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Abstract

This thesis is a study of data selection and placement in heterogeneous
memories in modern high-performance computer architectures. Memory
systems are becoming increasingly complex and diverse, which complicates
the search for optimal data placement and reduces the portability of appli-
cations. As we enter the dawn of the exascale era, memory models have
to be rethought to consider the new trade-offs between latency, bandwidth,
capacity, persistence and accessibility, and their impact on performance.
Moreover, this data management needs to be simplified and brought within
reach of domain scientists in fields outside of Computer Science.

To address this issue, this work focuses on studying data movement,
data optimisation and memory management in systems with heterogeneous
memory. Firstly, a new algorithm was developed that improves the com-
putation of data exchange in the context of multigrid data redistribution.
Secondly, multiple APIs for memory management were unified into a single
abstraction that provides memory allocations and transfers in the form of a
portable, adaptive and modular library. Lastly, the allocation management
was studied in a high-level language along with ways to enable low-level
control over memory placement for a high-level language.

The Adjacent Shifting of PEriodic Node data (ASPEN) algorithm, pre-
sented in this thesis, provides better performance than state-of-the-art al-
gorithms used for producer-consumer data redistribution of block-cyclic or-
ganised data, as used in distributed numerical applications and libraries
(e.g. ScaLAPACK). The Mamba library was developed and aims to facil-
itate data management on heterogeneous memory systems. It uses a data
broker developed with library cooperation and interoperability in mind. In
addition to providing portability and memory abstraction, it also serves as
a comparison tool for benchmarking or exploratory experiments. Finally, a
use case of memory management in C for a Python application based on a
distributed framework has been studied as a proof-of-concept for providing
direct memory management to high-level application development.

This work presents a data-centric approach to the challenges heteroge-
neous memory creates for performance-seeking applications.
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CHAPTER 1. INTRODUCTION

1.1 Contextualisation

In June 2020 the Supercomputer Fugaku built by Fujitsu delivered for the
first time more than one ExaFLOP/s in single precision performance and
signalled to the world that we are entering the so-called exascale era. What
is significant about this particular phase of computation is that the physics
and thermal properties of our computation devices are constrained in ways
that create new challenges and roadblocks to progress. Primary among
those challenges is the management of memory and data. To deliver the
peak performance, data needs to be quickly accessed, or streamed in order
to be efficiently browsed through. The volume of data is also increasing
with the convergence between HPC (High-Performance Computing) and
Big data that makes HPDA (High-Performance Data Analysis). Hence, the
frontier between memory and storage is fading with memories reaching ter-
abytes of capacity while storage is getting disaggregated and staged across
nodes or burst buffer.

Furthermore, with an increasingly complex memory system with het-
erogeneous characteristics (latency, bandwidth, persistency, etc.), the data
management requires more attention in order to reach the best performance
out of evermore expensive supercomputers. The processing systems are di-
versified as in addition to the CPUs and GPUs emerge FPGAs and spe-
cialised processing units like Graphcore’s IPUs that are dedicated to AI.
Memory technologies are similarly evolving as high-bandwidth memory is
becoming standard in GPUs while persistent memory with standard DRAM
performance emerges on compute nodes.

In order to achieve the highest performance, the data location in memory
needs to be carefully chosen, depending on access frequency, data dimen-
sions and the arithmetic intensity per byte, for considering to optimise the
latency, the capacity or the bandwidth, respectively, for example. More-
over, those parameters may not be static during the application’s execution.
This implies that some data need to be replaced or moved to provide space
for more critical data. Thus it is of utmost importance to provide ways to
efficiently select data as a whole or subsets of it, and to deal with specific

2



CHAPTER 1. INTRODUCTION

APIs that accompany specific memory tiers. Finally, many libraries only
provide a support for a limited number of programming languages, which
may not overlap with the set of languages used by the majority of the scien-
tific community. Additionally, the managing of memory requires knowledge
about the machine (e.g. hardware used, number of packages, processors,
etc.) and the way it works in order to understand how to use it to its best
(e.g. impact of cross-NUMA-domains memory access).

This thesis addresses these questions in several different ways. It presents
the study of redistribution algorithms between two regular N-dimensional
grids of data. Given a block-cyclic distribution P , the objective is to com-
pute the size and offset of chunks of data to exchange in order to transform
the distribution to a distinct block-cyclic distribution C. This kind of al-
gorithm is often used in the context of distributed memory, but given the
increasingly disparate nature of memory systems, the study of such an algo-
rithm was deemed pertinent in the context of memory tiling, for example.

A second aspect of data management studied is more practical. The
review of memory systems interfaces led to the observation that using het-
erogeneous memory systems requires either a limitation on the language to
use for programming, or a limitation on the set of compilers available, and
often requires the adaptation of every call to the specific libraries’ API. So
it requires a high level of expertise which could be alleviated by providing
a unique interface to memory. Moreover, the development of such an inter-
face associated with a memory abstraction layer would provide a reflective
tool to explore the memory state during the execution of an application.

A final aspect of data management was the accessibility across pro-
gramming languages. Not all languages provide interface for memory man-
agement, but many provide some way to interface with a programming
language that provides such support. Languages such as Matlab or Python
could benefit from a manual memory management that would interact with
broadly used libraries such as NumPy. The work completed on the Py-
COMPSs framework to provide shared-memory capabilities in order to re-
duce the number of I/O operations was an interesting case of study in
providing low-level memory management (shared-memory) to high level

3



CHAPTER 1. INTRODUCTION

language (Python).
In summary, this thesis addresses three independent aspects of the mem-

ory management in modern HPC practices and studies the practicality of
portable solutions based on system abstraction.

1.2 Contributions

The work performed in the course of this thesis led to the following contri-
butions:

• Memory systems technologies currently used in the HPC industry
have been surveyed. Along with the different approaches to memory
management, this provided a valuable insight into the state-of-the-
art that was used for determining the more suitable approach for our
objective of abstraction and portability.

• The ASPEN algorithm has been developed. It provides a new way to
compute complete redistribution of data across distributed agents. It
uses periodicity and considers data organisation to provide improved
performance compared to industry standard like ScaLAPACK.

• The ASPEN approach has been included in UDJ (Universal Data
Junction), a library developed in the HPE HPC/AI EMEA Research
Lab for portable distributed data exchanges. The algorithm is used to
compute the offset and size of data to exchange in order to minimise
the size of data transfers.

• A new memory abstraction has been designed, accounting for the
heterogeneity of memory systems, but also the heterogeneity of pro-
gramming environments. The plurality of the frameworks available is
necessarily taken in account to provide a solution that fits the user re-
quirements. The design focused on portability and abstraction. The
resulting library, Mamba, enables a data management of tiled arrays,
with a tracking of each independent tile.

4



CHAPTER 1. INTRODUCTION

• In addition to the design of the memory abstraction, the appropriate
mechanisms has been developed as part of the Mamba library to sup-
port the tile management. Particular care was given to the integration
of already existing libraries to benefit from their specificity, but also
to broaden the scope of utility of the proposed data broker. Perfor-
mance was evaluated with four different micro-benchmarks based on
a standard library performance evaluation.

• An additional feature has been included into PyCOMPSs. The dis-
tributed task-based Python framework has been enriched with sup-
port for intra-node data-sharing with minimal code alteration. This
feature improves the performance of tasks by increasing the data
reuse which avoids superfluous disk accesses. The performance gain
has been assessed with two types of application representing different
kinds of data-access patterns, namely k-means and matrix multipli-
cation.

These contributions constitute the result of a multifaceted approach to
the question of coordinating large amounts of data on a multiplicity of newly
released hardware, for a selection of programming models and programming
languages.

1.3 Thesis outline

The remainder of this manuscript is split into four chapters, each focusing
on one aspect of the research conducted, with an extra chapter to conclude
this work.

Chapter 2 summarises the state-of-the-art regarding memory sys-
tems. In this chapter, the basics of memory are presented and explained
as well as the impact the different systems have on computational perfor-
mance. The different technologies, present and past, are introduced with
an emphasis on the difference and advantages of each. Finally, different

5



CHAPTER 1. INTRODUCTION

families of memory management will be introduced (programming models,
frameworks, libraries), along with some of the most remarkable examples.

Chapter 3 presents the earliest work done on the topic of memory
management. The question of selecting data for effective data movement
in the context of the redistribution of regular grids. In this chapter, a
new algorithm for regular grid redistribution named ASPEN is described.
This algorithm is compared with state-of-the-art algorithms showing better
performance.

Chapter 4 focuses on memory management for applications in the
context of heterogeneous systems. This chapter presents Mamba, an array-
based abstraction for heterogeneous memory. First, the high-level library is
succinctly outlined before providing details about the structure of the mod-
ular library for memory management. In addition to providing support for
heterogeneous memory systems, this library may be used as support for
benchmarking and parameter exploration. The performance and modular-
ity of the tool are presented and evaluated in that chapter as well.

Chapter 5 introduces the work done as part of the secondment at the
Barcelona Supercomputing Center. As part of the collaboration between
the member of the EXPERTISE European project consortium, the objective
was to study the feasibility and potential gain of providing memory sharing
capabilities for a complex Python framework. To that end, different options
were studied and a module was developed and integrated. This chapter
presents the results, showing the possibility of seamlessly integrating low-
level fine grained memory management into a high-level language such as
Python.

Chapter 6 wraps up the work presented in the document, outlining
the different questions that were addressed. This chapter will be dedicated
to linking the different questions before describing the new research oppor-
tunities that have been enabled by the work presented thereafter.

6
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CHAPTER 2. MEMORY LANDSCAPE

Computing systems are also called information systems and information
has to be stored first before being processed. Information refers both to the
data processed and to the actual description of the processing (i.e. the
program in its binary form).

This chapter presents all the prevalent notions which relate to mem-
ory systems in the context of computer science, especially in the narrow
field of HPC, both from a hardware and from a software perspective. Sec-
tion 2.1 introduces the questions that have been tackled and the answers
that were provided; Section 2.2 will be dedicated to presenting the cur-
rent approaches that aim to facilitate the usage of heterogeneous memory
systems; Section 2.3 will summarise an analysis of the state-of-the-art and
present a proposal for a solution for the completion of the missing pieces.

2.1 Memory systems review

The Turing Machine defines an abstract machine, which manipulates sym-
bols on an infinite strip of tape, divided into discrete units, according to
a table of rules. Information systems are a complex evolution of Turing
Machines, but the presumption of infinite memory persists in the modern
era. Since the 50’s it has been clear that information systems would need
more memory than the small batch available in the core; hence the usage
of replaceable drums of memory that enable a virtually infinite renewal of
bytes. However, when the size of the problems solved increased, it became
clear that the handling of physical devices would become problematic. Also,
a manual management of data locality would be too impractical for sub-
stantial programs. In addition, it would be impossible to write programs
without assumptions about the size of the memory used.

In order to be able to abstract the hardware, the data had to be au-
tomatically managed and moved across levels, transparently to the pro-
grammer. This section will present the different structures that have been
added one to another across time to answer the question ‘How to provide
infinite memory to computing systems without penalising either correctness
or efficiency?’

8



CHAPTER 2. MEMORY LANDSCAPE

2.1.1 Evolution of processing speed versus memory
speed

For the last forty years, the growing discrepancy between computational
and memory performance has been a well known issue. Addressing it has
been delayed until the slowdown in computing performance could not com-
pensate for the lateness in memory management anymore, despite the best
efforts in cache management and organisation. As presented in Figure 2.1,
we can see two separate levels. While the amount of computation to be ex-
ecuted steadily rose, the rate at which data were available to be processed
rose at a much slower pace. The improvement in terms of computation
depends on several factors. The clock frequency that orchestrated the op-
erations in the processor rose to 5 GHz before stabilising around 3–4GHz,
and is not expected to exceed the latter [41]. But in addition to being able
to execute more operations per second, since the early 2000’s the number
of cores increased, enabling independent streaks of instructions to be exe-
cuted at the same time. Also, the complexity of operations increased. For
example, the appearance of vector operations enabled the execution of the
same complex computation up to 8 elements simultaneously. Finally, the
instruction execution process has been decomposed, staged and potentially
reordered to reduce the stalling between operations even more. [78, 105]

However, in order to feed such an appetite with data to crunch, an
ever increasing data pipeline is required. Trying to reduce the increasing
gap between computing performance and memory latency, as shown in
Figure 2.1, the architecture of processors has been made increasingly more
complex as a solution to solve the memory wall problem [138].

The data buses have been widened, but the improvement in the number
of pins since the 80’s has not allowed the bandwidth to grow sufficiently.
In order to compensate for this, and to reduce the impact of memory being
more remote and slower to reach, extra space needs to be found in silicon in
order to provide a quick access to memory. But the package cannot contain
the hundreds of billions of bytes that may be required for applications. In
addition, nor can the whole program, in its stream of instruction form, be

9



CHAPTER 2. MEMORY LANDSCAPE

Morgan Kaufmann 2019, all rights reserved.

Figure 2.1: Performance gap between computing power and memory latency
(from [110]).

contained in the small memory embedded into the package. Hence, the
access and interaction with the memory systems are inherently critical for
many applications and the granularity of data access has to be adapted
to the resources available. This also implies that the data loaded into the
package memory has to be renewed regularly, adding complex questions
about the frequency of updates, which data to load next, and which data
to remove [133]. To answer the question of which data to load, the following
two assertions are generally made:

1. The latest datum accessed is likely to be accessed again;

2. The next datum to be used is located nearby the last datum accessed.

As computers have been developed in order to resolve many iterative and
repetitive tasks, these lemmas are mostly true. Moreover, programmers
aware of the issue and eager to get the best performance out of their systems
are likely to consider this matter when creating their algorithms. Hence,
they will be trying to reuse data as much as possible and whenever possi-
ble, doing sequential operations making the previous two strategies a self-
fulfilling prophecy. These two lemmas are known as the Temporal locality
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The displayed machine exposes two Intel Xeon 6230, Cascade Lake architecture, each
with DRAM (NUMA nodes L#0 and L#1) as cache of NVDIMM (NUMA nodes
L#2). L3 cache level is shared between the two groups of processors, while L1d, L1i
and L2 caches are exclusive to each core.

Figure 2.2: Example of complex architecture as displayed by lstopo [58].

principle and the Spatial locality principle. As a matter of fact, in addi-
tion to staging the memory across different subgroups, each subgroup also
has its specific rules and characteristics. For example, Figure 2.2 shows
the extremely hierarchical architecture of Intel’s latest processor and its
integration with the heterogeneous memory system. This shows one of the
evolutions made in order to improve the performance of processors. For
example, one processor may have multiple hyper-threaded cores, where two
execution pipelines share the resources in one core.

However in order to provide enough data throughput to feed instruc-
tions, some smart architecture design decisions have been made. First, the
different levels of caches correspond to different distances between the mem-
ory group and the processing unit. The bigger the number, the bigger the
memory capacity, but the further from the processing unit the memory will
be located. In addition, each cache level has a specific set of cache policies
depending on how many processing units access it, how redundant or how
spread out the data are. Examples of such policies will be presented in
Section 2.2.1. Caches can also be dedicated to contain only data or instruc-
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tions as each follows a specific control flow with regard to the execution of a
program. The caches get their data from the main memory or from devices
whose architecture will be outlined in Section 2.1.2.

There are different metrics to be taken into account when evaluating
the characteristics of memory. These characteristics will be spelt out in
Section 2.1.3.

2.1.2 Current technologies

The technology used today for main memory is typically DRAM. Although
many flavours of DRAM are available, usually the SDRAM (Synchronous
Dynamic Random-Access Memory) one is preferred for main memory. In
this section will be presented the internal structure of a memory module
that retains data and the implications it has on memory access performance.

2.1.2.1 DRAM

DRAM is the most common format for big capacity in a compact form
factor, for a good price with a quick reactivity. It is used widely on pack-
age (e.g. eDRAM on [79]), close out-of-package memory (e.g. HBM2 in
A64FX processors [122]) or as main memory in dual in-line memory mod-
ules (DIMM). The internal organisation is the same in most cases, but the
names used in this section correspond to the latter case.

2.1.2.1.1 Memory cell As shown in Figure 2.4-b, one memory cell is
usually composed of one transistor, to manage accesses, and one capaci-
tor, to store the bit1. The charge in the capacitor determines whether the
memory cell is set to 0 or 1. However, because of the electronic nature of
this component, some leaking occurs over time, which means the memory
cell has to be refreshed. A second drawback is that reading a value is de-
structive, so the memory cell has to be rewritten after being read, operation

1Most frequent architecture nowadays, although the original designs had three or
four transistors; capacitor-less memory cells have been developed, but are not widely
used.
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done by the sense amplifiers. Hence, there is a necessary cool-down period
after reading a bit before being able to read it again as well as a periodic
unavailability due to the memory refresh period.

2.1.2.1.2 Bank The bit-cells are organised and interconnected in a 2D
grid called a memory array. More precisely, the bit cells are grouped in
cache lines, which are then laid out in rows and columns. This organisation
allows for quicker accesses, as each bit is not addressed independently, and
simplifies the circuit for sending groups of bits at once back to the memory
bus. The memory refresh circuit of each bit of the same column can also
be shared, updating a whole row at once, one row at the time. All these
circuits are packaged together in a bank. In today’s systems, banks are the
smallest memory structures that can be accessed in parallel with respect to
each other [77]. Each bank is smaller than the entire memory storage and
access to different banks is independent. This independence can improve
the latency with the right interleaving of data across different banks.

2.1.2.1.3 DRAM chip Banks are grouped together in a DRAM chip,
commonly by eight units. Within a chip, all the banks share the command,
address and data bus in order to simplify the management of the indepen-
dent, yet synchronised, units. To access data, the chip activates one bank
that reads the requested row from the row-address bus. The row is charged
into the row buffer (also known as sense amplifier) with the activate com-
mand. The column-address is read to select and to read all or part of the
row that will be sent to the DRAM data bus. DRAM chips usually have a
narrow interface, 4 to 16 bits per read. [110]

2.1.2.1.4 Rank In order to provide a wider memory word while keeping
the parallelism and independence in data management, the DRAM chips
are assembled into a rank. Although working synchronously and responding
all to the same address, each DRAM chip provides different data. It is the
concatenation of the data coming from each of the DRAM chips that creates
the memory word that is being returned to the processor by the memory
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module. For example, for a 64-bit memory word, with DRAM chips having
a 8-bit interface, one rank would have 8 chips, each providing one byte of
data, therefore allowing 8 bytes to be read in a single access.

Ranks also enable a simplification of the memory controller as there is
no need to deal with each individual chip. However, it comes at the cost of
a higher granularity: there cannot be any access smaller than the interface
width.

Finally, modern DRAM modules are composed of one or multiple ranks.
For example, DIMMs are most commonly used nowadays, replacing SIMMs
in the early years 2000. [110] Dual in-line memory modules are connected
to the PCIe bus, receive the command and transmit it to the corresponding
rank. All the ranks on a single DRAM module share the address and the
data bus, only one being allowed to use them at one time.

2.1.2.1.5 Channel The is the final granularity when interacting with
SDRAM. The channels are subdivisions of the memory bus. They can
be either independent, in which case each requires a dedicated memory
controller, or dependent (or locksteps) with only one controller but with a
wider interface.

2.1.2.2 Data rate

For synchronous memory modules, the data rate defines the way the signal
of the external clock triggers data movement, as illustrated in Figure 2.3.

For SDR (Single Data Rate), only the rising edge of the clock signal is
considered by the memory module. There is only one word of data trans-
ferred during each cycle. For DDR (Dual Data Rate), both the rising and
falling edges trigger data emission, doubling the amount of data transferred
for each cycle. There is also a QDR (Quad Data Rate) that has been used in
the 90’s and 2000’s for Intel’s Front-Side Bus and later by IB (InfiniBand),
as an example, but it has not been widely used for main memory. [110]
In QDR, a second clock signal is emitted, 90° out-of-phase from the first
signal. The memory module emits bytes in synchronisation with the rising
and falling edges of both signals.
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Figure 2.3: Examples of bytes emission for each data rate.

For completion, this section also presents GDDR (Graphics Dual Data
Rate) which is a specialisation of DDR with which it shares the same core
technologies. However, the GPU dedicated memory works at a higher fre-
quency with a different protocol that allows for better bandwidth, lower
power consumption and lower heat dissipation than DDR.

The specifications of these interfaces are defined by the JEDEC. The lat-
est version specified widely used are DDR4, defined in [4], and GDDR6, de-
fined in [3]. DDR5 has been released in July 2020 [14] by the JEDEC. It was
designed to meet increasing needs for efficient performance in a wide range
of applications including client systems and high-performance servers [15].
DDR5 supports double the bandwidth and is expected to be launched with
a data rate 50 % higher than DDR4’s end of life speed. The power effi-
ciency is also improved with reduction of 10 % of the required voltage for
the field effect transistors. Finally, NVDIMM-P was introduced in Novem-
ber 2020 [69] and is expected to provide improved performance. This new
channel protocol is trying to enable the combination of persistence and large
capacity together, with limited to no cost on performance. It is expected
to be used in channels in combination with deterministic accesses such as
DRAM [13,57].

There are many other interfaces that are optimised for different pur-
poses (low-power, high-bandwidth, low-latency, 3D-stacked, etc.), yet the
underlying microarchitecture is fundamentally the same. If a flexible mem-
ory controller can support various DRAM types, it singularly complicates
it and makes the micro architecture hard to maintain and upgrade.
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2.1.2.3 NUMA node and NUMA-effect

The operating system basic abstraction when it comes to identifying mem-
ory units is called a NUMA domain. The acronym NUMA stands for Non-
Uniform Memory Access as it expresses the variability of memory charac-
teristics, such as latency or bandwidth, depending on where the code is
executed. This variability is called the NUMA effect. One NUMA domain
is exposed as a NUMA node corresponds to a specific set of performances
that are common for the considered memory unit considering one com-
puting unit. For DRAM, it usually corresponds to the multiple channels
connected to the same memory unit. Because this memory unit is often in-
cluded in the processor package, for performance reasons, this abstraction
also corresponds to the processor socket, for simple cases. When HBM is
available, because its characteristics are different from the DRAM’s, it is
exposed in its own NUMA node even if it shares the same memory manage-
ment unit. For example, Intel’s Xeon Phi Knight Landing topology exposes
two NUMA nodes per group (in flat or hybrid modes), one for DRAM and
one for MCDRAM [124].

2.1.3 Intrinsic memory characteristics

Depending on the technology used, memory expresses different character-
istics, the two prominent ones from a software high-level abstraction point
of view being the latency and the bandwidth. These two notions shall be
further introduced in the following Section 2.1.3.1 and 2.1.3.2, respectively.
The other subsections present a brief introduction to the internal factors
impacting a memory module performance.

In recent years, as part of the run toward exascale, other characteristics
have emerged for DRAM. Persistency (as opposed to volatility) has become
increasingly interesting for application developers as it offers a new device
for temporary data storage, either for check-pointing or communication
buffering. It also often comes with a substantially higher storage capacity
than standard DRAM.

These attributes show much variability depending on which type of
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memory is referred to (e.g. SRAM or DRAM; SIMM or DIMM; SDRAM,
HBM or NVDIMM; etc.).

2.1.3.1 Latency

The latency for an information system is the time between the request of
an access to some data and its availability for use. For applications that
often need to access data in many different parts of memory, like a key-
value storage system, optimising this characteristic is critical. As previously
exposed, the general rule of thumb for data availability is to access data
that are located closely to each other in order to facilitate the work of the
data prefetcher.

When requesting data one of five cases can arise. Either the data are
already in the processor and the operation can proceed. The second case is
having the data available in one of the caches, in which case a few nanosec-
onds later, or ten or so at most, the data are available and the operation
can proceed. The third case would be having to reach all the way to DRAM
to find the data, in which case the data would have to be transferred to
the caches, taking hundreds of nanoseconds, then to the processor core be-
fore the operation can proceed. The fourth case, would be to have the
data out-of-reach, swapped to the disk, in which case it would take at least
milliseconds to load back to DRAM and reach the previous case, where
the operation can proceed. Finally, the last case would be to realise that
the data are not available anywhere and does not exist, in which case the
operation cannot proceed.

From this description we can determine that location is an impacting
factor for memory latency. But a more detailed approach can also show
finer disparity between memory systems. For example, the organisation of
the RAM in DIMMs creates multiple latency factors. When the request
reaches the DIMM, if the row is open, selected within a bank, only the
reading of the column, Column Address Strobe (CAS), needs to be added
to the bus latency when the transfer starts. Otherwise, first the correct
row has to be loaded (Row Address Strobe (RAS)), then the CAS latency
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is added to the bus latency. But if the wrong array was charged then an
additional latency is added for the precharge which resets the bank to a
state where a row can be charged. Overall the worst case scenario latency
for DRAM can be expressed as precharge + RAS + CAS + bus latency.

Finally, because DRAM technology uses a capacitor, there is a natural
leakage of electric charge that obliges each row to be periodically refreshed.
This process requires all the rows of the bank to be charged, read and
rewritten at regular intervals. During this time, the impacted memory
cannot be accessed for reading or writing, in addition to presenting the
disadvantage of being fairly costly in energy. There are two ways the DRAM
can refresh. Either the whole bank is refreshed at once, in a burst refresh,
which will refresh all rows, one after another; or the refresh is distributed
and each row will be refreshed at a different time, at regular intervals. The
first case makes the whole bank unavailable for some time but is entirely
available the rest of the time, while the second method makes the bank
partially unavailable more often, but for a much shorter time frame. The
issue is well known and has been studied in order to evaluate, measure and
mitigate the cost of DRAM refresh on performances [27,87,88].

2.1.3.2 Bandwidth

Bandwidth defines the data throughput that can be achieved when reading
or writing bytes to or from a memory (e.g. DIMMs, disk, network, GPUs or
caches). Its importance is very high when it comes to optimising the overall
system performance. Although memory access patterns are influential on
the ability of a program to execute of current highly parallel processor at its
peak performance2, multiple hardware factors can also influence the ability
for a processor to renew its cached-data at sufficient rate to keep the core
pipeline free of stalls. Multiple factors influence this parameter.

The first and most obvious one is the number of memory pins dedicated
to data transfer. Available memory bandwidth is limited by the number of
wires over which data can be transferred, which is, in turn, limited by the

2See Section 2.3.1.3 §Memory access pattern classification.
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number of direct connections that can be made. However, the area available
on the processor’s interposer, which connects it to the outside world, limits
how many of such connections can be made. Hence, the number of direct
connections between the peripheral modules and the processor are bounded
by the surface availability on the processor’s interposer.

