode, in which only soft-bits will be read/written. Thus,

an access can be completed quickly (in one step) though half of data storage capacity is

sacrificed. According to the cache set accesses, ASE scheme dynamically switches between

the two access mode.

Fig. 32 illustrates the utilization of the set-based ASE in an 8-way cache memory. Con-

trolled by a mode-predictor, a cache set can stay at the MLC mode supporting 8-way accesses

or change to the SLC mode at which only 4 ways are accessible. We chose to change the

number of ways instead of sets, because the latter scheme requires to modify the word-line

decoding circuitry which induces larger overheads in hardware and latency. In this example,

ways W4-W7 are discarded when switching from MLC to SLC mode, while W0-W3 are

always active in both mode. Such a set-based 8-/4-way configurations will be used in the

following discussion.
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5.4.1.1 Read Performance Improvement We can further improve the read perfor-

mance of SLC mode by reseting all the hard-bits to ‘0’. Note that an MLC cell can be at

‘00’, ‘01’, ‘10’, or ‘11’ states. Here, the first and second bits represent the data of soft- and

hard-bits, respectively. As shown in Fig. 33(a), when detecting the soft-bit, the reference

voltage shall be set to ref1. The sense margin defined as the difference between the reference

voltage and bit-line voltage is SM1 = 8.5mV. Erasing the hard-bit to ‘0’ reduces the possible

data states to ‘00’ and ‘10’ only. We can shift the reference voltage to ref2 and improve the

sense margin of soft-bit detection to SM2 = 18mV. Consequently, the sensing delay greatly

reduces, as shown in Fig. 33(b).

5.4.1.2 The Mode Switching Control The mode predictor is used to determine whether

MLC or SLC mode shall be applied, based on cache access pattern. In implementing the

set-based mode-predictor, we define the merit of MLC (MMLC) and the merit of SLC (MSLC)

as:

MSLC = (HitW0−3)× (Latency-Reduction), and

MMLC = (Avoidable-Miss)× (Miss-Penalty).

Here, HitW0−3 counts the number of cache hits on ways W0-W3. Latency-Reduction repre-

sents the latency reduction of an access to these ways once switching it from MLC to SLC

mode. In short, MSLC denotes the accumulated latency reduction of switching to SLC mode.
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Figure 33: (a) The comparison of sense margins in MLC and SLC modes. (b) Sensing delay

vs. sense margin.

50



MMLC evaluates the latency reduction in MLC mode if that are not many lower-level

memory accesses. Avoidable-Miss is the number of avoidable cache misses if changing from

SLC to MLC mode. To accurately calculate Avoidable-Miss, the tag should always stay in

8-way configuration no matter what mode the set is in. Miss-Penalty is the access latency

of the lower level memory hierarchy. Conceptually, the SLC mode leads to better system

performance if MSLC exceeds MMLC, or vice versa.

The mode predictor is a saturation counter with a similar structure as [63]. It is in-

cremented by Latency-Reduction when a hit occurs to W0-W3. If a hit falls on W4-W7,

indicating that a miss can be avoided in MLC mode, the mode predictor is decremented by

Miss-Penalty.

A set changes to the MLC mode when its mode predictor decreases to 0. Or, if the

mode predictor reaches to preset threshold MTh, the set switches to the SLC mode. At

the moment, data on W4-W7 will be evicted to lower-level memory hierarchy, followed

by resetting hard-bits to ‘0’. Considering the associated high latency cost, frequent mode

changing is unaffordable and can be constrained by increasing MTh. However, a very big

MTh could cause the mode changing to be lagged so that cache sets cannot adjust to the

suitable mode in time. Therefore, MTh as a key design parameter shall be carefully selected

for the best performance. More discussion will be presented in Section 5.6.5.

5.4.2 Logic to Physical Mapping Strategies

The effective mapping of the logic data and physical cells is critical in the ASE scheme. It

not only determines the performance but also affects the overhead induced by the SLC/MLC

mode switching. In this work, we propose direct mapping and cell split mapping methods.

5.4.2.1 Direct Mapping A straight-forward way to utilize an MLC STT-RAM cache

is directly mapping every N logic bits to N/2 MLC cells. For instance, as illustrated in

Fig. 34(a), a cache line with 64-byte (512-bit) can be allocated to 256 MLC cells: half of the

data bits are stored in the soft-bits and the other half are saved in the hard-bits. We name

this logic data and physical cell mapping method as direct mapping (DM).
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Figure 34: The physical to logic mapping in MLC mode with (a) the direct mapping, or (b)

the cell split mapping.

For its simplicity, direct mapping has been naturally adopted in MLC STT-RAM cache

designs [61]. Since a cache line contains both soft- and hard-bits, each read/write access

need take two operation steps. Moreover, direct mapping incurs relatively high overhead

during mode switching as illustrated in Fig. 34(a). When changing from the MLC to SLC

mode, data stored in W4-W7 need to be read out and written to the lower-level memory

before they can be discarded. Then W0-W3 need to be remapped, which introduces an extra

round of read and write. When switching backward from the SLC to MLC mode, such a

remapping need to be performed one more time.

5.4.2.2 Cell Split Mapping The direct mapping is not able to leverage the fast soft-bit

access which requires only one-step operation. Moreover, mapping a cache line to both soft-

and hard-bits will cause data reorganization whenever a mode switch occurs. To solve these

issues, we propose a new cache line mapping method, named as cell split mapping (CSM).

