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A B S T R A C T

It is not a bad
description of man to
describe him as a tool
making animal.
— Charles Babbage

With the rise of computationally expensive application domains such
as machine learning, genomics, and fluids simulation, the quest for per-
formance and energy-efficient computing has gained unprecedented
momentum. The significant increase in computing and memory de-
vices in modern systems has resulted in an unsustainable surge in
energy consumption, a substantial portion of which is attributed to
the memory system. The scaling of conventional memory technologies
and their suitability for the next-generation system is also questionable.
This has led to the emergence and rise of nonvolatile memory (NVM)
technologies. Today, in different development stages, several NVM

technologies are competing for their rapid access to the market.
Racetrack memory (RTM) is one such nonvolatile memory tech-

nology that promises SRAM-comparable latency, reduced energy con-
sumption, and unprecedented density compared to other technologies.
However, racetrack memory (RTM) is sequential in nature, i.e., data in an
RTM cell needs to be shifted to an access port before it can be accessed.
These shift operations incur performance and energy penalties. An
ideal RTM, requiring at most one shift per access, can easily outper-
form SRAM. However, in the worst-cast shifting scenario, RTM can be
an order of magnitude slower than SRAM.

This thesis presents an overview of the RTM device physics, its evo-
lution, strengths and challenges, and its application in the memory
subsystem. We develop tools that allow the programmability and
modeling of RTM-based systems. For shifts minimization, we propose
a set of techniques including optimal, near-optimal, and evolutionary
algorithms for efficient scalar and instruction placement in RTMs. For
array accesses, we explore schedule and layout transformations that
eliminate the longer overhead shifts in RTMs. We present an automatic
compilation framework that analyzes static control flow programs
and transforms the loop traversal order and memory layout to maxi-
mize accesses to consecutive RTM locations and minimize shifts. We
develop a simulation framework called RTSim that models various
RTM parameters and enables accurate architectural level simulation.

Finally, to demonstrate the RTM potential in non-Von-Neumann
in-memory computing paradigms, we exploit its device attributes to
implement logic and arithmetic operations. As a concrete use-case, we
implement an entire hyperdimensional computing framework in RTM

to accelerate the language recognition problem. Our evaluation shows
considerable performance and energy improvements compared to
conventional Von-Neumann models and state-of-the-art accelerators.
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Conclusion: RTMs have the potential to meet the multi-faceted re-
quirements of next-generation computing systems. However, tools
such as the ones presented in this thesis are needed to model RTMs

and exploit their full potentials by explicitly optimizing for shift oper-
ations. Our results show that, in the best optimization scenario where
RTMs need at most a single shift per access, they can outperform SRAM

both in terms of energy consumption and performance.
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1
I N T R O D U C T I O N

The memory system plays a defining role in computing systems’
performance and energy consumption. However, this was not clear
until the early 90’s when scientists at NASA and UVa, while running
highly-optimized hand-coded kernels, found them performing orders
of magnitude slower compared to the peak performance [186]. They
found the imbalance between processor and memory speeds as the
main reason and named it the memory wall problem. The gap between
the memory and processor speeds has continued and is expected to
grow by around 50% per year (see Figure 1.1). Decades down the road,
the mainstream computer architecture community still struggles to
roll over it.

The massive rise of data generation due to mobile-connected devices
and application domains such as computational bioinformatics and
machine learning have further exposed the disparity in memory and
computing capabilities of today’s machines [252]. The larger memory
footprint of these and other emerging application domains demands
higher memory capacities. However, increasing the capacity of tradi-
tional SRAM and dynamic random access memory (DRAM) technologies is
barred by various factors, including the technological scaling of the
device, wireability of the silicon interposers, the technological limit
on the number of memory stacks, and the amount of chip pinouts [24,
143]. This leads to the memory capacity wall. The die-stacking of mem-
ory layers in DRAM has partially alleviated the problem by increasing
the capacity; however, it also increases the overall energy consumption
of the memory system. The refresh frequency in die-stacked DRAM

needs to be at least doubled in order to maintain its data [329], increas-
ing the refresh power to as high as 47% of the total power consumption
of a 64 Gbit DRAM device [264]. This strengthens the power wall and
exacerbates the memory system’s overall power consumption, which
already dominates the system power consumption and contributes to
it by as much as 46% [70].

In addition to the speed, capacity, and power challenges, data move-
ment in conventional von-Neumann machines also consumes a consid-
erable amount of the system’s energy. For a floating-point operation,
the data movement between the central processing unit (CPU) and the
off-chip memory consumes two orders of magnitude more energy
compared to the operation itself [161], a problem that can not be
solved by simply scaling the memory devices or improving their
speed. To alleviate this problem, recent research advocates bringing
computations closer to the memory and processing data where it

1
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Figure 1.1: The memory wall problem. For over four decades, the gap be-
tween processor and memory speeds has increased by around
50% per year [226]. Today, in some architectures, this gap has
widened to as high as 1000× [212].

makes more sense. This has led to the development of a number of
memory-centric architectures, including the Google tensor processing
unit (TPU) [110], Microsoft Brainware neural processing unit (NPU) [348],
NVIDIA’s V100 [358], DianNao series of chips [366] and many oth-
ers [339]. These accelerators are orders of magnitude faster and energy-
efficient compared to von-Neumann machines. However, these solu-
tions are domain-specific and employ conventional DRAMs with known
scaling and power limitations.

In the remainder of this chapter, we present an overview of the
prominent NVM technologies and their prospects in future computing
systems. We particularly focus on RTMs and discuss their strengths and
associated challenges. Finally, we discucss how this thesis addresses
some of those challenges to improve RTM performance and energy
consumption.

1.1 beyond the walls : the landscape of emerging non-
volatile memory technologies

The conflicting demands for higher capacity, better speed, and reduced
energy consumption of memory devices have led to the emergence of
several NVM technologies. Today, NVM technologies can be found in
systems ranging from IoT sensor nodes to mobile devices and personal
computers to high-performance computing servers. The tremendous
market growth of these technologies (an anticipated CAGR of 10.26%
during 2022-2027) is made possible simultaneously by the end of
Moore’s law and their potential to increase the system’s functionality.
Most of these NVM technologies can potentially operate in the picosec-
ond timescale, making them thousands of times faster compared to the
nanosecond timescale conventional technologies [324]. The nonvolatil-
ity of these emerging NVMs also makes them highly energy-efficient.



1.1 beyond the walls : the landscape of emerging non-volatile memory technologies 3

In the following, we present a brief overview and working principle
of the most promising emerging NVM technologies, primarily focus-
ing on their device endurance, cell sizes, access latencies, and energy
consumption.

1.1.1 Phase change memory (PCM)

PCM is a resistive memory technology that uses reversible phase
changes in materials to store information. The first prototype of a
256 bits PCM was demonstrated in 1970 [208]. Today, it is probably
the most widely studied NVM technology. A PCM device consists of
a phase-changing material that changes states between crystalline
(a low resistance state) and amorphous (a high resistance state) and
is sandwiched between two electrodes. The two resistance states of
the material represent two logic states, i.e., a binary 1 and 0. PCM,
generally, requires a high programming current (> 200 µA) but this
can be reduced to < 10 µA by scaling down the device itself [27, 310].
Since the PCM device stores information in the form of resistance, it
can be programmed to more than two resistance states (multi-level
cells) to represent more than a single bit. This, however, can not be
relied upon in the long run as the device resistance drifts over time,
making it difficult to differentiate between resistance states.

1.1.2 Resistive RAM (ReRAM)

ReRAM is another class of resistive memory technologies that use
resistive switching phenomenon in metal oxide materials to store
information [309]. A cell in ReRAM consists of a top and a bottom
electrode and a thin oxide layer in between. For resistive switching,
a high electric field is applied to the ReRAM cell, which generates
oxygen vacancies in the metal oxide layer. This leads to the formation
of conductive filaments and changes the device state from high resis-
tance to a low resistance (set) state. For switching back to the high
resistance (reset) state, VRESET is applied to the device to break the
conductive filament and allow the oxygen ions to migrate back to the
bulk. ReRAM, compared to PCM, has higher write endurance (> 1010),
faster write operations, larger resistance on-off ratios, and better scala-
bility prospects [309]. However, it suffers from inconsistent electrical
characteristics, i.e., larger variations in resistance across devices [310].

1.1.3 Ferroelectric RAM (FeRAM)

FeRAM stores information in ferroelectric capacitors, devices that con-
sist of ferroelectric materials interposed between two metallic elec-
trodes [259]. An electric field’s application across the ferroelectric
material changes its polarization, which the device retains even if
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the electric field is removed. The polarization state of the device
thus represents logic stats and is used to store information. Overall,
FeRAM, compared to most NVM technologies, has better endurance
( 1014). However, it suffers from larger cell size, which, when scaled
down, leads to a smaller/undetectable amount of charge storage [122].
Further, it also suffers from destructive read operations. The latest
research in ferroelectric memories broadens the scope of exploration of
ferroelectric materials and is investigating them with ferroelectric field
effect transistor (FeFET) [95], and ferroelectric tunnel junctions (FTJs) [67].

1.1.4 Magnetic RAM (MRAM)

MRAM stores information in nanometric scale ferromagnetic elements
in the form of their magnetic orientation [66]. A cell in MRAM consists
of two ferromagnetic layers, a fixed reference layer and a free layer,
separated by an insulating layer. The free layer in the MRAM cell
stores the actual data bit, and its orientation can be changed/written
using various techniques. The most common one among them is the
spin-transfer torque (STT-MRAM) that employs spin-polarized electric
current to change the free layer’s magnetic orientation. The relative
orientations of the free and fixed layers have different resistance states
associated with them. In order to read/sense data from an MRAM cell,
an electric current is passed through the cell, and the resistance of
the device is measured. MRAM has virtually unlimited endurance and
acceptable access latency. However, it suffers from a larger cell size
and smaller on-off resistance ratio [122]. The latter makes it impossible
for an MRAM cell to store more than one bit.

1.1.5 Racetrack memory (RTM)

Compared to all other NVMs, RTM is relatively new and was originally
proposed in 2008 [221]. Similar to MRAM, it also stores information in
the form of the magnetic orientation of the magnetic material. How-
ever, unlike MRAM, a single cell in RTM is a magnetic nanowire that is
further split into tiny magnetic regions. These regions range from a
few 10s to a few 100s and are referred to as domains (in domain wall
memory (DWM)) or skyrmion (in skyrmions based RTMs). Each domain
(skyrmion) in the nanowire has its own magnetization direction (topo-
logical order) and represents a data bit. In addition, each nanowire is
associated with one or more access ports (APs) that allow accessing data
bits in the nanowire. Due to the larger footprint of the access transistor
in the APs, the number of ports per track in RTM is generally smaller
than the number of data bits. This makes RTM cells innately sequential,
unlike any other NVM, and necessitates data to be moved to the port
position before it can be accessed. From the performance perspective,
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RTM promises to be as fast as SRAM, with the device having unlimited
endurance.
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Figure 1.2: Performance and density comparison of emerging and conven-
tional memory technologies [51].