The second factor is the memory frequency and the data rate used to
communicate with the DIMM. The first parameter corresponds to the clock
rate of the memory module, which synchronises the access to the banks’
rows and their bytes stored. The second is dependent on the technology
used for the DRAM memory controller, and allows for much improved per-
formances as, for example, DDR allows for twice as many instructions to be
executed on the memory module, and up to four times as many for QDR
relatively to SDR. However a higher frequency does not necessarily mean
the effective throughput will scale. Because of the internal parameters such
as the data interleaving across the different banks, some row-level conflicts
may appear, sequentialising otherwise parallel memory accesses [77].

Additionally, DRAM banks may apply extra timing penalty if two rows
are being accessed sequentially from the same bank as the bank must get
back to the precharged state before being able to load a new row. In
order to use the memory bandwidth to its maximum capacity, the data
accessed must be stored on different banks, from different ranks, from dif-
ferent channels. The current standard for DDR4 is 25.6GB/s peak target
bandwidth, and DDR5 is announced to double the bandwidth, with a peak
value of 51.2GB/s. [4, 14]

2.1.3.3 Capacity

As expressed in the beginning of this chapter, the computing systems the-
oretically consider the memory to be infinite. However, there are multiple
limitations to such an assumption. First and foremost, in a finite world
with finite resources, there can be no such thing as infinite memory. More
pragmatically, computers use a limited set of addresses, which can uniquely
identify data. In most modern machines, the granularity of addressing is
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the byte. In modern architectures, addresses are expressed on 64-bit words,
allowing for 264 uniquely identified addresses; it is hence possible to dis-
criminate between 18 446 744 073 709 551 616 different bytes. Although the
question of limiting the range of addresses not only comes from the range
of values that can be represented with one 64-bit memory word, but also
the number of unique addresses that can be requested from the DRAM,
given the bus size. Thus, the memory system capacity for computers, dis-
regarding the storage system, is usually limited by three factors that are
intertwined.

The first one is the physical space. The processor basal substrate is
limited in size. In addition to having to develop specialised hardware, the
energy required for the system to work, and the heat dissipated would
limit the potential gain in performance. Heat is the second factor. Finally,
the bigger the memory, the longer it takes to determine the location of
any specific data. Hence, modern architectures tend to specialise memory,
disaggregating it, and developing efficient and ingenious systems to move
the right string of bytes to the right location at the right moment, leaving
the capacity issue to slow, external devices.

2.1.3.4 Volatility

There has been a growing interest in this characteristic in the past 10 years.
The issue of having memories with big capacity but slow access may impact
performances in multiple aspects. First, it means that data first have to be
loaded from the storage memory to the working memory for computations
to be executed. In addition, it makes systems very sensitive to failures and
errors. To mitigate the risk during lengthy computations, the application
may save some partial results3, but this has an ever increasing cost as
the application sizes get bigger along with the supercomputers. That is
one example where providing non-volatile memory4 would be particularly
convenient and could lead to an improvement in performance. Multiple

3See Section 2.1.4.2 §Checkpointing.
4Memory systems where the data persist unaltered, even after the system has been

turned off.
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technologies have been developed and studied to provide such high capacity
non-volatile memory with DRAM-like performances. They will be presented
in the Section 2.1.4.2.

2.1.3.5 Endurance

This characteristic expresses the durability of memory cells, i.e. how long
they will work before they no longer are capable or retaining data. Although
it has not been an issue for most historical technologies, since the emergence
of Flash technologies, the question started to be raised. Flash memory,
when written, has to erase and rewrite an entire block of data. In addition,
the erasing and rewriting cannot be done on site but requires a memory
block to be available on the device which increases the frequency of accesses
of the memory cells. However, because of their architecture, the cells are
much more sensitive to wear and tear. The industry norm for NVM is
a typical retention lifetime of 10 years [18, 92, 94]. For Flash memories
the endurance for 10 years corresponds to withstanding typical 106 cycles
without suffering reading, writing or erasing failures [92,94].

2.1.3.6 Density

This characteristic defines the number of memory cell that can be assembled
to create a bank. Its unit is an arbitrary area unit which is independent
from the technology used and the resolution used for the lithography. In
volatile main memory, DRAM must not only place charge in a storage
capacitor but must also mitigate sub-threshold charge leakage through the
access device (see Figure 2.4). Capacitors must be sufficiently large to
store charge for reliable sensing and transistors must be sufficiently large to
exert effective control over the channel [82]. Scaling beyond 20 nm has been
challenging, notably because of the diameter of capacitors, and technologies
hardly managed to move forward by incremental steps of 1 or 2 nanometres.

21



CHAPTER 2. MEMORY LANDSCAPE

M1

M2

M3

M4

Q

Q

M6
M5

VDD

WL

BLBL

(a) 6T-SRAM single port [9]

T1

C1

WL

BL

(b) 1T1C-DRAM [16]

The SRAM is composed of 6 transistors (4 for the storage, 2 for the access);
the DRAM is composed of 1 transistor and 1 capacitor (transistor for the
access and capacitor for the storage). WL is the word-line which select the
appropriate row, and the bit-line (BL) retrieves the state of the bit stored.

Figure 2.4: Examples of Static Random-Access Memory and Dynamic
Random-Access Memory structures to compare the number of transistors
required.

2.1.4 The emergence of new memory technologies

Although somewhat far from the studied problem, memory technologies
can have an effect on the way we use them. Because of their intrinsic
characteristics, the time before accessing the data is variable, and so is the
expected gain for using them [111]. Any change in memory hierarchy affects
programming models and code optimisation, so is therefore complex [41].

Many emerging technologies have been explored to provide new ways
of mitigating memory access costs. Notably, the past years have seen a
renewed interest in the technologies providing non-volatile capabilities. This
interest is due to the need to close the gap between close memory and
storage-class memory. The different technologies and their usage are usually
still very hierarchical, and can be represented as in Figure 2.5.

Two approaches have been studied in parallel to close the performance
gap between close memory and storage. It could roughly be divided between
computation-oriented optimisation and storage-and-network-oriented opti-
misation. Both trends have their specificities that will be explored and
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Figure 2.5: An example HPC storage hierarchy to fill the I/O performance
gap between main memory and disk.

outlined in the Section 2.1.4.1 and Section 2.1.4.2.

2.1.4.1 High Bandwidth Memory

DRAM versatility is praised and it is a surprise to no-one that it has been
so hard to try to find a replacement, or even a complementary technology to
help reduce the gap between computation performance and memory access
performance. One idea is to try to change the form-factor of the memory.
Based on normal DRAM technologies, but with 3D stacking to improve the
density, located close to the processor, sharing an interposer, to improve the
bandwidth. Multiple technologies have been studied in the past 10 years in
order to close the gap between LLC and the DRAM. Although they are all
known as High Bandwidth Memory, this denomination corresponds to the
JEDEC defined standard cited in [5].

It started with the study of HMC (Hybrid Memory Cube). Its memory
organisation is made vertically, with the access-unit being the vault. Each
vault corresponds to a DRAM channel in terms of independence of data
transfer. The package is composed of 4 or 8 die plus a logic base, all
stacked. In the example presented in [95], with 4 stacked die, it behaves as
if we had 16 channels, each with 4 ranks. The links between the package
and the memory banks are divided into 16 full-duplex lanes. Overall, this
technology allows up to 8 GB of memory and a bandwidth of 160GB/s.
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HMC with 8 die doubles the overall memory, and would correspond to 16
channels with 8 ranks of DIMMs. The 3D structure uses through-silicon
vias (TSV) [30] in order to communicate the bytes to the interposer to
reach the caches, and ultimately the processing units, more efficiently. The
advantages of die stacking are a lower voltage requirement, a simplified
management of memory access, a better capacity than the caches and a 9×
improvement factor of the bandwidth compared to DIMM5 as the vaults
act like as many DRAM channels.

A similar structure has been used, for example, for MCDRAM (Multi-
Channel Dynamic Random-Access Memory), the HBM developed in collab-
oration with Micron Inc. for Intel Xeon Phi Knights Landing (KNL) chips.
The chips were embedding 8 stacks of 2 GB of HBM, on package. The mem-
ory could either be managed by the operating system and the chip driver
as a LLC, and be addressable directly by the user for a manual manage-
ment of it. All eight MCDRAM devices collectively provide an aggregate
bandwidth of more than 450GB/s [124].

New features have been introduced in HBM2 [71], such as pseudo chan-
nels and implicit precharge operations, as well as storage with error correct-
ing code (ECC). Pseudo channel mode is a very important improvement in
HBM2. In the pseudo channel mode, each 128-bit channel can operate as
two separate pseudo channels of 64 bits. A pseudo channel consists of 4
bank groups where each group has 4 banks. By using the pseudo chan-
nel mode, HBM2 can achieve optimised command bandwidth, decreased
latency, and higher effective data bandwidth.

In Fujitsu A64FX processors, the HBM2 is directly connected to the
cores and L2 caches via the Core Memory Group (CMG), but located out-
side the package. The processor is connected to 8 devices of 4 GB each, for a
total of 32 GB and a cumulated bandwidth of 1024GB/s [122]. The HBM2
standard authorises up to 24 GB of memory per stack, and a bandwidth of
307GB/s.

Overall, the much improved performance enables more efficient data
transfer between an intermediate memory and the processor, but the rela-

5HBM2 compared to DDR5, as reported in [10].
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tively small capacity makes it impossible to make the DDR-DRAM disap-
pear entirely.

2.1.4.2 Non-Volatile Memory

Non-volatile memory can be differentiated into two groups, depending
on the technology used, as defined by JEDEC. NVDIMM-F offers non-
volatility using Flash technology for the storage. It also provides directly
addressable NAND-Flash which is accessed as a block-oriented mass stor-
age device [11]. NVDIMM-N resembles it, except that the NAND-Flash
memory is embedded in the memory module, along with a small backup
power source [12]. In the event of a power down, the power source is used
to copy the data from the DRAM to Flash. The data are copied back when
the power is restored.

2.1.4.2.1 Current and future technologies Although solutions based
on Flash technology are the first available, a few alternatives have also been
investigated recently. The first reason was that the latency of Flash sys-
tem is much higher than the one expected of standard DRAM. A suitable
candidate for a proper NVDIMM must be able to provide equivalent per-
formance, be byte addressable for both reading and writing, and expose a
suitable life expectancy.

Other desired traits may be an increased byte density, allowing for an
increased capacity, and a lower energy-consumption. Several features are
summarised and emphasised in Table 2.1. Finally, all the following candi-
dates excepted 3D XPoint memory can perform logic and arithmetic oper-
ations beyond data storage. This feature could be a huge leap in computa-
tion acceleration in the field of machine learning and simulations as some
matrix-vector applications could be realised in the storage device while the
processor executes other parts of the code [31].

3D XPoint memory The first candidate has already been released
and was developed by a joint research between Intel and Micron. The
technology is named 3D XPoint memory. It promises to deliver fast I/O
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HDD NAND-Flash NOR-Flash DDR-DRAM
Capacity TBs TBs TBs +100GB
Read Latency 10ms 25–50 ns 45 ns 7–15 ns
Write Latency 10ms 100–500 µs 14µs 7–15 ns
Endurance 1015 104–105 104–105 1016
Cost Per GB $ 0.038 $ 0.05 $ 30–$ 35 $ 1
Density (F 2) — 4 10 6–10

PCM STT-MRAM ReRAM Optane™ DC
Capacity TBs 1GB TBs 128–512GB
Read Latency 60–120 ns 15 ns 10 ns 169–305 ns
Write Latency 50–250 ns 14.5 ns 20–50 ns 94 ns
Endurance 106–108 1012 106–1011 105
Cost Per GB $ 1–$ 5 $ 50–$ 100 $ 30–$ 50 $55
Density (F 2) 4–12 6–50 4–10 —
Data used are from [8, 18, 28, 38, 44, 49, 52, 53, 68, 92, 94, 96, 98, 100–102,121, 123,137].
Endurance is how many times a memory cell can be rewritten before being worn out
(more details in Section 2.1.3.6); higher is better.
Density is the surface required for one memory cell in relative unit (more details in Sec-
tion 2.1.3.6); lower is better. Intel Optane™ DC performances are considered in the
Persistent Memory Module factor.

Table 2.1: Comparison of emerging NVM technologies with DRAM and
other storage devices.

access latency and high throughput thanks notably to functionalities that
NAND-Flash cannot provide, such as byte-addressability and in-place up-
date. [139] Contrary to NAND-Flash based SSDs, the Optane SSDs can
spread I/O over multiple 3D XPoint memories to harness the throughput
of multiple memory dice to expose low latency. [62] Byte-addressability and
support for data update-in-place solve issues like read-modify-write and
write-driven garbage collection that typically exist for conventional SSDs.
Both reading and writing performances are on par with NAND-Flash SSDs
when using similar internal architecture, or improved performance when
using the Optane™ DC SSD media. [139]
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PCM The second candidate is PCM (Phase-Change Memory) [137].
This technology is based on using the current to change the crystalline struc-
ture of the elements which modifies the resistivity of the component. The
material goes from a crystalline state with low resistivity to an amorphous
state with high resistivity. By measuring the resistance of the memory cell,
it is possible to determine its state. This approach exposes multiple inter-
esting features. First, and similarly to NAND-Flash, it is possible to have
a good density of memory cells, to create MLC (Multilevel Cell), and to
create 3D-stacked structures [76]. The latency for both reading and writing
is also much better compared to Flash, although it may require a higher
current to reset a cell’s state. Finally the slightly higher price may be
counter-balanced by a much greater longevity of the memory cells.

STT-MRAM The third candidate was the STT-MRAM (Spin-Transfer
Torque Magnetoresistive Random-Access Memory). Developed by Everspin
Technologies and presented in [51], they propose a solution compatible to
DDR4 non-volatile, with a latency and an endurance similar to DRAM.
However, the capacity is currently very small (256 Mbit with DDR3 in
2018 [51], up to 1 GB DDR4 in 2020 [52]) and the supported frequency
(1333 MHz with DDR) seems quite low in comparison to current memory
system (1866 MHz to 3200 MHz, from [96], both with DDR) in addition to
other deviations from the JEDEC DDR4 specifications. Yet, this technol-
ogy has been studied by Intel to implement L4 caches into processors [8] to
replace eDRAM. They developed scalable macros of 2 MB that could pro-
vide at least up to 1 Gbit cache in future architecture. One big limitation
nowadays is its price, much higher than any of its competitors.

ReRAM Last, and maybe the most promising candidate in future
research, is the ReRAM (Resistive Random-Access Memory), also known
as memristor. This technology offers the best of the two previous technolo-
gies. It is smaller and cheaper than STT-MRAM, with a better performance
than PCM with a better endurance. The ReRAM structure is also natu-
rally made for a crosspoint interconnection, allowing for a very high density
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factor, and a vertical organisation allowing for 3D-stacking in addition to
allow for MLC. [6, 36] This technology has been considered as a replace-
ment for SRAM in caches or as an intermediate body between caches and
DRAM.

2.1.4.2.2 How are non-volatile memories used? NVM (Non-Volatile
Memory) can serve different purposes in HPC. For its generally substantial
capacity, non-volatile memory is often either used for node-oriented storage
or network-oriented usage. The SNIA recommended behaviours for software
supporting NVM are given in [59]. The technical report on NVM program-
ming model proposes an abstraction and an API for two different levels
both as used in the kernel space and their reflection into the user space.
The different modes are based on pre-existing abstractions in the system,
like memory pages (called blocks) or files, to simplify the integration into
the kernel.

The NVM.BLOCK mode is at the base of it, as while it is not di-
rectly seen by the user, the file system is expected to rely on it for the
NVM.FILE mode. Overall the API presented behaves like a transactional
database, requiring the respect of the ACID (Atomicity, Consistency, Isola-
tion, Durability) properties. The granularity of data representation is the
block, which represents a contiguous range of addresses, no matter what
means of storage is used.

In NVM.BLOCK mode, as for any kind of memory, a block can be
either mapped, unmapped or allocated. When the block is mapped, it is
allocated on the storage device and in memory and has data written to it.
When the block is unmapped, the block is on the storage device, but not
present in memory. When the block is allocated, the memory is allocated
to it, but no data have been written back to the storage device yet. Two
different modes are proposed for the system abstraction.

In NVM.PM.VOLUME mode, the system is expected to manage the
mapping and the synchronisation for the user. However, the NVM.PM.
FILE mode allows for the user to access directly the pages mapped to the
device (via the MMU translation) with load/store operations, but in this
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case the responsibility of synchronisation is left to the end user.

On node storage The first usage for such a device is local storage.
The latency to access memory and the bandwidth are critical factors when
dealing with a massive amount of data. That is why the locality may be
crucial. Having the data on hand avoids the cost of network latency and
the throttling that can be inflicted to the network traffic.

Usually, in HPC, this storage will be temporary and referred to as
scratch space. It can be either implemented with disks on the compute
node or on a separated node dedicated for providing intermediate storage.
The latter solutions are usually provided using NAS (Network-Attached
Storage) interfaces. For example IBM Elastic Storage Support [99] uses
such technology, based on local disks or using byte-addressable NVDIMM-
N based technologies such as Intel Optane™ DC PMM6 in order to improve
both latency and bandwidth.

Finally, and as a pivot case between local-oriented or communication-
oriented for large non-volatile memory, some research [61] has found that
using close range nodes’ scratch space access over the network may also be a
sustainable approach. It offers minimum to no overhead, allowing for SSD
disks disaggregation which may lead to better resource provisioning and
systems being more cost-effective. However this approach is dependent on
the network interface capacity to offer DMA, like RoCE or InfiniBand, and
requires a compatible NIC to allow for true parallelism and a computation-
I/O overlap.

Burst buffer for parallel I/O There is a strong inherent link be-
tween network and memory, especially with large amount of memory. This
link is growing with the increasing memory requirements. The price of
data management on extreme scale computation is still growing both for
accessing it in order to do computation but also for exchanging them with
other nodes, mitigating network contention. It is also a significant factor as

6Technically Optane™ DC PMM is not a NVDIMM-N as it does not comply with
JEDEC standard. [68].
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Figure 2.6: Storage nodes dedicated to be used as temporary, intermediate
aggregators as used on Cori Supercomputer at NERSC (from [39, Fig. 2]).

the HPC infrastructure relies on PFS which adds reduced pressure to the
network.

Many aspects of data retainers used as an intermediate buffer have been
studied in the past 5 years. First, they were shown to be useful when used in
association with a I/O-aware task scheduler in order to reduce the network
bandwidth requirements [63]. Additionally, the details of the multiplicity of
memories associated to network topology description and process placement
can lead to decreased I/O times in the case of a MIMD application [126].
More straightforward solutions based on these technologies have also been
studied for creating close-range intermediate storage node aggregating data
for delayed I/O [39] (as shown in Figure 2.6). One final aspect of non-
volatile memory being studied is the amount of memory required. The
increasing complexity of systems leads to an increased demand in energy
and space. It is more important than ever to be able to optimise the re-
quirements to avoid any over or under provisioning. Recent research has
explored this question from both an infrastructure provisioning [17] and
from a resource allocation point of view [127].

Checkpointing As pointed out by the authors in [53], most long-
running HPC applications exceed the MTBF (Mean Time Between Failures)
of HPC systems and are therefore vulnerable to hardware or software errors
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Systems Max performance Checkpoint time (min)
LLNL Zeus 11TeraFLOP/s 26
LLNL BlueGene/L 500TeraFLOP/s 20
ANL BlueGene/P 500TeraFLOP/s 30
LANL RoadRunner 1PetaFLOP/s ≈20
From [40, Table I]. Source: LLNL, 2010.

Table 2.2: Time to take a checkpoint on some machines of the TOP500.

during execution. The application has to expose resilience properties to be
able to continue their computation after such an event in order to avoid
wasting all the time already spent. One solution to prevent this is to make
a copy of the current state of the application, across all the nodes involved
in the execution. This operation is called checkpointing. In the event
of a failure, the application can return to the previously saved state and
resume computations from that point onward. This process is called C/R
(Checkpoint-Restart). As expressed by Dong et al. in [40] and reported
in Table 2.2, in some petascale machine, checkpointing can already take
up to thirty minutes and may induce an overhead up to 25 %. One major
limitation explained by the author is the limited bandwidth.

Multiple solutions can be used to overcome this restriction. One, ex-
posed in [53], is shifting technology to NVDIMM associated with a disag-
gregation of storage solutions, as shown in 2.7.

The solution presented is based on Phase-Change Random-Access Mem-
ory which is not yet widely available. In addition to having local storage
available at each node level, the authors propose a cooperation between
close nodes in order to provide higher bandwidth, adding the network band-
width to the bandwidth of the NVRAM. This technique is used to alleviate
the local DRAM bandwidth. Finally, in order to improve the scalability of
the solution, the checkpointing technique used is multi-level checkpointing,
which can now make better use of the local storage capabilities.

It was expected that by today, PCRAMwould have replaced HDDs. Yet,
the rapid changes in the underlying technologies mean this outcome never
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Typical organisation of supercomputers. All the permanent storage devices are controlled
by I/O nodes. Disaggregation allows for a new organisation that supports local/global
hybrid checkpoint; each process node also has a permanent storage.

Figure 2.7: Disaggregation example, as illustrated by Dong et al. in [40,
Fig. 1, Fig. 2].

occurred, since other options became more attractive. The first step was the
replacement of spinning hard-drive technology by Flash-based SSDs. The
performance has been much improved, although the idea of replacing disks
by memory modules connected to working memory is still being developed.
Finally, and as of today, it is the 3D XPoint memory technology that has
been used to implement the first widely available NVDIMM, with the Intel
Optane™ DC PMM.

Working memory NVDIMM provides a much larger capacity for
a DRAM-like latency and bandwidth. The form factor of the NVDIMM
allows it to be plugged into PCIe slots to ensure optimal performance. Al-
though technically not an NVDIMM as it does not respect the JEDEC
specifications for NVDIMM-N or NVDIMM-F and uses a specific protocol
(DDR-T), Intel Optane™ DC PMM are the closest products to actual work-
ing NVDIMM [68]. In addition to one Optane™ DC PMM, each memory
channel must be populated with at least one DRAM DIMM using an ad-
dress indirection table (AIT) to translate from the DIMM physical address
to an internal Optane™ DC media device address.

As presented in [68, 112, 132] and shown in Figure 2.8, Optane™ DC
PMM presents two modes: App Direct and Memory mode. Both modes
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Figure 2.8: The logical view of configuring all NVDIMMs, as shown in [112,
Figure 2].

respect the usages as recommended by [59]. In the former, all the mem-
ory is byte-addressable. DRAM and NVM are exposed as shared memory
with two NUMA nodes. It is possible to use the persistent memory as
if it were main DRAM memory by using the libvmmalloc library, which
implements SNIA’s NVM Programming Model standard [59]. Instead of
placing data structures on the system heap, they are placed into a memory
mapped file that resides in persistent memory. In the latter mode, only the
Optane™ DC PMM is visible as two NUMA nodes to CPUs while DRAM
becomes a transparently managed cache, hence, all data objects are placed
into NVM.

As presented by Dulloor et al. in [44], data centre applications like key-
value stores, in-memory databases, and data analytics are being used to
handle exponentially growing datasets but cannot tolerate the performance
degradation caused by spilling their workloads to disk. Hence, industry has
been studying whether the large capacity of non-volatile memories could
be used as an extension to standard DRAM. Recent experiments using
Optane™ DC PMM [68] have shown that NVDIMMs are unlikely to be a
viable replacement for DRAM on their own.

The industry standard key-value store applications Memcached and Re-
dis have a penalty of 20.1 % and 23 % respectively when uncached Op-
tane™ DC PMM is used instead of DRAM only. The performance with
uncached Optane™ DC is 4.8 % to 12.6 % lower than cached Optane™ DC.
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Despite performance losses, Optane™ DC memory allows for far larger
sized databases than DRAM due to its density. SPEC 2017 performance
benchmark on Optane™ DC shows also that cached mode has similar per-
formance as sole DRAM for integer workloads, but drops by up to 15 % for
float workloads.

Peng et al. in [112] also found a higher sensitivity to data locality, as the
PMM media is accessed with a 256 bit wide bus, where DRAM is accessed
with a 64 bit wide bus. One proposed reason is that the accessing using the
internal granularity improves the latency (better prefetching, optimum use
of the buffered data) and decreases the write amplification (better longevity
for the device).

2.1.5 Summary

As presented, many technologies are cohabiting, each with a specific in-
tended usage. The evolution is driven both by the new usages (e.g. burst
buffer, NAS, in-memory checkpointing), and by new technologies (e.g. 3D
XPoint memory). However, the combinatorial complexity it creates requires
software abstraction to interact with the different memory systems. This
eases the testing of different trade-offs without the need to rewrite the pro-
gram, and, ideally, provides APIs that support the wide variety of solutions,
therefore providing portability of code.

2.2 The effect of new memories on
programming models

Two approaches are usually followed regarding emerging memories. Con-
trary to heterogeneous computing systems with embedded memory (GPUs,
APUs), it seems that the path followed is an integration with pre-existing
data structures and memory models. The main advantage is being able
to propose a drop-in solution that works reasonably well performance-wise,
without requiring any code modification. However, in order to get even
better performance out of the new devices, more precise memory manage-
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ment is required. In the following section I will show the already existing
APIs for heterogeneous systems, both for heterogeneous computing and
heterogeneous memories.

In order to properly understand some mechanisms used when exploiting
multi-tier memory, the following section will first introduce the caches and
their policies as currently used in processors. Then a short discussion on the
possibilities of integrating heterogeneous memory as found in the literature
will be presented. Finally, the main frameworks and library dedicated to
memory management will be listed and introduced shortly.

2.2.1 Cache policies

In order to provide short latencies, disaggregated memory located close
to the core is common in current microarchitectures. These caches have
different characteristics, that can change from one level to the next.

Firstly, the caches can be shared between the different cores or be pri-
vate. Private cores allow for lower latencies as no interconnection is re-
quired. In addition, applications running on different cores will have less
influence on each other’s performance. On the other hand, the shared caches
use all the cache space available, even when some cores are idling. It also
avoids duplicating shared data. In Figure 2.2, the two lower levels of cache
are private for each core, but the L3 is shared between all the cores within
the package.

The second characteristic is the cache associativity, or cache placement
policy. This determines how to associate blocks of data with cache lines.
In a fully associative cache, any block can be stored in any cache line. If
no line is free, the cache eviction strategy will be executed to find a victim
entry to be evicted from the cache. This provides flexibility and maximises
the occupancy of the cache at the cost of time to find an available line and,
when none is available, at the cost of executing the cache eviction strategy.
At the other end of the associativity spectrum is the direct-map cache. The
direct-map associates one memory block to one cache line based on the
memory address. This facilitates the cache management as there is no need
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to search for an available line nor search for an entry to evict. However
this method may lead to a high number of cache conflict misses and a poor
occupancy of the cache lines. [110]

Finally, and between the two previously presented strategies, there is
the set associative cache. This solution allows for a trade-off between fully-
associative and map direct caches. The set size defines the number of cache
entries to search from when looking for an available line, and where to look
for cache eviction.