Fig. 34(b) depict the cache architecture when adopting CSM. Half of the cache lines

(W0-W3) are mapped to soft-bits, while W4-W7 are mapped to hard-bits. Recall that W0-

W3 are also mapped to soft-bits in SLC mode, these ways remain unchanged during the
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SLC/MLC mode switching. Also, W4-W7 can be activated without affecting the data in the

corresponding W0-W3, minimizing the cost in SLC to MLC mode changing. When switching

from MLC to SLC, the data stored in hard-ways shall be evicted into lower level memory

hierarchy if they are marked dirty. So a read operation on hard-way and a write operation

to lower level memory are needed. In general, CSM eliminates the data reorganization

during mode switching and therefore greatly improves the efficiency of ASE. In the following

discussion, we use “soft-ways” to represent W0-W3 which contains only soft-bits, and denote

W4-W7 as“hard-ways”.

Note that the CSM induces non-uniform data access latencies, determined by both the

operation type and data location. A cache hit on a soft-way, no matter it is a read or write

operation, can be completed in one step, which is the same as an SLC operation. The accesses

to hard-ways, however, is more costly and complex. First, reading data from a hard-way

behaves the same as that in an MLC cache with directly mapping. While, when writing

to a hard-way, the data in the corresponding soft-way shall be protected by following the

sequence of reading the soft-way data, programing the hard-way, and restoring the soft-way

data back. The write access latency of an hard-way can be denoted as

LCSM,W,H = Tper + TRS + TWH + TWS, (5.1)

where Tper is the latency on peripheral circuitry such as the signal routing and address

decoding components. TRS is the sensing time to detect soft-way. TWH and TWS are the

time to program hard-way and soft-way, respectively. Note that LCSM,W,H is longer than the

write latency of an MLC cache with direct mapping which is

LDM,W = Tper + TWH + TWS. (5.2)

Fortunately, the extra read occurs to the same MLC cells as the original write, so Tper can

be shared.

CSM shares some similarities with line paring for parallel MLC STT-RAM [38], which

pairs two cache line in different banks into one group and re-organizes the data. However,
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due to the complex characteristics of parallel MLC, the line pairing scheme divides a cache

line into write-fast-read-slow and read-fast-write-slow forms, which cannot efficiently handle

the data blocks requiring high-frequent read and write accesses. It cannot provide a natural

support to the SLC mode as what is proposed in this work either.

5.5 OPTIMIZATION OF CACHE WITH CELL SPLIT MAPPING

In an MLC STT-RAM cache with CSM, soft-ways and hard-ways evenly split the capacity.

Without any optimization, about half of the cache hits occur on the hard-ways and suffer

from long access latency. In order to reduce the hits on hard-ways and maximize the usage of

soft-ways, we propose an optimization methodology which includes the intra-cell swapping

mechanism, the data migration method, the shifting replacement policy during a cache miss,

and the associated tag array design. Details of the optimization method will be explained

in this section.

5.5.1 Intra-cell Swapping

Data migration is very common in caches with non-uniform access latencies. It is usually

performed by swapping data between fast and slow regions that are assigned to different

physical locations or even implemented with different memory technologies, e.g., between

SRAM and STT-RAM [13][38]. However, data swapping in between usually introduces large

overheads in latency and energy consumption.

In the proposed MLC STT-RAM cache, a soft-way and a hard-way in the same group

of memory cells, e.g., W0 and W4 in Fig. 34(b), are coupled. The data swapping between

coupled ways, namely, intra-cell swapping, is natural and easy. So our design adopts only

the intra-cell swapping to reduce the data migration overhead.

For example, if swapping W0 with a way belonging to other MLCs, say, W5, the latency

of such an inter-cell swapping is

Tinter = TRS0 + TRS5 + TRH5 + TWS0 + TWH5 + TWS5, (5.3)
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Figure 35: The timing sequence of data swapping execution enabled by a hard-way write

opeation (a) or a hard-way read opeation (b).

where the suffix number 0/5 represents the way index. For comparison, the latency to

complete an intra-cell swapping between W0 and W4 is much shorter, such as

Tintra = TRS + TRH + TWH + TWS, (5.4)

where TRH is the hard-bit sensing latency once the soft-bit is known. The benefit of con-

straining the data swapping within same MLCs is obvious by comparing Tinter and Tintra.

Executing data swapping when memory is idle can alleviate the impact on system per-

formance but cannot avoid extra energy overhead. Instead, our approach tends to hide the

swap operation into normal read/write accesses to hard-ways. Fig. 35 shows the timing

diagram of data swapping enabled by a hard-way access, which can be a write or a read.

5.5.1.1 Write & Swap For a data swapping triggered by a hard-way write, we can

move the data of its corresponding soft-way to the hard-way and allocate the new data to

the soft-way. It is not necessary to read the hard-way which will be over-written by the

incoming data. This operation is exactly the same as a normal hard-way write, with a

latency summarized in Eq. (5.1). It does not induce extra latency or energy overhead.
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5.5.1.2 Read & Swap Data swapping can also be initiated by a hard-way read. The

soft-way is read-out first, followed by the hard-way read. Then the two data blocks are

swapped and written into the hard-way and soft-way in sequence. Note that the read-out

data can be used for further operation without waiting for the completeness of writes. So

the swapping will not cause extra delay to this read access. Also, a great amount of energy

cost of swapping such as decoding and sensing can be absorbed by the normal read access.