1.1.6 Prospects

Emerging NVM technologies offer potential solutions to the memory,
capacity, and power walls but at the same time bring their own unique
set of challenges. Figure 1.2 compares the above-mentioned NVMs
to the conventional SRAM and DRAM technologies in terms of perfor-
mance, density, and cost per byte. A more detailed comparison of
these technologies is presented in Table 2.1 and Table 3.1. Presently,
there is no clear winner, and non of the available technologies have
the potential to become a universal memory. Phase change memories
are relatively more established and have already been employed to
bridge the wide gap between memory and storage. The low latency
and byte-addressability of PCM allow using it as a DRAM extension, as
a stand-alone storage device or as a persistent memory [82]. However,
it suffers from limited write endurance and requires higher energy
access time for the write operations. FeRAM devices exhibit incredible
insensitivity to radiations and are deemed ideal for aerospace appli-
cations. However, their larger cell sizes constrain higher capacities.
ReRAM is considered as an ideal candidate to replace NAND flash, but
it also suffers from higher variability and limited write endurance [51].
MRAM has smaller access latencies and better write endurance, but
its larger cell size restricts its applicability to systems having only
limited memory capacity requirements. MRAM and FeRAM are also
commercially available but only in smaller (MB) capacity ranges.

Racetrack memories promise to offer at least an order of magnitude
higher capacity compared to other technologies, SRAM/DRAM compa-
rable best-case latency, lower per-byte cost, and higher durability. In
addition, they exhibit unique physical properties that enable in-place
computations (see 1.2). However, unlike all other NVMs, RTMs pose a
unique challenge in their sequentiality. The shift operations — required
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to move data to access ports — not only lead to variable access la-
tencies but also incur latency and energy penalties, as the time and
energy required to access a bit in a nanowire depend on its position
relative to the access port. Nonetheless, since none of the existing
technologies satisfy the multi-faceted requirements of today’s systems,
next-generation technologies such as RTMs deserve to be investigated
in detail. In the scope of this dissertation, we explore the RTM device
characteristics and architectures in detail and study mechanisms to
make them viable for software optimizations. We present simulation
and compilation tools that exploit RTMs to their full potential and
mitigate their limitations.

1.2 computation in (racetrack) memory

The next leap forward in energy-efficient computing is anticipated
in non-von-Neumann system models such as near memory comput-
ing (NMC), also known as near data processing (NDP), or computing in
memory (CIM). In the CIM paradigm, the physical attributes of the mem-
ory devices are exploited to implement logic and compute operations
in-place. Resistive technologies, e.g., PCM and ReRAM, have attracted
significant interest due to their ability to perform vector-vector and
matrix-vector (MV) like operations in constant time [260]. To explain
how they implement these operations, consider two fixed-size vectors
V1 and V2 and the crossbar configuration of memory devices as shown
in Figure 1.3. Initially, the memory devices in the first column (red
box) are programmed to conductance values corresponding to V2.
Subsequently, the input voltage corresponding to V1 values is applied
to all rows (yellow box). The measured current of the entire column
is an approximation of the dot product of the two vectors (see Fig-
ure 1.3). The same basic physics principles are exploited to accelerate
applications from machine learning and other domains [43, 269, 338,
340].

For RTMs, researchers have exploited the resistance states associated
with the magnetic orientation of domains to implement in-place oper-
ations. For instance, Wang et al. exploited the giant-magnetoresistance
(GMR) effect to realize an RTM-based XOR gate [301]. The same idea
was later extended to implement other logic and compute opera-
tions [5, 6, 100]. Luo et al. fabricated reconfigurable NAND and NOR
logic gates that perform operations using the current-induced domain
wall motion [172]. The NAND gates are then used to implement XOR
and other full-adder operations. Of late, a number of domain-wall-
based [246, 267] and skyrmions-based [170, 322] in-RTM computing
devices have been presented and used for various applications [335].

Recently, an alternate access mechanism called transverse read (TR)
was proposed that reports the number of 1’s (or 0’s) in the nanowire [350].
By applying a sub-shift-threshold current at an access port or an ex-
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tremity of the nanowire (see Figure 1.4), and performing a normal
read operation at the nearest access port, it is possible to detect how
many domains are in a certain magnetic orientation between those
two points. The TR operation has the potential to implement various
logic and compute operations [359]. However, they are not thoroughly
explored as of today.
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Figure 1.3: Mapping a dot product to the CIM crossbar [268].
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Figure 1.4: Anotomy of the RTM nanowire.

1.3 RTM challenges

Despite their promising characteristics and significant performance
and energy gains in isolated use cases, RTMs face multiple challenges
that need careful consideration for the technology to go mainstream1.

1.3.1 The shifting problem

From an architectural standpoint, shifting in RTM is the major challenge
that brings latency, energy, and reliability penalties. In the worst-case

1 Note that the challenges discussed in this section do not include fabrication related
issues that require special attention, particularly in 3D RTMs.
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shifting scenario, the RTM access latency can be up to 25.6× higher
than the SRAM [356] latency, while for certain workloads, in the ideal-
case maximum one shift per access, RTM can outperform SRAM by
24% [124]. They also take around 50% of the RTM energy [342]. In
addition to the latency and energy overheads, the shift operations
can also induce position errors, i.e., where at the end of the shift
operations, the data bits in the nanowire are not aligned to the desired
port positions [325]. The typical position error rate in an RTM cell
is 10−4 – 10−5. A rich body of research is dedicated to explore and
mitigate these errors [34, 35, 96, 183, 211, 285, 316, 326].

Minimizing the number of shift operations in RTM not only allevi-
ates the latency and energy overheads but also indirectly reduces the
number of position errors. A number of optimization techniques exist
that aim at minimizing the amount of RTM shifts. Broadly, they can
be categorized into two classes, i.e., hardware-based solutions and
software-based solutions. Hardware-based techniques employ addi-
tional hardware, e.g., monitors or predictors, to monitor hot memory
blocks and map them to RTM locations closer to access ports [277] or
predict the next access location and proactively align data to access
ports [47]. Similarly, novel memory controllers are proposed to reorder
memory accesses by prioritizing requests accessing addresses closer
to the access port [181]. While most of these techniques effectively
mitigate or hide the shift operation latency, they do not guarantee a
reduction in energy consumption. These solutions also employ ad-
ditional hardware, bringing small but non-negligible latency, energy,
and area overheads. On the contrary, software-based solutions such as
shift-aware data placement [42, 180, 315] and compiler-assisted sched-
ule and layout transformations can significantly reduce the number of
shift operations with little to no overheads.

1.3.2 Lack of simulation tools

The development of simulation tools for novel technologies such as
RTMs is imperative. It is critical to explore and evaluate them across
the memory stack. Particularly, it is essential to investigate and as-
sess their feasibility in the memory subsystem and their suitability
for different application domains. Multiple design alternatives of a
memory system may exist that satisfy the user and application require-
ments. To explore these design alternatives in RTM-based systems and
investigate different perspectives, new simulation tools are needed
that model RTM-specific design parameters. In the literature, people
have reported modifications to existing simulators such as gem5 [168],
simplescalar [11] and NVMain [233] for exploring RTMs at various
hierarchy levels in the memory subsystem [327, 355]. However, these
extensions are not available publicly, which not only deprives the
memory research community of exploring RTMs but also makes it near
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to impossible to compare results, a process that is key for advancing
the field.

1.3.3 The unfathomed potential of compuation-in-RTM

Section 1.2 presents several techniques highlighting RTM’s potential
in CIM systems. In the majority of these solutions, the GMR effect is
exploited, which, from the CIM perspective, does not give any compet-
itive edge to RTMs compared to resistive technologies. The relatively
newer TR operations have the potential to perform multi-operand
operations in a single read, making RTM an ideal fit for bulk bitwise
operations. However, the TR operations are underexplored. Ollivier
et al. explain how these operations can be used to implement vari-
ous logic and compute operations [359]. By the time of writing this
dissertation, no other research exists that harnesses the potential of
TR operations to accelerate an entire application or investigates their
potential to implement other operations.

1.4 problem statement and overview

The goal of this dissertation is to address the major RTM challenges dis-
cussed in Section 1.3 by understanding the RTM device characteristics
and system behavior through rigorous experimentation and designing
custom solutions. For RTM-based CIM systems, we aim to benefit from
the device knowledge to map compute-primitives to RTM and improve
the throughput and energy efficiency. For shifts minimization, we in-
vestigate the potential of higher (compiler) abstraction to analyze the
memory access behavior of applications and design solutions that re-
order memory accesses or assign temporaly closely accessed memory
objects to spatially closed RTM locations.

To achieve this, we investigate the following research lines.

1.4.1 Device physics and simulation

For RTMs, different design alternatives may include different positions
in the memory hierarchy. This can also be domain/application de-
pendent. For instance, some applications may benefit more from RTM

when used as on-chip memory, while others, with a limited locality,
may exploit it to its full potential as an off-chip memory. Similarly, for
the device itself, the selection of magnetic material, device structure,
sensing element, and curvature enable numerous tradeoffs, including
the controlled movement of domains, the critical current densities, and
the RTM density. In this thesis, we survey the entire landscape of the
physical developments in RTMs and their application in the memory
hierarchy.
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Similarly, like conventional memory technologies, RTMs are orga-
nized into mats, arrays, banks, and ranks. However, they also have
their unique set of parameters, such as the following, that may enable
different tradeoffs and, therefore, need careful consideration in the
system design.

• Bits per cell: The size of the nanowire, i.e., the number of bits per
cell, can be configured and is probably one of the most important
design parameters of RTM. While the nanowire’s actual length is
fixed, the number of bits per cell can be varied. This parameter
may have a direct impact on the number of shifts per access, the
number of overflow bits2, the shift current density, and the RTM

reliability.

• Access port types: An access port in RTM can either be a read-
write port or a read-/write-only port. The implications of the
design choice of the AP types may not be self-evident. Still,
they may affect the memory controller’s design complexity and
optimizations at the compiler and architectural level.

• Number of ports per cell: The number of access ports per cell
directly impacts the RTM latency, regardless of the cell size and
access port types. The tradeoff is between the access latency and
the area overhead.

• Access ports management: Associating access ports to the data
bits in a nanowire is also a design parameter that can potentially
affect the memory controller’s complexity and the RTM access
latency.

• DBC size: In RTMs, cells are grouped together to form domain wall
block clusters (DBCs). All nanowires in a DBC are moved together
and can be accessed in parallel. The DBC size will potentially
impact the shift current density as well as simultaneous access to
different regions of the memory. This may also directly impact
the overall energy consumption; since the tracks in a DBC are
moved in a lock-step fashion, not all data bits may be required
at a certain time.

We study and understand these parameters in detail before de-
veloping an architectural simulation tool that can accurately model
RTM-based systems.

1.4.2 Data placement in RTM

Compiler-guided data placement is one of the known and effective
optimization techniques that has already been used in optimizations

2 Overflow bits are the additional bits at both ends of the nanowire to avoid data loss
during the shift operations.
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for other conventional and emerging memories [159, 227, 261, 305].
The idea is to map data objects to memory locations in a way that
maximizes data locality and improves the system’s performance. For
NVMs with limited write endurance, data placement is used to intelli-
gently handle the expensive write operations and improve the system
lifetime and performance.