In 2020 in Fujistsu’s A64FX processors [56], the caches’ associativity
can be subdivided into sectors in order to reserve entry for one specific data
structure, to improve its locality.

Secondly, cache organisation may allow for data redundancy. If full
redundancy is ensured between L1 and L2 caches, the cache organisation
is said to be inclusive. This implies that L1’s entries are a subset of L2’s
entries, but also that any eviction from L2 must be back-invalidated to
L1. However the management of cache coherency is simplified as L2 acts
as a directory that can simply redirect to L1’s corresponding entry. The
opposite cache organisation is called exclusive and implies that any entry
is unique across multiple cache levels. The cache coherency is also simple
as well as any entry is unique, however any eviction from L1 will lead to
a second eviction from L2 as the evicted line will need to be written back
into L2. Also, finding a record requires checking the entries from both L2
and from all L1 caches. There also is a non-inclusive cache organisation
where new entries to L1 are also added to L2, but eviction from L2 does
not trigger a back invalidation from L1.

Finally, multiple eviction strategies have been studied. The objective is
to optimise the data reuse and avoid cache misses. Hence the objective is to
predict which data will be required next. The decision is usually based on
how long since the last time some bytes were accessed and how frequently
these bytes are accessed.

Caches on package are usually made using SRAM technologies, but there
are alternative approaches, such as using stacked DRAM as a large, high-
bandwidth Last Level Cache (e.g. an ‘L4’ cache), coping with the challenges
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of managing the large tag storage required and the relatively slower latencies
of DRAM.

2.2.2 Virtual memory spaces for OS-managed
multi-tiers memory

As stated by Williams et al. [135], at a high-level, structuring heteroge-
neous memories as operating system-level NUMA nodes is a natural fit and
provides an opportunity to reuse existing OS and application-level abstrac-
tions, as shown in Figure 2.2. However, several fundamental differences exist
between the homogeneous NUMA and heterogeneous memory systems.

First, heterogeneous memory technologies have significantly different
latency and bandwidth, unlike DRAM-based NUMA.

Second, for homogeneous NUMA, the OS-level management aims to
increase data locality by increasing CPU access to the data in the local
memory socket [72]. This leads to assigning an arbitrary value for the MC-
DRAM NUMA distance in order to avoid having the system automatically
allocating memory there instead of DRAM [70, Chapter 25]. Because of the
first two points making the relative weighting to identify the ‘bes target” is
much more complex.

Third, as noted by Meswani et al. [93], it can be challenging when
threads from multiple sockets access the fast-DRAM and desire to allocate
there as much memory as possible. The limited amount of memory may not
allow every request to be fulfilled at once, especially in many-core contexts,
as favouring one thread may be detrimental to another.

To summarise, for heterogeneous memory, although keeping the page
granularity and the operating system mechanisms, the challenge is (a) to
identify performance-critical data and place them in the fastest memory,
(b) to maximise the utilisation of the fast memory with limited capacity, and
(c) to share fairly the fast memory across the multiple execution threads [72,
93]. Therefore the management of heterogeneous memory is expected to be
much more complicated than homogeneous memory systems and requires
either some adaptation of the memory policy management, or a much more
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tedious manual management from the application developer.
To add to the already complex environment, Fernando et al. [53] also

suggest enriching the heterogeneous environment by considering the mem-
ory of close nodes. This enables an extension to the bandwidth offered
by the DRAM by envisaging the high-performance network like InfiniBand
along with RDMA capabilities.

2.2.3 Programming models for memory

Different programming models are available to manage the plurality of sys-
tems. Some programming models do not specifically target the memory
heterogeneity (e.g. OpenCL, CUDA, etc.) but the different processing units
(e.g. CPU, GPU, etc.). However, co-processors may provide their own em-
bedded memory, for performance reasons, and thus require an interface
to exchange data with the main memory. This section will present the
different frameworks that are dedicated to managing data across hetero-
geneous computing systems, then libraries dedicated to data management
for heterogeneous memory systems and finally an example of a library level
programming model for performance portability with memory management.

2.2.3.1 Frameworks

The frameworks presented are introduced as extensions to C or C++ lan-
guages. Apart from OpenMP, their primary objective is to provide an
interface between the main memory and the computing devices. On the
other hand, OpenMP aims at distributing computations on a single ma-
chine with multiple cores, which implies the need for data placement to
maintain performance.

2.2.3.1.1 OpenMP The OpenMP API [35] provides a relaxed-consist-
ency, shared-memory model. Each thread is allowed to have its own tempo-
rary view of the memory. The temporary view of memory allows the thread
to cache variables and thereby to avoid going to memory for every reference
to a variable. The host device, and target devices that an implementation
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Memory space name Storage selection intent
omp_default_mem_space Represents the system default storage.
omp_large_cap_mem_space Represents storage with large capacity.
omp_const_mem_space Represents storage optimised for variables

with constant values.
omp_high_bw_mem_space Represents storage with high bandwidth.
omp_low_lat_mem_space Represents storage with low latency.
From [109, Table 2.8].

Table 2.3: Predefined memory spaces in OpenMP.

may support, have attached storage resources where program variables are
stored. The memory will be allocated from the storage resources of the
memory space associated with the memory allocator. When an OpenMP
memory allocator is not used to allocate memory, OpenMP does not pre-
scribe the storage resource for the allocation; the memory for the variables
may be allocated in any storage resource [109]. The standard includes four
specific memory spaces in addition to the default one, which are indicated
in Table 2.3, and allow the user to provide hints to interact with the alloca-
tor, for alignment purpose, memory pinning or access rights. The memory
allocation can be done across multiple storage resources, and hints are also
provided to define how the data must be distributed.

2.2.3.1.2 OpenCL The OpenCL standard [74] supports both data-
based and task-based parallel programming models. The memory address
space is divided into two parts, one being the host memory, directly avail-
able to the main thread on the host, and the second being the device mem-
ory which is directly available to kernels executing on OpenCL devices. In
addition, the device memory is subdivided into four parts, and compared
to OpenMP, more by abstracted characteristics and usage (private mem-
ory, local memory, constant memory and global memory) than by physical
traits. The allocations are either dynamic (at run-time) or static (defined
at compile-time) and reproduced in Table 2.4 The different subdivisions of
the device memory are hierarchically staged, similarly to caches with regard
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Global Constant Local Private

Host Dynamic
allocation

Dynamic
allocation

Dynamic
allocation

No allocation

Read/Write
access to
buffers and
images but
not pipes

Read/Write
access

No access No access

Kernel Static
allocation for
program
scope
variables

Static
allocation

Static
allocation.
Dynamic
allocation for
child kernel.

Static
allocation

Read/Write
Access

Read-only
access

Read/Write
access.
No access to
child’s local
memory.

Read/Write
access

From [74, Table 1].

Table 2.4: Memory regions for OpenCL, allocation capabilities and access
rights.

to the DRAM. Host memory and device memory may overlap when devices
support it, but it requires the implementation to support SVM (Shared
Virtual Memory). Finally, the user is responsible for copying data from one
device to another, except when the SVM is supported.

2.2.3.1.3 CUDA NVIDIA introduced CUDA [104], a general purpose
parallel computing platform and programming model that leverages the
parallel compute engine in NVIDIA GPUs to solve many complex compu-
tational problems in a more efficient way than on a CPU. CUDA comes with
a software environment that allows developers to use C++ as a high-level
programming language. At its core are three key abstractions, a hierarchy of
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thread groups, shared memories, and barrier synchronisation, that provide
fine-grained data parallelism and thread parallelism, nested within coarse-
grained data parallelism and task parallelism. The CUDA programming
model, without the Unified Memory model presented in the next section,
also assumes that both the host and the device maintain their own separate
memory spaces in DRAM.

For device-run parts of the applications (namely, the kernels), the mem-
ory hierarchy is split in three — per-local thread memory, per-block shared
memory and global shared memory. There are also two read-only memories
that are shared and accessible by all threads, constant and texture memory.

To transfer the data from the host memory to the device, the user has
to explicitly call cudaMemcpy which may stage the buffer to some pinned
memory. In order to optimise memory copies between the host and the
device memory, it is possible for the user to pin pages of virtual memory
and to share their address with the device addressing space, allowing for
just-in-time copies via DMA. These memories are referred to as zero-copy
memories. The data are still effectively transferred via the PCIe, but not
in a single large transaction, and it doesn’t need to be coordinated by the
user.

2.2.3.1.4 CUDA Unified Memory Unified Memory [103] is a com-
ponent of the CUDA programming model, first introduced in CUDA 6.0,
that defines a managed memory space in which all processors see a single
coherent memory image with a common address space. The underlying
system manages data access and locality within a CUDA program without
the need for explicit memory copy calls. Unified Memory offers a ‘single-
pointer-to-data’ model that is conceptually similar to CUDA’s zero-copy
memory. The coherency is ensured by explicit synchronisation calls. One
key difference between the two is that with zero-copy allocations the phys-
ical location of memory is pinned in the CPU system memory so that a
program may have fast or slow access to it depending on where it is being
accessed from. Unified Memory, on the other hand, decouples memory and
execution spaces so that all data accesses are fast.
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As far as the host is concerned, no distinction is made in terms of ac-
cessing memory allocated with cudaMallocManaged or through a malloc
call. However, although there is no difference in semantics, the programmer
needs to be aware that different processors might experience different access
times owing to different latencies and bandwidths. Incidentally, a processor
is regarded as an independent execution unit with a dedicated MMU; i.e.
any GPU or CPU.

2.2.3.2 Memory management libraries

The libraries we shall now present are focused on HPC. They rely on both
system memory abstraction (virtual memory, NUMA domains, etc.) and
frameworks presented in Section 2.2.3.1.

2.2.3.2.1 AML AML’s7 [114] main focus is to improve data manage-
ment performance in order to increase computation efficiency. Developed by
ANL8, the objective for this library is to provide a new approach that tackles
three memory abstractions: layout, tiling, and movement across a topology.
The highly hierarchical memory is only considered as either NUMA nodes
or caches, providing data movement between nodes, along with data re-
shaping. AML supports allocations for HBM, DRAM and GDDR DRAM
(only with CUDA). This library also provides an asynchronous mode when
multithreading is available. As a building block for improved memory man-
agement, this library relies on low level functions to execute the copy, such
as memcpy or cudaMemcpy, which means that the user must detect the sys-
tem memory topology and provide the parameters for optimal blocking.
Finally, the library provides a set of functions to reshape data, extract
chunks and move them across memory environments.

2.2.3.2.2 Umpire Umpire9 [19] is a high-performance, application-ori-
ented, memory allocation library developed by LLNL10. This library has

7Available at https://xgitlab.cels.anl.gov/argo/aml.
8Argonne National Laboratory
9Available at https://github.com/LLNL/Umpire.

10Lawrence Livermore National Laboratory
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a strong software engineering influence with an object-orienting design. It
identifies the different memory resources and creates allocators for these.
Currently, the library supports HBM, DRAM and GDDR DRAM, both
with CUDA and HIP. In addition, although the library is written in C++,
it also provides native support for C and Fortran.

The memory can be requested and freed via allocator objects whose
behaviour may be modified by allocation strategies. In order to centralise
accesses to Umpire’s components, a singleton ResourceManager is available.
It also provides a simplified portable interface for requesting allocators. The
centralisation allows for a precise book-keeping of the memory operations.
The export of the logs can be used to replay for analytical purposes or to
reproduce problems without the need to run a whole application.

The library shows adaptability, portability and flexibility, however the
performance is greatly reduced compared to system allocation for sizes un-
der 256 kB [19, Figure 3].

2.2.3.2.3 SICM SICM11 [80,134] is a two-level library designed for dis-
covering and managing complex memory hierarchies and sharing resources
within them. It has been developed by LANL12, in collaboration with
LLNL10, ORNL13 and SNL14. The supported memory technologies include
HBM, DRAM and NVDIMM. It also supports the different page sizes, and
makes it easy to switch between them. The library exposes an interface for
C, C++ and Fortran. SICM relies on the jemalloc [50] library to provide
allocator strategies for different memory tiers, with little fragmentation of
memory and fast allocation. The high level is dedicated for automatic opti-
misations after profiling an execution. In addition, to detect the supported
memory environments, the library also provides low level function to de-
tect and measure characteristics like latency, bandwidth and capacity of
the different memories. The different memories available are labelled by an
enumerate type, and interacted with through the arena allocators.

11Available at https://github.com/lanl/SICM.
12Los Alamos National Laboratory
13Oak Ridge National Laboratory
14Sandia National Laboratory
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2.2.3.3 Performance portability models with memory support

Some research has also been carried out in order to provide a solution at
the crossroads of the two previously introduced levels.

2.2.3.3.1 Kokkos Kokkos15 [48] is a C++ library for helping the writing
of portable performance C++ scientific applications developed and main-
tained by a cooperation between LLNL10, ORNL13 and SNL14. It relies on
six core abstractions that describe the type of execution support (e.g. de-
vice or host), the algorithmic parallelism (e.g. regular loops or tasking),
the synchronisation granularity, the memory layer, data layout and access
patterns. This approach aims at providing the same portability and adapt-
ability as a language extension such as OpenCL, while staying outside the
compilation chain. In addition, the runtime capabilities of this approach
enable a dynamic adaptation of data layout during execution. Although
providing close to native original performance (within 90 %), using Kokkos
is invasive and requires that a significant part of data structures need to be
taken over and function markings everywhere, both in the application and
the libraries used. Finally, due to the usage of C++ specific construction,
no support is possible for languages like C or Fortran.

2.2.3.3.2 oneAPI oneAPI [34] provides a common developer interface
across a range of data parallel accelerators. Programmers use DPC++ (Data
Parallel C++, a language derived from SYCL) for both API programming
and direct programming. oneAPI tries to unify shared memory16 and dis-
tributed memory models into a single API. The final objective of this frame-
work is to provide source-level compatibility, performance transparency and
software stack portability.

The application running on the host and the functions running on the
devices communicate through memory. oneAPI defines several mechanisms
for sharing memory across the platform, depending on the capabilities of

15Available at https://github.com/kokkos/kokkos.
16Here shared memory is considered in the single compute node; it is not implied that

the memory is necessarily shared across the heterogeneous devices.
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the devices. The first one uses buffer objects to explicitly copy from host
to device or across devices. The second one uses unified addressing which
ensures that pointer values in the unified address space will always refer to
the same location in memory. Finally, the third mechanism is unified shared
memory which enables data to be shared through pointers without using
buffers and accessors. There are several levels of support for this feature,
depending on the capabilities of the underlying device.

2.2.3.3.3 SYCL Since SYCL [75] is a single-source programming model,
the memory model affects both the main application and the device-specific
part of the program. On the SYCL application, the SYCL runtime will
make sure data are available for execution of the kernels. As SYCL is
based on OpenCL, the memory model is similar. However, SYCL mem-
ory objects can encapsulate multiple underlying OpenCL memory objects
together with multiple host memory allocations. This enables the same
object to be shared between devices in different contexts or platforms. The
concurrency in accessing the different objects is specified by the user and
managed by the SYCL Runtime.

2.2.3.3.4 RAJA RAJA17 [20,64] aims at the same objective as Kokkos,
but with a less invasive C++ abstraction layer. This allows for an incremen-
tal adoption of the framework which is a major concern for very large code
base with long life cycle. RAJA targets loop-level parallelism for C++ ap-
plications by relying solely on standard C++11 language features for its
external interface and common programming model extensions, such as
OpenMP and CUDA, for its implementation. Although, dedicated to pro-
vide performance portability, the library has been designed to be agnostic
with regards to the means of getting data available in the right memory
space.

2.2.3.3.5 ROCm HIP Part of the ROCm software stack [46], HIP
provides an extension to C++ using all the language constructs to imple-

17Available at http://doi.acm.org/10.1145/3295500.3356159.
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ment a highly tuned workload for GPUs. HIP allows coding in a single-
source C++ programming language including features such as templates,
C++11 lambdas, classes, namespaces, and more to implement highly tuned
workload for GPUs. The header files for both AMD ROCm and NVIDIA
CUDA platforms are both provided by HIP, which allows for specialisation
of the code for further platform-specific optimisations. ROCm also provides
a ‘hipify’ tool that automatically converts source from CUDA to HIP, how-
ever developers should expect to do some manual coding and performance
tuning work to complete the port. Providing support for both platforms,
HIP shares its memory model to the one described for CUDA, with the
exception of managed memory, leaving the responsibility of data transfer
to the user.

2.2.3.4 Compiler assisted memory management

In [73], Khaldi and Chapman presented a solution for data placement with-
out code alteration. They proposed to use a new pass during the compila-
tion process with the LLVM toolchain, called BCDA (Bandwidth-Critical
Data Analysis). This pass would evaluate and prioritise variables based
on the ratio of memory used over the computations, the latency of opera-
tions and the presence of simultaneous versus independent accesses using
opt (the LLVM optimisation tool) and Polly (a memory access and pat-
tern analyser). The data with the highest priority had their allocation code
changed to use memkind(3) in order to be allocated into HBM. Although
showing good performance, this approach limits the availability of the so-
lution as it requires the LLVM tool suite environment. Moreover, it forces
a more rigid allocation without providing tool to move data out of mem-
ory when not required anymore, not does it consider the temporality of
the variable lifespan. Finally, this approach lacks the option for the user
to experiment and to manually choose the placement of the data, possibly
missing the opportunity of changing the data layout or the algorithm in the
research for improved performances.
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2.3 Analysis and lines of thoughts

From the above review of the current challenges offered by memory systems
in HPC, the reflection was organised around the topics to be presented in
Section 2.3.1. Section 2.3.2 will present how the problem was approached.

2.3.1 Analysis

2.3.1.1 Memory detection

From the frameworks and libraries presented in Section 2.2.3, only one
offers an abstraction that does not rely on the exposition of memory by the
system. They mainly rely on the user’s knowledge of NUMA domains for
memory location for CPUs.

SICM provides an easy to use explicit interface, defining enumerated
types to identify memories by their category (e.g. SICM_DRAM, SICM_KNL_
HBM or SICM_OPTANE). The memory selection depends on two user pro-
vided parameters. First, the tag, which identifies the memory kind, and
the size if the memory pages, to simplify the usage of industry standard
hugepages [33]. However, the detection of each memory kind is very much
platform dependant, and so are the tags — Intel KNL’s MCDRAM is iden-
tified with a different tag from IBM PowerPC HBM while both serve the
same purpose. Finally, the library also provides automatic tools for mea-
suring the performance (latency and bandwidth) of the different memories.

Recently an interface was introduced to help deal with heterogeneous
systems. Mix and Match Memories (M&MMs) [85] is an extension to
hwloc(2) [21], the de facto standard for exposing the locality of hard-
ware resources. In addition to the hierarchy of objects based on inclusion
and physical location on a server, it suggests querying the memories in a
sorted order with respect to their characteristics (called attributes). The
sorting can be done on one attribute, but a second one can be provided
to break a tie. The library expects to be able to use the Heterogeneous
Memory Attributes Table (HMAT ) as introduced in the revision 6.2 of the
ACPI specification [54]. Another solution may be the export of perfor-

47



CHAPTER 2. MEMORY LANDSCAPE

mance metrics into the topology files after benchmarking when the tables
are not available. Such a tool, in association with already existing binding
capabilities of hwloc, may help to create a general approach to memory
selection.

2.3.1.2 Performance portability models

As presented in Section 2.2.3.1, the primary focus of the different portable
frameworks revolves around processing units. These are often considered
as self-contained in the way that they provide their own internal memory
organisation that is loosely integrated with the rest of the main memory
system and only connected to it. In general, the frameworks’ main objective
is to copy the data to the device before the start of the computation, with
DMA support if the accelerator supports it. The choice of memory in the
device is mainly based on the capacity and the access rules to the memory
objects. By comparison, the data placement in the host depends more on
the memory characteristics. Usually, from the device point of view, only
the DRAM is taken in account.

From the frameworks presented, only OpenMP provides an interface for
fine-grain memory placement on the host side. However, as the OpenCL’s
memory model shows, the access to the data may allow for a specific map-
ping to different memory regions. The device providers are free to create
specific memories with different characteristics depending on the memory
region. Similarly, the implementers of the OpenCL framework, or other
frameworks based on it, are free to map the regions to the heterogeneous
memories on the host side.

2.3.1.3 Memory access pattern classification

As analysed by Dulloor et al. in [44], the way data are accessed influences
the optimisations that can be made and dictates the memory attributes that
are dominant. Microprocessors incorporate prefetchers that locate striding
accesses in the stream of addresses originating from execution and prefetch
ahead the data in order to reduce the number of cache misses which would
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penalise the application performance. Hence analysing the access patterns
is important for placing efficiently the data in multi-tiers memory. The
first type of memory access is well managed by the prefetcher which can
issue data request in advance. The accesses are sequential, independent
and regularly strided; this pattern is called streaming. When data accessed
are still independent but irregular and uniformly distributed across the
allocated memory, the pattern is called random. Although prefetching is
not possible in this random case, memory requests can still be grouped in
order to issue multiple simultaneous requests. The final pattern is pointer
chasing. In this case, the processor issues random accesses, but the address
for each access depends on the loaded value of the previous one, forcing
the processor to stall until the previous load is complete. In this case,
the latency cost is the highest, and cannot be reduced unless the data are
located in the best latency effective tier.

In addition to pattern evaluation, some tools are dedicated to providing
memory object analysis. RTHMS [113] is a memory analysis and advisor
that is designed to provide the developer with hints on where to allocate
memory. It uses Intel PIN [91] to collect metrics about how the memory is
accessed, when in the execution workflow and how frequently. With these
statistics and the information about the system, the library advises the
programmer with consideration for the limited size of each memory and the
interplay between them. This approach provides post-mortem information
in order to improve later runs which can be very helpful when tuning an ap-
plication. The emphasis on the temporal locality in addition to the memory
location allows for more complex optimisations and data movement.

Similarly, CoMerge [42] extends the analysis with the utilisation of dif-
ferent memory tiers by multiple applications collocated on the same com-
putational node. This tool provides recommendations for heterogeneous
memory sharing between applications in order to avoid seeing critical data
moved out of memory. It introduces the notion of the co-benefit factor of an
application which provides a means of selecting the memory to be prioritised
into fast or slow memory while limiting the performance penalty.
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2.3.2 Proposed solutions

Although many proposals have been suggested to resolve this matter, none
propose a real abstracted view of the system’s memory. Describing and
addressing memory is very useful, but not sufficient for portability. Some
tools like M&MMs may help by having a code self adapt when being run
on a new platform, without the need to reanalyse the access patterns or
change the numerous allocations to explicitly use new memory technolo-
gies as they become available. Describing memory requirements in terms of
prioritised attributes may be more suitable for increasingly heterogeneous
systems where simple hierarchy does not reliably describe the increasing dif-
ferences in characteristics (i.e. latency, bandwidth, volatility, etc.). More-
over, it enables reusing highly specialised pre-existing libraries that provide
partial support for heterogeneous memory systems.

Table 2.5 summarises the different level of support available with the
different frameworks, programming models and libraries. A ‘?’ marks cases
where no data were available, or when the answer is entirely implementa-
tion dependent and it is not possible to provide a single definitive answer.
As shown, most of the frameworks and programming models do not provide
ways of mitigating the allocation cost or reuse allocated data as the alloca-
tion is offloaded to high-level APIs. Many recent programming models are
based on C++ which limits the availability of other languages despite their
broad use in the high-performance computing industry.

Additionally, a low level library approach was preferred. A library seems
the option that provides the best integration into users’ chain of compila-
tion, as it would not rely on any specific compiler or compiler version al-
though the explicit management of the data layout may be more tedious.
Moreover, libraries are less likely to inhibit compiler optimisations.

Finally, the objective was to provide a solution generic enough to be
used for application written in C, C++, Fortran or Python. Hence it felt
natural to develop it in C as its wrapping would be straightforward for most
languages and would work across platforms.
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SICM 3 3 3 5 5 3 5 3 3 5

tcmalloc 3 5 5 5 5 3 5 3 3 3

Umpire 3 5 5 3 3 3 5 3 3 3

† Limited support available via wrapping libraries. ‡ Compiler support in progress.
* Support added in OpenMP with version 5.0 [120] to support allocation into memories
described by traits. § Support added in OpenMP 5.1.

Table 2.5: Memory management libraries and memory support.
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2.3.3 Summary and opening

Memory systems are complex and diverse, and using them efficiently re-
quires an understanding of their characteristics and the specifics of the
data manipulated. On the other hand, this diversity create new issues that
need to resolve. Not all systems are supported by the current software so-
lutions, and the emergence of memories often requires modifications to the
code. Moreover, the plurality of memories implies a increased complexity
of data placing and data tracking. Data placing is of utmost importance
when it comes to performance, as the capacity to select and move the data
to the best memory systems avoids starvation and stalling. The following
chapter presents a study of a certain class of regular data distributions, and
presents a new algorithm that aims to improve data redistribution between
two regular distributions.
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Efficient use of heterogeneous memory requires data placement manage-
ment across the different memory tiers. The preliminary work to address
this issue was the study of regular data patterns and their distribution
across multiple agents. This led to the question of how to compute minimal
data transfer to exchange information in order to redistribute data.

HPC applications and libraries have frequently moved parallel data from
one distribution scheme to another, for reasons of performance. In mod-
ern times, a resurgence of interest in this data redistribution problem has
emerged due to the need to relocate data distributed across one Producer
grid onto a different distribution scheme across a Consumer grid. In this
chapter, the efficiency of algorithms used to perform redistribution is stud-
ied, and it is shown how the best methods from the literature are still depen-
dent on the number of processors in both grids. A new algorithm ASPEN
is described, developed jointly with Adrian Tate. It exploits cyclic patterns
and relations in the distribution better, is not dependent on the total num-
ber of processors and is thus well suited for use in a workflow management
system. This chapter presents a preliminary implementation of the algo-
rithm within such a workflow system and shows performance results that
indicate a significant performance benefit in data redistribution generation.
The material presented in this chapter is based on the work that led to the
publication of the article [55], enriched with the remarks and questions of
the community that attended the presentation and engaged afterwards at
Euro-Par 2018.

3.1 Introduction

Explicit data movement libraries and tools are used in HPC applications,
coupled models, ensembles and workflows, to communicate data between
distinct applications through various means. In many HPC workflows, a
simulation running on M nodes (the Producer Grid or Producer) writes a
large amount of data to another job running on a possibly distinct set of re-
sources (the Consumer Grid or Consumer). Although this data movement
pattern is far from new, it has become a common concern in modern times
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due to the prevalence of data-intensive workflows, coupled climate/environ-
ment applications and combined workflows of HPC with data analytics or
AI. Many approaches exist to provide data movement between programs
including in-situ frameworks, job couplers, in-memory databases and file-
system approaches. In this chapter I describe a library for communicating
data between jobs over the interconnect fabric. Moving data over the inter-
connect, directly from memory has the benefit that many fewer data copies
are incurred, but has the significant hurdle of needing to explicitly manage
the parallel data movement in order to move the data. This problem of
explicit data redistribution management is the focus of this chapter.