Although the inter-cell swapping can provide more flexible data migration and enhance

the soft-way utilization, the big latency overhead cannot be completely hidden by normal

operations. Our evaluation in Section 5.6 shall show that the intra-cell swapping together

with simple data migration policy can allocate more than 90% of cache hits to soft-ways.

Thus, we didn’t adopt the inter-cell swapping between different MLC cells in this work.

5.5.2 Migration Method

Data migration is possible with the support of the swapping mechanism. Our objective

is to move frequent-access data blocks to soft-ways that require only one step in read and

write operations. Here, we propose two methods, namely, counter-based migration (CM)

and aggressive migration (AM), to control the data movement between soft- and hard-ways.

5.5.2.1 Counter-based Migration A counter Hcnt is assigned to each pair of coupled

soft- and hard-ways to track access frequency. When a hit occurs on an soft-/hard-way,

Hcnt increases/decreases one. If Hcnt reaches a pre-set threshold (HTh), indicating that

more accesses hit the hard-way than the soft-way, we swap their data and reset Hcnt to 0.

This flow is shown in Fig. 36(a). The overhead of CM mainly comes from the counters.

5.5.2.2 Aggressive Migration It is a simpler scheme without counters. Considering

the fact that modern embedded processors usually utilize write-back L1 cache for energy

reduction [64], a large portion of writes to L2 cache are caused by dirty line eviction from

L1 cache. Many of these data could be sent back to L1 cache again. AM exploits this fact

and triggers data swapping whenever a write hits on a hard-way, as shown in Fig. 36(b).
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Figure 36: Data migration flows. (a) Counter-based migration, and (b) Aggressive migration.

It guarantees that the most recently written data always stay on soft-ways. AM will cause

more data swaps than CM because every write-hit on hard-way triggers a swap. However, the

swapping itself does not induce any overhead because it is totally hidden by write operation

as previously discussed. Moreover, AM does not require counters or other complex logic so

the area overhead is negligible.

5.5.3 Shifting Replacement Policy

When a cache miss occurs, an old cache line will be evicted and replaced with new data

fetched from lower-level memory. The widely adopted replacement policy like LRU tends

to choose the least recently used data as a candidate for replacement. While applying our

proposed data migration method, such data is likely to be located on a hard-way. This

causes potential harm on performance because the new data usually incurs more frequent

accesses and should be placed in a soft-way that offers better access speed. Thus, we propose

a shifting replacement policy which is a modified version of LRU, an example of which is

illustrated in Fig. 37: if a hard-way (e.g., W4) is chosen to be evicted when applying least

recently used (LRU) replacement policy, instead of putting the new data directly into the

hard-way, we locate it to the corresponding soft-way (e.g., W0) meanwhile shift the data of
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W0 to W4. With the proposed replacement policy, the new data will always be placed in a

soft-way which guarantees fast access. The latency of such a shifting replacement remains

the same as a hard-way write as described in Eq. (5.1).

5.5.4 Tag Array Design Utilizing CSM

Due to the concern on system performance. previous MLC STT-RAM cache designs usually

uses SLC to implement tag arrays. The major drawbacks of the approach are the large

array area and the increased design complexity caused by different types of cell structures.

Here, we propose to apply MLC in tag array. Besides the smaller design area that helps

reduce the fabrication cost, another major advantage of the MLC-based tag array is having

the same structure for both the tag and the data arrays. The compatibility in array design

style eventually results in the design cost reduction through sharing read/write peripheral

circuitry and easing the layout organization. Similar to data array design, we utilize CSM

to reduce the tag search latency. An illustration is shown in Fig. 38, where the physical
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Figure 38: MLC STT-RAM tag array design utilizing CSM.
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location of tag and data blocks present an one-to-one correspondence, i.e., both Tag0 and

W0 use soft-bits while Tag7 and W7 are located on hard-bits. Accordingly, a two-round tag

searching method takes advantage of possible fast accesses of CSM. At the first round, only

those tags located on soft-bits (i.e., Tag0-Tag3 in Fig. 38) are read out and compared with

the target address. If a match is found, the data on the corresponding way can be identified

and the tag search is completed. Otherwise, the second round of search will be performed on

the hard-bits (i.e., Tag4-Tag7) and the remaining ways are searched. During the procedure,

the read out data of the first round search shall be kept and will be used in reading the

hard-bits in the second round. Thanks to the data migration methods that guarantee the

majority of hits happen to soft-bits, most tag searches will only require one round with a

latency equal to that of an SLC tag. Thus, the system performance after applying the new

tag design is close to previous SLC tag design while the area can be greatly reduced.

5.6 ARCHITECTURAL LEVEL EVALUATION

5.6.1 Experimental Setup

We conducted the performance evaluation by using the cycle-accurate simulator MacSim [65].

Its built-in cache model was modified to implement our architecture level techniques. The

baseline architecture setup is a Dual-Core embedded processor with two-level cache hierarchy,

which is similar to Intel Atom [64]. The configuration details of CPU core and L1 cache are

summarized in Table 10.