For shifts minimization in RTMs, we also see great potential in data
placement solutions. Let us consider a toy example to highlight this.
Assume a program has 6 data items, and they are accessed in the
order shown in Figure 1.5 (access sequence on the left). We refer to the
set of program data items as the set of program variables (V) and the
set of their access order as access sequence or program (memory) trace)
(S), where Si ∈ V ∀i ∈ {0, 1, . . . , |S|−1}, for any given source code.

As a target system, let us initially assume a simplistic RTM architec-
ture having a single DBC. We assume that each track in the DBC has a
single read/write port and the size of the data items matches the DBC

word size, i.e., the number of tracks in the DBC. Let us further assume
that the access ports in the DBC are aligned to the position of the first
data item in the access sequence (b in this case).

With these assumptions, let us take two different memory place-
ments of the program variables, a randomly chosen naive placement
(P1) and a more carefully selected placement (P2), as shown in Fig-
ure 1.5.
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Figure 1.5: Data placement impact on the RTM shifts. An intelligent place-
ment, P2 in this case, can reduce the number of shifts by more
than 2× compared to a naive placement, P1 in this case.

The total number of shifts for the two different placements, P1 and
P2, are shown in Figure 1.5. The absolute difference of the memory
offsets of successive accesses is accumulated to compute the shift cost.
For instance, for the given access sequence and the placement P1 in
the figure, access to the first variable b does not require any shifts
since we assume that access ports are aligned to this position. For
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accessing c, two shifts are required to align it to the port position (shift
cost = 2). Similarly, for the next access, i.e., b, two shifts are required
again, making the total shift cost equal to 4. The same is repeated for
the entire access sequence to get the total shift cost for a particular
placement.

The total shift cost in the naive data placement P1 amounts to 51 in
accessing the entire access sequence, while P2 incurs only 21. Even for
this tiny example, the shift cost is reduced by around 2.4×.

To compute efficient mappings, such as P2 in this example, we
design heuristic solutions that take the memory trace as input and
analyze it for access frequency and locality of the memory objects.
Based on this information, memory objects that are frequently accessed
with each other are mapped to successive or nearby locations in RTM.

Inter-DBC data placement

The data placement problem becomes more interesting and chal-
lenging if we consider more realistic and generic multi-DBC RTM

architectures. The shift cost in such systems not only depends on the
exact offset of memory objects within DBCs but also on their distribu-
tion across DBCs. Let us name these two problems as intra-DBC and
inter-DBC data placement problems, respectively. A randomly chosen
distribution of memory objects across DBCs can considerably increase
the amount of RTM shifts. Even for a smaller memory trace such as
Figure 3.20-(b), the carefully chosen inter-DBC placement Figure 3.20-
(d) reduces the number of RTM shifts by more than 3.5× compared to
the random distribution in Figure 3.20-(c).

We develop a heuristic solution that, similar to intra-DBC solutions,
inputs a memory trace and analyses it for the memory objects’ access
frequency and liveliness. Based on the liveliness analysis, the algorithm
identifies memory accesses with disjoint lifespans and assigns them to
separate DBCs. For a single run of an application, accesses to these DBCs

always incur at most one shift. For all other DBCs (storing non-disjoint
memory objects), we apply intra-DBC optimizations to find efficient
mappings.

1.4.3 Instruction placement

Instruction streams, unlike scalar accesses, are more sequential and
have better compile-time analyzable patterns. Intuitively, this makes
RTM an ideal choice for instruction memory. However, in repetitive con-
trol structures (loops), the instructions in the loop are accessed more
than once. If employed naively, RTM-based instruction memory can
lead to potential execution stalls as the access ports at the beginning
of each new iteration needs to be reset to the first loop instruction.
To avoid these long shifts and potential execution stalling, we, in
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collaboration with Tampere University, propose a novel RTM-specific
instruction placement method that ensures a maximum of one shift
per each new instruction access.

1.4.4 Optimizing compilers for RTMs

Section 1.4.2 and Section 1.4.3 motivated the need of optimization
techniques for scalar accesses (simplified single-DBC architectures and
generic multi-DBC architectures) and instruction streams. Let us now
look into potential optimization opportunities for array access in RTMs.
Consider the general matrix-matrix multiplication (GEMM) example in
Figure 1.6 where each matrix is assigned to a separate bank and each
DBC in a bank stores a matrix row (for matrices Ã and C) or a matrix
column (B̃). Assume that access ports in all DBCs are initially pointing
to the first location. Since the rows and columns of matrices Ã and B̃,
respectively, are accessed more than once, each new value of C requires
the access ports in DBCs to be aligned to the first element, incurring
very long overhead shifts. These overhead shifts make roughly 50% of
the overall RTM shifts.
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Figure 1.6: GEMM with a naive memory layout

To eliminate the long overhead shifts in GEMM like kernels, we
explore schedule and layout transformations that enable accessing
RTM DBCs in a zig-zagging fashion. Similar to the data placement
generalization in the previous section, we subsequently develop more
generic transformations that are domain-independent and optimize
for applications with repetitive accesses to array locations.

1.4.5 Hyperdimensional computing in RTMs

To explore the transverse read operation in detail and the RTM CIM

potential compared to resistive memory technologies, we accelerate an
entire hyperdimensional computing (HDC) framework in RTM. The use
case consists of operations such as XOR, majority, rotate operation,
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and bit counting, which we plan to implement in RTM using the RTM

device characteristics.
This is a cumulative dissertation combining several articles published in

peer-reviewed conferences and journals. Each chapter consists of one or more
research articles which is why some figures may appear more than once in
the same chapter, and some text may be redundant (mainly text and figures
on the RTM device and architectures). At the beginning of each chapter, we
include an introductory paragraph that provides a high-level overview of the
chapter and refers to the published articles. A small paragraph towards the
end of each chapter reflects on the subjects discussed and makes a connection
to the following chapter.

1.5 dissertation contributions and roadmap

This thesis makes multi-fold contributions. It reviews the RTM evolu-
tion from its inception to its applications in the memory hierarchy and
otherwise. From the architecture and programmability perspectives, it
identifies the major challenges and proposes optimizations to address
them.

Concretely, the following contributions are made.

1. We review RTM’s major breakthroughs and developments to
understand its device physics, working principle, and overall
architecture. We use this knowledge and develop an open-source
RTM simulation tool RTSim that accurately models RTM, its shift-
ing operation, and the port access and management policies
(Chapter 2). This is based on [22, 125].

1.1. We present a thorough overview of the prominent RTM

applications in the memory subsystem (Section 2.1.4), in-
cluding its hardware/software optimizations, shifts min-
imizations techniques, and RTM misalignment correction
schemes (Section 2.1.5).

1.2. The thesis also presents an overview of the critical technol-
ogy parameters, i.e., threshold current densities and their
impact on the movement speed of domain walls, the impact
of various materials on domain wall motion, and novel
domain wall driving mechanism (Section 2.1.3).

1.3. Our simulation tool, RTSim, is built on top of the NVMain
simulator [234] which is fully configurable and facilitates
the integration of new modules, such as the position er-
ror correction. For a full system simulation, RTSim can be
patched to the gem5 [20] full system simulator, enabling ex-
ploration for different optimization objectives (Section 2.2).

2. We propose novel optimization heuristics for scalars and in-
struction placements in RTM that minimize the number of shifts
(Chapter 3). This is based on [126, 127, 203].
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2.1. For data placement in a single DBC, we reconsider a set of
data placement heuristics that were originally proposed
for objects placement in DSP stacks. We develop a novel
heuristic, ShiftsReduce, that analyzes the memory trace to
construct an adjacency graph and computes memory offsets
such that frequently accessed memory objects are placed in
nearby RTM locations. An ILP formulation of the problem is
developed to find the optimal placement and quantify the
difference in the heuristics performance and the optimal
one (Section 3.1).

2.2. For generic multi-DBC RTM architectures, we present a novel
heuristic that analyzes the memory trace for objects with
disjoint lifespans and steers disjoint and non-disjoint mem-
ory objects to separate DBCs. This separation significantly
improves the temporal locality of the memory objects. We
also develop a heuristic based on genetic algorithms that
achieve near-optimal results (Section 3.2).

2.3. For RTM as an instruction memory, we consider two access
ports per nanowire. We design a heuristic that extracts
the repeatedly accessed basic blocks (BBs) from an input
application, splits each BB into two halves, aligns the first
half to the first access port in each DBC, and the second half
in reverse to the second port. With this mapping, when the
first access port finishes accessing the first half of the BB,
the second access port is automatically aligned to the first
instruction in the second half of the basic block (Section 3.3).

3. In domains such as machine learning, where kernels are well-
structured and well-understood, compiler transformations are
proposed to achieve ideal-RTM equivalent performance. An ideal
RTM requires at most one shift for each memory access. An auto-
matic compilation framework is developed that analyses an input
application if it has any potential for RTM optimizations and ap-
plies loop/layout transformations to generate RTM-friendly code
(Chapter 4). This is based on [124, 129].

3.1. Tensor contraction is a fundamental operation with appli-
cations in many domains, including machine learning and
computational fluid dynamics. We derive a data layout
for the tensor contraction kernel that reduces the num-
ber of shifts to the absolute minimum. For larger tensors
where tiling becomes necessary to fit tensors into RTMs, we
switch the data layout when bringing new tiles into RTM

to eliminate the overhead shifts before loading new tiles
(Section 4.1).

3.2. Motivated by our domain-specific transformations for the
tensor contraction operation, we developed generalized
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analysis and transformation schemes that examine a pro-
gram’s memory access pattern and identify potential loop
candidates for transformations. Particularly, we target opti-
mizing memory regions that are accessed more than once,
as they are more likely to cause longer overhead shifts at
the beginning of each new iteration (Section 4.2).

3.3. Based on our analysis, we transform the program loop struc-
ture (if it does not carry dependencies) or the data layout
to eliminate the longer overhead shifts. We integrate our
analysis and transformations into the mainstream LLVM
polyhedral optimizer Polly and evaluate them on a set of
more than 30 benchmark applications.

4. We explore the CIM capabilities of RTM by accelerating an entire
hyperdimensional computing framework in RTM. We present
HDCR or, HyperDimensional Computing in Racetrack, a com-
plete in-RTM HDC system where all HDC operations, i.e., XOR,
majority, rotate operation and bit counting are implemented in
RTM using the RTM device characteristics. We use the basic prin-
ciples of the TR operations, and together with intelligent data
mapping and minimal changes to sense amplifier’s circuitry, we
implement the majority operation and population counting and
rotate operations. More details on the proposed architecture and
implementation are given in Chapter 5 and [130].