A good deal of work (reviewed in Section 3.3) has explored the cost and
benefits of explicit data redistribution, typically to a different distribution
scheme within the same processor grid. While sharing many qualities with
the classical data redistribution problem, so called Producer-Consumer re-
distribution or M:N node redistribution exhibits significant additional com-
plications arising from the fact that the two grids reside in different jobs and
lack awareness of the other’s characteristics including distribution scheme.
Cray has developed a library called the Universal Data Junction (UDJ)1

that provides the missing information and allows distinct jobs in distinct
grids to package, send and receive parallel distributed data over the high-
performance interconnect as well as other resources that may be preferred.

In this work, the focus is on the algorithmic machinery that is required
in order to allow a Producer and a Consumer Grid to communicate the cor-
rect data, at minimal expense in a scalable fashion. The reason for placing
so much emphasis on the cost of redistribution is that the operations cannot
easily be offloaded or performed asynchronously and thus incur direct over-
head on the simulation code, which is often intolerable. The redistribution
process can be decomposed into three distinct parts: (1) indexation, which
compute the index and size of blocks of data to be exchanged; (2) packing
(unpacking), which copies the data to (from) the exchanged buffer; and
(3) communication, which convey the buffer from the producer to the con-
sumer. The benefice for the whole communication of improving the first

1https://gitlab.com/cerl/universal-data-junction
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part is hard to evaluate, as the three part are orthogonal to each other.
Mainly, the packing and communication costs are very closely related to
the overall amount of data that needs to be exchanged, while it is not nec-
essarily the case for the indexation operation2. As shown in [65, Tables 2, 3
and 5], the indexation time is not scaling with the amount of data to index.
However, the amount of data to be moved is a strong factor of the pack-
ing and communication time, which is limited by the memory bandwidth
and the network characteristics. For example, in [65, Table 3], for a 1-d
BLOCK-CYCLIC of size 500, over 8 producers to a 1-d BLOCK-CYCLIC
of size 3 over 5 consumers, for 80 000 elements to data, the indexation time
is the biggest contribution to the total time (4.3 ms indexation, 3.1 ms pack-
ing, 2.9 ms communication); on the other hand, for 20 000 000 elements, the
packing time is 1395 ms and the communication time is 800 ms. Hence,
for one given redistribution scheme, the indexation fluctuated from 40 % to
0.14 % of the total redistribution time. Yet, the improved performance of
memory and network may lead to an increased influence of the indexation
time to the total redistribution operation. As shown in the different equa-
tions in Section 3.4, the time complexity of the redistribution has multiple
factors, including the number of producers, number of consumers, and the
relative size of the two BLOCK-CYCLIC distributions. While this index-
ation may be cached, two major applications benefiting from an improved
redistribution algorithm are the resiliency over defective nodes which re-
quire a load balancing with a redistribution of data, and an elastic scaling
of resources during execution. Both these applications require to redo the
indexing computation.

In Section 3.3, it is shown that classical algorithms and those in the
literature display running times that are proportional to the number of
remote processors from the perspective of either the Producer (i.e. remote
means Consumer) or the Consumer (i.e. remote means Producer) grid. In
the exascale era, it is expected that simulation jobs may run on millions of
compute cores. Hence, this dependence on remote grid size may become
intolerable.

2See Section 3.4 for the complexity of each algorithm.
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In Section 3.4 a new approach is described. It exploits three types of
periodicity in cyclic data distributions, resulting in a lower complexity re-
distribution algorithm and one that does not depend on remote grid sizes.
Section 3.5 shows the results of this new approach versus the classical algo-
rithm and some of the most used and well-regarded algorithms published
in the literature.

3.2 Background

For this chapter, the regular redistribution problem is defined in the same
way as [60] using updated producer-consumer terminology: given a d-
dimensional array A on a set of Producer resources (processors and memory)
Rproducer that uses some distribution scheme Dproducer we wish to move all
the data to another set of resources Rconsumer using some other distribution
scheme Dconsumer. Dproducer and Dconsumer represent arbitrary array element
mappings across each dimension of the array. The global array indices of
A are given by G1, . . . , Gd. The set of distribution schemes of primary in-
terest are BLOCK, CYCLIC and BLOCK-CYCLIC, as presented in [37]
and shown in Figure 3.1. Since k-d BLOCK-CYCLIC is a generalisation of
BLOCK, CYCLIC and 1-d CYCLIC, only the former case is studied in this
chapter. The different combinations shown in Figure 3.2 are obtained from
lifting [37]: (1) by applying a distribution per dimension (e.g. Figures 3.2-a
to 3.2-c); (2) by applying a distribution per dimension but ignoring one (or
more) of the dimensions, e.g. in Figure 3.2-d the column-dimension is ig-
nored (cf. *) and the rows are attributed in a cyclic (round-robin) manner;
or (3) by applying a distribution to a logically flattened data structure, e.g.
Figure 3.2-e shows a (cyclic)-distribution applied to a 2D-array as if it was
a 1D-array with a row major data layout.

Like [60] and [119], the LDD (Local Data Descriptor) approach is used,
but its representation was ignored since it is an implementation feature not
relevant to the algorithmic descriptions. Local data sizes of A on rank p are
given by Lp

1, Lp
2, . . . , Lp

d. Processors compose a d-dimensional processor grid
p1×· · ·×pd where pi, (1 ≤ i ≤ d) gives the number of processors in the grid
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(a) (cyclic)-distribution (b) (block-cyclic)-distribution (c) (block)-distribution

From [37, Fig. 3], the colour scheme has been changed for better readability.

Figure 3.1: The three common distributions of a one-dimensional regular
data structure over four places.

(a) (cyclic-cyclic) (b) (cyclic-block) (c) (block-block)

(d) (cyclic-*) (e) (cyclic)

From [37, Fig. 4], the colour scheme has been changed for better readability.

Figure 3.2: Various combinations of the common predefined distributions
applied to a two-dimensional regular data structure.

dimension i. The case study discusses two such processor grids Gproducer

and Gconsumer where the resources are assumed to be distinct though this is
not necessary. The mapping G2L(p, d) is defined as the function that maps
global indices to the local indices for processor p in dimension d, and the
inverse relation L2G(p, d) mapping local indices to global indices.

The non-triviality of redistribution of cyclic data can be illustrated by
the graphic example of Figure 3.3. A 2-d array is divided into 2-d partitions
using some block sizes b1

1, b1
2. The blocks of this partitioning are distributed

using a 2d block-cyclic distribution scheme across a producer grid of size
4× 4. The block ownership is denoted by labelling the blocks by processor
owner, round-robin style along each dimension (Figure 3.3-a). The objective
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Figure 3.3: Example of non-triviality of data index calculations for trivial
distribution across 4× 4 producer and 3× 3 consumer grids with different
block sizes.

is to redistribute the same 2-d data across a different consumer grid of size
3× 3 using different block sizes b2

1, b2
2 labelled similarly (Figure 3.3-b). For

any process pair (p, c) where p is in the producer grid and c is the consumer
grid, we can overlay the global data owned by each processor to begin
to ascertain shared indices, e.g. producer process (0, 0) (Figure 3.3-b) and
consumer process (0, 0) (Figure 3.3-c) superimposed in Figure 3.3-d. The
intersection of the superimposed data in Figure 3.3-e represents the global
indices that these two processors must directly exchange over the network
(i.e. the producer (0, 0) must send these indices and the consumer (0, 0) must
receive these indices). The d-dimensional situation is a direct extension of
the illustrated 2-dimensional case.

3.3 Related Work

The question of parallel data redistribution has been addressed many times,
both statically and dynamically as this question was central when dealing
with the imposed data distributions of early distributed memory program-
ming models such as HPF (High-Performance Fortran) [90,117]. Extensive
analysis has been performed on both the nature of block-cyclic distribu-
tion, and its relevance to distributed memory relations as it stands as a
generalisation of both block distribution and cyclic distribution. Multiple
improvements have been proposed taking advantage of certain character-
istics of this kind of data distribution [60, 65, 117, 119]. These solutions

59



CHAPTER 3. DATA REDISTRIBUTION WITH ASPEN

also focused on the message scheduling part of array redistribution, which
is beyond the scope of this chapter. Petitet and Dongarra [115] described
techniques for redistribution taking into account the severe alignment re-
strictions induced by the architecture, as well as further treatment of the
scheduling.

Thakur et al. compared different solutions and presented both specific
and general solutions varying the size of the blocks but restricted to fixed
size process grids [128, 129]. The techniques presented rely on computing
the source and destination for each element of the array outside of where
it was possible to use improvements due to any common factors between
the two block-cyclic sizes. Ching-Hsien Hsu et al. [66] also described some
optimisations for specific cases where the two block-cyclic distributions have
a common factor, but with an irregular number of processors. In their more
generic approach [65] the authors provide a thorough proof of the algorithm.
The algorithm presented in this chapter, although very close in principle,
is based on LDD (Local Data Descriptor) usage and does not enforce the
sizes to be relatively prime numbers, allowing simpler generation of the final
scalar product.

3.4 Data Redistribution Algorithms

From the literature, the redistribution problem has been expressed as: given
two possibly different regular distributions of data over two grids P and C

with distributions DP and DC , for each pair of processes (p ∈ P, c ∈ C) find
the intersecting elements in Dp∩Dc. The general idea when addressing the
redistribution problem is to compute the intersecting blocks of data be-
tween the ranks. Each block is characterised by its starting index, its length,
its dimension and its destination. As stated in [119], a multidimensional
distribution can be expressed as a cross-product of multiple one-dimensional
distributions. Using this approach, the general solution for a multidimen-
sional approach is presented in Section 3.4.1, while Sections 3.4.2 to 3.4.5
focus more specifically on the required block comparisons.
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3.4.1 General Problem

Algorithm 1 Base algorithm for redistribution
. Each rank performs the following operations
Input

P Producer Grid
C Consumer Grid
DP Producer Distribution
DC Consumer Distribution

Output
Iranks Set of blocksd (set of tuples)

1: for d← 1 to ndims(Data) do
2: blocksd ← ComputeIntersection(P d, Cd, Dd

P , Dd
C)

3: Id
rank ← Id

rank ∪ blocksd

4: end for

Algorithm 1 presents the outer loop over the dimensions of the array.
This algorithm generates the sets of blocks describing how to scatter the
local data. In this algorithm, ComputeIntersection refers to any of the
algorithms presented in Sections 3.4.2, 3.4.3, 3.4.4 and 3.4.5. The version
described here considers the computation of the complete redistribution. It
is however possible to pass the remote process coordinates to Algorithms 2
or 3 in order to compute the unique intersection with the local process. As
the full description of the intersecting blocks is created with a crossproduct,
any empty returned blockd would allow the algorithm to finish early in
this case. The final objective is to be able to generate the coordinates of
the blocks of consecutive data that belong to the grey areas of the matrix
represented in Figure 3.4.

3.4.2 Classical Algorithm

This algorithm presents the naïve way of computing the intersection, by
taking each block of the given local distribution and looking for an over-
lap by comparing its boundaries with those of each block of the remote
distribution. This comparison is performed for each process of the remote
grid.
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Inspired by [117, Figure 5].

Figure 3.4: Intersection figure of two 1-d data redistribution patterns.

Algorithm 2 Classical Redistribution Algorithm.
. Each rank performs the following for each dimension d
Input

P d Producer Grid
Cd Consumer Grid
Dd

P Producer Distribution
Dd

C Consumer Distribution
Output

Id
rank Set of tuples of the form (remoteRank, start, end)

1: Nlocal ← Number of local blocks owned by this rank
2: for remote← 1 to |Cd| do
3: Nremote ← Number of local blocks on remote rank
4: for localBlockId← 1 to Nlocal do
5: localBlock← getBlock(Dd

P , localBlockId)
6: for remoteBlockId← 1 to Nremote do
7: remoteBlock← getBlock(Dd

C , remoteBlockId)
8: Left← max(localBlock.start, remoteBlock.start)
9: Right← min(localBlock.end, remoteBlock.end)
10: if Left < Right then
11: Id

rank ← Id
rank ∪ (remote, Left, Right)

12: end if
13: end for
14: end for
15: end for
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The total number of operations is given by

OpsClassical = D · L ·R ·Nlocal ·Nremote (3.1)

where Nlocal represents the number of local blocks and L represents the
number of processes in the local grid dimension, respectively remote blocks
and remote grid dimensions are Nremote and R.

3.4.3 FALLS Algorithm

This algorithm [118] is one of the best versions found in the literature
for M:N node redistribution. The same idea is expressed in [60, 119], and
summarised in Algorithm 3. Although comparing boundaries block-by-
block, these results present a huge improvement over the classical algorithm
in terms of the number of block comparisons required.

The bounds are reduced by using the fact that the intersection of two
block cyclic distributions can be expressed as the union of some sets of block
cyclic distributions, each origin being the beginning of the intersection, each
block length being the length of the intersecting block and the distance be-
tween blocks3 being equal to the lower common multiple of the two original
strides. The result is that it is only necessary to compare blocks within one
stride S. In other words, for each element x in the found intersection then
x + n(S) is also inside the intersection, where n is all integers for which
x + n(S) remains smaller than the extent of the full array. Additionally, it
is only necessary to compare the blocks in the onwards direction and those
already checked can be ignored.

Compared to the classical algorithm, the reduction of the bounds dras-
tically reduces the number of blocks to be considered when evaluating the
intersection for big grids of data. The total number of operations is given
by

OpsFALLS = D · L ·R · N̂local · N̂remote (3.2)

where the N̂local and N̂remote represent the reduced number of local blocks
3Later referred to simply as stride.
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Algorithm 3 FALLS Redistribution Algorithm.
. Each rank performs the following for each dimension d
Input

P d Producer Grid
Cd Consumer Grid
Dd

P Producer Distribution
Dd

C Consumer Distribution
Output

Id
rank Set to tuples of the form (remoteRank, start, end)

1: Slocal ← local stride between blocks
2: Sremote ← remote stride between blocks
3: S← LCM(Slocal, Sremote)
4: Nlocal ← Number of local blocks owned by this rank
5: for remote← 1 to |Cd| do
6: Nremote ← Number of local blocks on remote rank
7: for localBlockId← 1 to max(Nlocal,

S
Slocal

) do
8: localBlock← getBlock(Dd

P , localBlockId)
9: firstIndex← max(0, dlocalBlock.start−remoteOffset−remoteBlksz

Sremote
e)

10: lastIndex←
min(1 + localBlock.start+localBlocksize−remoteOffset

Sremote
, Nremote,

S
Sremote

)
11: for remoteBlockId← firstIndex to lastIndex do
12: remoteBlock← getBlock(Dd

C , remoteBlockId)
13: Left← max(localBlock.start, remoteBlock.start)
14: Right← min(localBlock.end, remoteBlock.end)
15: if Left < Right then
16: for disp← 0 to |Datad|

S do
17: start← Left + disp× S
18: end← Right + disp× S
19: Id

rank ← Id
rank ∪ (remote, start, end)

20: end for
21: end if
22: end for
23: end for
24: end for
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due to searching only with one S. In theory then, Equation 3.2 resembles
Equation 3.1 but in practice, N̂ and N typically differ greatly with N̂ � N .

3.4.4 ScaLAPACK

Algorithm 4 describes the implementation of the redistribution algorithm as
proposed by the ScaLAPACK [32] library and presented in [117]. This algo-
rithm also bases its reduction of complexity by using the periodic structure
of the block-cyclic data-sets intersection. In [117], the authors also prove
the maximum bounds of the number of elements in the intersection is at
most LCM(Slocal, Sremote), henceforth reducing the intersection computation
to every element within the minimum between one stride S (as expressed
in 3.4.3), and the full extent of the array in that dimension. This algorithm
goes through all the elements within one stride, incrementing progressively
by block as in a merge part of a merge-sort algorithm in order to determine
overlap areas. The complexity of this algorithm is similar to the com-
plexity expressed in Equation 3.2. However, the number of comparisons is
marginally improved as the crawling always goes forward, contrary to the
FALLS algorithm, without the onward only comparison.

3.4.5 ASPEN Algorithm Description

To improve redistribution performance, a scheme can be developed, that
would exploit further qualities of the periodic nature of the distributed data,
and the known relationships between adjacent blocks. This approach is
called Adjacent Shifting of PEriodic Node data (ASPEN). To illustrate the
approach the following sections will describe the two remaining weaknesses
of the existing algorithms.

3.4.5.1 Periodicity of Remote Block Data

In the Algorithms 2 and 3 each local block’s position in the global scheme
is compared against multiple remote blocks (all remote blocks in the case
of Algorithm 2 and many fewer than all remote blocks in the case of 3).
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Algorithm 4 ScaLAPACK Redistribution Algorithm.
. Each rank performs the following for each dimension d
Input

P d Producer Grid
Cd Consumer Grid
Dd

P Producer Distribution
Dd

C Consumer Distribution
Output

Id
rank Set to tuples of the form (remoteRank, start, end)

1: Slocal ← local stride between blocks
2: Sremote ← remote stride between blocks
3: S← min(LCM(Slocal, Sremote), |Datad|)
4: for remote← 1 to |Cd| do
5: localBlockId← 1
6: localBlock← getBlock(Dd

P , 1)
7: remoteBlockId← 1
8: remoteBlock← getBlock(Dd

P , 1)
9: while localBlock.end ≤ S ∧ remoteBlock.end ≤ S do
10: Left← max(localBlock.start, remoteBlock.start)
11: Right← min(localBlock.end, remoteBlock.end)
12: if Left < Right then
13: for disp← 0 to |Datad|

S do
14: start← Left + disp× S
15: end← Right + disp× S
16: Id

rank ← Id
rank ∪ (remote, start, end)

17: end for
18: end if
19: if Left = localBlock.start then
20: localBlockId← localBlockId + 1
21: localBlock← getBlock(Dd

P , localBlockId)
22: end if
23: if Left = remoteBlock.start then
24: remoteBlockId← remoteBlockId + 1
25: remoteBlock← getBlock(Dd

P , remoteBlockId)
26: end if
27: end while
28: end for
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Algorithm 5 ASPEN Redistribution Algorithm.
. Each rank performs the following for each dimension d
Input

P d Producer Grid
Cd Consumer Grid
Dd

P Producer Distribution
Dd

C Consumer Distribution
Output

Id
rank Set of tuples of the form (remoteRank, start, end)

1: Slocal ← local stride between blocks
2: Sremote ← remote stride between blocks
3: S← LCM(Slocal, Sremote)
4: Nlocal ← Number of local blocks owned by this rank

. GTL is a global to local index conversion function.
5: for localBlockId← 1 to max(Nlocal,

S
Slocal

) do
6: localBlock← getBlock(Dd

P , localBlockId)
7: remote← localBlock.start

remoteBlksz mod |Cd|
8: offset← localBlock.start mod remoteBlksz
9: Left← localBlock.start

10: nextStartInblock← localBlock.start− offset + remoteBlksz
11: if nextStartInBlock ≤ localBlock.end then
12: Right← min(nextStartinBlock, |Datad|)
13: diff← Right− Left
14: for ps← Left to |Datad| by S do
15: start← GTL(ps)
16: end← GTL(min(ps + diff, |Datad|))
17: Id

rank ← Id
rank ∪ (remote, start, end)

18: end for
19: Left← Right
20: remote← (remote + 1) mod |Cd|
21: end if

. See end of the algorithm in Algorithm 5
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Algorithm 5 ASPEN Redistribution Algorithm (continued).
22: for Left to min(localBlock.end, |Datad|) by remoteBlksz do
23: Right← min(Left + remoteBlksz, localBlock.end, |Datad|)
24: diff← Right− Left
25: for ps← Left to |Datad| by S do
26: start← GTL(ps)
27: end← GTL(min(ps + diff, |Datad|))
28: Id

rank ← Id
rank ∪ (remote, start, end)

29: end for
30: remote← (remote + 1) mod |Cd|
31: end for
32: Right← min(localBlock.end, |Datad|)
33: if Left ≤ Right then
34: diff← Right− Left
35: for ps← Left to |Datad| by S do
36: start← GTL(ps)
37: end← GTL(min(ps + diff, |Datad|))
38: Id

rank ← Id
rank ∪ (remote, start, end)

39: end for
40: end if
41: end for

In fact, the need to perform more than one comparison ignores periodic
qualities of the data distribution since the constant stride should enable a
direct periodic comparison. Consider the code in Algorithm 3 lines 11–14.
This code searches over the loop of remote blocks (Algorithm 3 line 11) to
generate all remote RemoteBlockIDs, then inside that loop remoteBlock is
extracted using getBlock(Dd

C , remoteBlockId) (Algorithm 3 line 12). Left
and Right are then both generated using various extents of localBlock and
remoteBlock (Algorithm 3 lines 13 and line 14). This logic can be avoided
if a periodic offset is generated as follows

offset← localBlock.start mod remoteBlksz

with offset visually represented in Figure 3.5 and appearing in Algorithm 5
line 8.

The offset can be used to indirectly obtain the same information, with-
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remote

local offset
localProc

remoteProc
(remoteProc + 1) mod R

(remoteProc + 2) mod R

(remoteProc + 3) mod R

offset is a periodic difference that will mean a local-remote comparison
is valid for this local block when offset is greater than a threshold. The
leftmost part of local data maps to processor remoteProc. Adjacent
data on the local processor can be known to then map to remoteProc+1
(and repeated for any further adjacent blocks); R represents the remote
grid size in the considered dimension.

Figure 3.5: Illustration of adjacent shifting and periodic relations.

out making explicit comparisons with individual remote blocks, by checking
the inequality

(localBlock.start− offset + remoteBlksz) ≤ localBlock.end (3.3)

If condition 3.3 is true, then this particular local and remote block com-
parison overlaps on the left-hand side of the local block. This can be un-
derstood by seeing that the blue box of Figure 3.5 would be non-empty
when 3.3 holds. When it holds, remoteBlksz − offset elements will be
shared with processor remote. This is how ASPEN exploits the periodic
nature of remote data to avoid looking at all remote blocks.

3.4.5.2 Properties of adjacent Sub-blocks

In the case that condition 3.3 holds, some number of elements are shared
with processor remote. Instead of resetting knowledge with respect to
the rest of the local block, ASPEN exploits the fact that if a set of
global indices gl, . . . , gr of length less than localBlockSize map to pro-
cessor remote, and if some sets of global indices {gr+1, . . . , gr+p} with
p + (r − l) ≤ localBlockSize then localProc will also share indices with
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processor (remoteProc + 1) mod |Cd|. Similarly, if several blocks of size
remoteBlksz fit into the localBlock, then each full block will map to the
next processor in the remote grid. This approach is how ASPEN assigns
contiguous local sub-blocks to adjacent processors in the remote grid (adja-
cency shifting). Hence the loop over remote processors in Algorithm 2 line
6 and Algorithm 3 line 11, does not appear in 5. The number of operations
in Algorithm 5 is given by

OpsASPEN = D · L · N̂local (3.4)

Comparing this to Equation 3.2, a factor of R·N̂remote reduction in oper-
ations appears. The missing R term in particular will affect scalability since
each grid will not require distinct calculations for every process element in
the size of the remote grid. Theoretically then, ASPEN is expected to
scale significantly better with larger Producer or Consumer grids involved
in redistribution.

3.5 Results

The following tests were run on Cray XC30 systems, each node featuring
two Intel Xeon Haswell E5–2698 with 16 cores each (2.30 GHz). The bench-
mark was made of MPI applications independently computing the complete
redistribution from one 2D grid of processes to another 2D grid, varying the
dimensions, shape and size of each grid. The data was a fixed size 2D square
grid of ten thousand by ten thousand elements. The size was chosen arbi-
trarily such as it allows having at least one full stride, with different block
sizes (up-to 256), with a one-dimension grid of 32 processes. Because this
benchmark aimed at evaluating the redistribution performances, the com-
putations were only executed on the indices and no actual communication
of data occurred. In addition, changing the total size of data only penalises
the classical naïve approach, and would artificially improve the performance
gain of all 4 better optimised solutions.

Each case of block-cyclic to block-cyclic distribution was run at least 20
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times for all 5 methods: the naïve, the implementation of the algorithm pre-
sented in [60], the FALLS algorithm, the ScaLAPACK redistribution com-
putation algorithm, and the ASPEN version. The correctness of computed
intersection was checked by comparing with the naïve approach results, and
on later work by the Universal Data Junction library unit tests.

The main loop as shown in Algorithm 1 was timed. In order to limit the
impact of system related issues, all memory needed for the creation of inter-
section description sectors was pre-allocated before any measure of timing
was taken. Nevertheless, outliers may appear because of cache misses.

The process grids were made of 2 to 32 processes per grid, and the block-
cyclic sizes were one of 1024 by 1024, 256 by 256, 30 by 50 or 654 by 321.
The objective was to highlight performance behaviour in regular-to-irregular
redistributions, and the impact of partial blocks on the performance. The
block sizes were chosen arbitrarily, to range from 1 MiB to 1.5 kB, to vary
the number of blocks to be expected and, in definitive, the amount of com-
putation required. The last block size was chosen in order to test the impact
of irregular sizes, which hardens the computation of common factors. As
shown in Figure 3.6, the increase complexity ranges from 6× (ASPEN al-
gorithm, 2 × 4 to 1 × 2) to 64× (Guo/Nakata algorithm, 4 × 8 to 2 × 16)
when changing the consumer block size from 256× 256 to 30× 50.

ASPEN proved to be very robust over disturbance induced by irreg-
ularity in structures. The main influence over the execution time is the
number of remote processes per rank. As shown in Figure 3.6, when the
number of blocks is scaled by a factor ≈8.5 and ≈5 in each dimension,
timings scaled linearly for ASPEN, which is not dependent on the remote
number of blocks nor on remote grid dimension, while all other algorithms
scale with the square (or worse) of the grid length.

In the case of shrinking the grid by a factor 2 (left cases in Figure 3.6),
the second best case is at least 66 % slower than ASPEN (top). The indus-
try standard algorithm (ScaLAPACK) and the FALLS algorithm are gen-
erally very close in performance, and show better robustness to high number
of consumer blocks, contrary to the naïve approach and to the Guo/Nakata
one. The latter result was actually a surprise given the proximity in the
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algorithm between Guo/Nakata and FALLS. When combining a complex
change in the dimensions of the grid (shrinking one dimension, expanding
the second) with the change in block size, the ASPEN algorithm shows
a remarkable improvement in performance, being 12 times faster than the
next fastest algorithm. The naïve approach, is generally about 14 times
slower than the second fastest algorithm in every cases.