Table 10: Configuration of CPU, L1 Cache and Main Memory

CPU 1.86GHz, 2 Cores, in-order, 2-way issue

L1 Cache (SRAM)
16K+16K, 64B, 4-way, Write Back

1R+1W ports, 2 Cycles R/W

Main Memory 1GB, 400 Cycle, 31nJ/access[66]
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Table 11: Different Configurations of STT-RAM L2 Cache

SLC Conv-MLC ASE MLC

Cell Size 36F2 (4.5F transistor) [58]

Capacity (Byte) 2M 4M 4M

Configuration
64B line, 8-way, Write-Back

4 Banks 1 R/W port per bank

Read Lat. (Cycles) 6 9
S: 6/7

H: 10

Write Lat. (Cycles) 23 42 S: 23, H: 45

Read Energy (nJ) 0.415 0.424 S: 0.424, H: 0.576

Write Energy (nJ) 0.876 1.859 S: 1.081, H: 2.650

Leakage (mW) 80.8

SPEC CPU2006 benchmarks [67] were adopted in the architecture simulations. For

each benchmark, we fast-forwarded 500 million instructions and then executed 1 billion

instructions. The processor performance is measured by the instruction per cycle (IPC). In

the work, we compared the following STT-RAM L2 cache designs:

– SLC: SLC STT-RAM cache;

– Conv-MLC: Conventional MLC STT-RAM cache;

– ASE: Our proposed ASE MLC STT-RAM cache design, using direct mapping method;

– ASE+CSM: The ASE cache with CSM;

– ASE+CSM+CM: The ASE cache with CSM, applying counter-based data migration;

– ASE+CSM+AM: The ASE cache with CSM, integrating aggressive migration.

Our proposed ASE MLC STT-RAM cache adopted the SHR-MLC cell structure in Sec-

tion 5.3 that offers 2× data capacity than SLC cache. Both SLC and MLC cell utilized a

4.5F transistor. Further decreasing the transistor size does not reduce the actual cell size

because the layout design rules start dominating the cell area [58]. The data-array of both
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SLC and MLC caches is composed of sub-array with size of 1024×1024, and the bit-line

latency of MLC is 2.696ps higher than that of SLC because of the small difference in resis-

tance value. The CSM-based MLC tag array was used to all the CSM-related cache designs,

otherwise SLC tag array was deployed.

By default, the Hcnt threshold (HTh) is set to 32 and the threshold of mode-predictor

(MTh) is set to 1024. Table 11 summarizes the configurations of the STT-RAM L2 caches,

where the latency and energy parameters were obtained by using NVsim [47]. The MTJ and

CMOS technology parameters can refer Table 8.

5.6.2 The ASE MLC Cache

Fig. 39 compares the system performance when utilizing SLC, Conv-MLC, and ASE cache

designs. The IPC performance was measured on 19 benchmarks and their arithmetic average

is denoted as “avg”. Compared to SLC, the average IPC of Conv-MLC improves 1.2%, while

the effectiveness varies significantly by applications. The performance improvement (e.g.,

bzip2) mainly comes from the miss-rate reduction, benefiting from the large capacity of

MLC cache as shown in Fig. 40. For benchmarks that cannot take advantage of the larger

cache capacity, the system performance degrades because of the two-step access of Conv-

MLC. These benchmarks either demonstrate extremely low cache miss rates (e.g., gamess)

or merely reduce misses even cache capacity is enlarged (e.g., lbm).

The ASE cache performs MLC/SLC mode switching dynamically by monitoring the

cache miss-rate. It has a similar high IPC in bzip2 as Conv-MLC, mainly due to the miss-

rate reduction induced by enlarged capacity in MLC mode. For the benchmarks with few

cache misses, e.g., gamess, it stays at SLC mode that offers fast accesses. On average,

the ASE cache improves performance by 3.4% and 2.1% compared to SLC and Conv-MLC,

respectively. However, limited by the long access latency of conventional direct mapping in

MLC mode, the performance gain of ASE is not significant.

Fig. 41 shows the normalized dynamic energy consumption on both STT-RAM L2 cache

and main memory. SLC consumes the least dynamic energy on STT-RAM cache because

both read and write operations can complete within one step. However, it has the highest
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Figure 39: IPC comparison among SLC, Conventional MLC and ASE (normalized to SLC).

energy consumption on main memory among all the designs due to high cache miss rate.

Conv-MLC increases L2 cache energy 55% because of the complex and long read/write

operations. However, the overall energy reduces 3.3% on average, thanks to the doubled

cache capacity and therefore reduced main memory accesses. ASE keeps the main memory

energy benefits of MLC, and further reduce the energy on cache memory by 6.4% because

the low energy cost during SLC mode.

5.6.3 The ASE Cache with CSM

Applying CSM to ASE not only accelerates the accesses to half of cache lines but also

leverages the extra data capacity. In addition, CSM naturally supports the switching between

SLC and MLC modes with minimal overhead. As shown in Fig. 42, all the benchmarks obtain
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Figure 40: Miss-rate comparison among SLC, Conventional MLC and ASE (normalized to

SLC).
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Figure 41: Total dynamic energy consumption among SLC, Conventional MLC and ASE

(normalized to SLC).

performance enhancement after adopting CSM. Even without utilizing any data migration

scheme, ASE+CSM obtains averagely 3.8% and 2.2% IPC performance improvements over

Conv-MLC and ASE, respectively.