1.6 other contributions

In addition to the major contributions in the previous section, I have
contributed to research works related to RTMs and beyond that are not
part of this dissertation. For instance, in Section 4.1, we mainly focus
on optimizations for the the on-chip RTM-based scratchpad memory
(SPM). We have extended this work and proposed memory access
reordering and layout transformation optimizations for the off-chip
DRAM [128]. Similarly, we have investigated techniques exploiting
domain knowledge and finding efficient layouts for decision trees in
RTMs [83]. We proposed a bi-directional linear ordering (BLO) heuristic
and proved that BLO can at most 4× worse compared to the optimal
solution. Compared to our generic ShiftsReduce solution, BLO uses the
access probabilities of decision tree nodes and finds layouts that, on
average, incur 54% fewer shift operations. This is joint work with TU
Dortmund.

In a recent work, we investigated the impact of shifts minimiza-
tion on RTM reliability. Intuitively, shift optimization should indirectly
improve RTM reliability. However, it was never investigated nor con-
sidered in the development of a reliability technique. We propose
GROGU, a novel RTM reliability scheme that leverages the shift re-
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duction from our generalized data placement scheme in Section 3.2
to provide efficient reliability with fewer resources [131]. Concretely,
for two errors correction and three errors detection (2EC3ED), GROGU
provides order-of-magnitude better reliability compared to the state-of-
the-art reliability scheme. In addition, GROGU scales with nanowire
length and can tune area overhead against shift distance to mini-
mize latency impact compared to non-co-designed approaches, i.e.,
approaches that do not employ shift minimizations. This is joint work
with the University of Pittsburgh and is currently under review.

Besides RTMs, I have contributed to research works targeting other
emerging nonvolatile and conventional memory technologies. For in-
stance, for memristors, we have developed the open CIM compiler (OCC),
a fully automatic end-to-end compilation framework based on multi
level intermediate representation (MLIR) rewriting, which allows reliable
mapping of computational motifs to the memristors’ crossbar in a
transparent way, without any user intervention [268]. OCC exploits
the layered abstractions of MLIR and implements high-level hardware-
agnostic and low-level hardware-specific analysis and transformation
passes. This is joint work with researchers from multiple organiza-
tions, including TU Eindhoven, Google, the University of Oklahoma,
Edinburgh, and TU Dresden.

Further, I have contributed to efficient implementation of large size
last level caches (LLCs) based on STT-RAM [346] and based on DRAM [85].
The latter benefits from a decoupled tag-data organization which mit-
igates the tag serialization latency by enabling concurrent accesses
to the tag and data regions and minimizes the number of lookups
and write access to the data region. To facilitate the evaluation of a
hierarchal cache organization, we have extended the NVMain sim-
ulator to support multi-level cache systems [123]. Finally, to accel-
erate the memory-centric DNA seed location filtering algorithm in
an NDP system, we recently employed a stacked DRAM architecture
with dedicated memory and logic layers. We proposed algorithmic
and hardware extensions that improve the overall system latency and
energy consumption [84].





2
U N D E R S TA N D I N G D E V I C E P H Y S I C S A N D
S I M U L AT I O N S

Prelude: This chapter introduces the main components of racetrack
memory (RTM), including its cell structure, device physics, read-write
mechanism, and prominent RTM architectures. It provides an overview
of recent developments in RTMs and their application in the memory
subsystem and optimizations. It also explains the RTM simulation tool
that enables RTM design space exploration at various levels in the
memory subsystem. The contents are based on our review article
entitled "Magnetic racetrack memory: From physics to the cusp of
applications within a decade" that was published in the proceedings
of the IEEE in 2020 [22], and the racetrack memory simulator paper
entitled "RTSim: A cycle-accurate simulator for racetrack memories"
that was published in the IEEE computer architecture letters 2019 [125].

2.1 magnetic racetrack memories

Racetrack memory (RTM) is a novel spintronic memory-storage tech-
nology that has the potential to overcome fundamental constraints
of existing memory and storage devices. It is unique in that its core
differentiating feature is the movement of data, which is composed
of magnetic domain walls (DWs), by short current pulses. This enables
more data to be stored per unit area compared to any other cur-
rent technologies. On the one hand, RTM has the potential for mass
data storage with unlimited endurance using considerably less en-
ergy than today’s technologies. On the other hand, RTM promises
an ultrafast nonvolatile memory competitive with static random ac-
cess memory (SRAM) but with a much smaller footprint. During the
last decade, the discovery of novel physical mechanisms to operate
RTM has led to a major enhancement in the efficiency with which
nanoscopic, chiral DWs can be manipulated. New materials and artifi-
cially atomically engineered thin-film structures have been found to
increase the speed and lower the threshold current with which the
data bits can be manipulated. With these recent developments, RTM

has attracted the attention of the computer architecture community
that has evaluated the use of RTM at various levels in the memory
stack. Recent studies advocate RTM as a promising compromise be-
tween, on the one hand, power-hungry, volatile memories and, on
the other hand, slow, nonvolatile storage. By optimizing the memory
subsystem, significant performance improvements can be achieved,
enabling a new era of cache, graphical processing units, and high
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capacity memory devices. In this article, we provide an overview of
the major developments of RTM technology from both the physics and
computer architecture perspectives over the past decade. We identify
the remaining challenges and give an outlook on its future.

2.1.1 Introduction

Conventional data storage and memory technologies are highly con-
strained by fundamental technology limits. As a result, a number of
nonvolatile storage and memory technologies have emerged recently.
The uninterrupted scaling and 3-D integration of NAND flash technol-
ogy have enabled it to outperform hard disk drives (HDDs) in terms of
volume and planar storage density [48]. However, its limited write en-
durance and higher erase and write latencies limit its applicability in
future computing systems. Similarly, in memory technologies, phase
change and magnetic memories have been proposed as candidate
replacements for static random access memory (SRAM) and dynamic ran-
dom access memory (DRAM) [239]. However, phase change memory (PCM)
suffers from durability issues and its write latency is an order of mag-
nitude higher compared to SRAM [239]. The spin-orbitronics-based
magnetic racetrack memory (RTM) combines the best of all worlds, si-
multaneously offering endurance of magnetic HDDs, the density of
3-D vertical NAND flash, with the attractive latency rates of SRAM

and DRAM [197, 221, 222]. A summary of qualitative and quantitative
comparison of RTM with other technologies is presented in Table 2.1,
which shows tradeoffs among various parameters that include latency,
area, power, and retention characteristics.

RTM was first proposed in 2002 [219] and its fundamental underlying
principle was first demonstrated in 2008 [221], [90]. Research studies
over the past decade have led to unexpected physical mechanisms to
operate RTMs. The information in RTM is stored in a magnetic track
in which magnetic regions serve as bits, similar to HDDs. In contrast
to the latter, RTM is neither limited to a 2-D design nor relies on
the mechanical motion for operation. Instead, the magnetic bits are
moved by electrical currents in which spin-polarized electrons interact
with magnetic moments. As the motion is always along the electrical
current, arbitrary pathways can be structured, making it possible to
move bits in curved or even vertical wires [69]. Advances in spin-orbit
mechanisms have led to different generations of RTM (see RTM 1.0–4.0
[222]), each characterized by leaps in the motion efficiency of the bits.

In this article, we review major breakthroughs and recent advances
in the RTM technology starting from fundamental physics and materi-
als science to the overall memory architecture. We focus on demon-
strated experimental work of racetrack domain wall (DW) motion and
materials used. We explain the data sensing and read/write mecha-
nisms of the RTM access ports, organization of racetracks into arrays,
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Table 2.1: RTM comparison with other memory technologies [48, 52, 121, 187,
194, 275]

SRAM DRAM STT-RAM RRAM PCM MRAM V-NAND RTM HDD

Cell Size (F2) 120-200 4-8 6-50 4-10 4-12 10-60 1-5 ≤2 0.5

Write Endurance ≥ 10
16 ≥ 10

16
4 x 10

16
10

11
10

9 > 1012
10

3 - 10
5 ≥ 10

16 ≥ 10
16

Read Time(ns) 1-100 30 3-15 10-20 5-20 3-20 25 x 10
3

3-250
∗

2 x 10
6

Write/Erase Time 1-100 50 3-15 20 > 30 10-20 (0.1-1) x 10
6

3-250
∗

2 x 10
6

Read Energy Low Medium Low Low Medium Low Medium Low Medium

Write Energy Low Medium High High High High High Low Medium

Leakage Power High Medium Low Low Low Low Low Low Low

Retention Period As long as voltage applied 64-512 ms Variable Years Years Years Years Years Years

*including the shift latency

data storage, and access ports management in order to give a com-
prehensive picture of the overall functionality of the technology. We
review critical technology parameters such as threshold current densi-
ties and their impact on the velocities of magnetic DWs and movement
of DW in curved wires and its associated challenges. We discuss the
impact of different magnetic materials such as Heusler structures and
ferrimagnetic bi-layers on DW motion. In these, novel DW driving mech-
anisms allow faster and more efficient DW motion reducing the power
consumption of RTM. This article also includes a survey of promi-
nent applications of RTM and its evaluation at various levels in the
memory subsystem. We then discuss hardware/software (HW/SW)
optimizations required to mitigate the cost of shifting domains and
potential errors inherent to RTM technologies. This article closes with
insights into future research directions, concerning materials, circuits
and design methods, and future reconfigurable memory hierarchies
based on RTM.

2.1.2 RTM preliminaries

This section provides a background on the RTM cell structure, read-
/write mechanism, access ports management, array architecture, and
data organization.

2.1.2.1 RTM cell structure and data representation

An RTM consists of magnetic nanowires—magnetic racetracks—which
are organized horizontally or vertically on a silicon wafer as depicted
in Fig. 2.1 [221], [219]. In many magnetic materials, grown as a thin
film, the magnetization can take two states, for example, pointing
up or down. These states can serve as bits representing "0"s or "1"s,
respectively, which can be stored with unprecedented density. By
sending an electrical current along the wire, the bits can be shifted,
synchronously to another location on the racetrack [221]. In that way,
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the information can be moved to a readout unit, referred to as an access
port, which determines the state of the magnetization (read operation).
The access port could also switch the magnetization state by sending
a larger current (write operation), as explained in Section 2.1.2.2.

Figure 2.1: Horizontal and vertical racetrack with one access port. The current
flows through the device along the bit motion direction. Overflow
bits at the ends of the wire can be reduced by increasing the
number of access ports [221],[219].

The fundamental 2-D arrangement can also be extended to a 3-D
design in which the information is shifted vertically, thereby further
increasing the storage capacity per feature size [221]. The motion of
the magnetic bits is derived from the interaction of current at the
boundaries between oppositely magnetized regions. These boundaries
are the magnetic DWs, within which the magnetic moment gradually
rotates from one direction to the other direction. Typically, the DWs
are just a few nanometers wide. By sending an electrical current, the
local magnetic moments rotate such that the center of the DW moves
either along or against the current flow direction.

The access latency and energy consumption of RTM largely depend
on the number of shift operations required. While a track could be
equipped with multiple access ports, the number of ports per track is
always lower than the number of domains. Therefore, ports are shared
among multiple domains. Increasing the degree of sharing improves
the area efficiency, but significantly increases the number of needed
shifts which, in turn, reduces the RTM average access latency.