The results shown in Figure 3.7 show the influence of the variation of one
dimension of the consumer grid to the performance, and thus of the number
of remote processes. These suggest a strong influence on performance from
the number of remote processes. Since the R term can become significant
even with small grids, we see the performance begin to rise even for modest
grid exchanges. With ASPEN, the R term is absent and this effect is
limited, hence we can observe a limited variation in the results when adding
more remote processes. With large grid sizes, it is expected to see this effect
becoming critically significant.

The bottom figure shows the distribution of timings, and therefore, the
variability in the measurements. The diamonds correspond to the average
value (shown in the top figure) and the bold horizontal line in the box
is the median value. Although the timings are fairly short (hundreds of
microseconds), the times are not spread too widely around the average.
Moreover, the non-overlapping boxes show that our results are statistically
significant.

3.6 Conclusion

This chapter demonstrated that the ASPEN algorithm can generate redis-
tributions more efficiently (both theoretically and in practice) when moving
cyclic data across distinct processor grids. As there is a growing requirement
to perform such redistributions across larger grids, the ASPEN algorithm
may be impactful. However, the computation time being relatively small
when compared to the actual data exchange, the effect may be limited.

As presented in Equation 3.4, when compared to Equation 3.1 and Equa-
tion 3.2, a strong theoretical improvement is expected in the indexing phase
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of the redistribution. Our small-scale experiments are effectively showing
an improvement, and tests from Hsu et al. in [65], which method described
in their paper has a complexity similar to ours, are also confirming such
results at a larger scale. Moreover, if a currently used algorithm, such as
the one used in ScaLAPACK, is expected to scale efficiently for large scale
applications, our approach, which does not depend on the number of remote
processors, should provide an even better scaling factor.

A direct application of it is used in the UDJ (Universal Data Junc-
tion) project developed internally at Cray (now Hewlett Packard Enterprise
(HPE)). The total cost of moving data across jobs will depend on many fac-
tors, such as the cost of generating the redistribution, the cost of buffering
data and message latencies. The UDJ library is used to send complex dis-
tributed data across production HPC jobs, and the ASPEN algorithm is
used to compute the dimension and offset of data chunks for inter-process
communications.

In addition to participating in improving communication, this algorithm
can also be used in order to optimise memory management. The hetero-
geneity of memory technologies and the limited space available makes the
matching between data and memory spaces increasingly relevant on the
path to exascale.

Yet, managing heterogeneous memory is tedious and usually non-portable
as it requires adapting the code and identifying the appropriate NUMA node
that corresponds to the targeted memory. In the next chapter we shall
present our approach for how to provide a unified memory interface for
heterogeneous systems.
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CHAPTER 4. MEMORY MANAGEMENT: MAMBA

4.1 Introduction

Computing systems have consistently increased in complexity over time.
The memory has been diversified and its management has been complexified
by the processing technologies, which may embed memory in its package
isolating it from the rest of the system. Not all memory can be directly
accessed. Exchanging data with GPUs requires the usage of dedicated APIs
(CUDA, HIP, OpenCL). In addition, new technologies such as non-volatile
memory also require specific support in order to enforce the coherency in
addition to the persistence.

As a result, with each new generation of supercomputers, application
developers have to spend a notable amount of time porting applications in
order to benefit from the improved technologies. Multiple approaches have
been studied to leverage this burden: as a framework (e.g. OpenCL, SYCL,
etc.), as a language extension (e.g. OpenMP with targets) or as a library
(e.g. Umpire, SICM, etc.).

Each of these approaches presents its benefits and drawbacks. Using a
framework or a language extension may provide good performance, although
at the cost of being supported by fewer compilers. Using a framework is
a more global approach which requires more work redesigning the code.
The library approach provides a great compiler support with often few
modifications to the code.

Different needs are addressable in concert. First, the portability issue.
A satisfactory solution would be portable across compilers and, if possible,
across languages. For this reason, C seems like a good choice as it also
provides a good interoperability with C++ and Fortran. The set of functions
provided to interact with memory systems is kept minimal to facilitate the
integration of present and future libraries. Secondly, a high-level view of
the memory system and of the data organisation seems convenient in order
to find opportunities to improve performance.

The top-level library, Mamba, has been designed in collaboration with
Adrian Tate and Tim Dykes to provide a flexible solution to data layout
across heterogeneous memory environment. Its approach to memory het-
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erogeneity is to consider it as a graph instead of a hierarchical tree. The
execution environment (framework used) is taken into account along with
the target location for the data (either CPU or GPU). And for simplicity
of usage, automatic detection of the environment is provided, based on the
broadly used library hwloc [21].

The primary objective of the library is to provide an extensible, modular
solution that allows for composition between multiple memory providers.
The second objective was to provide a generic framework to support the
application of different allocation strategies, effectively extending the usage
of pre-existing libraries. The unity of the API also allows for parameter
exploration when looking for a tailored solution. It facilitates the compari-
son between different memory tiers and execution environment, with little
change of the code. It may help to choose the right memory provider, the
right execution space (CPU or GPU), and the right data layout. One final
usage is the possibility to partition and control the memory usage, enforcing
at run-time the total allocation of memory, on a per-execution context and
per-memory system granularity.

In this chapter, Section 4.2 presents the related work and explains the
need for a new solution. Section 4.3 introduces Mamba and the structures
deemed necessary to describe the memory and the interactions with it. Sec-
tion 4.4 shows the evaluation of the Mamba memory allocation system, and
finally, Section 4.5 will conclude and summarise before presenting further
work.

4.2 Related Work

The effort to provide solutions for application developers has been carried
out by many actors of the high-performance computing community, and rec-
ommended by the International Exascale Software Project Roadmap [41].
Some frameworks supporting heterogeneous computing environments also
provide some support of data locality (e.g. addressing the locality in OpenMP
is presented in [67, 107]). Most frameworks lack the support for describing
regular data structure and complex indexing like tiling and would require

79



CHAPTER 4. MEMORY MANAGEMENT: MAMBA

the user to first reshape the array before moving the data, in contrast to
OpenMP since version 5.1.

The Kokkos [47] C++ programming model includes array-based abstrac-
tions with polymorphic layouts which may be used to construct tiling ab-
stractions, along with the concept of memory and execution spaces (anal-
ogous to memory space and execution context in Mamba), however the
extensive use of C++ language features makes such a model difficult to use
in C and Fortran.

During the past 5 years many complementary libraries have been de-
veloped in national laboratories as part of the on-going effort to reach the
exascale. First, SICM (Simplified Interface to Complex Memory) [80] has
been created to support a wide range of memory technologies with a unique
API. It also provides tools to benchmark some memory characteristics such
as the bandwidth and latency for performance analysis. For its wide support
of technologies it was important to interface the Mamba library memory
management with it. However, data movement and data layout also have to
be taken into account to achieve good performance across applications. In
addition, memory location is not sufficient when hybrid codes are being run
both on CPUs and GPUs. Umpire [19] provides a support for GPU and ex-
poses a single API for allocation and movement of data across the different
memory systems. It also proposes a set of generic algorithmic strategies to
apply on top of the allocators to improve performance. This library forms
the base on top on which the RAJA library [20] is built. AML [114] focuses
on memory layout across complex memory topology. It depends on memory
segments and data transformation to create asynchronous optimised data
movement in order to increase the performance by improving data locality
and memory utilisation.

Several libraries have addressed the memory heterogeneity problem [23,
106,113,136]. Nonetheless, providing a simplified memory abstraction may
be advantageous for an easier integration to applications. As explained
in [106], it is considered that the memory broker needs to have a global
view of the complete memory system to provide shared data capabilities.
However none consider the requirement of knowing the execution target
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required to interact with dedicated framework like CUDA.
As the range of compilers supporting the most recent additions to the

standards for frameworks and programming models is necessarily restricted,
these two approaches were discarded. It was thus decided to provide a li-
brary in order to support the different requirements outlined in Section 4.1.
Table 2.5 summarises the support provided by the main current program-
ming models, frameworks and libraries.

4.3 Mamba memory manager

A Mamba Array (mmbArray) is a data container that forms the core ab-
straction of the Mamba library, introduced in [45]. This array-like object
encapsulates user data, which may be allocated internally or can be pro-
vided by the user on construction, and is the typical entry point for data
allocation, movement, and access via the Mamba library. The structure of
a Mamba Array is explicitly described by the user, which enables a flexible
mapping of logical array indices to physical byte offsets in a memory space.
This allows for coarse-grained data movement on a complex computing sys-
tem.

The underlying data contained in a Mamba Array may be subset, dupli-
cated, or moved between memories, either explicitly by the user or implic-
itly by the Mamba runtime. Such a subset is contained in a Mamba Tile
(mmbArrayTile). A Mamba array consists internally of a series of such tiles
describing blocks of data (which may or may not be contiguous) stored in a
specific memory space and available for access in a specific execution con-
text, illustrated by Figure 4.1. Each tile is independent and can be moved
or duplicated independently from the rest of the array.

To support such a structure, a memory management library was devel-
oped to provide a portable abstraction of the memory system in order to
facilitate the underlying memory operations without the burden of dealing
with each library-specific APIs. The library supports C, C++ and Fortran,
and provides tools for an easy access of a tiled array, both on CPUs and
GPUs.
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Figure 4.1: Illustrating the concept of tiled Mamba Arrays, where each tile
may reside in a different memory space as defined by the memory system
model outlined in Section 4.3.1.

4.3.1 Memory System Model

Mamba container objects are based on an abstract model of the memory
system that aims to encapsulate the variety of memory types available on,
or near, a typical compute node. These are conceptually grouped together
into an abstract memory space (see Figure 4.2), and different memory types
are exposed as memory spaces from which allocations can be made. An un-
derlying generic memory management library implements this memory sys-
tem model, providing mechanisms to allocate and transport data between
memory tiers through a uniform interface. As illustrated in Figure 4.3, each
type of memory is considered a memory layer in which memory spaces of a
specific capacity may be created. Each space is accessed by a space-specific
memory interface, and data allocations are provided within an execution
context that describes how that allocation may be accessed. Each of the
components is described in more detail in Section 4.3.2.
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CPU
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mbig

Figure 4.2: An abstract memory space, consisting of three types of memory:
mfast, mworking, and mbig.

Mamba Resource Manager
mmbMemLayer: DRAM mmbMemLayer: HBM
mmbMemSpace:
32 GB · · ·

mmbMemInterface

mmbAllocation: N Bytes

mmbExecutionContext:
CPU

mmbMemSpace:
8 GB · · ·

mmbMemInterface

mmbAllocation: M Bytes

mmbExecutionContext:
GPU_CUDA

An example where two memory spaces exist, each associated to a different memory layer.
Each space has an associated memory interface, from which an allocation object may be
obtained and used in the appropriate execution context.

Figure 4.3: The data structures that form the memory abstraction in the
Mamba library.
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4.3.2 Memory system architecture

4.3.2.1 Layer

A Memory Layer (mmbMemLayer in the Mamba API), represents a partic-
ular type of memory with a defined set of characteristics. Hardware avail-
ability defines which memory layers are available and their characteristics
such as high bandwidth or low latency.

Each layer’s availability is discovered automatically where possible dur-
ing library initialisation via the hwloc library [21]. During the library ini-
tialisation, the hardware topology exposed by hwloc is parsed, looking for
addressable memory systems and devices (GPUs, DIMMs, NVDIMMs).
Nodes found which expose the same characteristics are aggregated in order
to keep a global view of the system memory, although at the cost of accu-
rateness. However, the detection alone does not ensure the availability of a
layer. The availability of a requested layer depends on the support of the
memory provider (See Section 4.3.2.2), or on the external library that were
given at configure-time.

When the automatic discovery is disabled, the user has to define the
spaces (see Section 4.3.2.6) manually using the proper layer.

4.3.2.2 Provider

AMemory Provider (mmbProvider) abstracts the library (or set of libraries)
used to realise the defined micro-set of memory operations. A minimal set
of operations has been defined to ensure portability across libraries. The
three operations are allocation, deallocation and copy. The library provides
a basic support for a limited number of layers (DRAM and GPUs with
CUDA support). However, the library provides compatibility layers for
other memory libraries such as SICM [80] or Umpire [19]. The Mam-
ba Memory Management compatibility mechanism enables other external
memory providers to be interfaced in order to widen the range of supported
hardware while keeping a unique API. A provider is expected to support one
or more memory layers, such as the addition of one provider is enriching
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the overall support of the library, by supporting a new technology or by
adding a new feature.

4.3.2.3 Strategy

A Strategy (mmbStrategy) is a set of algorithms that can be used in order
to mitigate the cost of memory calls. It can be used to implement fixed-
sized quick allocators, or slab allocators on top of any memory providers.
In addition, the strategies can be used to add specific behaviour such as
thread safety or utilities such as internal monitoring of memory operations.

The strategies are defined as modules that can be composed in any order.
Adding a new strategy requires the creation of one function that enqueues
the strategy modules and the respective arguments in the right order. Thus,
for example, creating a thread-safe slab-allocator requires enqueuing the
thread-related module and a pointer to its arguments, followed by the slab-
allocator module and a pointer to its arguments. The execution path is built
statically, using C variadic functions. This enables the execution path to be
known at compile-time, while providing a modular, flexible and mixable set
of independent functions. Hence, the addition of a new strategy can be the
result of a new composition of modules, or the addition of a new submodule.
One special strategy module (Basic) is responsible for calling the requested
memory provider via a static indirection table, and one specific module
initialises the variadic arguments dequeueing.

4.3.2.4 Interface

A Memory Interface (mmbMemInterface) acts as an interface to a specific
memory space, providing a unified mechanism to allocate, copy, and free
memory. A memory interface may have a specific strategy, that defines the
behaviour of the interface. For example, this may enforce thread safety
during allocation of a critical resource, or define the type of memory allo-
cator used (e.g. pooled vs. slab). The interface also depends on a memory
provider for memory allocation and deallocation operations. The modu-
larity between memory providers aims to provide the best of the two —
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The selection of a strategy enqueues the corresponding strategy modules. The Basic
module is responsible for interfacing the strategy with the memory provider requested.
The top interface is configured with MMB_STRATEGY_NONE as strategy with MMB_NATIVE
as provider. The bottom interface is configured with MMB_STRATEGY_POOLED as strategy
with MMB_SICM as provider.

Figure 4.4: Schematic view of the mmbMemInterface structure.

or more — worlds, by allowing the user either to swap between providers
depending on use-cases or to benefit from a special feature. For example,
SICM supports memory allocation to Intel Optane™ DC PMM but Umpire
offers memory operation logging and replay. Swapping from one provider
to the other is as simple as changing the initialisation parameters.

4.3.2.5 Execution Context

With the development of the heterogeneity of computing systems, some
memory systems are not available to the processor and rely on their own
software stack with asynchronous callback to perform memory operations.
A program usually relies on a constructor’s API (or the open source equiv-
alent) to manage memory. The execution context (mmbExecutionContext)
is defined in order to determine how memory is allocated and made avail-
able in a space. The execution context provides a means of choosing the
programming model through which memory must be made available. For
example, NVIDIA GPU device memory could be provided within a CUDA,
HIP, or OpenACC execution context.
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4.3.2.6 Space

A Memory Space (mmbMemSpace), represents a size-limited, addressable,
instantiation of a memory space corresponding to a specific memory layer.
The size may be limited by a call to the API or based on the hardware-
defined value. Users will typically obtain a memory space by specifying
a layer, an execution context and a size, although the memory space may
be configured in diverse ways. The space’s responsibility is to limit the
amount of allocated memory to a fixed value. This enables a user-side
software-managed memory-sharing solution. The space is also responsible
for keeping tracks of the memory interfaces, acting as a factory when an
unavailable strategy+provider couple is being requested.

Memory space configuration The memory space configuration API
can be used to specify two aspects of a memory space behaviour. First, the
total amount of memory this memory space accounts for. The value can
be modified during the execution, although the value cannot be reduced
below the amount of memory already allocated. A flag can be used to
set the limit to infinity. The second aspect of a memory space that can
be configured is the default interface to be provided on request. These
parameters correspond to the interface configuration options as presented
in Section 4.3.2.4. They define the default interface that gets generated
when the memory space gets instantiated. Additional interfaces are created
on user request with customised allocation strategies (for example, a pooled
and/or thread-safe allocator) or using a different provider.

4.3.2.7 Memory Manager

The memory management exposes a centralised structure (mmbManager)
that may be used as a single entry point to the memory operations via its
spaces and interfaces, although the library supports the definition of multi-
ple independent managers. The Mamba library memory system supports
both automatically-generated and user-provided descriptions of the mem-
ory system. When built with hwloc support, the available layers (HBM,
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mmbManager *mngr;
mmb_manager_create(&mngr);
// Set the space configuration
mmbMemSpaceConfig *gpu_space_config;
mmb_memspace_config_create_init_default(&gpu_space_config);
mmb_memspace_config_interface(gpu_space_config, MMB_NATIVE,

MMB_STRATEGY_NONE);
mmb_memspace_config_set_size(gpu_space_config, 2UL << 30);
// Request memory spaces for GPU
mmbMemSpace *gpu_space;
mmb_manager_register_memory(mngr, MMB_GDRAM, MMB_GPU_CUDA,

gpu_space_config, &gpu_space);

Listing 4.1: Example of a manual registration of a mmbMemSpace for a CUDA
based GPU with 2 GiB of memory.

NVDIMM, GPUs, etc.) are identified during mmbManager initialisation and
corresponding memory spaces and execution contexts are instantiated using
the system exposed characteristics. A default memory interface is created
for each memory space, however additional interfaces may also be created
on user request with customised allocation strategies (for example, a pooled
and/or thread-safe allocator). An API is also provided for the user to de-
scribe the different memory spaces they expect to be using, in case the
library is built without hwloc support. Each space requires an appropriate
memory layer, a size, and an execution context for construction.

4.3.2.8 Allocation

The Allocation Object (mmbAllocation) is the result of a successful memory
request. It provides an abstract container for a memory allocation in a spe-
cific memory space. Allocation objects are provided by memory interfaces,
and passed into generic allocation, copy, and free routines. This abstrac-
tion is similar to the smart-pointers in C++, and contains metadata about
the memory allocation (e.g. size, ownership of the underlying data) along
with provenance information such as the interface through which it was
allocated. The concept of ownership allows, for example, sub-allocations to
be created as slices of existing allocations, or to execute operation with the
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mmbMemSpaceConfig *dram_space_config;
mmb_memspace_config_create_default(&dram_space_config);
// Request memory spaces for cpu and gpu
mmbMemSpace *dram_space, *gpu_space;
mmb_request_space(MMB_DRAM, MMB_EXECUTION_CONTEXT_DEFAULT,

dram_space_config, &dram_space);
// NULL equivalent to default options
mmb_request_space(MMB_GDRAM, MMB_GPU_CUDA, NULL, &gpu_space);
// Request memory interface
mmbMemInterfaceConfig dram_interface_config =
{.provider = MMB_PROVIDER_DEFAULT, .strategy = MMB_POOLED};

mmbMemInterface *dram_interface, *gpu_interface;
mmb_request_interface(dram_space, &dram_interface_config,

&dram_interface);
mmb_request_interface(gpu_space, NULL, &gpu_interface);
// Allocate buffers on host and gpu and copy between
mmbAllocation *host_buffer, *device_buffer;
mmb_allocate(n_bytes, dram_interface, &host_buffer);
fill_host_buffer(host_buffer);
mmb_allocate(n_bytes, gpu_interface, &gpu_buffer):
mmb_copy(device_buffer, host_buffer);

Listing 4.2: Example construction of CPU and GPU based memory
interfaces, allocating a buffer for each memory space and copying between
with unified interface. Memory spaces are assumed to be constructed
automatically during library initialisation.

library on buffers not allocated with Mamba.

However, because the C language lacks the polymorphism and overload-
ing capabilities C++ provides, the user has access to the allocated buffer only
through either the appropriate field of the struct (.ptr), or by considering
the allocation handle as a pointer to a pointer to the buffer and can directly
dereference twice the allocation object to access the data. The handles are
allocated independently from the rest of the memory management, as they
can be used to wrap user provided pointers or subsections of previous al-
location. The allocation is made via a thread-safe slab-allocator that is
shared by the different memory managers instantiated.
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4.3.3 Memory System Configuration

The library has been developed with the objective of portability, modularity
and adaptability. At configuration time, the library tries to find all the
supported third-party libraries available, prioritising the path given as a
parameter if any. This defines which providers and execution contexts have
to be included in the library. Configure time and compile-time also allow for
default behaviours to be defined, but these can be overwritten at execution
time by setting the environment or during run-time through the API.

The default behaviour can be used to define a preferred GPU framework
as execution context, but also the provider and strategy for the default
interface created by a space when instantiated. The build-time and compile-
time settings define the system-wide default behaviour for the whole library.
Environment settings define the behaviour on a per user basis. Calls to the
API enable a customised execution during run-time.

This library was designed and developed as a tool for exploring and
mixing parameters for application tuning. This led to an easily customisable
and extensible library.

4.3.4 Memory Discovery

As stated before, during manager initialisation, the topology of the machine
can be automatically discovered using the hwloc toolbox. The topology re-
ported exposes the different addressable memory tiers in addition to the
caches. The GPU related memory is exposed by setting the flag HWLOC_
KEEP_NVIDIA_GPU_NUMA_NODES to 1 as the corresponding NUMA nodes
would usually be hidden by default. The NUMA nodes are iterated us-
ing hwloc_get_next_obj_by_type(3), looking for a subtype (MCDRAM,
DaxDevice or GPUMemory for either HBM, NVDIMM or GPU memory
respectively). If no subtype is found, the NUMA node is considered as a
DRAM memory. NUMA nodes sharing the same subtype are aggregated
into one layer, adding all the memory together. Further work may improve
the data locality by creating NUMA-aware provider and layers.
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Finally, the execution contexts are also automatically inferred by iter-
ating the devices of type co-processor or GPU, as exposed by hwloc_get_
next_osdev(3). The backend found states whether the device is managed
by CUDA or by OpenCL (the two execution contexts detected for GPUs).

A memory space is generated for each layer with more than 0 B of mem-
ory detected. In the case of GPU memory, a memory space is instantiated
for each of the detected execution contexts.

The further integration of hwloc ≥ 2.3 is planned by considering the
memattrs in order to provide relative memory addressing by requesting a
best layer latency-wise, or a bandwidth optimised layer for example.

4.4 Evaluation and results

The support for heterogeneous memories is summarised in Table 4.1, and
displayed for comparison with the other similar memory broking libraries.
As aimed for by design, Mamba is able to support to support all targeted
languages but also all targeted memory tiers. Some of the memory support
may rely on other cited libraries (e.g. memkind and libnuma), but our
library also adds allocation mitigating strategies, a unified API and support
for C, C++ and Fortran.

The performance of the library was evaluated using a selection of bench-
marks from the repository in [83]. This set of benchmarks is initially ded-
icated at comparing mi-malloc [84] with other memory providing libraries.
The selection of benchmarks was based on the API required as the cur-
rent implementation does not provide support for reallocation or memory
aligned allocation as an example, while still keeping a variety of alloca-
tion patterns. All of the benchmarks have been fitted with a wrapper for
the main function in order to parse the memory configuration parameters
without disturbing the main application parameters. This allowed having
a single application that could be run with any of the currently supported
memory providers. In order to evaluate the overhead of the proposed so-
lution, additional versions were developed to interface different memory
providers directly. This step required extra work as the different libraries
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memkind 3 3 3 5 5 3 5 3 3 5

SICM 3 3 3 5 5 3 5 3 3 5

tcmalloc 3 5 5 5 5 3 5 3 3 3
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Mamba 3 3** 3** 3¶ 3‖ 3 3 3 3 3

** When the library is configured with memkind or SICM.
¶ When the library is configured with CUDA, HIP or OpenCL. ‖ When the library is
configured with ROCm, HIP or OpenCL.

Table 4.1: Updated Table 2.5, memory management libraries and memory
support.

where exposing a variety of interfaces, e.g. passing by side-effect a pointer
to the allocated buffer instead of returning it, or requiring the size of the
allocation when deallocating.

Each of the presented benchmarks have been run 10 times, on a Cray
XC50 cluster, on a single node with two 22-cores Intel Xeon CPU E5–2699
v4 running at 2.20 GHz, with 128 GB of DDR4–2400 memory. Libraries
and benchmarks were compiled with the Cray compiler version 11.0.1 and
ran on Cray Linux Environment release 7.0.UP01.

Mamba was configured to support system provided malloc, jemalloc
provided malloc, SICM and Umpire via the C wrapper provided. As most
of the benchmarks used are written in C++, the C API was used to interact
with the library. Umpire was configured without any GPU support but
with support for NUMA enabled. The binaries with the -mmb suffix use
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the Mamba library. In the figures, the mode is indicated after the ‘+’ sign
and corresponds to whether the memory is provided by the library linked
(system) or by a provider selected through the Mamba library. Times are
provided in minutes and seconds, separated by a colon. Times and memory
footprint are reported using /usr/bin/time

4.4.1 alloc-test

The alloc-test, by OLogN Technologies AG [1], is a very allocation-intensive
benchmark doing millions of allocations in various size classes, all less
than 1 kB. The test is scaled such that when an allocator performs al-
most identically on alloc-test1 as alloc-testN it means that it scales lin-
early. The application was configured to do up to 108 allocations in a single
thread, and in each of the 16 threads. The experiments were not scaled
on all cores because of the disproportionate execution time which would
not let the execution terminate because of timing out. The results are
shown in Figure 4.5. Only the single threaded version’s results are shown.
For the multi-threaded version, alloc-test, alloc-test-jemalloc and
alloc-test-wrapped-malloc scale without issue. The Mamba version,
however, serialises the update to mmbMemSpace in addition to the alloca-
tion of a mmbAllocation handle, which ultimately serialises the allocation
requests. The results are similar, although the times are multiplied by 30
while the number of allocations are multiplied by 16.

In addition to the Mamba, SICM, Umpire and jemalloc interfaced ver-
sions, an additional version was provided that allocates data with an extra
level of indirection. As presented in Section 4.3.2.8, Mamba returns the
pointer to the allocated data wrapped into a structure. Hence, accessing the
data requires an extra level of indirection when dereferencing the pointer to
the mmbAllocation structure. This supplementary benchmark is used to
evaluate whether returning a wrapped allocation induces an overhead, and
found that, for the test case, the overhead was 24 %.

The relatively bad performance of the SICM library is widely linked
to the fact that the SICM library only allocates memory using mmap(2)
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Figure 4.5: Results for alloc-test binary, single thread.

despite the small size of the allocated objects (<1 KiB). This analysis is
confirmed by the alloc-test-mmap benchmark which presents results much
more similar to test-alloc-sicm than alloc-test for example, and a
similar memory footprint. The reported timings also show that out of 4
minutes spent by the application, about 3 minutes were spent in system
calls.