The energy consumption on main memory remains almost same when integrating CSM

with ASE. This is because the change of mapping method does not affect much on the miss-

rate. Energy on L2 cache reduces by 5.0% as shown in Fig. 43, since accessing soft-ways

requires less energy than conventional mixed ways containing of both soft-bits and hard-bits.

Also, unlike conventional mapping method, ASE+CSM does not need data remapping when

switching between MLC and SLC modes. However, without specific data control, almost half

of the accesses in MLC mode go to hard-ways. So the energy reduction over conventional

direct mapping is not very significant.

5.6.4 Data Migration Scheme Comparison

5.6.4.1 Effectiveness of Data Migration The proposed data migration schemes at-

tempt to move the cache lines with frequent accesses to soft-ways. The effectiveness can be

evaluated by using soft-hit faction FS defined as

FS = (#hits-on-soft-ways)/(#total-hits).

Fig. 44 compares FS of different policies. Without applying any data migration, FS is in the

range between 50% and 60% for most benchmarks, with an average of 56%. Simply utilizing

the shifting replacement policy (denoted as shift) increases FS to 67%, because it always put
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the recently fetched data to soft-ways. Not surprising that on average, the design adopting

the shifting replacement policy and counter-based migration (CM+shift) obtains the highest

FS of 90.4% since it counts the occurrence of hits for both read and write accesses and move

the frequently accessed lines to soft-ways. The aggressive migration moves a cache line to

soft-way only when a write hits hard-way. The read-hits are ignored so some data swapping

opportunity could be missed. The average FS of AM+shift is 84%, which is still significantly

higher than the design without any migration.

5.6.4.2 Performance and Energy After moving most of accesses to soft-ways, CM and

WA migration policy obtained 4.4% and 3.1% performance improvement over CSM+ASE

without data migration scheme, respectively. Compared with SLC or conventional MLC,

the overall performance improvement of ASE+CSM+CM is 12.4% and 10.2%, respectively.

The cache energy consumption of ASE+CSM+CM is 1.5% higher than ASE+CSM because

of the data swapping overheard, but it’s still 9.5% lower than a Conv-MLC cache design.

ASE+CSM+AM shows slightly less IPC performance, but significant lower cache energy

than ASE+CSM+CM. Compared to Conv-MLC, however, ASE+CSM+AM improves 8.8%

in IPC and saves 26% of cache energy because the swapping of AM occurs with hard-way

writes only. And “write & swap” does not incur latency and energy overhead (Section 5.5).
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5.6.5 Sensitivity Study

A sweet spot of MTh in terms of performance exists, as shown in Fig. 45(a). A small

MTh aggressively forces more cache sets to stay at SLC mode, resulting in high cache miss

rate. A large MTh, on the other hand, delays the switching to SLC mode even a cache set

shows extreme low miss rate. Based on our exploration, MTh of 1024 is optimal for average

performance. When switching from MLC to SLC mode, the energy overhead associated

with dirty data eviction and hard-way resetting shall be considered. Fig. 45(b) shows the

relation of such energy overhead and MTh. When MTh decreases from 2048 to 512, the

energy overhead increases 34%. Fortunately, the energy overhead caused by mode switching

accounts for less than 1% of the total energy even decreasing MTh to 512. So it does not

affect much on the energy benefits of the proposed ASE MLC STT-RAM cache.
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overhead caused by mode switching, normalized to MTh=2048.

The threshold of Hcnt (HTh) is used to control the data swapping frequency in CM

migration policy. Fig. 46(a) shows the trend of average IPC performance when varying HTh.

A smaller HTh indicates easier cache lines swapping, assuring a quick response to the change

of access patterns. So IPC increases quickly when HTh decreases from 96 to 64. However,

when HTh further decreases from 64 to 16, IPC starts dropping because of too many “read

& swap”. Although “read & swap” does not delay the ongoing read operation, the extra

write induced by data swapping might stall the following cache accesses. If HTh is too small,

the probability of such stalls increases quickly and hurts system performance. Moreover, the

high occurrence of swapping increases the energy overhead. Fig. 46(b) demonstrates that

the dynamic energy on the L2 cache increases significantly as HTh decreases.
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Cache dynamic energy, normalized to MLC(DM).
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5.7 SUMMARY

In this chapter, we studied the design challenges in implementing MLC STT-RAM as on-

chip caches. Our analysis showed that the conventional design may not continue the density

benefit as expected under scaled technology, but potentially degrade system performance.

Accordingly, a cross-layer solution was proposed to address these design challenges. At the

circuit level, we introduced the reversed MTJ connection to MLC STT-RAM cell design.

Through proper device and design tradeoff, 2× capacity over SLC is promised. At the

architectural level, the application-aware speed enhancement scheme was proposed which can

adaptively adjust cache configuration to tradeoff capacity and speed. Moreover, the cell split

mapping differences the fast-region and slow-regions in cache architecture and the according

data migration methods allocate the frequently used data to fast-regions. Compared to

conventional MLC STT-RAM cache design, the proposed MLC cache design can improve

the system performance by 10.2% while reducing dynamic energy consumption on L2 cache

by 9.5%.
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6.0 A 4KB STT-RAM TEST CHIP SUPPORTING MULTIPLE TYPES OF

MTJS

6.1 MOTIVATION

In recent years, many STT-MRAM test chips with capacity between 4Kb and 64Mb [68,

69, 15] have been successfully demonstrated by major semiconductor and data storage com-

panies. For example, in November 2012, Everspin started shipping 64MB STT-MRAM in

DDR3 DIMM format [15], announcing the commercialization of STT-MRAM. Croscus also

unveiled the thermal-assisted STT-MRAM chip to store transaction data on smartphones

and smartcards [70].