Typically, an access port is made up of an access transistor and a
magnetic tunnel junction (MTJ). The access transistor, controlled by the
word-line, enables read/write operations, and controls the current
density. The transistor size in the access port is typically much larger
than the track size [342]. As a result, it dominates the die-area as
schematically depicted in Fig. 2.2.
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A simple adjacent placement of tracks on a horizontal surface leads
to significant die-area wastage. To avoid this, recent designs overlap
access transistors by grouping tracks together and placing them ad-
jacently. Groups of racetracks are referred to as macrounits [98, 332,
342] or domain wall block clusters (DBCs) [42, 125, 126, 156, 315, 355] in
the literature (Fig. 2.2).

Access MOS

Shift MOS

Racetrack

(a)

(b)

Figure 2.2: Macro-unit/DBC. (a) Single-cell DBC (top view). (b) Four-cell DBC

with an overlapped transistor area [342, 355].

2.1.2.2 Read/write mechanism in RTM

As mentioned above, RTM is equipped with access ports. Bits can be
shifted to the access port locations for data reading or writing. In a
conventional HDD, a read/write sensor moves mechanically to the
location of the magnetic bit on the rotating disk in order to engage
in a read/write operation. In contrast, the RTM access ports are fixed
at particular locations on the track and instead, the bits are moved
electrically to the port location for read/write operations. The mag-
netic state readout can be realized via magneto-resistive effects. Giant
magnetoresistance (GMR) [13, 19, 215, 217] and tunneling magnetore-
sistance (TMR) [173] are two such phenomena that occur when two
magnetic layers are separated by a nonmagnetic conductive layer or
an insulator, respectively. Originally, it was proposed by Chen and
Parkin in [41] that the read operation can be performed by affixing
a magnetoresistive sensor in proximity to the track in order to use
the emanating fringing fields for distinguishing between the magnetic
states, or by integrating an MTJ sensor directly onto the racetrack [221].
Recent developments in MTJs [206, 209] allow for CMOS integration
and scaling to feature sizes compatible with RTM applications. Fur-
thermore, TMR values can far exceed those of GMR reaching values
upward of 600% at room temperature [103], [220]. Thus, the key el-
ement of an access port which can perform both read and write is
an MTJ. In Fig. 2.3, an access port is shown where the MTJ interfaces
the racetrack at the top but could also be at the bottom. In the MTJ,



24 understanding device physics and simulations

one of the magnetic layers is engineered to have a fixed orientation
[231], [146], and the other magnetic layer is formed by the section of
the magnetic track which is in contact with the insulating layer (most
commonly used MgO or Al2O3). The resistive state of the junction
can be read by flowing a small reading current perpendicular to the
junction. The parallel or antiparallel orientation of the magnetic bit
relative to the fixed magnetic layer corresponds to two distinct resis-
tance states, "0" or "1". Thus, the magnetic bit within the access port
can be read depending on its individual orientation. The MTJ can also
be used as a writing device when larger currents are used [88, 99,
140]. As the tunneling currents derived from the magnetic layers are
spin-polarized, they result in a strong interaction that can reorient
the magnetic bit in the access port via spin-transfer torques (STTs). The
orientation of the bit to be written can be determined by the polarity
of the applied current through the MTJ.

Figure 2.3: Part of the RTM showing the access port. The access port consists
of an MTJ with a fixed upper magnetic layer, an intermediary
insulating layer (green), and a section of the racetrack. Shifting
of the magnetic track is accomplished upon application of an
electric pulse and readout is carried through the MTJ at the access
port. In actual devices, long-range dipole fields emanating from
the magnetic layers need to be eliminated using, for example, an
SAF structure that was originally devised by one of the authors
in 1989 [91, 216].

An MTJ device for reading and writing is perhaps the simplest solu-
tion but there are other possible solutions for both reading and writing.
There can be significant advantages in having two distinct devices, one
for reading and one for writing since these devices can be individually
optimized for their respective functions. For example, an optimized
MTJ for reading can have a thicker tunnel barrier which provides for
higher TMR and better endurance against junction breakdown. Other
ways of writing have been demonstrated which involve, for example,
the use of spin-orbit torques (SOTs) that are derived from the nonmag-
netic underlayers showing spin Hall effect [167], [149]. In this case,
the current is applied through the magnetic track instead of applying
it across the tunnel junction. This prevents the deterioration of the
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insulating layer that may occur with the use of high writing currents
through the MTJ but may require fringing fields generated through the
addition of electrical contact lines [3]. In contrast, an inline injector
has been demonstrated that involves the flow of current through the
track but without the requirement of adding any further electrical
lines. The fringing fields, in this case, are generated by the creation
of a 90◦ DW through local irradiation of the magnetic film that has
perpendicular magnetic anisotropy (PMA). The passage of currents in the
track results in the nucleation of DWs through the generation of STT
in the presence of these fringing fields [230].
In the RTM access port, the operation to read or write is fully electri-
cal with no need for moving parts, leading to high-performance and
high-density memory storage.

2.1.2.3 Access ports management

The shift-controller maintains and manages the status of the access
ports in an RTM. At each memory access, the shift-controller decides
which access port will access the data, computes the number of shifts
required for aligning the port position to the requested data, and
updates the status of the access ports. The selection of access ports
and the number of shifts required before accessing the requested
domains depends upon the port access policy which can either be
static or dynamic [126, 355]. Similarly, updating the port positions
after completion of a memory request also depends upon the port
access policy.

In static port access policies, ports are statically assigned to domains.
For instance, if a racetrack stores 64 domains and has two access ports,
one possible static assignment is to dedicate the first 32 domains (i.e.,
0–31) to port 0 and the remaining domains (i.e., 32–63) to port 1. In
dynamic port access policies, the access port that is closest to the
requested domain accesses it. This implies that any access port can
access any domain in the racetrack depending on the data access
pattern and the positions of the current ports.

While a static port access policy makes the implementation of the
shift controller a lot simpler, it can lead to significant increases in the
number of shifting operations. For instance, if the initial positions of
the access ports are set to 0 and 63, consecutive accesses to domains
31 and 32 require 31 shifts each and will be accessed by different ports
(ports 0 and 1, respectively). In a dynamic port access policy, both
accesses will be performed by port 0 and will incur a total of 32 (31 + 1)
shifting operations. In rare situations, a dynamic port access policy
can still increase the number of shifts compared to a static port access
policy. To illustrate such a scenario, consider the above assumptions
of initial port positions and the following domain access pattern, 31,
45, 52, 57, and 25. In a dynamic port access policy, all accesses are
performed by port 0 because it is always closer to the next requested
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domain and the total number of shifts incurred sums up to 89. On the
contrary, in the sample static policy mentioned above, port 0 serves
the first and the last requests and port 1 serves the remaining three
requests, incurring altogether 67 shifts.

Another important design aspect of the shift controller is the port
update policy. After accessing a domain, the position of the access
port can be either restored to its default location (incurring twice as
many shifts as required for aligning) or updated to the location of
the current access. The former is known as "eager" while the latter
is referred to as the "lazy" port update policy [126, 355]. Finally, the
port access policy also affects the number of overflow bits per track.
A static port access policy requires less overflow bits compared to a
dynamic policy. Most RTM designs adopt dynamic policies for the port
access and the lazy policy for the port update.
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Figure 2.4: Overview of the overall architecture of an integrated RTM. A
DBC serves as a basic building block of an RTM array. Like other
memory technologies, one or more arrays are then combined to
form independent banks.

2.1.2.4 RTM architecture and data organization

A DBC is the basic building block of an RTM array. It consists of M
tracks where each track is equipped with P access ports and has N
domains. Although the RTM cell structure is fundamentally different
than existing memory technologies, recent RTM designs maintain the
same I/O interface and memory hierarchy to ease technology adoption
[125, 342, 367]. For example, the entire memory unit is hierarchically
decomposed into ranks, banks, and subarrays. One such widespread
architecture is shown in Fig. 2.4 .

A subarray being the smallest component in the architecture needs
to be carefully designed. The subarray design substantially affects
the RTM’s performance, energy, and area efficiency [367], where area
efficiency refers to the area ratio of the data array and the peripheral
circuitry. Although most of the peripheral circuitry in an RTM subar-
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ray is similar to existing memory technologies, the shift-controller is
specific to RTM subarrays.

RTMs are inherently sequential in nature. A track in an RTM contains
multiple DWs which can accommodate an entire data word. However,
storing a single word in the track serially leads to significant perfor-
mance degradation. To completely eliminate the shift operation, a
track can store a single DW. However, single DW RTMs have a negative
impact on density.

To keep both the performance and the density benefits intact, recent
designs store data in DBCs in an interleaved fashion and move the DWs

in a lockstep fashion [42, 98, 125, 126, 156, 180, 315, 327, 332, 342, 355,
367]. An M-bit memory object is distributed across the M tracks of
a DBC as schematically shown in Fig. 2.5. Large size variables can be
further distributed across multiple DBCs. Accessing a variable requires
shifting and aligning the access port position to all required domains
at the same time and all bits of the requested data can be accessed in
parallel.

2.1.3 Physical and material developments in RTM

This section overviews the development of RTM from version 1.0 to 4.0
in which especially the mechanisms of DW motion evolved to highly
efficient driving torques. These also apply to ferrimagnetic systems
in which very low threshold current densities to move DWs have
been discovered. Finally, an overview of recent advances in epitaxially
grown materials is provided in which fast DW motion and extremely
low threshold current densities have been reported.

2.1.3.1 Development of RTM

RTM relies on the motion of magnetic DWs by an electrical current.
This was first demonstrated in permalloy nanowires in which the DWs

moved at about 100ms−1 by the use of volume STT [89]. This was the
driving mechanism in the first prototype of RTM. In a second version,
the magnetic materials were improved so that the magnetization did
not lie in the wire plane but instead pointed out of the wire plane.
Such magnetic materials exhibit a strong PMA which makes the DWs

narrower and more robust against annihilation. As a result, a higher
packing density can be achieved. DW motion in materials with PMA

was first demonstrated in Co/Ni multilayers [44], [280]. The motion of
DWs by volume STT for RTM versions 1.0 and 2.0 is depicted in Fig. 2.6.

In 2011, a much faster DW motion was reported in a system con-
sisting of an ultrathin magnetic layer which exhibits PMA by virtue of
its interface with a heavy metal underlayer such as Pt [192]. Interest-
ingly, the direction of DW motion was now observed to be opposite
to the electron flow direction. To account for that, a new, much more
efficient mechanism was introduced – the chiral spin torque (CST) [254].
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In these systems, there is the generation of the Dzyaloshinskii-Moriya
interaction (DMI) inside the magnetic film due to symmetry breaking in
the presence of spin-orbit coupling at the heavy metal/magnetic layer
interface. This exchange favors a canting of the magnetic moments
with a fixed chirality which is observed through the formation of
Néel DWs as shown in Fig. 2.7. The rotation of magnetization at the
DW boundary in the Pt/Co system features a counterclockwise (CCW)
direction. In addition to the DMI, the heavy metal exhibits a spin Hall
effect which creates a spin current perpendicular to the current flow
direction illustrated in Fig. 2.7(b). This spin current flows into the
magnetic layer and exerts an STT on the magnetic moments. This CST

is much more efficient than the volume STT, resulting in much larger
DW velocities of almost 400ms−1 [254], [255]. This effect has also been
demonstrated in other heavy metal underlayers besides Pt [255].