Although the usage of the Mamba library adds a significant overhead,
we observe that the relative difference in performance between the providers
is preserved for the heterogeneous memory providers. However, the dif-
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ference between the two malloc implementations is inverted despite the
difference in memory footprint being preserved, along with the difference
in page faults. Moreover, the enabling of the pooling strategy for making
fewer calls to the provider libraries improves drastically the performance.
The reported performance for the SICM implementation shows the best im-
provements. For a slab size of 1 MiB, the performance of the allocation is
improved by 50 %. A 32 MiB slab allocation reduces the allocation overhead
to a similar level as using malloc via Mamba, disregarding the underlying
memory provider. The size of the memory pool is defined at initialisation
using the mmbOptions parameter.

Even more, our experiments show that using libraries wrapped in Mam-
ba along with strategies can improved the performance compared to using
the library alone. For both SICM and Umpire, using pools of 32 MiB via the
Mamba library, we achieved better performance than we did with the native
library allocation. We can then conclude that Mamba may allow for easy
and fast benchmarking for both multiple libraries and multiple strategies,
without requiring the tedious work of rewriting the implementation of the
allocating function wrapper in all the different cases. The flexibility of our
solution provides support for an easy configuration.

The difference in performance is due to the number of memory pools
that are being required. For a 1 MiB pool, 2462 were generated, while
80 only were required with a size of 32 MiB. However, the search for a
suitable pool is linear in the number of pool for each allocation and all
newly allocated pools are added at the end of the queue which adds up
a significant overhead to the research process. The strategies that were
developed are mainly proofs of concepts, their implementations have room
for performance improvements.

4.4.2 malloc-large

This benchmark tests the allocation of a 2 MiB memory block, with its
writing, in order to ensure the creation of the memory pages. The original
version of this benchmark produced odd results for the version based on
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the system provided malloc. Following the examples shown in [25], in or-
der to ensure that the loop writing the data in the newly allocated buffers
would not be optimised out, empty volatile assembly code was inlined be-
fore and after the writing loop. The timing produced in Figure 4.6 is the
timing of the whole application execution. One point of interest of this
benchmark is that the buffers are embedded into unique_ptr C++ contain-
ers and automatically discarded, and the memory freed, between iterations.
This enabled the evaluation of the complexity of integrating the library into
a modern C++ workflow. Moreover, this test-case enabled the evaluation of
the base memory footprint of the library at around 10 MB, with no alloca-
tion. For the series of 5000 allocations, we observe that the SICM library
consistently generates over 2 560 000 minor page faults, without the use of
huge pages, both when used natively and when used with Mamba. A minor
page fault happens when a page is present in memory but not checked in
the memory management unit. This locality issue is probably the origin of
the substantial difference compared to any other versions of the benchmark.

4.4.3 larson

The larson server benchmark by Larson and Krishnan [81] allocates and
frees between threads. They observed a behaviour they called bleeding in
actual server applications, and the benchmark simulates this.

The different tests show an overhead of 3 % when using Mamba com-
pared with the system provided malloc allocation. Contrary to other tests,
the number of minor page faults seems stable when the memory is allocated
with SICM, and no major difference in timings is observed in Figure 4.7.
This result shows that for more realistic workloads, the library has a limited
negative impact on performance, while enabling more flexibility and hetero-
geneous support. As with the alloc-test case, the larson-wrap version
uses the system provided malloc implementation, but returns a pointer to
the buffer pointer. This was used to evaluate the impact of the added indi-
rection on the benchmark performance. This impact is shown to be below
1 %.
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Figure 4.6: Results for the malloc-large benchmark, single thread.

4.4.4 xmalloc-test

This test was developed by Lever and Boreham [86] and Christian Eder. An
updated version from the SuperMalloc repository [2] is used and it was ex-
tended to adapt it to the evaluated set of allocators. This is a more extreme
version of the larson benchmark with 22 purely allocating threads, and 22
purely deallocating threads with objects of various sizes migrating between
them. This asymmetric producer/consumer pattern is usually difficult to
handle for allocators with thread-local caches.

Contrary to other benchmarks, this one is written in C instead of C++.
It seems to impact negatively the performance of the Umpire library due to
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Figure 4.7: Results for the larson benchmark, 44 threads.

the wrapper that may disallow some optimisations. Micro benchmarking
further, using a C++ intermediate module to provide the allocation func-
tions, a 3.6 % improvement appears in favour of the C++ version, both in
time and in the number of free operations realised per second. However
this result did not show in the overall timing of the execution.

Overall, this benchmark also shows a limited overhead when allocating
and deallocating memory using our library as the penalty is about 8.2 % in
the worse case (xmalloc-test against xmalloc-test-mmb+system).
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Figure 4.8: Results for the xmalloc-test benchmark, 44 threads.

4.5 Conclusion

This chapter presented a tool created with the objective of simplifying the
development, maintenance and evolution of applications with respect to
the ever more complex memory environment. The metadata describing
the layout of each array is carried throughout the program and into the
library to optimise data locality. In addition to providing a unique API for
allocation, deallocation and copy of data for a range of standard libraries for
better library composability, it also provides a great flexibility to simplify
parameter exploration in order to tune an application. Signatures differ
between memory providers — e.g. the deallocation function may require

99



CHAPTER 4. MEMORY MANAGEMENT: MAMBA

the allocated size, or the allocation function may return the value by side-
effect — hence writing comparative benchmarks can be a tedious task.
Providing a simple and unique memory management interface may facilitate
the convergence between the multiple efforts to address the data locality in
question in HPC systems [130].

Results show that despite a high overhead for highly concurrent, highly
intensive allocations, the usage of basic mitigation strategies can improve
overall performance, while providing support and compatibility across li-
braries. For less intensive workloads, the measured overhead is between
3% and 8.2%.

Moreover, this library enables mitigation strategies and algorithms to
be implemented once and expected to work with any additional memory
provider. This allows for an adaptability of the code to emergent technolo-
gies and libraries. Using mitigation strategies can improve overall perfor-
mance despite the library overhead. Associated to the automated tiling and
data layout and placement tools, this library simplifies the prototyping of
applications and the tuning for performance.

Future work includes a better use of memattrs from hwloc in order to
provide relative memory selection (e.g. request a copy of data to a better
memory location bandwidth-wise). The addition of a support of our library
for Python is also being studied. This library is expected to provide im-
proved data locality which would improve the performance of applications
on the newest platforms.

In addition to a high-level description of the memory system and its us-
age, some algorithms may provide a well-known pattern of memory trans-
fers. The next chapter presents the case-study of implementing a memory
management system in C for a high-level language such as Python.
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Python has been gaining traction for years in the world of scientific
applications. However, the high-level abstraction it provides may not allow
the developer to achieve their peak performance. To address this, multiple
strategies, sometimes complementary, have been developed to enrich the
software ecosystem either by relying on additional libraries dedicated to
efficient computation (e.g. NumPy) or by providing a framework to better
use HPC scale infrastructures (e.g. PyCOMPSs).

This chapter will present a Python extension based on SharedArray that
enables the support of system-provided shared-memory and its integration
into the PyCOMPSs programming model as an example of integration to
a complex Python environment. The impact such a tool may have on
performance is evaluated in two types of distributed execution-flows, one
for linear algebra with a blocked matrix multiplication application and the
other in the context of data-clustering with a k-means application. The
results show that with very little modification of the original decorator
(3 lines of code to be modified) of the task-based application the gain in
performance can rise above 40 % for tasks relying heavily on data reuse on
a distributed environment, especially when loading the data is prominent
in the execution time.

5.1 Introduction

Through the convergence between HPC (High-Performance Computing),
AI (Artificial Intelligence) and Big data, one area of focus is the availabil-
ity of common tools that can bring the performance of the former to the
techniques and algorithms used by the latter two. One big actor of this evo-
lution is the development of the Python ecosystem, which provides a large
set of tools and libraries while being designed for code readability, main-
tainability and enhancement over time. However, the ease of use comes at
the cost of a complex memory management behind the scenes, and complex
data structures that get abstracted for the user. The computation intensity
required by scientific applications cannot suffer such an overhead to be able
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to provide performance. To overcome this, we use a dedicated data struc-
ture that provides contiguous buffers to make the best of modern processors
and architectures.

In addition, frameworks like COMPSs [89] provide a seamless way to
parallelise workloads across large scale infrastructures, notably for Python
with the binding provided by PyCOMPSs [125]. However, because of the
complexity of Python’s internal structures, the communication between
nodes and between processes is more complicated compared with using lan-
guages such as C or Fortran. Python’s class internal structure relies heavily
on pointers to numerous structures, which could not be easily shared be-
tween processes. In order to benefit from Python memory allocation mit-
igation strategies, the fine grain management of memory can depend only
on the Python interpreter, but care has to be shown when dealing with
internal reference counters due to the risk of early deallocation done by the
garbage collector.

In this chapter is presented a Python extension based on SharedAr-
ray [97] that enables the support of system-provided shared-memory for
Python arrays, and its integration into the PyCOMPSs programming model.
This demonstrates how the CPython interface in conjunction with the
NumPy library can provide tools for memory management outside the
Python interpreter, and how to integrate it in a complex framework. More-
over, a way these capabilities can optionally be manually tuned by the user
with Python meta-programming features is shown. Related work is pre-
sented in Section 5.2, while the design and implementation details will be
explained in Section 5.3. Section 5.4 will present the performance evalua-
tion of the solution over the original PyCOMPSs version and Section 5.5
will conclude and present further work.

5.2 Related Work

Multiple approaches for shared-memory have been proposed in the liter-
ature. OpenMP [35, 108] supports multi-platform shared-memory paral-
lel programming in C/C++ and Fortran. The OpenMP API defines a
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portable, scalable model with a simple and flexible interface for developing
parallel applications on platforms from the desktop to the supercomputer.
Since OpenMP is a shared-memory programming model, most variables in
OpenMP code are visible to all threads by default. OpenMP was extended
to support tasks and their data dependencies. The tasks, as other OpenMP
constructs, can operate on private arguments, but also have access to shared
variables.

OpenSHMEM [29] is an effort to create a specification for a standardised
API aimed at unifying the different SHMEM libraries available. SHMEM
is a communications library that adopts the PGAS (Partitioned Global
Address Space) programming models. The key features of SHMEM include
a one-sided, point-to-point and collective communication, a shared-memory
view, and atomic operations that operate on ‘symmetric’1 variables in the
program.

However, previous approaches do not support the Python programming
language. In Python there are two main issues to overcome when accessing
data from parallel tasks: one is the GIL (Global Interpreter Lock), a mutex
that protects accesses to Python objects, preventing multiple threads from
executing Python bytecodes at once [43]. The second issue is related to the
impossibility of accessing Python objects with a reference address. This is
only possible with NumPy objects, which can be accessed through a link in
a C memory space.

The Python 3.8 multiprocessing module provides the SharedMemory
class for the allocation and management of shared-memory to be accessed
by one or more processes on a multicore or SMP (Symmetric Multiprocess-
ing) machine2. The class permits distinct processes to potentially read and
write to a common (or shared) region of volatile memory. The design is
similar to the solution used, both for the shared-memory and the integra-
tion with NumPy. However, a fine control over the memory management
(authorising read-on-write with no synchronisation) and the sharing mech-

1Variables are not globally visible, but there are strong assumptions about where
they are located across nodes, making them effectively visible.

2https://docs.python.org/3/library/multiprocessing.shared_memory.html
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anism (System-V or file backed-up with a customisable path) is needed
along with portability with Python 2, hence the choice of using a custom
approach with a Python extension.

Python 3.8 also provides other means of data sharing between processes
and their children. Although all workers are spawned from a common parent
process, using it to check the type of variables in order to add them to
shared-memory would have been a breach of abstraction. It would also
have been needlessly complex and inefficient as it would have added an
extra access to the serialised version on file to check on the types.

The Plasma In-Memory Object Store3 is another approach that supports
holding immutable objects in shared-memory so that they can be accessed
efficiently by many clients across process boundaries. Plasma supports two
APIs for creating and accessing objects: a high level API that allows storing
and retrieving Python objects and a low level API that allows creating,
writing and sealing buffers and operating on the binary data directly. A
drawback of Plasma is that it does not support user defined objects, and
previous tests with PyCOMPSs did not succeed.

5.3 Design and Implementation

This section will present the design that drove the implementation decisions
and the pre-existing framework on top of which the solution was developed.

5.3.1 PyCOMPSs

PyCOMPSs is the Python binding for COMPSs, a task-based parallel pro-
gramming model for distributed computing platforms. In such a paradigm,
the unit for parallelism is the task. Tasks are identified by the application
programmer, who also indicates the directionality of the task parameters
and, if required, other metadata such as the type or collection size when
applicable. The parameter directions can be IN, OUT or INOUT . Some of

3https://arrow.apache.org/docs/python/plasma.html
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the metadata can be inferred by the static analysis of the code, but some-
times it is mandatory for the user to make it explicit. With this information,
the COMPSs runtime builds at execution time a task graph, where nodes
denote task instances and edges data dependencies between tasks. From
this task graph, the COMPSs runtime is able to decide which tasks can be
executed in parallel and which ones must be executed sequentially. It then
performs all the actions required to execute the application tasks on the
computing platform. The COMPSs runtime is deployed as a master-worker
application, by instantiating a master process on one node and multiple
worker processes on others. The master orchestrates the application exe-
cution and makes decisions while the application tasks are executed by the
worker processes.

The COMPSs runtime is written in Java, but exposes layers of binding
for C and Python. The Python specific binding is called PyCOMPSs. As
previously stated for COMPSs, PyCOMPSs applications can be executed on
distributed computing platforms (i.e. clusters or clouds). Yet, the COMPSs
runtime gives the programmer a virtual single memory space. To this end,
the COMPSs runtime transfers the data from one node to another when
needed. In order to reduce the number of transfers, the locality is exploited
as much as possible. However, when the application is being run across
multiple nodes, they do not share a common shared-memory space.

While in Java a single process per node with multiple threads is de-
ployed, in the case of Python applications the process of transferring data
between tasks is especially delicate. Due to the Global Interpreter Lock,
which prevents good parallelisation schemes when using threads as the ac-
cess to the critical resource serialising the executions, all worker nodes are
started as independent Python processes. Hence, the different Python pro-
cesses do not share the same memory space. As a result, in order to be
able to transfer data between two processes, the object to be sent from one
task to another is serialised and written into a file. The task that needs the
object will read the file and deserialise the object. Additionally, if the pro-
cesses are in different nodes, the file containing the serialised object needs
to be transferred from one node to the other.
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Thus, any optimisation to sharing data within one node is critical to the
PyCOMPSs worker performance, and providing node-local, system-wide
shared-memory support could be greatly beneficial for the application’s
performance.

The tasks themselves are distributed to the different workers by the Java
master. The task details, such as function name, parameter values or file-
names, are sent to one specific Python instance on each node that is respon-
sible for distributing the tasks to the members of the Python multi-process
environment. This process is also responsible for the synchronisation and
termination of the task executing processes. The scheduling decisions de-
pend on the availability of workers and on the data already held by them
from previous tasks. However, there is no weighting of the cached data
depending on their size. Hence, a single-entry array is weighted the same
as a 1 GB array in the decision making process.

5.3.1.1 Objects as files

As the COMPSs model requires communication channels across nodes and
across languages and software stacks, it needs a portable way to exchange
data. In addition, the synchronisation between tasks is done based on data,
which may need to be buffered after being generated and before getting
used. To solve this issue, the framework serialises the data into files, and
names them following a naming scheme which reflects both the unique data
identifier and its version. The unique data identifier is unique across the
whole application. The version of data is a counter that gets incremented
every time the data is modified. That way, tasks depending on the new
state of the data can still be spawned before all the tasks depending on the
previous state of the data have started.

Although providing a lot of flexibility, this management also limits the
possibility of using shared-memory based on the data identifier and version
unique key. In order not to overwrite data, any memory sharing capabilities
would have to maintain this versioning capability, or would need to limit it
to read-only variables.
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One other constraint to the shared-memory extension is the capacity
to release the memory when it is not needed anymore. As scratch space is
limited, so is system provided shared memories. If the data is mapped by the
system and backed by the file, it may need some costly I/O (Input/Output)
operation from memory to disk when physical memory is necessary. If
the data is mapped using the SHM POSIX API, the data is pinned and
cannot be swapped. In addition, because of the impossibility of applying
swap operations, the total amount of shared-memory available is limited
(although configurable by the system administrator). Whether for costly
operation avoidance or for resource freeing, the need to release memory on
demand or when the data is not to be used anymore is essential. COMPSs
uses the versioning of data and the task scheduler information to release
unnecessary memory and scratch-memory space. PyCOMPSs also exposes
an API to explicitly request the deleting of a file or an object, effectively
releasing the resources held.

5.3.1.2 Python Decorator

As part of its model, PyCOMPSs uses Python decorators in order to an-
notate functions and describe some characteristics that cannot be inferred.
The task decorator selects the methods that will become tasks at execution
time. Decorators are also used to give hints about the parameters, such as
size or datatype, leading to a better parameter management. Describing
the directionality of data, the availability or the type of data, or the data
structures are examples of metadata to be added using the decorator. I
extended the metadata collection so the data can be marked as recurrent
read-only (see Figure 5.1). The annotated Python code is called taskified, as
the selected method will be distributed to the different workers at run-time.

The RRO flag is only applied to objects which are instances of NumPy
class ndarray or whose class inherits from NumPy class ndarray. Task
arguments marked as such will be loaded into the system shared-memory
or retrieved from it if previously added. This provides much better perfor-
mance to the whole system compared with adding every array-based object,
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1 @task(c=INOUT)
2 def multiply(a,b,c):
3 import numpy
4 c += a*b

(a) Task decorator before. The
type and directionality for a and
b are automatically inferred.

1 @task(a={Type:IN,RRO:True},
2 b={Type:IN,RRO:True},
3 c=INOUT)
4 def multiply(a,b,c):
5 import numpy
6 c += a*b

(b) Task decorator with recurrent read-only
flag enabled. RRO can be replaced with the
string ‘recurrent_read_only’.

Figure 5.1: Example of usage of the new decorator.

as the loading to the shared-memory adds an overhead to the inevitable de-
serialisation. Details are provided in Section 5.3.2.1.

It is however possible to mitigate the extra cost with a high reuse of the
data. From the original PyCOMPSs interface, each task parameter has to
be deserialised when starting a new task, potentially requiring that it be
read from file. Applications that rely on multiple reads of the same data
through successive iterations (e.g. for data mining applications) can gain in
performance when run as tasks using PyCOMPSs as shown in Section 5.4.
Moreover, the addition of a simple decorator keeps the high productivity
provided by the programming-model [7].

5.3.1.3 Internal Dictionary

In order to keep track of each shared-memory segment, each worker has
its own lookup-table to track which data are already mapped in memory.
Each worker being its own Python process, there is no need for synchroni-
sation as the memory address space is not shared. Following the Pythonic
way, the testing for an existing reference is done by first checking in the
dictionary to see whether the entry exists. If not, the algorithm tries to
load the requested entry from shared-memory. The shared-memory allows
the library to access data that has been deserialised and shared by another
process. If the target entry does not exist, an exception is raised by the
runtime. This exception triggers the deserialisation of the requested ar-
ray and the creation of the proper shared-memory segment. There is no
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synchronisation across the different workers on one node. However, as the
deserialised data are necessarily the same because of the naming scheme, a
read-on-write operation would not risk creating an incoherent state. If the
array has to be either loaded from memory or deserialised from file, then
the corresponding entry is added to the lookup-table. Each entry is indexed
by its runtime-defined file name, based on its identifier and its version. The
runtime guarantees that this name is unique and kept across tasks if the
variable is only read during concurrent or previous tasks. If the variable is
modified, the name of the variable is ensured to be different as explained
in Section 5.3.1.1. This dictionary is also used in order to deregister all
memory segments on request or once the application terminates.

5.3.2 SharedArray, a Python extension

In order to provide the persistence on the working nodes and the sharing
ability between processes, an external library was required to interface with
the operating system. The library SharedArray provided most of the char-
acteristics one could hope for in this case. This extension to Python provides
the interface to create arrays shared either via the POSIX SHM API, or with
the memory mapping of a file. The library uses the NumPy [131] library
with a CPython interface. However, some limitations made it unsuitable in
its current state.

NumPy is a library widely used in order to improve the performance
of Python applications. It provides an interface to interact with the data
without requiring any copy to memory in addition to using a contiguous
buffer. This buffer can be externally provided using the C API of the library.
The CPython part gives a native interface between C and Python, and is
the entry point to any C-based extension library for Python.

5.3.2.1 Module API extension

In order to give access to the system’s shared-memory to Python appli-
cations, an extension to the base language was necessary. While [97] is
quite thorough, it only allows the creation of zero-initialised arrays. I de-
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cided to extend this library in order to provide an enriched API that adds
a copy constructor to NumPy based arrays.4 The CPython API provides
access to the internal state of the variables, objects and arrays inside the
Python interpreter, and allows the SharedArray library to alter them. This
enables the creation of a new object of class ndarray with its contiguous
buffer pointer referencing the newly allocated shared-memory region in-
stead of the original buffer. The shared buffer is initialised with a copy of
the values contained in the original array whose internal reference counter
is decremented. However, this implies that the original array used for the
deserialisation of the file must still be freed along with its corresponding
internal data structures.

In addition to the copy constructor modification, the behaviour for pre-
existing names had to be changed as well. Previously, an exception was
raised when a name was already taken while registering an array. Prevent-
ing this exception to be raised would have required an external synchronisa-
tion on the Python side and the addition of a global lock at the node level
to ensure mutual exclusion when accessing and loading objects to mem-
ory. Moreover, as the shared-memory can be based on the mapping of a
file, which could belong to a parallel file system, the synchronisation would
have needed to be done across all Python workers, potentially across mul-
tiple nodes. This would have added unnecessary complexity to the frame-
work and extra communications costs. As presented in Section 5.3.1.3, and
because the read-on-write risk was limited, the race condition on deseri-
alisation was ignored. The same file being deserialised, data coherency is
ensured although the location is shared, which prevents an unnecessary
synchronisation.

5.3.2.2 Shared-Memory Model

There are many standard ways of using the system’s shared-memory. Two
options were primarily evaluated. The first method uses mmap(2) to create
a file-backed up shared segment. The processes mirror the file, mapping

4The extended version of the SharedArray is publicly available at https://gitlab.
com/cerl/third-party-contributions/shared-array.

111

https://gitlab.com/cerl/third-party-contributions/shared-array
https://gitlab.com/cerl/third-party-contributions/shared-array


CHAPTER 5. SHARING MEMORY IN PYCOMPSS APPLICATIONS

it into their virtual memory space. Any modification to the memory is
eventually propagated to the file to maintain coherency between processes.
The second method uses shm_open(2) to create a memory segment held
by the system that is persistent after the program ends if not freed. The
new memory page created by the system can then be mapped into multiple
processes’ memory space.

Although the shm_open(2) shared-memory implementation exposes lim-
itations unlike mmap(2), the higher performance allowed by the absence of
disk operations encouraged the choosing of the former. It also has the
advantage of resolving issues due to potential parallel file system name
conflicts across cooperating nodes and high latency induced by the envi-
ronment. Moreover, using the shm_open(2) shared-memory API imposes
restrictions on the maximum number of segments that can be kept at one
time, and the maximum size of one segment. The values can be usually
found in the /etc/sysctl.conf system file, and defaults to 2 097 152 pages
of 4096 bytes which limits it to 8 gigabytes, across 4096 segments of shared-
memory. But these limitations, either imposed by the operating system or
by the environment, can be overcome by having the settings changed by
the system administrators.

5.4 Results

The tests were executed in the MareNostrum III cluster [26], hosted at the
Barcelona Supercomputing Center. The codes ran on two nodes. One is
the master node, run in exclusive mode in order to avoid sharing resources
with any worker, while the second node executes the tasks with 16 processes
(workers), one process per core. Each node features two Intel SandyBridge–
EP 20M E5–2670/1600 8-cores at 2.6 GHz. As the design relies on the
system shared-memory, the decision was made to restrict the execution to
one worker with 16 processes on a single node as all cores would be used
without over-subscription and would best show the limitation of the system
if attainable. The objective of the experiments is to show an improvement in
execution time by reducing the overall time required for deserialisation. In
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order to limit the influence of external parameters that would add noise to
the time measured, all data were stored locally on the nodes’ disks, without
using the parallel file system.

The first application to be tested was k-means, as the memory access
is simple and quickly shows the improvement that can be achieved with
careful selection of data for reuse. The second test-case is a task-based
blocked 2D matrix multiplication, as it presents some advantages of reusing
data but with a more complicated data access pattern.

5.4.1 K-means clustering application

K-means is a widely used clustering algorithm often used by machine learn-
ing applications. This algorithm is a numerical, unsupervised, non-deter-
ministic, iterative method that partitions a set of points into k clusters,
centred on one point. Each point belongs to exactly one cluster and con-
tributes to the centre’s position.

K-means applications have many parameters that influence the behav-
iour of the application. For the purpose of testing, only four variables were
evaluated. These variables were chosen as they were expected to present the
most significance in showing the effect of this contribution. The application
was run with a fixed number of fragments, corresponding to the number of
processes acting as workers. Each fragment represents a subset of the full
set of input points. It is an arbitrary selection of number of points

number of fragments points
to distribute evenly the work-load between tasks. Further work could in-
volve testing the influence of increasing the number of fragments without
modifying the number of workers and the effect of loading from the system
shared-memory compared to loading from the file-system. However, this
test requires proper management of the task scheduling as it would require
the task to be loaded to a new worker in order to expose the need for deseri-
alising the corresponding subset of points before its addition to the internal
dictionary.

The details of the different test-cases and their timings, both with
and without the shared-memory extension, are gathered in Table 5.1 on
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page 118. The test separately studied the variation of the number of points,
of the maximum number of iterations, of the number of dimensions and of
the number of centres. The result tables show the average timings, but
also the 95 % confidence interval of the difference in means, along with the
p-value, calculated with the Welch’s t-test.

The default number of centres is set to 4. This parameter influences the
amount of computation and the time spent on each task, as each point has
to be compared with each centre in order to define its cluster. Increasing
the number of centres increases the time required per iteration but has
very little influence on the time required for serialising and deserialising
the data. The centres, however, also need serialisation and deserialisation;
their number is usually negligible compared to the number of points per
fragment. In addition, since the centres are modified between two iterations,
the framework would not allow any gain from reuse of memory and the array
would always need to be deserialised. However, diminishing the number of
centres increases the risk of early termination too much because of the
convergence criterion. The dummy test-case 1 from Table 5.1 that only
requests one centre shows this effect, as the convergence happens in two
iterations, as shown in the traces gathered (Figure 5.2-a). The present
study does not show much influence of the number of centres in percentage
of improvement (cases 1 to 5) as the number of centres is lower by several
orders of magnitude compared to the number of points. The performance
improvement is expected to degrade for a smaller number of point

number of centres ratio as the
fraction of total time dedicated to I/O will decrease as well.