Although STT-MRAM has achieved some milestones of its deployment, there are still

many concerns on the scalability of the technology, especially the current elliptical-shaped

MTJ (E-MTJ). In particular, the shape anisotropy energy and the stray field energy of a

nano-scale MTJ increase rapidly, leading to large coercivity and switching field energy [71].

These issues hinder the further reduction of the write current amplitude and hence, requiring

a large-size access transistor to supply the needed write current. To simultaneously improve

the programmability while also maintain thermal stability of STT-MRAM, it has been sug-

gested to build a nano-ring shaped MTJ (NR-MTJ) whose magnetization directions can be

directly controlled by the spin-polarized current and spin-transfer torque effect [72].

In this work, we fabricated a 4Kb test chip to validate the technology feasibility of

STT-MRAM with NR-MTJs. The designed outer and inner diameters of the NR-MTJ are

200nm and 120nm, respectively. There are two operating voltages on the test chip, say,

2.5V and 1.2V: The 2.5V power serves as the write voltage of the STT-MRAM cells to

provide sufficient write current to the MTJ. The access transistors and the write drivers,
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hence, are also 2.5V devices. For energy and area concerns, the 1.2V power is supplied to all

other circuit modules. The write control signals generated from 1.2V module is converted

to 2.5V signals using level shifters. Testing results demonstrated successful read and write

functionalities of our chip as well as distinctive write current reduction achieved by NR-MTJ

w.r.t. E-MTJ, proving the theocratically-predicted electrical advantages of the STT-MRAM

with NR-MTJs.

6.2 NANO-RING SHAPED MTJ (NR-MTJ)

For the MTJ structure with in-plane magnetization, the thermal stability ∆ is greatly deter-

mined by the shape anisotropy (KD). A specific elliptical shape is required to stabilize the

magnetization along the long in-plane axis in order to maintain a thermal energy barrier for

data storage. However, it has been pointed out by many prior arts that the E-MTJ suffers

from several scalability issues, i.e., the large write current and the difficulty to maintain the

elliptical shape in the scaled technology node. Hence, many new types of MTJ structures

including NR-MTJ have been innovated to ensure lower write current amplitude and better

manufacturing scalability.

Figure 47 shows the structure of NR-MTJ and its current-induced switching between

two resistance states. The NR-MRJ has the same vertical stack structure as the E-MTJ.

However, a hole is created in the center of the NR-MTJ to form a vortex structure free of

magnetic poles in the magnetization [73]. As a result, the thermal stability is improved and

the required write current density is reduced.

There are two domain walls (DWs) in the free layer and fixed layer within the ring

width. And two semicircular domains are separated by these two DWs. The DW in free

layer can move under an external magnetic field or STT current, but the DW in reference

layer is pinned, which is similar to E-MTJ. The NR-MTJ is distinguished by two states:

onion state and twisted state according to the positions of the two DWs in free layer. For

onion state, the positions of the DWs is the same as that of reference layer, leaving NR-MTJ

in low resistance state. When a write current is applied, the two DWs move toward each
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Figure 47: (a) NR-MTJ structure. (b) NR-MTJ switching.

other under the generated circulatory magnetic field, as depicted in Figure 47(b). For a thin

nano-ring existing in the NR-MTJ, the two half vortices within free layer cannot annihilate

but form the twisted states with two unequal domains. As a result, the NR-MTJ is in high

resistance state. The shapes of the NR-MTJ and the center hole are usually selected to be

round due to manufacturing robustness concern though they can be other shapes like ellipse

or polygon.

Besides NR-MTJ, using MTJ with out-of-plane anisotropy (i.e., perpendicular-MTJ) or

thermally-assisted mechanism can also help to reduce write current amplitude and improve

thermal stability. However, these designs require either special materials or extra antiferro-

magnetic layer [74], incurring substantial extra fabrication cost and complexity.

6.3 DESIGN OF 4K-BIT TEST CHIP

We built a 4Kb STT-MRAM test chip with the developed NR-MTJ devices. Besides a

memory array with the aforementioned 1T1J cell structure, the test chip also includes the WL

decoder, the write driver (WD), the column multiplexer and decoder, the sense amplifiers

(SA), and the timing control block, as illustrated in Figure 48.
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Figure 48: 4K test STT-MRAM chip organization.

There are 64 rows and 16 columns in the memory array to ensure an aspect ratio close

to 1:1. The word length is 4-bit. For area efficiency consideration, 4 sets of SAs and WDs

are shared among 16 columns via the column multiplexer. The control signals to SAs and

WDs are generated from the timing control block.