Lastly, a great step toward application was achieved by using anti-
ferromagnetically (AF) coupled structures [319] where the orientation
of magnetization in two magnetic layers is antiparallel to each other as
shown in Fig. 2.8. In a synthetic antiferromagnetic (SAF) two magnetic
layers are in indirect contact through a spacer layer such as Ru which
mediates the AF exchange coupling [217]. The magnetic sublattices can
also couple AF without the need of a spacer layer as discussed further
in Section 2.1.3.2. As in the previous version of RTM, the structure is
grown on top of a heavy metal underlayer. Due to the AF coupling,
an exchange coupling torque (ECT) derived from the exchange field of a
much higher magnitude than the DMI field [318], [319]. When the mag-
netization of the two magnetic layers is equal, the ECT is maximized.
Due to the ECT, the DW mobility, which is the increase of DW velocity
with respect to increasing current density, is also high at high current
densities. For an SAF structure, a DW velocity of > 750 ms−1 has been
reported [319]. In this fourth version of RTM, the antiferromagnetic
coupling not only allows a higher DW mobility due to the ECT but
also makes the DWs highly stable against external magnetic fields.
Most importantly, the SAF structure eliminates magnetostatic stray
fields that would otherwise emanate from the magnetic layers in the
racetrack and lead to unwanted interactions between DWs within and
between racetracks.

2.1.3.2 DW motion in ferrimagnetic systems

After the discovery of the ECT in SAF structures, renewed interest in
research on DW motion in AF coupled systems emerged [21, 32, 64,
94, 135, 193, 266, 284]. Besides SAF structures, ferrimagnetic alloys or
multilayers that are composed of rare earth (RE) metals and transition
metals (TMs) exhibit an antiferromagnetic coupling between the mag-
netic moments of the RE and TM materials. The exchange coupling
between these elements can be stronger than the coupling in SAF
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Figure 2.5: Data organization in a DBC (v: variable, b: bit). N variables each
of size M are stored in an M-cell DBC in a bit-interleaved fashion.
If access ports of all M-cells point to the same location (as shown),
all bits of the variable can be read in parallel.

structures as these elements couple AF without the need for a spacer
layer.

When two magnetic sublattices of an RE and a TM couple together,
the respective magnetizations per unit volume, mRE and mTM, can
become compensated when mRE = mTM such that the net magnetiza-
tion is zero. This can be achieved either by varying the composition
or by varying the temperature. As the magnetism in REs is carried by
the inner shell 4f electrons instead of the 3d conduction electrons as
in TMs, the dynamics of the respective magnetic moments are distinct.
This is embedded in the gyromagnetic ratio γ = g(µB/h̄) with the
Bohr magnetron µB, the reduced Planck constant h̄ and the material-
dependent Landé g-factors gRE and gTM. As a result, in dynamic
processes like DW motion, the response of each magnetic sublattice
to spin currents is different. However, there exists a compensation
point where mRE/γRE = mTM/γTM where m/γ is the respective
angular momentum. Recent studies have shown that the DW mobility
in ferrimagnetic systems is maximized at this angular momentum
compensation point [21], [32], [266]. This has allowed for the motion
of DWs with speeds at least as fast as those of SAF structures [32]. This
effect is likely to originate from the comparably low magnetization in
the REs which are highly temperature sensitive [21]. Because of this
temperature dependence, Joule heating can influence the DW motion
greatly. It has been shown that a single current pulse of 10 ns length at
a density of 1× 108A cm−2 can easily heat up the device by ∼ 75 K [21].
Hence, lowering the threshold current to at least 1× 106A cm−2 but
keeping a large DW mobility at the same time is of major interest for
applications. Ferrimagnetic systems are a step toward fulfilling both
requirements but their extreme temperature dependence makes them
less appealing than SAFs.
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Figure 2.6: Magnetic DWs are shifted by current pulses which rotate the local
magnetization (indicated by colored arrows). In the 1.0 and 2.0
RTM versions, motion is governed by a volume STT in which the
electrons (black arrows) transfer their angular momentum to the
localized magnetic moments.The DW motion is generally in the
electron flow direction.

2.1.3.3 Threshold current density

The minimum energy for shifting DWs is determined by the threshold
current density that needs to be applied to overcome DW pinning. In
ferromagnetic systems, e.g., consisting of a Co/Ni multilayer, the DW

is driven by CST (see Section 2.1.3.1) and the threshold current is of the
order of 0.5× 108A cm−2 [254]. In SAF structures, the DW mobility is
increased but the threshold current density is not significantly reduced
[319]. Table 2.2 summarizes the measured threshold current density for
nanosecond long pulses for various magnetic material systems on a Pt
underlayer, as of today. It shows that films containing RE metals show
a lower threshold current density. Considering a 20 nm-wide racetrack,
the energy required for one shift at the given current densities in these
materials is of the order of a few fJ.

Several proposals for the origin of the threshold current density have
been made. Depending on the DW driving mechanism, the pinning is
either intrinsic [278] or extrinsic arising from defects and roughness of
the sample [178]. For the mechanisms in RTM versions 3.0 and 4.0, no
intrinsic mechanism has been identified which could explain the large
threshold currents which appear in the experiments. Hence, extrinsic
pinning is a likely explanation for the appearance of a threshold
current density. While edge roughness of patterned nanowires is
difficult to avoid, especially in nanometer wide wires [279], atomic
defects and inhomogeneities also have to be taken into account [14].
The density and strength of these defects determine the threshold
current density.
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Figure 2.7: Magnetic DWs in a ferromagnetic material (e.g., Co). (a) DW chiral-
ity in subsequent DWs is conserved due to the DMI at the interface
to a heavy metal layer (such as Pt). (b) The electrical current in
the heavy metal layer creates a spin current due to the spin Hall
effect which diffuses into the ferromagnetic layer. The spins are
polarized such that they exert a torque on the magnetization, ro-
tating them out of the DMI-favored orientation. Hence, an effective
DMI field is created which exerts a CST on the magnetic moments
which finally moves the DW along the current flow direction [254,
318].

To obtain a lower threshold current density, the most straightfor-
ward approach is the reduction of defects and roughness in the sample.
Although most samples are of good crystallinity, a further improve-
ment, for example, of the interface roughness could be achieved by
using different underlayers or utilizing various growth methods. To
describe homogenously distributed defects in a sample, for example,
the dry friction model [178] is in good agreement with the experiments
[21]. In such a model, besides the defect distribution, there are two
other parameters that can be tuned in order to reduce the threshold
current [21]. One is the spin Hall angle of the underlayer which, if
larger, can produce the same spin current into the magnetic layer at

Table 2.2: Comparison of threshold current densities for different magnetic
materials

Material system Threshold current density∗ (108A cm−2)

Pt/Co 1 [254]

Pt/Co/Ni/Co ∼ 0.5 [255]

Pt/Co/Ni/Co/Ru/Co/Ni/Co ∼ 0.5 [21]

[Co/Tb]9/Pt 0.15 [278]

Pt/Co/Gd ∼ 0.3 (at 200 K) [32]

Pt/Co44Gd56 ∼ 0.3 (at 314 K) [94]

Pt/Co74Gd26 0.2 [284]

*Pulse length(1 ns− 100 ns)
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Figure 2.8: Two AF coupled layers in which the DW motion is governed by an
ECT. Spin current from the underlayer turns magnetic moments
toward the spin polarization. Due to the rotation out of the an-
tiparallel alignment an exchange coupling field is created which
applies an ECT on the magnetic moments, moving the DW into the
current flow direction [319].

a lower electrical current density. The other parameter is the magne-
tization of the magnetic layer. By decreasing it, the DW is effectively
lighter and hence, easier to move. Continued efforts in material en-
gineering at the atomic scale are needed to achieve a combination of
a low threshold current while maintaining a high DW velocity at a
particular current density.

2.1.3.4 Influence of curvature on the operation of RTM

The dynamics of DW motion have been well studied for magnetic
nanowires that are straight. It has been found that irrespective of the
underlying mechanism of DW motion—whether the torque is derived
from STT, CST, or ECT–DWs move in a synchronistic fashion, a key
requirement of RTM. This is not the case for the motion of chiral DWs

in curved nanowires as shown in Fig. 2.9. Instead, the curvature of
the wire can significantly alter the motion of DWs [69]. Two adjacent
DWs in a curved nanowire travel with very different speeds, leading
to a difference in speed that was observed to be up to an order of
magnitude. This difference results from a speeding up and a slowing
down of the DW pair, relative to their motion in a straight wire. It
was also found that whether a DW speeds up/slows down depends
on its direction (clockwise (CW) or CCW) of motion along a curvature.
When the difference in speeds causes the separation between the DWs

to shrink sufficiently, the DW pair can annihilate leading to a loss
of data. Although horizontal racetracks that are made exclusively
from straight nanowires do not suffer from this shortcoming, vertical
racetracks conceived as U-shaped wires or other designs such as the
ring memory which incorporate bends are likely to be affected.

An analytical model based on the motion of a DW along a curved
wire revealed that the difference in speeds arises from the disparate
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Figure 2.9: Chiral DW in a ferromagnetic track traveling through a curvature
speeds up or slows down depending on the sign of the curvature
(κ).

tilting behavior of the adjacent DWs during motion in a curved wire. A
DW that travels orthogonally to the wire experienced greater driving
torques and moved faster in contrast to a DW that accumulates a
tilt during its motion. Remarkably, this problem was found to be
eliminated in curved nanowires that were composed of SAF structures
[69], [4]. The driving torques in such magnetic structures are largely
derived from an ECT that is insensitive to the tilting behavior of the
DWs. DWs in such structures move at the same speeds in both the
curved and straight sections of the wire. Thus, the SAF removes an
unanticipated but critical hurdle to the implementation of RTM in two
and three dimensions.

From the architecture perspective, some curved wires, such as the
ring-shaped, may be more favorable compared to the traditional stripe-
shaped RTM which is openended and suffers from data overflow issues.
Overflow happens when a bit is shifted beyond the end of the track
which causes data loss. This problem can be addressed by using
additional peripheral registers that latch the overflow information
[65], or by increasing the number of ports [290], or by employing
extra domains in the track to avoid data loss. However, these tech-
niques degrade device density, performance, and energy consumption
[65], [333]. The ring-shaped RTM has already been demonstrated as
a possible option to overcome this issue [65], [333], [298] and ensure
end-to-end information storage by avoiding the data overflow caused
by shifting. In addition, a ring-shaped RTM also reduces the worst case
shifts from (N − 1) to N/2 for an N-bit racetrack [298]. The latter shift
reduction property of ring-shaped further reduces the latency and
energy consumption compared to stripe-shaped RTM.