The maximum number of iterations influences the overall time of the
application. For a data-loading/unloading dominated application such as
k-means with PyCOMPSs, this parameter would artificially increase the
performance gain. In the studied cases, the increase of the maximum num-
ber of iterations (case 14) only increases the application running time, with
little difference in performance compared to the reference (case 4). The
difference in means changed from 9–10% for case 4 to 10–11% for case 14.

Finally, the last two parameters are the number of points and the num-
ber of dimensions. These parameters have a direct influence on the per-
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formance gain as they both define the amount of data to be loaded, and
thus, the potential improvement by keeping this data in memory instead
of loading and unloading it at each iteration. point and centre are vec-
tors of doubles. Each vector’s length equals the number of dimensions.
The number of dimensions usually represents different variables influencing
the points being clustered. The number of dimensions only influences the
amount of data in the fragment and centres. However, the number of points
also influences the amount of data to be loaded when returning the labels
array which contains the affiliation of each point to one of the centres.

The points used for the tests were generated randomly, with a constant
seed shared across cases. The points were generated using a uniform random
number generator. The affiliation criterion was computed by finding the
minimum Frobenius norm between a point and each of the centres. The
epsilon distance used to evaluate the convergence criterion of the centres
was set to 1×10−9.

The algorithm used to taskify and parallelise the k-means application is
the same as the one used in [7] and shortly presented in a simplified version
in Algorithm 6 for the record. The distributed part of the algorithm is the
call to the cluster_partial_sum function. The reduction of the array of
centres into the accumulation variable centresacc is serialised on the master
side, as well as the concatenation of the label lists. The function returns
the computed centres along with the association between points and centres,
data carried by labels.

The algorithm executes three main steps. First, generate_fragments
randomly generates the points of all fragments which will be distributed to
the different tasks. The centres are initially common for all fragments, al-
though each application of cluster_partial_sum will modify them. clu-
ster_partial_sum is used in order to compute the labels for each point
and the centre’s position based on the clustered points. The position of one
cluster centre is the barycentre of the fragment’s points belonging to this
cluster. Finally, the centres’ positions are reduced by calculating the means
of the centres coordinates, for each centre. Hence, centresacc contains the
mean of the means of each fragment clusters. If between two iterations,
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Algorithm 6 Main loop for distributed k-means application.
Input

N Total number of points to cluster
k Number of clusters
f Number of fragments
max_iterations

Maximum number of iteration
ε Convergence criterion

Output
centresacc Vector of centres
labels Association between points and centres

1: (ctrs, lbls)← generate_centres(k)
2: fragments← generate_fragments(N, f)
3: for iter← 1 to max_iterations do
4: centresacc ←

−→0
5: labels← empty_list()
6: centresold ← ctrs
7: for all frg ∈ fragments do
8: cluster_partial_sum(frg, ctrs, lbls)
9: list_append(labels, lbls)
10: centresacc ← centresacc + 1/f · ctrs
11: ctrs← centresold

12: end for
13: if ‖centresacc − centresold‖ > ε then
14: ctrs← centresacc

15: else
. Early exit when convergence criterion is met.

16: break
17: end if
18: end for
19: return (centresacc, lbls)
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the difference between the previous and the new position of all centres is
below the threshold ε, the function returns without executing the remaining
iterations.

The function cluster_partial_sum takes as parameters one fragment,
the corresponding labels and the redefined centres. Only the fragment is
defined as recurrent read-only and hence is loaded into shared-memory.
Contrary to the algorithm presented, the labels are modified as a side effect
while the updated centres are returned by the function. However, because
the execution of the function is realised by a worker, and as labels and
centres are collections, their input and output are handled with the data
being serialised to disk, waiting for the master to deserialise them, due
to COMPSs behaviour. The timer starts just after the generation of the
fragments and finishes when the main loop finishes (either by running out
of iteration or by meeting the criterion of convergence), after all the labels
have been gathered.

Table 5.1 presents the raw results from the application. Each case was
run at least 50 times both with and without the use of shared-memory.
White lines (cases 6, 8, 15 to 18 and 20) present test-cases where the differ-
ence in means of the timing in the method that uses the shared-memory is
not significantly different from 0, meaning that there are no statistically sig-
nificant differences between the timings due to standard variability (p-value
<0.05). Red lines (case 19) are for cases where the difference in means is
significantly greater than 0, meaning that there is a negative effect in per-
formance when using the shared-memory that is likely not due to standard
variability. Blue lines show cases where the performance improvement is
statistically significant.

Cases 11 to 14 show that changing the number of iterations does not
proportionally affect the gain in performance. The benchmark execution
time is already dominated by the execution time of the iteration, which
performance is improved proportionally to the improvement of the data
deserialisation part. Even the dummy-case 1 which finishes early after only
2 iterations shows a difference in means close to 10 %. The 2–5% difference
can be explained by the original sending of data to the workers whose cost
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of points iter. with without in seconds in percentages (%)

1 4 194 304 20 64 1 79.42 86.54 −8.23 −6.02 −9.51 % −6.95 % 1.167×10−20

2 4 194 304 20 64 2 627.5 733.3 −112.7 −99.0 −15.37 % −13.50 % 1.700×10−23

3 4 194 304 20 64 3 760.3 870.3 −114.2 −105.7 −13.12 % −12.15 % 2.596×10−70

.4 4 194 304 20 64 4 890.7 987.6 −102.5 −91.6 −10.38 % −9.26 % 1.233×10−50

5 4 194 304 20 64 5 1028 1138 −118 −104 −10.33 % −9.13 % 1.612×10−53

6 4 194 304 20 8 4 862.7 858.8 −3.3 11.2 −0.38 % 1.31 % 0.271 527 7
7 4 194 304 20 16 4 859.1 871.5 −18.6 −6.2 −2.14 % −0.71 % 1.891×10−4

8 4 194 304 20 32 4 873.1 872.8 −4.7 5.5 −0.54 % 0.63 % 0.883 804 2
.4 4 194 304 20 64 4 890.7 987.6 −102.5 −91.5 −10.38 % −9.26 % 1.233×10−50

9 4 194 304 20 96 4 905 1331 −434 −419 −32.62 % −31.46 % 1.950×10−89

10 4 194 304 20 128 4 941 1585 −652 −637 −41.09 % −40.19 % 2.134×10−86

11 4 194 304 10 64 4 457.0 513.0 −59.4 −52.7 −11.59 % −10.27 % 3.769×10−52

.4 4 194 304 20 64 4 890.7 987.6 −102.5 −91.5 −10.38 % −9.26 % 1.233×10−50

12 4 194 304 30 64 4 1333 1490 −180 −133 −12.14 % −8.98 % 2.337×10−19

13 4 194 304 40 64 4 1734 1956 −233 −209 −11.96 % −10.73 % 5.183×10−56

14 4 194 304 50 64 4 2181 2443 −276 −247 −11.32 % −10.13 % 8.564×10−55

Table 5.1: Raw results for K-Means clustering application.
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15 2048 20 64 4 6.647 6.684 −0.189 0.116 −2.83 % 1.73 % 0.631 266 2
16 32 768 20 64 4 13.85 14.16 −0.73 0.11 −5.12 % 0.76 % 0.143 467 4
17 262 144 20 64 4 60.33 60.47 −0.53 0.25 −0.87 % 0.41 % 0.480 262 9
18 524 288 20 64 4 117.4 120.1 −12.5 7.1 −10.42 % 5.88 % 0.580 506 7
19 1 048 576 20 64 4 229.9 225.6 3.0 5.6 1.33 % 2.49 % 3.280×10−9

20 2 097 152 20 64 4 448.8 447.7 −0.7 2.9 −0.15 % 0.65 % 0.219 859 5
.4 4 194 304 20 64 4 890.7 987.6 −102.5 −91.5 −10.38 % −9.26 % 1.233×10−50

21 8 388 608 20 64 4 1801 2409 −619 −596 −25.7 % −24.75 % 4.740×10−94

22 16 777 216 20 64 4 3492 4835 −1368 −1319 −28.29 % −27.29 % 7.419×10−121

23 33 554 432 20 64 4 7076 9737 −2710 −2612 −27.90 % −26.76 % 8.803×10−64

The maximum number of iterations is the number of iterations of the algorithm if no convergence between the centres happens first. The
confidence interval correspond to the 95 % confidence interval of the difference in mean of each subgroup (time with or time without).
Times are given in seconds. The difference in percentage is relative to the base time, i.e. time without the usage of shared-memory.

Table 5.1: Raw results for K-Means clustering application, continued.
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is no longer negligible compared to the time to run the iterations.

The cases 6 to 10 and 15 to 23 show the impact of the amount of data
to be loaded (by increasing either the number of points or the number of
dimensions). In most of cases past some thresholds, the more data, the more
improvement can be achieved. Also, the performance improvement seems to
have a stronger scale with the number of dimensions than with the number
of points. Thus, doubling the amount of data by doubling the number
of points boosted the gain in performance from 9–10% to 24–25% while
doubling the number of dimensions increased the gain to 40–41%. One
reason is that increasing the number of points also increases the number
of labels to serialise and deserialise for each iteration, which impacts the
performance negatively. It also appears that the gain in performance can be
bounded as cases 22 and 23 both expose a gain around 25–28%. However,
this hypothesis could not be verified with the data that was gathered.

For cases 6, 8 and 15 to 20 the method to be used to load data does not
seem to be very influential as the amount of data (below 64MB per task) is
too small to see any impactful improvement from reuse of memory. Hence
the difference in means would only increase the variance of the timing dis-
tribution, participating in the noise of the measures. However, test case 19
shows that it can be disadvantageous to use shared-memory. The efficiency
of the shared-memory execution path relies on the condition that the look-
up through one table or the access to the system shared-memory is more
efficient than accessing data on disk through standard NumPy deserialisa-
tion. Although it may be an artefact in the execution of the benchmarks,
this test case shows that this condition is not necessarily always met, but
the reason for this behaviour could not be determined for this set of pa-
rameters. In this underperforming case, the overhead still stays very low,
below 2.5 %. The comparison between cases 6 to 10 and cases 15 to 20 show
that the amount of data, especially the ratio of read-only memory over to-
tal memory to load is critical to finding cases where improvement can be
reached using shared-memory. This ratio limits the growth in performance
to be expected, hence, multiplying by a factor 4 the threshold before seeing
a substantial gain in performance.
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(a) Parameters are similar to test-case 1, convergence in 2 iterations. This figure
illustrates a typical trace of the first two iterations of any test-case.

(b) Over the time of the application, reuse of data makes the cost of data serial-
isation insignificant. Parameters are similar to test-case 10.

Traces shown are from worker cores only. For each figure, top image shows the trace
without shared memory while the bottom one uses shared memory. The colours are
given chronologically, from left to right: lighter green segments represent the deseriali-
sation of objects, darker green being the creation and population of the shared-memory
segments; the large white segments in the middle represent the user code execution; yel-
low segments represent the serialisation of objects. As shown, not all objects are added
to shared-memory, hence the deserialisations timing still appear on the traces shown in
Figure 5.2-b, but most of it has been removed.

Figure 5.2: Traces of k-means PyCOMPSs application.
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Figure 5.2 presents screenshots of postmortem visualisation of k-means
application traces using the PARAVER [116] software. Figure 5.2-a shows
that although the first iteration deserialisation gets slightly longer because
of the loading of data to the shared-memory (light green at the origin of
each segment), from the second iteration onward the deserialisation time
is greatly reduced. The darker shade of green on the bottom trace of Fig-
ure 5.2-a at the beginning of each segment of the first column corresponds
to the time spent loading the data into shared-memory.

As shown in Figure 5.2-b, the overhead that was required on the first
iteration gets evened out by quick data recovery in shared-memory, and
by even quicker data load from the internal dictionary during subsequent
iterations.

5.4.2 Blocked Matrix Multiplication

The second case considered is a task-based version of the blocked 2D-matrix
multiplication. The main algorithm is depicted in Algorithm 7. The data
dependency expressed on the resulting matrix C is detected automatically
by PyCOMPSs and managed with the COMPSs scheduler. Each matrix is
composed by sub matrices indexed by their row and column numbers, start-
ing at 0. All blocks are square and share the same dimensions, expressed in
the amount of double precision floating point numerical values. During the
experiments, the timer was started after the initialisation of the matrices,
before the main multiplication loop. The call to the matmul_block function
triggers a task creation that is executed by some worker process on the sec-
ond node. Once all tasks were finished, after a synchronisation barrier, the
timer was stopped. As expressed in the input parameters of Algorithm 7,
only the two read-only input matrices A and B use the shared-memory
capabilities.

For these experiments, two parameters varied. The number of blocks
per matrix dimension and the number of elements per dimension of each
block (reported as block size). The former influences the number of tasks
generated in the application, while the latter modifies the amount of data
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Algorithm 7 Main algorithm for blocked matrix multiplication.
Input

dim Matrices dimension
A, B Square 2D matrices, shared
C Square 2D matrix, not shared, zero initialised

Output
C Result matrix

1: for r← 0 to dim− 1 do
2: for c← 0 to dim− 1 do
3: for i← 0 to dim− 1 do
4: Crc ← matmul_block(Ari, Bic, Crc)
5: end for
6: end for
7: end for

to be loaded when deserialising a block. It also has a direct impact on the
ratio user code execution time

data and task management time , which limits the proportion of code that can
be improved with the addition to PyCOMPSs. As this experiment tries
to show a reduction in the overhead induced by the programming model,
increasing the number of elements too much can make the improvement
disappear in comparison to the overall application time.

The preliminary parameter exploration showed that the most interesting
performance test-cases included 8, 12, 16, 20 and 24 blocks in each dimen-
sion, with 128, 512, 1024, 2048 and 4096 doubles per dimension for each
block. Each case was run 50 times with and 50 times without the usage of
shared-memory. The different parameters tested and their results are re-
ported in Table 5.2. The results exposed are similar as in Table 5.1, namely
average timings with and without the extension, 95 % confidence interval
of difference in mean and p-value. For a block size of 4096 elements, only
the 8 blocks case gave results, as memory exhaustion led Python to raise
exceptions when trying to execute larger cases. Thus, comparative tests
could be run, but finer control over the memory allocation should make it
possible to run larger cases.

From the 21 test-cases, 9 do not show any statistical difference in means
when compared with a Welsh’s t-test. 58 % of the remaining cases show an
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p-value
blocks size shared-mem. shared-mem. in seconds in percentage

1 8 128 8.434 8.360 −0.174 0.322 −2.08 % 3.85 % 0.555 681 8
2 12 128 18.143 18.495 −0.783 0.080 −4.24 % 0.43 % 0.108 780 0
3 16 128 43.624 42.093 0.034 3.027 0.08 % 7.19 % 0.045 101 7
4 20 128 78.447 77.561 −1.133 2.904 −1.46 % 3.74 % 0.386 067 1
5 24 128 137.690 136.848 −3.018 4.701 −2.21 % 3.44 % 0.665 251 6

6 8 512 18.287 17.343 0.088 1.800 0.51 % 10.38 % 0.031 097 6
7 12 512 51.527 48.920 0.717 4.496 1.46 % 9.19 % 7.366×10−3

8 16 512 121.165 112.291 3.964 13.784 3.53 % 12.28 % 6.928×10−4

9 20 512 233.181 211.867 12.811 29.818 6.05 % 14.07 % 2.969×10−6

10 24 512 386.480 379.221 −5.643 20.161 −1.49 % 5.32 % 0.266 950 3

11 8 1024 46.353 52.348 −8.472 −3.519 −16.18 % −6.72 % 8.376×10−6

12 12 1024 151.787 160.587 −16.390 −1.210 −10.21 % −0.75 % 0.023 540 3
13 16 1024 383.510 386.397 −7.897 2.122 −2.04 % 0.55 % 0.257 332 5
14 20 1024 741.622 757.913 −25.440 −7.143 −3.36 % −0.94 % 5.524×10−4

15 24 1024 1249.294 1222.476 −0.847 54.483 −0.07 % 4.46 % 0.057 242 6

Table 5.2: Raw results for blocked matrix multiplication.
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16 8 2048 180.111 204.291 −31.049 −17.311 −15.20 % −8.47 % 3.446×10−10

17 12 2048 581.257 637.424 −76.866 −35.468 −12.06 % −5.56 % 5.083×10−7

18 16 2048 1404.155 1551.578 −203.842 −91.005 −13.14 % −5.87 % 2.381×10−6

19 20 2048 3003.337 3083.178 −249.923 90.241 −8.11 % 2.93 % 0.350 365 8
20 24 2048 4732.841 5034.617 −679.851 76.298 −13.50 % 1.52 % 0.111 333 2

21 8 4096 786.623 925.552 −154.124 −123.735 −16.65 % −13.37 % 8.347×10−33

22 12 4096 n/a 3219.718 — — — — —

The number of blocks and the block sizes are the same in each dimension as the matrices are square. Times are given in seconds. The
boundaries of the 95 % confidence interval are for the difference in mean of each subgroup (time with or without shared-memory). The
difference in percentage is relative to the base time, i.e. time without the usage of shared-memory.

Table 5.2: Raw results for blocked matrix multiplication, continued.
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improvement in performance, ranging from <1 % to 16.65 % for improved
cases. The worst penalty measured is an overhead of 14.07 % in case 9. For
cases 1 to 10, the differences in mean of cases at issue show respectively
3.64 %, 5.4 %, 5.3 %, 7.9 % and 10 % of runtime increase when the appli-
cation is being run with the shared-memory. The variability in the results
can be explained from a lack of fine grain control over the tasks attribution.
This reduces the direct reuse of previously deserialised matrices that are
stored in the internal dictionary. The creation of a shared-memory array
requires executing the memory allocation twice, once from file to memory,
and once from memory to shared-memory, and needs the data to be written
both times. Hence, this overhead can only overcome its cost with sufficient
reuse of memory pages. It appears that bigger sizes lead to better results,
as the loading from the disk can throttle the performance compared to
memory mapping.

Future work is planned to include testing with regard to fine grain task
scheduling in order to both reduce the variability of measurements and to
try to define an optimal scheduling. As a matter of fact, a fine grain man-
agement of task scheduling that would prioritise tasks with disjoint data
sets would improve performance as fewer shared-memory blocks would be
rewritten in the case of data name conflicts. In the case of matrix multi-
plication, all blocks have to be used multiple times. On a single node, one
optimised algorithm could be to first compute the blocks along the diago-
nal to maximise the number of arrays ready to be reused, and to minimise
the number of arrays loaded twice to shared-memory. The workers could
execute computing operations following the row, for example, in order to
reuse the blocks deserialised from matrix A. After computing all operations
where A was required, the worker could compute blocks from the column
in order to reuse the blocks deserialised from matrix B.

Although two thirds of the cases show an improvement when using
shared-memory, the selection of good candidates is a difficult issue for ap-
plications with a complex pattern of memory accesses. As an example,
increasing the number of blocks increases the parallelism of the application
and the number of times the data have to be used. But it also increases the
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number of times the output matrices have to be serialised and deserialised.
As shown in cases 11 to 14 and cases 16 to 18, for one given block size, the
increase in the number of blocks decreases the gain in performance, from a
maximum of 11.45 % (case 11) to a minimum of 2.15 % (case 14) on average
for a block size of 1024 and from a maximum of 15.20 % (case 16) to a min-
imum of 8.81 % (case 17) on average for a block size of 2048, respectively.

5.5 Conclusion

This work presents the integration of an extension to the Python language
features into the PyCOMPSs framework. Analogously to the original work,
the code modification required to use this new trait is kept to a minimum in
order to make code adaptation as easy as possible and provide a seamless
integration into the parallel framework. For algorithms based on a high
amount of reuse of data, such as k-means, performance has been shown to
be improved by at least 10 % or unaffected by using shared-memory, under
the conditions of experiment. For improved cases, the effect is amplified
as the amount of data is increased, proportionally to the total amount of
I/O, with an improvement of ≈40 % when increasing the number of point
dimensions in the case of a k-means application. However, for a too small
task granularity there can be an antagonistic, yet relatively limited effect.
Nonetheless, the promising results based on read-only memory may lead
to a possible evolution of the framework allowing a better usage of shared-
memory when distributing tasks to different workers sharing the same node,
to reduce even more the number of serialisations required, for applications
behaving like the blocked matrix multiplication benchmark. Larger scale
testing of the k-means application could be done for a very large dataset
of points to see the integration with storage solutions such as Redis (as
presented in [22]) to evaluate the behaviour in the case of unsupervised
distributed applications and to verify whether the solution still provides an
improvement of the general performance.

An additional outcome of this work is to display the eligibility of Python
based applications and workflows to be executed with memory placement
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tools and for their performance to be improved with standard memory-
oriented optimisations. This second noteworthy result will lead to further
research on integration with low level memory management on the strength
of the assumptions provided by a higher-level language.
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6.1 Summary of the contributions

Modern supercomputer architectures have both complicated in-node mem-
ory systems, and memory which is distributed over the inter-node network.
Research into efficient data management is therefore much more complex as
the diversity of memory increases. In addition, abstractions like NUMA dis-
tance or NUMA domains are being broken as the memory characteristics
are getting more diverse. Moreover, the diversity of environments, comput-
ing systems and memory systems requires the development of new portable
methods to reduce the effort called for maintaining code bases with very
long lifetime.

The primary approach to resolving this issue is to use languages that are
versatile enough to provide new programming models hoping that may be
included eventually in the standard. This however lacks some portability
as it depends on compiler support for language evolution, and limits the
languages that can be used for the development of applications. Another
approach is to rely on frameworks which better support different languages,
but is still being limited by the compiling tool chain chosen. Section 2.2
summarised the different solutions at a memory design level, at an OS level
and at the programming language level.

A corollary issue to the multiplicity of memory systems is the increased
difficulty of memory partitioning management. The disaggregation impli-
cates managing multiple source of data with some being unreachable (e.g.
a CPU cannot access data located on GPU embedded HBM). Hence the
selection of data by intended usage and destination enables an effective
data management. The ASPEN algorithm improves the state-of-the-art
for computing complete redistribution of block-cyclic data across two dis-
tinct N-dimensional grids (see Section 3.4.5). The work revolving around
the development of this algorithm was allotted as follows:

• The development of the algorithm was done as a collaborative work
between Adrian Tate and the author;

• The implementation of the ASPEN algorithm for benchmarking pur-
pose was done by the author;
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• The implementation of the different algorithms based on the algorith-
mic description for comparison purpose, as presented in Section 3.5,
was done by the author;

• The implementation and adjustments that were required to include
the ASPEN algorithm into the UDJ library was done by the author.

The plurality of memory systems comes with dedicated APIs for the
selection of data sets or subsets to be allocated or copied in the different
memory tiers. This implicates rewriting portions of code when changing li-
brary or memory provider as the memory allocation interface may changed
between libraries (see Section 4.4). This observation led to the conclu-
sion that providing a unique API, shared between the different memory
providers, would be beneficial and reduce the amount of work required by
the community. Therefore, the first objective of Mamba is to provide a
simple compatibility layer for several libraries and a framework for easier
collaboration between them. The collaborative work has been done with
the following task division:

• The overall library and its API has been drafted as a collaboration
between Adrian Tate, Tim Dykes and the author;

• The tiling management and array abstraction was the result of Tim
Dykes’ work, with minor contributions from the author to ensure com-
patibility with the memory management part of the library;

• The memory managements and memory operations part of the library,
along with the topology discovery were implemented by the author;

• The author developed and ran the benchmarks used in Section 4.4.
These approaches are designed to suit low level languages as used in

numerical simulation, e.g. C, C++ or Fortran to name the more broadly
used ones. However, many domain scientists do not rely on these and
they would benefit from being provided with the tools that are simpler
to integrate. For example, Python has been gaining traction for its ease
of use and versatility. Yet, support for precise memory management is
lacking as, in our case, the support for inter-process memory sharing was
lacking flexibility. Henceforth, an external library was developed to provide
sufficient support for the distributed tasking framework PyCOMPSs (see
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Section 5.3.2.1). This provided a first glimpse into the design of the memory
management in a high-level language, and an occasion to study the extent of
memory management that could be provided to them. This author provided
the following contributions:

• The Python extension was based on Mathieu Mirmont’s work; the
author extended it to support conflicting names for arrays, and a
copy-constructor for the objects;

• The inclusion of the Python extension as part of the PyCOMPSs
framework and the coupling between the serialisation and deserialisa-
tion processes was realised by the author;

• The support for the new decorator, the addition of the internal dic-
tionary and the adaptation of benchmarks were done by the author.

6.2 Future work

6.2.1 Architecture evolutions and studies

The recent evolution of memory designs are shifting away from having one
centralised memory to provide data to both CPUs and GPUs. The need for
performant DRAM in HPC is decreasing as the amount of HBM on package
increases. This trend seems to be confirmed by the 32 GB of HBM2 on
Fujitsu A64FX processors, which is reminiscent of the MCDRAM used by
Intel in the KNL system. The technology allows the stacking or up-to eight
DRAM dice, next generation of processors could provide even more HBM2.

However, the inclusion of this technology seems to lead to the disappear-
ance of the L3 cache level. This implicates a latency penalty when accessing
data as the L2 cache is sensibly smaller. On the other hand, the inclusion of
network interconnects in the processor package in addition to the standard
PCIe ports may lead to the development of DRAM-over-network.

Moreover, GPU to GPU, GPU to PCIe card and GPU to GPU commu-
nications can also bypass the central memory for the data exchanges. This
means the tree representation of the memory system does not fit anymore
as some subset of the systems are now autonomous clusters for computation
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and communication. The NUMA model which originally referred to a com-
puting unit with some homogeneously accessed memory is being dropped,
as NUMA nodes may now refer only to memory. The industry standard
hwloc is already shifting to a graph model, with two kinds of nodes (initia-
tors and targets) and edges with some attributes (e.g. latency, bandwidth).

Provided the aforementioned possible evolution of the memory organisa-
tion and given the closer inclusion of network communication, new memory
attributes may arise to describe the system and take better data placement
decisions. For example, given the sub-clusters that are appearing, it may
be relevant to consider the accessibility of a memory system. Widely ac-
cessible memory (the central main memory or storage, for example) does
not restrict the access to the data from any device, but it increases the
complexity of the coherency management. GPU located memory forbids
the CPU to access it, and requires a copy or a synchronisation point for
operations not available on GPUs.

6.2.2 Data selection and locality

As pointed out in [24], one draw back of the general redistribution method
is that it does not consider the network capabilities nor the data locality.
Further research may include consideration of the block sizes to optimize
the network utilisation.

Moreover, applications like distributed object storage may benefit from
an efficient redistribution algorithm. It may help creating distributed stor-
age systems that can automatically redistribute itself when growing in case
of an increased demand. Only the dimensions of buckets of metadata would
be required to compute which system contains the information requested
to retrieve it.