6.3.1 Memory Cell Design

Figure 49 shows the “one-transistor-one-MTJ (1T1J)” STT-MRAM cell design [75] adopted

in our STT-RAM design where one NMOS transistor is connected to the MTJ. The NMOS

transistor whose gate connects wordline (WL) controls the access of the STT-MRAM cell and

supplies the read and write current passing through the MTJ. The increase in the MTJ write

current amplitude requires increasing the size of the NMOS transistor and hence, resulting

in a larger STT-MRAM cell area.

During write operations of the STT-MRAM cell, proper voltage biases are applied to the

bitline (BL) and the sourceline (SL) to control polarization of the write current. During read

operations of the STT-MRAM cell, a predetermined read current is applied to the MTJ. The

generated voltage on the BL is compared to a reference voltage, which is either generated

from dummy cells or outside signals.
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Figure 49: 1T1J STT-MRAM cell.

Figure 50(a) shows the layout of the 1T1J STT-MRAM cell with NR-MTJ. The width

(W ) and length (L) of the NMOS transistor, which is a 2.5V device, are 2µm and 280nm,

respectively. The finger number of the NMOS transistor is 2, which keeps the aspect ratio of

cell and thus the array around 1:1. The designed driving ability of the transistor is 530.41µA

and 493.04µA for the MTJ switchings of “0→1” and “1→0”, respectively. The layout of

NR-MTJ is two nested squares whose side lengths are 200nm and 120nm, respectively. As a

comparison, Figure 50(b) shows the layout of E-MTJ, which is a 175nm×75nm rectangle.

6.3.2 Write Circuitry

6.3.2.1 Write driver A bidirectional write current needs to be supplied by the write

driver to switch the MTJ between two resistance states. As shown in Figure 51(a), both BL

NR-MTJ

WL

SL

BL

(a) (b) (c)

Figure 50: Layouts of (a) STT-MRAM cell. (b) NR-MTJ. (b) E-MTJ.
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Figure 51: (a) Bidirectional write driver. Driving abilities of 1.2V device and 2.5V device.

and SL are connected to two sets of a source PMOS and a drain NMOS that are controlled

separately. When writing ‘0’, N0 and P0 are turned on and the write current I0 flows through

the MTJ from free layer to reference layer; When writing ‘1’, N1 and P1 are turned on and

the write current I1 flows from the opposite direction. As discussed before, the voltage drop

on the MTJ reduces the VGS of the access transistor Nacc when writing ‘1’, usually resulting

in a lower write current than that in writing ‘0’.

We simulate the relation between the transistor width and the supplied write current at

the switching’s of “0→1” and “1→0”, respectively, as shown in Figure 51(b). The results

show that the normal 1.2V transistor cannot supply the needed write current at “0→1”

switching, i.e., 494.87µA even when the width of Nacc raises to 2µm. Hence, we select 2.5V

transistor in our design as the access device.

When using 1.2V access transistor, the supplied current in writing ‘1’ is smaller than that

in writing ‘0’, which is consistent with the results in previous discussion. However, when

using 2.5V access transistor, the supplied current in writing ‘1’ becomes larger than that in

writing ‘0’. The reason for this observation can be explained as follows: The driving ability

73



IN

25 . V

IN_b

OUTOUT_b

1.2 V

N1 N2

P1 P2
PTUNE

dd dd

WL WL
OUT

Reference

Vce ll Vref

V V

VR

(a) (b)

Figure 52: Schematic of (a) Level shifter. (b) Read circuit.

of the Nacc is affected by two factors: the VGS reduction and the VDS reduction, both of

which are caused by the voltage drop on the NR-MTJ. When writing ‘1’ in the 2.5V design,

the initial resistance state of the NR-MTJ is low, the degradation of the Nacc driving ability

incurred by VGS reduction is compensated by the less reduction of VDS compared to writing

‘0’. Nonetheless, the required transistor width is still very large, say, 2µm in our design due

to the large MTJ size.

6.3.2.2 Lever shifter There are two sets of power supply on our test chip: 1) 1.2V for

read circuitry and timing control; and 2) 2.5V for write circuitry. Level shifters are designed

to translate the 1.2V control signals (IN/IN b) generated from the timing control to 2.5V

control signals (OUT/OUT b) to the 2.5V write circuitry, as shown in Figure 52(a). The

level shifter is mainly determined by the pull-down speed of the 2.5V transistors N1 and N2

under a 1.2V gate bias. In our chip testing, we found that the driving ability degradation

of N1 and N2 caused by transistor threshold variation significantly affects the level shifter

performance and consequently, the robustness of shifter operations. But it can be easily

fixed by raising the 1.2V voltage to a slightly higher level.

6.3.3 Read Circuitry

6.3.3.1 Adjustable reference cell We adopted voltage-sensing in our read circuitry

design, as shown in Figure 52(b). A carefully selected PMOS tuning voltage PTUNE is

applied to the gates of the PMOS transistors in both the selected STT-MRAM cell and the
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reference cell whose WLs are asserted to high. Voltage Vcell and Vref are then generated on

the BLs of the two cells accordingly. Here the reference cell is a NMOS transistor whose

equivalent resistance is set to a value in between RH and RL by tuning its gate voltage VR.

The generated Vcell and Vref are sent to a SA for data readout. If the MTJ in the accessed

STT-MRAM cell is in low (high) resistance, Vcell will be lower (higher) than Vref and the

SA outputs a logic ‘0’ (‘1’). In our design, one reference cell is shared by the whole row in

the STT-MRAM array to minimize the incurred area overhead.