Similarly, some recent works have also demonstrated the imple-
mentation of a two-bit de-multiplexer using a Y-shaped RTM where
DWs created in its input branch are sorted into one of the two out-
put branches of a Y-shaped magnetic nanostructure based on their
chiralities [229], [237].
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2.1.3.5 Epitaxial racetracks

Recent material developments and techniques have allowed for the
exploration of RTM on high-quality epitaxial ferrimagnetic oxides [12],
[289] and Heusler compounds with a wide range of fascinating proper-
ties. The latter were shown to grow in ultrathin form on technologically
relevant silicon substrates using novel chemical templating layers (CTL)
[63].

Efficient chiral DW motion was demonstrated in thin (5− 8nm) fer-
rimagnetic iron garnets. Layers of Tm3Fe5O12 (TmIG) and Tb3Fe5O12

(TbIG), having PMA, were epitaxially grown on (111) Gd3Ga5O12 [12]
or Gd3Sc2Ga3O12 [289] substrates, paired with a (4− 5 nm)−thick Pt
overlayer. In these systems, besides the interface with the heavy metal
Pt, a strong interfacial DMI is found at the oxide interface between
the substrate and the ferrimagnetic TmIG or TbIG. Thus, the com-
bined DMI contributions of the top and the bottom interface set the
DW chirality. The fastest DW velocities are up to ∼ 800 ms−1 with low
threshold current densities of (0.04− 0.05)× 108A cm−2. Yet, reducing
the high temperatures needed for the growth of these layers (650 ◦C)
and developing methods for epitaxial growth on silicon substrates is a
prerequisite for their integration with CMOS electronics.

Another epitaxial system – Heusler materials and compounds – has
shown efficient chiral DW motion in their ultrathin form, with growth
at room temperature [63]. A CTL method allows even single unit cell
thick layers of the low moment ferrimagnetic binary Heusler alloys,
Mn3Z, where Z = Ge, Sn, Sb, to be grown on amorphous underlayers.
The two magnetic sublattices, formed from alternating Mn-Mn and
Mn-Z atomic layers, are coupled AF. Since these layers are formed
from TMs the net (low) moment is weakly dependent on temperature
when compared to RE-TM materials.

DW motion in Mn3Z Heusler racetracks shows a rather complex
mechanism where both a volume STT and a chiral SOT drive the DW

motion. A bulk derived DMI field HDM sets the chirality of the DWs

whose handedness (CW or CCW) is dependent upon the choice of the
Heusler compound. The main driving mechanism of the DWs in these
Heusler materials is the volume STT which also defines the direction of
the DW motion that is determined by the sign of the spin polarization
in these materials. A spin current originating from the neighboring
nonmagnetic (at room temperature) CTL layer exerts an STT on the
magnetic moments of the chiral DWs. The SOT contribution can be
tuned and, furthermore, can either be additive or subtractive to the
main DW driving mechanism.

The result of the STT on the chiral Néel DWs creates a damping
torque that acts on the magnetic moments of the DW, causing thereby
a precessional motion and the DW motion along the electron spin
polarization direction. The spin current from the CTL layer (or adjacent
nonmagnetic overlayers [63]), owing to the DMI, and the damping



2.1 magnetic racetrack memories 35

Table 2.3: Summary of spin polarization direction, DMI direction, spin hall
angle, and Sot contribution to the DW motion driven mainly by
STT for Mn3Ge, Mn3Sn and Mn3Sb. Note that HDM is along the
nanowire axis.

Mn3Z Heusler STT direction chirality HDM(Oe) CTL ΘSH SOT contribution

Mn3Ge Current flow CW 1400 postive unfavorable

Mn3Sn Current flow CCW -1000 postive favorable

Mn3Sb Electron flow CW 350 postive favorable

torque results in a torque that is always out of the plane of the racetrack
layers. The direction of this torque depends on the handedness of the
chirality and the spin accumulation of the material-dependent CTL.
Thus, the DW experiences a chiral SOT whose direction is influenced by
the direction of HDM since the spin Hall angle (θSH) is set by the CTL.
This leads to either an additive or subtractive contribution of the SOT

to the DW motion driven mainly by STT. The direction of DW motion
in different Mn3Z Heusler racetracks is summarized in Table 2.3.

The lowest critical current density that is required to initiate the
DW motion of 0.028× 108A cm−2 was found for Mn3Sb, which also
showed the highest DW velocities among the Mn3Z Heuslers. Tuning
the composition of MnxSb, the bulk DMI effective field, can be tuned
from ∼ 50 Oe for Mn2.0Sb to ∼ 750 Oe for Mn3.3Sb demonstrating
the high tunability of the Heusler materials. Additionally, appropriate
CTLs can help meet application needs by tuning the SOT contribution.

2.1.4 RTM applications in the memory subsystem

As depicted in Table 2.1, RTM has a significantly higher capacity and re-
duced leakage power benefits compared to volatile DRAMs and SRAMs.
Compared to emerging nonvolatile memories, i.e., STT-RAM, resis-
tive random access memory ReRAM, PCM and magnetic RAM, RTM

has a higher capacity with similar or better energy and access la-
tency behavior. Similarly, RTM is significantly faster than dense vertical
NAND (V-NAND) and HDD. Since RTMs have the potential to outper-
form existing memory technologies in terms of endurance, energy
consumption, and storage density, they have received much attention
and many research studies have advocated employing them at dif-
ferent levels in the memory hierarchy and for different application
domains. This section provides an overview of such proposals.

2.1.4.1 RTM caches

Previous works investigated caches implemented with RTMs for per-
formance, density, and energy improvements [201, 277, 291, 317, 347].
Venkatesan et al. [291] proposed a prominent RTM-based cache de-
sign that provides circuit and architectural level optimizations. The
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circuit-level design presents two types of domain wall memory (DWM)
bit cells namely 1-b DWM and multibit DWM. The 1-b DWM cell de-
sign is optimized for latency as it does not require shift operations.
The architectural optimization employs a 1-b DWM cell design for the
latency-critical tag array design. The data array is further partitioned
into a latency-optimized fast region with a 1-b DWM cell design and a
capacityoptimized slow region with multibit DWM cell design. A data
migration policy is proposed to dynamically migrate data between
fast and slow regions.

Cross-layer optimizations are provided at the last level cache using
RTM-based caches that include a cell design, array organization, and
application-aware data allocation policy. The cell and array designs
mitigate the area gap between RTM storage elements and the large
access transistor. The application-aware data allocation policy places
frequently accessed data near the access port [277]. A combination
of circuit and architectural techniques is proposed in [201] to achieve
simultaneous performance, density, and energy enhancements. The
proposed circuit-level methods include merged read/write head de-
sign to provide high density, flipped-bit cell, and shift gating design
for energy improvement, and wordline strapping to optimize latency.
To ensure low energy and high reliability, architectural optimization
dynamically adapts the shift and write currents while considering the
application memory access pattern.

Another cross-layer optimization study performs design space ex-
ploration of RTM-based caches at the physical and architectural levels
[276]. The physical design includes hybrid-port and uniform-port
array designs. The hybridport array design contains many narrower
read ports and few wider read/write ports. The uniform-port array
design only contains read/write ports with different physical layouts.
The impact of these aforementioned layouts on different components
of energy (e.g., read, write, shift, and leakage) and latency is evaluated.
At the architectural level, a combination of mixed array organization is
presented which comprises hybrid-port and mixed-port array regions.
The regular and read-intensive data are steered to the hybrid-port
array region, whereas the mixed port array region is suitable for write-
intensive data. To achieve energy efficiency with minimal performance
degradation, way-based cache reconfiguration is applied which adapts
the cache size based on the application runtime cache requirements.
Similarly, set-based cache reconfiguration is applied in [244] to achieve
improved energy efficiency.

Highly dense RTM magnetic nanowire storage elements are em-
ployed to integrate multiple cache levels in a single cache array and
the RTM shift operation is leveraged to switch between different levels
[347], [317]. The FusedCache provides a unified L1/L2 cache archi-
tecture that stores L1 cache lines exactly at the access port position,
whereas the L2 cache lines are not aligned to the access port [347]. As
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a result, FusedCache architecture provides constant access latency for
L1 cache because access to L1 cache lines does not require any shift
operations. In contrast, it provides variable access latency for L2 cache
because its access latency depends on the distance of the desired L2

cache line from the port position. The multilane racetrack cache (MRC)
architecture synergistically combines the benefits of lightweight com-
pression and fine-grained shifting to mitigate the negative impact of
shift operations [317]. The MRC architecture compresses multiple cache
lines and stores them in the same DBC, requiring less data storage as
well as fewer accesses to domains within a racetrack compared to a
conventional uncompressed design. In addition, this article adjusts the
starting location of the compressed cache lines within the racetrack
which not only reduces the number of shift operations but also allows
concurrent accesses to multiple cache lines that belongs to different
racetracks.

2.1.4.2 RTM GPU register file

The immense storage requirement of GPU applications makes RTMs a
preferable alternative to be employed as a GPU register file. To this end,
various proposals propose RTM-based GPU register files to alleviate
the high leakage and scalability problems of conventional SRAM-based
register files [9, 163, 181, 299]. These proposals are based on the tenet of
reducing the shift overhead via different techniques that include smart
register renaming [181], [299], [163], proactive preshifting [9, 163, 198,
299], and intelligent thread scheduling [181]. The register renaming
technique assigns likely accessed registers closer to the access port to
reduce the shift costs. The preshifting policy reduces the shift cost by
exploiting the data locality at interthread, intra-SM (SM: streaming
multiprocessor), and inter-SM levels. The thread scheduling policy
schedules request to register file only when the relevant registers are
aligned to their corresponding RTM access ports. Using the RTM GPU

register file, the performance gain compared to an iso-area SRAM GPU

register file lies in the range 4%− 30% (via high density), whereas the
energy gain translates to 2-3 times (via reduced leakage).

2.1.4.3 RTM as off-chip memory

Sun et al. [274] provide a cross-layer RTM framework for off-chip mem-
ory that explores the design space at device and circuit levels. The
device-level design space exploration evaluates the impact of racetrack
resistivity by varying the nanowire length for three different mate-
rials (CoFe, NiFe, and CoFeB). Similarly, the influence of metal line
thickness and distance between magnetic nanowires on the generation
of the magnetic field is investigated. The circuit-level design space
exploration analyzes the impact of varying the number of ports, cell
overlapping, and array partitioning on latency, energy, and the shift
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distance. Another similar study explores the main memory design
based on RTM technology at the circuit and architectural levels [98].
The design space exploration investigates the impact of a number of
racetracks, number of domains in each racetrack, number of access
ports, subarray size, and cell size on overall area, latency, and energy.

The memory performance critically depends on fast access to meta-
data. In particular, it is extremely important to provide quick access
to the page table, which records virtual-to-physical address mapping
information. To reduce page table access latency, recent work [132]
rethinks the page table layout in an RTM-based memory which mit-
igates the number of shifts compared to existing layouts. The new
layout places highly accessed fields of a page table entry (PTE) close to
the access port. In addition, the RTM shift-aware optimization takes
into account different states of a PTE to further reduce the page table
latency. This reduction is made possible by proactively preshifting the
port position to the desired PTE field in advance based on PTE state
prediction. The next state predictor accurately predicts the future PTE

state based on the current PTE state. An intelligent RTM-based page
table outperforms conventional DRAM-based implementation by 84%
and 98% in terms of latency and energy improvements, respectively.