6.2.3 Data movement and code portability

Providing portable memory management is especially complicated when
memory classes are identified by NUMA node ids, which are not necessar-
ily consistent between machines, or via the usage of a translation symbolic
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name (as we did in Mamba with MMB_HBM, for example). It may be prefer-
able to describe the memory needs directly as priority between attributes,
which is more portable, as the requirement may or may not be met, de-
pending on the hardware availability. However, setting a hard threshold
to discriminate between memories can be complicated. Actually, a user
may find acceptable to give a tolerance to the decided threshold, as it may
be more convenient to expose two memory targets as one when they both
expose similar characteristics.

6.2.4 Memory management for high-level languages

In Python, the memory management is handled by the interpreter. Al-
though some libraries start providing support for heterogeneous computing
systems, they are mostly relying on the system decision for heterogeneous
memory management. Optimised libraries such as NumPy provide good
performance for numerical applications by providing a good locality (data
are densely stored in arrays), and provide high level operations (e.g. dot
product). This high-level vision of the algorithm could provide hints for
where to store the data. Furthermore, an operation like dot product which
exposes regular accesses to memory can be implemented taking it in consid-
eration, in addition to cache line sizes to improve performance. Interfacing
a library like Mamba with the Python language could provide a way to do
so, notably by using the Mamba tiling mechanisms.
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3D XPoint memory Pronounced 3D cross-point, NVM technology de-
velopped jointly by Intel and Micron. 25, 26, 32, 34

Advanced Configuration and Power Interface Vendor provided infor-
mation used in OS-directed configuration and power management.
147

Application Programming Interface A computing interface which de-
fines interactions between multiple software intermediaries. It defines
the kinds of calls or requests that can be made, how to make them,
the data format that should be used, the conventions to follow, etc.
147

Argonne Memory Library Library develop by ANL as building block
for memory management. 147

Argonne National Laboratory A science and engineering research na-
tional laboratory operated by University of Chicago Argonne LLC.
42, 147

Artificial Intelligence Area of Computer Science aiming at making pos-
sible for machines to learn from experience, adjust to new inputs
and perform human-like tasks. Using different technologies, comput-
ers can be trained to accomplish specific tasks by processing large
amounts of data and recognising patterns in the data. 100, 147

Atomicity, Consistency, Isolation, Durability Properties of transac-
tional storage class systems. The respect of these properties is in-
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tended to guarantee validity even in the event of errors, power failures,
etc. 28, 147

Bandwidth Throughput of memory. This is evaluated in amount of bytes
transferred per second. 2, 15, 16, 23, 24, 29–32, 38, 47, 50, 130

Bank Circuit containing array of bit cells allowing a word-wide granularity
independent access to the information stored in memory. 13

Big Data Field that analyses sets of data too complex or too large to
be otherwise handled by traditionnal data analysis techniques and
technologies. 2, 100

Burst Buffer A fast and intermediate storage layer positioned between
the computing system and the network. 2, 29, 34

Bus General name for a computer communication interface that transfers
data between different components. 13, 14, 20, 34, 135, 136, 139, 141,
143

Central Processing Unit Integrated electronic circuits in a computer
that is responsible for performing arithmetic, logic, controlling, and
I/O operations specified by the instructions in the program. 147

Channel Part of memory architecture allowing for better performance.
One channel corresponds to the connexion between the memory con-
troller and the memory module. Multiple channel-architectures allow
for as many concurrent access to the different memory modules, pro-
viding more bandwidth. 14, 15, 23

COMP Superscalar A framework which aims to ease the development
and execution of parallel applications for distributed infrastructures,
such as Clusters, Clouds and containerised platforms. 147

Cori NERSC’s largest supercomputer, which ranked 5th on the TOP500
in November 2016. 30
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Data Analytics Data analytics is the process of examining data sets in
order to draw conclusions about the information they contain, increas-
ingly with the aid of specialised systems and softwares. 55

Data Parallel C++ Single source programming model based on SYCL
for distributed computation on host and devices. 44, 148

Direct Memory Access Direct reading and writing access to the main
memory system, outside of CPU I/O. 139, 148

Dual Data Rate Characterises a synchronous data bus that transfers data
both the raising and he failing edge of a clock signal. 14, 148

Dual in-line Memory Module A kind of memory module that com-
prises a series of DRAM memory integrated circuits. While the con-
tacts on SIMMs on both sides are redundant, DIMMs have separate
electrical contacts on each side of the module. 12, 14, 148

Dynamic Random-Access Memory A type of semiconductor memory
that stores each bytes of data. This memory is said volatile. 22, 148

Embedded Dynamic Random-Access Memory DRAM used embed-
ded on package, usually as L4 cache. 148

Ethernet Ethernet is a family of computer networking technologies widely
used in homes and industries. Its standard is defined by the norm
ISO/IEC/IEEE 8802.3. 142

Expansion Bus Connecting bus used to access a printed circuit board
that can be inserted into an electrical connector to add functionality
to a computer system. 141

ExaFLOP/s 1018 FLOP/s (Floating-point Operations Per Second). 2,
135

Exascale The capacity for a computing system to perform at least one
ExaFLOP/s. 2, 16, 55, 74, 77, 78
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Flash Flash memory is an electronic (solid-state) non-volatile computer
memory storage medium that can be electrically erased and repro-
grammed. 21, 25–27, 32, 140

Floating-point Operations Per Second Metric used to evaluate the per-
formance of computing systems. It can either be used for peak per-
formance or for sustained performance. 135, 141, 144, 148

Front-Side Bus Data bus connecting the CPU to the memory controller.
14, 148

Gigabyte 109 bytes. 110, 148

Global Interpreter Lock For Python, it is a mutex that allows only one
thread to hold the control of the interpreter, ensuring the stability of
the internal state of the interpreter. 102, 104, 148

Graphics Dual Data Rate DDR specialised for GPU memory as op-
posed to the plain DDR which is used for general purpose memory.
15, 148

Graphics Processing Unit Specialised processing unit originally dedi-
cated to process images. On modern computers, the highly parallel
computation power provided by those devices may be used to accel-
erate computations. 148

Hard disk drive Computer storage solution based on a fixed or spinning
disks using magnetic characteristics to store and retrieve data. 149

Heterogeneous Computing Interface for Portability Vendor-neutral
C++ programming model for GPUs. 149

High Bandwidth Memory 3D stacked memory, generally on package,
providing a data throughput orders of magnitude superior to standard
DRAM. 23, 149

138



GLOSSARY

High-Performance Computing Area of computer science where the ap-
plications require a large amount of computing power over various
periods of time ranging from hours to years. 2, 100, 149

High-Performance Fortran Extension of Fortran 90 that aims at help-
ing the support of parallel computing in Fortran. 58, 149

Hybrid Memory Cube First 3D organisation of memory cells. 23, 149

InfiniBand Networking standard used in HPC with high throughput and
very low latency. 14, 29, 38, 142, 149

Input/Output Communication between one computing device and an-
other computing device, memory or the outside world, i.e. input or
output device, e.g. the keyboard or the computer monitor. The data
going toward the main computing device is called input, and the data
coming from the main computing device is called output. 106, 149

Joint Electron Device Engineering Council JEDEC Solid State Tech-
nology Association is an independent semiconductor engineering trade
organisation and standardisation body composed of manufacturers
and suppliers of the microelectronics industry. JEDEC’s collabora-
tive efforts ensure product interoperability, benefiting the industry
and ultimately consumers by decreasing time-to-market and reducing
product development costs. 149

Last Level Cache Generally refers to the further, in-package, cache level
of the processor. It usually is the biggest although it is also the highest
latency. The LLC is often shared between the different cores of the
processor. 36, 149

Latency Time delay between the request of a random byte or word in
memory and its availability in the processor. 2, 9, 16, 17, 29, 32, 47,
50, 130
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Local Data Descriptor Set of ranks and dimensions describing a regular
distribution of data across multiple agents is used to compute local
or global indices of the scattered data. 56, 59, 149

Magnetoresistive Random-Access Memory A type of NVRAM using
known magnetic effects to retain data. 150

Multi-Channel Dynamic Random-Access Memory Architecture for
Intel Xeon Phi Knights Landing (KNL) HBM memory technology. 24,
150

Mean Time Between Failures The predicted elapsed time between in-
herent failures during normal system operation. For example, a failure
may be an accumulation of random bit flips putting the program in
an unstable state, or a state normally not reachable under normal
execution. The term is used for repairable systems, while mean time
to failure (MTTF) denotes the expected time to failure for a non-
repairable system. 30, 150

Memory Management Unit Controller primarily performing the trans-
lation of virtual memory addresses to physical addresses, but also
handles memory protection, cache control and bus arbitration. 150

Multilevel Cell Memory cell that can be sampled with enough multiple
states to encore more than one bit of data. 27, 150

Multiple Instruction, Multiple Data Technique employed to achieve
parallelism relying on multiple independent processing units executing
instruction asynchronously. Supercomputer are an example of such
technique of parallelisation. 150

Mutex Short for mutual exclusion, it is a synchronisation tool that allows
an unique execution thread to access a critical section at once. 102,
136
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National Energy Research Scientific Computing Center High-per-
formance computing user facility operated by Lawrence Berkeley Na-
tional Laboratory for the United States Department of Energy, Office
of Science. 150

Network Interface Card Extension card, often connected to the PCIe.
This card manages the interactions with the network, lowering the
number of interruptions for the processor and allowing for the network
to communicate in parallel of the computation. Those cards can also
provide Direct Memory Access. 150

Network-Attached Storage Computer data storage server connected to
a computer network providing data access to a heterogeneous group
of clients. 29, 150

Non-Uniform Memory Access Memory design applied to computer with
multiple processors where the speed to access memory depends on the
location of the processor. 16, 150

Non-Volatile Opposite of volatile. 20–22, 27–29, 136, 139–141, 145, see
Persistency, Volatile & Volatility

Non-Volatile Dual in-line Memory Module DIMM which memory is
non-volatile. 150

Non-Volatile Memory Express High-performance interface specification
for accessing NVM devices attached via PCIe bus. 151

Non-Volatile Memory A type of persistent memory technology used for
computation. 25, 28, 33, 151, 168

Non-Volatile Random-Access Memory Generic denomination for any
kind of non-volatile Random-Access Memory system used for compu-
tations. 150, see PMM

Not-AND Logic-gate producing the complement to a AND logic-gate. It
acts like a boolean function which produce a 1 in output if any of the
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input is 1, and 0 otherwise. This technology is used to create Flash
non-volatile memory. 150

Not-OR Logic-gate producing the complement to a OR logic-gate. It acts
like a boolean function which produce a 0 in output if any of the input
is 1, and 1 otherwise. This technology is used to create Flash NVM.
150

NumPy An open source project aiming to enable numerical computing
with Python. It was created in 2005, building on the early work of
the Numerical and Numarray libraries. 3, 100–102, 106, 108, 109,
118, 131

Open Computing Language An open standard for writing code that
runs across heterogeneous platforms including CPUs, GPUs, and other
processors. 151

Open Multi-Processing Multi-platform shared-memory multiprocessing
programming API for in C, C++, and Fortran languages. 151

Operating System A system software that manages computer hardware,
software resources and provides common services for computer pro-
grams. 151

Package In the context of manufactured electronics, it refers to the casing
containing one or more discrete semiconductor devices or integrated
circuits. In the case of processors, this term denotes the association
of the processing units, with their associated memories and some of
the interfaces with external systems. 10

Parallel File System Storage system allowing virtually-unique file sys-
tem spanned across multiple storage points enabling high-performance,
scalable, concurrent, parallel accesses to files presented in a globally
shared namespace. 23, 151
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Partitioned Global Address Space In computer science, it refers to a
parallel programming model. It assumes a global memory address
space that is logically partitioned and a portion of it is local to each
process, thread, or processing element. 102, 151

Peripheral Component Interconnect Express A standard expansion
bus providing high-speed, generally used to interface for personal com-
puters’ graphics cards, hard drives, SSDs, Wi-Fi and Ethernet hard-
ware connections. 151

Persistency Inherent or expected characteristic of information to be re-
tain without alteration over time. Persistent memories are said non-
volatile. 2, 16, 143, see Volatile, Volatility & Non-Volatile

Persistent Memory Module DIMM of persistent memory. 26, 151, see
NVRAM

PetaFLOP/s 1012 FLOP/s (Floating-point Operations Per Second). 31,
141

Petascale The capacity for a computing system to perform at least one
PetaFLOP/s. 31

Phase-Change Memory Type of NVM using the physical capacity of
chalcogenide glass to change their molecular structure when applied
current. 27, 151, see PCRAM

Python Interpreted high-level, general-purpose programming language par-
ticularly used for scientific application and AI. 3–6, 50, 97, 100–109,
121, 125, 129, 131, 136

Python COMP Superscalar Python binding for the COMPSs frame-
work. 151

Quad Data Rate Characterise a synchronous data bus similar in princi-
ple to DDR, but with a second clock signal being 90° out of phase
from the first signal. Each raising and falling edges of each signal
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provokes a data transfer, allowing a higher throughput than DDR.
14, 151

Radeon Open Compute AMD’s open software ecosystem for acceler-
ated compute. 152

Random-Access Memory Main memory used in computers to execute
tasks. This memory is said Random-Access as any address can be
directly accessed for both reading of writing operations, in almost
the same amount of time irrespective of the physical location of data
inside the memory. 31, 139, 151

Relatively Prime Two integers are relatively prime is they have no com-
mon factor. 59

Remote Direct Memory Access In computer science, it is a direct mem-
ory access from the memory of one computer into that of another
without involving either one’s operating system. This permits high-
throughput, low-latency networking, which is especially useful in mas-
sively parallel computer clusters. 152

Resistive Random-Access Memory Computer memory technology that
works by changing the resistance across a dielectric solid-state mate-
rial, often referred to as a memristor or RRAM. 27, 152

Remote Direct Memory Access over Converged Ethernet Commu-
nication protocol based on IB (InfiniBand) transport packet over Eth-
ernet. 152

ScaLAPACK The ScaLAPACK (or Scalable LAPACK) library includes a
subset of LAPACK routines redesigned for distributed memory MIMD
parallel computers. 4, 63, 69, 70

Scratch space Temporary storage used to buffer data until the computa-
tion it is required for can start. 29
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Shared Virtual Memory Virtual addressing space for memory spanned
across multiple memory systems. 40, 153

Single Data Rate Characterises a synchronous data bus that transfers
data on either exclusively the raising or the failing edge of a clock
signal. 14, 152

Single in-line Memory Module A type of memory module containing
random-access memory used in computers from the early 1980s to the
late 1990s. It differentiates with the DIMM in that only one side or
the module is providing memory. 152

Single-Intruction-Multiple-Data Technique of parallelisation based on
applying one single operation to a set of data, generally of the same
kind, all at the same time. Vectorisation is a application of such a
parallelisation technique. 152

Solid-State Drive Devices that uses to store data persistently, typically
using flash memory. It usually is used as secondary storage as it
usually stores data that cannot be kept in main memory (RAM) for
a lack of physical space on the device or for persistency reasons. 153

Spin-Transfer Torque Magnetoresistive Random-Access Memory
Technology using the orientation of a magnetic layer in a magnetic
tunnel junction to retain bit state. This is a studied candidate for
NVRAM. 27, 153

Static Random-Access Memory A type of semiconductor memory that
stores each bit of data using a bistable latching circuitry. This memory
is said volatile although while being powered this memory exposes
data remanence, sparing the need for refresh contrary to DRAM. 22,
152

Storage Networking Industry Association The SNIA is a non-profit
global organisation dedicated to developing standards and education
programs to advance storage and information technology. 152
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Stride In the context of array redistribution, the stride represents the min-
imum size containing a complete pattern of data exchange. 63, 65

SYCL Cross-platform abstraction layer that enables code for heteroge-
neous processors to be written using standard ISO C++ with the host
and kernel code for an application contained in the same source file..
44, 45, 51, 76, 135

Symmetric Hierarchical Memory From Cray Research’s shared mem-
ory library, it is a family of parallel programming libraries, provid-
ing one-sided, RDMA, parallel-processing interfaces for low-latency
distributed-memory supercomputers. The SHMEM acronym was sub-
sequently reverse engineered to mean Symmetric Hierarchical MEM-
ory. 152

Symmetric Multiprocessing Architecture of hardware and software for
multiprocessor computer where two or more identical processors are
connected to a single, shared main memory, have full access to all
input and output devices, and are controlled by a single operating
system instance that treats all processors equally, reserving none for
special purposes. 102, 152

Synchronous Dynamic Random-Access Memory A type of DRAM
where the access operations are synchronised on a clock signal pro-
vided externally. 12, 152

TeraFLOP/s 1015 FLOP/s (Floating-point Operations Per Second). 31

Terabytes 1012 bytes. 153

TOP500 Ranking and details of the 500 most powerful non-distributed
computer systems in the world. The project was started in 1993 and
publishes an updated list of the supercomputers twice a year (June
and November, respectively during ISC and SC, two HPC-oriented
conferences). 31, 134
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Volatile Expression of the volatility characteristic of the memory. All data
stored in a volatile memory is lost on the event of losing power. The
memory that does not lose its data in the event of losing power is said
non-volatile. 135, 139, 143, see Volatility & Non-Volatile

Volatility Characteristic expressing the capacity for a memory to retain
stored information permanently, across either shut-down or power-
loss. 16, 50, 145, see Volatile & Persistency

Write Amplification Undesirable effect for flash based memory systems
that prematurely exhaust memory cells due to the coarsened granu-
larity of the writing operation that imposes the erasure of unmodified
memory cells. 34
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ACID Atomicity, Consistency, Isolation, Durability. 28, Glossary: Atom-
icity, Consistency, Isolation, Durability

ACPI Advanced Configuration and Power Interface. 47, Glossary: Ad-
vanced Configuration and Power Interface

AI Artificial Intelligence. 2, 55, 100, 141, Glossary: Artificial Intelligence

AMD Advance Micro Devices. 46, 51, 142

AML Argonne Memory Library. 42, 51, 78, Glossary: Argonne Memory
Library

ANL Argonne National Laboratory. 31, 42, 133, Glossary: Argonne Na-
tional Laboratory

API Application Programming Interface. 3, 28, 34, 35, 38, 44, 50, 76–79,
82, 84–86, 88–90, 97, 101–103, 106, 108–110, 128, 129, 140, Glossary:
Application Programming Interface

C/R Checkpoint-Restart. 31

COMPSs COMP Superscalar. 101, 103–106, 115, 120, 141, Glossary:
COMP Superscalar

CPU Central Processing Unit. 2, 33, 37, 38, 40, 42, 47, 51, 77–79, 89,
128–130, 135, 136, 140, 157, Glossary: Central Processing Unit
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DRAM Dynamic Random-Access Memory. 2, 11–28, 31–34, 36–38, 40–
43, 48, 51, 82, 88, 129, 130, 135, 136, 143, 144, Glossary: Dynamic
Random-Access Memory

DDR Dual Data Rate. 14, 15, 19, 24–27, 136, 141, 142, Glossary: Dual
Data Rate

DIMM dual in-line memory module. 12, 14, 17–19, 24, 32, 82, 135, 139,
141, 143, Glossary: Dual in-line Memory Module

DMA Direct Memory Access. 29, 41, 48, 139, Glossary: Direct Memory
Access

DPC++ Data Parallel C++. 44, 51, Glossary: Data Parallel C++

eDRAM Embedded Dynamic Random-Access Memory. 12, 27, Glossary:
Embedded Dynamic Random-Access Memory

ESS Elastic Storage Support. 29

FLOP/s Floating-point Operations Per Second. 135, 141, 144, Glossary:
Floating-point Operations Per Second

FPGA Field-programmable gate array. 2

FSB Front-Side Bus. 14, Glossary: Front-Side Bus

GDDR Graphics Dual Data Rate. 15, 42, 43, Glossary: Graphics Dual
Data Rate

GB Gigabyte. 11, 19, 23, 24, 26, 27, 81, 89, 105, 129, Glossary: Gigabyte

GIL Global Interpreter Lock. 102, 104, Glossary: Global Interpreter Lock

GPU Graphics Processing Unit. 2, 15, 18, 34, 38, 40, 42, 46, 51, 76–79,
82, 84, 86, 88–90, 128–130, 136, 140, Glossary: Graphics Processing
Unit
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HBM High Bandwidth Memory. 12, 16, 17, 23, 24, 42, 43, 46, 47, 51, 85,
88, 128, 129, 138, Glossary: High Bandwidth Memory

HDD Hard disk drive. 26, 31, Glossary: Hard disk drive

HIP Heterogeneous Computing Interface for Portability. 43, 45, 46, 51,
76, 84, Glossary: Heterogeneous Computing Interface for Portability

HMC Hybrid Memory Cube. 23, 24, Glossary: Hybrid Memory Cube

HPC High-Performance Computing. 2, 4, 8, 23, 28–30, 42, 47, 54, 55, 72,
97, 100, 129, 137, 144, Glossary: High-Performance Computing

HPDA High-Performance Data Analysis. 2

HPF High-Performance Fortran. 58, Glossary: High-Performance Fortran

I/O Input/Output. 3, 23, 25, 26, 29, 30, 32, 106, 112, 125, 134, 135,
Glossary: Input/Output

IB InfiniBand. 14, 29, 38, 142, Glossary: InfiniBand

IPU Intelligence Processing Unit. 2

JEDEC Joint Electron Device Engineering Council. 15, 23, 25, 27, 29, 32,
Glossary: Joint Electron Device Engineering Council

LANL Los Alamos National Laboratory. 31, 43

LAPACK Linear Algebra Package. 142

LBNL Lawrence Berkeley National Laboratory. 139

LDD Local Data Descriptor. 56, 59, Glossary: Local Data Descriptor

LLC Last Level Cache. 23, 24, 36, Glossary: Last Level Cache

LLNL Lawrence Livermore National Laboratory. 31, 42–44
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ACRONYMS

MCDRAM Multi-Channel Dynamic Random-Access Memory. 16, 24, 37,
47, 88, 129, Glossary: Multi-Channel Dynamic Random-Access Mem-
ory

MIMD Multiple Instruction, Multiple Data. 30, 142, Glossary: Multiple
Instruction, Multiple Data

MLC Multilevel Cell. 27, 28, Glossary: Multilevel Cell

MMU Memory Management Unit. 28, 42, Glossary: Memory Manage-
ment Unit

MRAM Magnetoresistive Random-Access Memory. Glossary: Magne-
toresistive Random-Access Memory

MTBF Mean Time Between Failures. 30, Glossary: Mean Time Between
Failures

NAND Not-AND. 25–27, Glossary: Not-AND

NAS Network-Attached Storage. 29, 34, Glossary: Network-Attached Stor-
age

NERSC National Energy Research Scientific Computing Center. 30, 134,
Glossary: National Energy Research Scientific Computing Center

NIC Network Interface Card. 29, Glossary: Network Interface Card

NOR Not-OR. 26, Glossary: Not-OR

NUMA Non-Uniform Memory Access. 3, 11, 16, 33, 37, 42, 47, 74, 88,
90, 128, 130, 131, Glossary: Non-Uniform Memory Access

NVRAM Non-Volatile Random-Access Memory. 31, 138, 143, Glossary:
Non-Volatile Random-Access Memory

NVDIMM Non-Volatile Dual in-line Memory Module. 11, 17, 25, 31–33,
43, 51, 82, 86, 88, Glossary: Non-Volatile Dual in-line Memory Module
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ACRONYMS

NVM Non-Volatile Memory. 21, 25, 26, 28, 33, 133, 139–141, 168, Glos-
sary: Non-Volatile Memory

NVMe Non-Volatile Memory Express. Glossary: Non-Volatile Memory
Express

OpenCL Open Computing Language. 38–40, 44, 45, 48, 51, 76, 89, Glos-
sary: Open Computing Language

OpenMP Open Multi-Processing. 38, 39, 45, 48, 51, 76–78, 101, 102,
Glossary: Open Multi-Processing

ORNL Oak Ridge National Laboratory. 43, 44

OS Operating System. 37, 128, 133, Glossary: Operating System

PCIe Peripheral Component Interconnect Express. 14, 32, 41, 130, 139,
Glossary: Peripheral Component Interconnect Express

PCM Phase-Change Memory. 26, 27, Glossary: Phase-Change Memory

PCRAM Phase-Change Random-Access Memory. 31, see PCM

PFS Parallel File System. 30, Glossary: Parallel File System

PGAS Partitioned Global Address Space. 102, Glossary: Partitioned
Global Address Space

PMM Persistent Memory Module. 29, 32–34, 84, Glossary: Persistent
Memory Module

PyCOMPSs Python COMP Superscalar. 3, 5, 100, 101, 103–107, 112,
119–121, 125, 129, Glossary: Python COMP Superscalar

QDR Quad Data Rate. 14, 19, Glossary: Quad Data Rate

RAM Random-Access Memory. 17, 139, 142, 143, Glossary: Random-
Access Memory
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ACRONYMS

RDMA Remote Direct Memory Access. 38, 144, Glossary: Remote Direct
Memory Access

ReRAM Resistive Random-Access Memory. 26, 27, Glossary: Resistive
Random-Access Memory

RoCE Remote Direct Memory Access over Converged Ethernet. 29, Glos-
sary: Remote Direct Memory Access over Converged Ethernet

ROCm Radeon Open Compute. 45, 46, 51, Glossary: Radeon Open Com-
pute

SDRAM Synchronous Dynamic Random-Access Memory. 12, 14, 17, Glos-
sary: Synchronous Dynamic Random-Access Memory

SRAM Static Random-Access Memory. 17, 22, 28, 36, Glossary: Static
Random-Access Memory

SDR Single Data Rate. 14, 19, Glossary: Single Data Rate

SHMEM Symmetric Hierarchical Memory. 102, Glossary: Symmetric
Hierarchical Memory

SICM Simplified Interface to Complex Memory. 43, 47, 51, 76, 78, 82, 84,
90, 92, 93

SIMD Single-Intruction-Multiple-Data. Glossary: Single-Intruction-Mul-
tiple-Data

SIMM Single in-line Memory Module. 14, 17, 135, Glossary: Single in-line
Memory Module

SMP Symmetric Multiprocessing. 102, Glossary: Symmetric Multipro-
cessing

SNIA Storage Networking Industry Association. 28, 33, Glossary: Storage
Networking Industry Association

SNL Sandia National Laboratory. 43, 44
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SSD Solid-State Drive. 26, 29, 32, 141, Glossary: Solid-State Drive

STT-MRAM Spin-Transfer Torque Magnetoresistive Random-Access Mem-
ory. 26, 27, Glossary: Spin-Transfer Torque Magnetoresistive Random-
Access Memory

SVM shared virtual memory. 40, Glossary: Shared Virtual Memory

TB Terabytes. 26, Glossary: Terabytes

TSV through-silicon via. 24

UDJ Universal Data Junction. 4, 72
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