The raw sense margin (—Vref -Vcell—) must be large enough to overcome signal noise and

intrinsic input offset of the SA generated from device mismatch. In addition, the standard

deviations of the two resistance states of the MTJ have been proven not equal [76]. Hence,

the optimal reference voltage level is slightly lower than the middle between the two Vcell’s

corresponding to the mean values of the two MTJ resistance states, and determined by the

actual on-chip distribution of MTJ resistance along the same row. Our testing results show

that adjusting the VR can significantly improve the readability of the test chip, as we shall

show in Section 6.4.1.

6.3.3.2 Sense amplifier Figure 53(a) depicts the schematic of our SA design. Prior to

read, port PC is asserted to ground, pre-charging OUT and OUT to Vdd. After that, sensed

voltage (Vcell) is applied on port IN and the reference voltage Vref is applied to port Ref.

Then a sense enable signal SAN turns on transistor M7, commencing discharging OUT and

Vdd

OUT

M1 M2

OUT

PC PC

RefIN

SAEN

M3 M4

M5 M6

M7

(a) (b)

Figure 53: (a) Schematic of SA. (b) Layout of SA.
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(a) (b)

Figure 54: (a) Die photo and (b) Test chip layout.

OUT. If Vcell is larger than Vref , for example, the left branch of the SA discharges more

quickly than the right branch. As a result, OUT will be grounded and OUT will be pulled

up to Vdd.

To accelerate the discharging speed of the branches of the SA, M5, M6 and M7 are espe-

cially sized up, as shown in Figure 53(b). The large transistor size also helps to mitigate the

impact of the device mismatch between the two branches and improve the sensing reliability.

6.4 EXPERIMENTAL RESULTS

Our 4Kb STT-MRAM with NR-MTJ is fabricated with 65nm technology in a leading foundry

in Asia. The preparation of the magnetic devices is performed by a third party. Figure 54

shows die photo and layout of the test chip.

6.4.1 Functionality Verification

Figure 55 shows the measured results of the readout data and the critical timing signals, i.e.,

PC (pre-charge), SAE (SA enable), and CLK.

As aforementioned, VR and PTUNE can be adjusted to overcome the impact of process

variations. Figure 56 shows the measured relations between the readout result and these two

voltages. Here, Y axis refers to the decimal value of 4-bit readout data between 0 (b0000)and
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Figure 55: Read signals (a) Readout signals. (b) Read control signals.

15 (b1111). X axis refers to the illustrated first eight rows of the memory array. We repeat

sampling the eight 4-bit words and plot red points based on occurrence frequencies of the

readout value: the deeper the red point is, the more frequently the corresponding output

appears.

A low (high) VR results in reading the memory words as ‘0000 (1111)’, which is con-

sistent with our design expectation due to the generated high (low) reference level out of

the functional range. The best configurations of VR and PTUNE are 1.15 V and 0.4 V,

respectively, where the obtained output is identical to the pre-programmed data. It proved

the functions of the adjustable reference cell and the SA, as well as the write circuitry. Some

observed bits errors may be due to process variations or bit failures in the array. A detailed

debugging on the bit errors is still ongoing.

Figure 57 shows the writing current while programming ‘0000’ and ‘0011’ into the STT-

MRAM array. As expected, writing ‘1’ consumes a larger current than writing ‘0’. It can be

observed that the measured writing current drops slightly as the row index increases because

of the longer routing path and hence the larger resistance shown at the output of the write

driver.

Some important design specs are summarized in Table 12.
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6.5 SUMMARY

In this work, we design and fabricate the first 4Kb STT-MRAM test chip with NR-MTJ

using 65nm technology. We also develop a novel fabrication process of NR-MTJ with outer

and inner diameters of 200nm and 120nm, respectively, and demonstrate MRAM chip under

commercial manufacturing facility. The testing results validate successful read and write

functionalities of the chip, and show substantial write current reduction of NR-MTJ com-

pared with conventional E-MTJ.
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Figure 57: Write current with pattern ‘0000’ and ‘0011’.
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Table 12: Specs of the fabricated STT-MRAM

Organiztion Operating Frequency R/W power

1024 word×4 10MHz/5MHz 8.41mW/28.75mW*

Cell size (µm) Array size (µm) Chip size (µm)

1.82×1.76 85.88×78.40 970.28×900.33**

* Write power is pattern dependent and 28.75mW is the peak
power with ‘1111’ programming.

** There are four memory cores in a single chip. A design
dimension of a memory core is 169.88×167.75 (µm2)
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7.0 CONCLUSIONS

In this work, we have proposed and evaluated several circuit and architectural level op-

timization method for STT-RAM. First of all, a probabilistic design method is proposed

to reduce the write error of STT-RAM while maintaining a low performance and energy

overhead. Secondly, we proposed different types of STT-RAM cell that support dual-port

access and evaluated their performance and area cost. Moreover, we investigate the new

types of Cell design for MLC STT-RAM and proposed architecture level solution to reduce

the access latency and energy cost of MLC STT-RAM. Finally, we built a test chip that

can be reconfigurable and support different type of MTJs. We have proved with circuit

and architecture level co-optimization, reliability, functionality and storage density can be

significantly improved over the conventional design, and STT-RAM can be truly adopted as

a great candidate for universal memory.
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