2.1.4.4 RTM as a disk replacement

The traditional magnetic disk technology faces many limitations that
include speed, durability, and rewritability. For applications with high
capacity and speed requirements, RTM memories are a key enabling
technology due to their scalability and ultrahigh storage density with
the additional advantages that no mechanical parts are necessary
[222]. RTMs can be very dense with the usage of 3-D vertical racetrack
technology which can be constructed by, for example, atomic layer
deposition on the patterned side-walls of deep trenches. The 3-D ver-
tical racetrack technology will realize its true potential by enabling
the fabrication of vertical racetracks storing more than 100 bits each
of which could enormously increase storage capacity. Therefore, RTM

technology has the potential to show improvements in speed, dura-
bility, capacity, and cost per bit which can be realized with multilayer
materials [217], [223], [218] and 3-D vertical racetrack technology. This
implies that RTMs can provide much better performance than HDDs.
An RTM-based disk substitute may fit into a lapel pin with gigabytes
of information storage capability [240]. Recent research replaces tradi-
tional magnetic disks by RTMs for graph processing, not only thereby
expediting graph processing (∼ 40%− 87% improvement) but also
attaining higher energy efficiency (∼ 13% saving) [345].
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2.1.4.5 Processing in memory (PIM) using RTM

PIM is a concept in which data computations are performed within
memory, directly where the data are stored. The idea is to preprocess
the data within memory or near memory (using a computation unit
close to memory) instead of transferring a large amount of raw data
to an external processor. PIM thus significantly minimizes the data
movement penalty by involving the processor only for summarized
data. Additionally, PIM reduces the number of operands transferred
to the processor, significantly improving the performance and energy
efficiency of the computing system. RTM-based PIM has been demon-
strated for lookup table (LUT) and simple logical functions, including
XOR, addition, and multiplication [301]. Furthermore, the machine
learning operations can be mapped to a PIM architecture by employing
a computation unit near memory that provides intermediate results
to the processor. DW- and skyrmion-based adders and multipliers for
complex convolutional neural networks (CNNs) have been proposed in
[165].

Recently, reconfigurable in-memory logic gates are proposed which
are based on RTMs [5–7, 100, 282, 334]. Employing the basic in-memory
logic gates, a multibit magnetic adder design is introduced in [282].
The inputs and the output of the adder are stored in RTMs which act
as nonvolatile registers. The use of small nonvolatile RTM cells enables
negligible leakage power and small die area compared to a CMOS-
based adder architecture. A PIM-based reconfigurable architecture
is presented by unifying memory and logical functions using four-
terminal RTM cells which exploit the spin Hall effect [7], [6]. In this
architecture, the reconfigurable platform is divided into data and
logic blocks. The data block simply performs the basic bitwise-XOR
operation on the stored data. The logic block performs both bitwise-
XOR as well as complex in-memory logic functions. Fast reconfigurable
logic gates are realized by storing the computation results in magnetic
domains during initial configuration [100]. The DWs are then shifted to
implement the desired logical function based on the input data values.
A nonvolatile LUT design is presented in [334] by combining the RTM

storage unit and CMOS circuit. The LUT enables fast reconfiguration
and is composed of a configuration module, multiplexer, and sense
amplifier units.

In the reconfigurable dual-mode in-memory processing architecture
(RIMPA), the spintronic-based RTM cells can operate in two modes,
namely, memory and compute modes [5]. In the memory mode, the
RTM cell acts as a normal storage cell. The computing mode enables
inmemory logic computations where the RTM cell performs basic
logic (i.e., bitwise-AND and bitwise-OR) functions within memory.
Similarly, domain-specific in-memory logical functions (bitwise-XOR,
sum, carry, and LUT) and HW accelerators are implemented using
DW-based nanowires for image processing systems [301]. These HW
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accelerators are employed near data storage in a distributed fashion
to perform frequent compute-intensive operations. In addition, the
in-memory HW accelerators enable parallel access to distributed data
which significantly improves data parallelism.

2.1.5 HW/SW optimizations for RTM

From the architecture perspective, fast and accurate shifting of DWs

is the biggest challenge that not only impacts RTM’s latency and en-
ergy but may also lead to reliability issues [333]. In this section, we
discuss HW/SW optimizations that minimize the impact of the shifting
operations on RTM performance and energy and improve its reliability

2.1.5.1 Hardware techniques for minimizing shifts

The straightforward solution to minimize the number of shifts in
RTM is to increase the number of access ports. However, this solution
quickly becomes impractical due to the additional HW complexity and
die-area overhead. The number of shifts can also be reduced with an
efficient data-to-port mapping by taking into account the application
reuse behavior. For instance, storing frequently accessed data elements
near the access ports can significantly reduce the number of shifts [277].
The reuse behavior of different data elements can be predicted using
HW monitors in the RTM controller. At runtime, the RTM controller
swaps the blocks with the highest frequency with those closer to the
access ports.

As mentioned in Section 2.1.4.1, RTM caches place some data close
to the access port and others further away. Closer DWs have thus a
relatively lower latency compared to those farther away. This disparity
in RTM latency can be exploited to reduce the number of shifts in an
application specific manner. For instance, some applications demand
more cache space compared to other applications. For applications
with lesser cache demands, the DWs that are far away from the ac-
cess ports are disabled and only those closer to the access ports are
used which minimizes the total number of shifts without significantly
degrading the performance. The cache can be resized based on the ap-
plication runtime cache demand by turning off/on the active/inactive
DWs [276]. In a similar manner, a dynamically reconfigurable cache is
proposed in [244].

Literature suggests that the most established technique to improve
RTM performance without increasing the number of access ports is
preshifting [9, 290, 299]. The concept of preshifting is analogous to
prefetching which consists in fetching the data of the next likely ac-
cessed element in advance. In the case of shifts, preshifting consists in
aligning the access ports to the next likely accessed element. Preshift-
ing can be applied within and across RTM subarrays. Although a
DBC is busy serving a memory request, other DBCs can be preshifted
proactively.
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Other techniques to mitigate shifting overhead include: 1) data com-
pression to reduce the number of bits stored in a racetrack and thereby
the shifts overhead [317]; 2) efficient data mapping and dynamic pri-
oritization of the memory requests closer to the access ports [181];
and 3) data swapping and data migration [367], [347]. Although all
these techniques improve the overall performance, the total number
of shifting operations and energy consumption are rarely affected. For
instance, preshifting improves the RTM access latency but may increase
its energy consumption. Additionally, all these techniques require
additional HW support which not only increases the HW complexity
but also the area utilization and energy consumption.

2.1.5.2 Software techniques for minimizing shift

The most prominent SW solution for RTM shift reduction is a com-
piler guided intelligent data and instruction placement [42, 126, 315],
[203]. By static code analysis and profiling, the compiler constructs
an internal model of the applications’ memory access pattern. Based
on this model, different techniques are employed to find the best
possible mapping of the memory objects to RTM with the objective
to minimize the total number of shifts. Exact solutions have been
proposed using integer linear programming (ILP) and integer nonlinear
programming (INLP) [42], [126], [76]. More computational tractable so-
lutions include meta-heuristics like genetic algorithms and custom
heuristics, which deliver near-optimal solutions in considerably less
time [126, 180].

SW-controlled SPM is an alternative to caches known for predictable
memory access patterns. SPMs feature better performance and energy
efficiency at a reduced small chip area and predictable performance.
In the context of RTM-based SPM, recent work proposed three heuris-
tics and a genetic algorithm to reduce the RTM shift overhead [180].
The first naïve heuristic adopts the first-come-first-store allocation
strategy, which does not perform well for loop accesses. To overcome
this problem, the second heuristic allocates frequently accessed data
closer to the access port which is located in the middle of the race-
track. To further reduce the shift overhead, the third heuristic applies
a greedy algorithm for data allocation where the least frequently ac-
cessed data are stored on one end of the racetrack while the most
frequently accessed data are placed on the other end. The improved
genetic algorithm starts with the results of the three heuristics as the
initial population of data mapping (i.e., initial solutions) and applies
mutation and crossover with carefully selected mutation elements and
crossover points. Experimental results show similar performance to
that of an exhaustive search.

While genetic algorithms can take hours and days to compute,
heuristic solutions have been reported to effectively minimize the
number of shifts in less than a few hundred seconds. The group-based
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heuristics for data placement in RTM maintain a group of memory ob-
jects where a new object is added to the group based on its adjacency
with previously added elements in the group [315], [42]. The order
of assignment to the group is actually the memory offset assigned
to an object. The total shifts are minimized because highly consecu-
tively accessed elements are assigned adjacent positions in the group.
The Chen heuristics for data placement in RTM scratchpad finds an
ordering of the data items in an access sequence that maximize the
likelihood that two consecutive references have minimal shift distance
between them [42]. The heuristic models the data placement problem
by an undirected edge-weighted access graph, and it exploits the tem-
poral locality of data items to reduce the shift overhead through data
grouping. However, the aforementioned heuristics do not effectively
reduce the number of end-to-end shifts that are required to move the
DW from one end of the track to the other. The heuristic presented in
[126] introduces 2-D grouping which further reduces the end-to-end
shifts in long racetracks.

The work in [124] investigates the layouts of highdimensional data
structures such as tensors in RTM-based SPMs. For the tensor contrac-
tion operation, an optimized data layout reduces the number of shifts
by 50% compared to a naïve layout. This improves the performance
and energy consumption of the RTM-based SPM by 24% and 74%, re-
spectively, compared to an iso-capacity SRAM. The work in [203]
explores RTM as an instruction memory and proposes layouts that best
suit the sequential reads/writes of RTM and that of the instruction
stream.

2.1.5.3 Improving RTM reliability

There exists no mechanism in RTM that ensures that DWs are correctly
shifted and aligned to the access ports when a shift current is applied.
The misalignment of DWs to the access port positions are referred to
as position errors [34–38, 96, 171, 174, 285, 316, 325, 326]. The typical
position error rate in RTM is in the range 10−4 − 10−5 compared to the
minimum standard 10−19 required for satisfying the required ten year
mean time to failure (MTTF) [325].
Depending on the shift current density and homogeneity of the race-
track, the DWs may be over- or under-shifted. These errors are known
as out-of-step/deletion and stop-in-the-middle/insertions errors [35,
316, 325]. The stop-in-the-middle position errors can be completely
eliminated by applying a sub threshold shift (STS). An STS consists in
applying a shift current (J) with a density less than the critical cur-
rent (J0) to the racetrack. The idea is to apply a normal shift current
followed by a subsequent STS. If the DWs, for whatever reason, have
stopped in the middle, the STS operation enables them to reach the
notch regions, otherwise the pinned DW remains unaffected [325].
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To detect a single bit out-of-step error, techniques analogous to the
parity check can be adopted by employing redundant domains and
access ports. Two extra read ports, two guard domains, and (L-1)1

extra domains are needed to correct a single step error and detect
two-step errors. In general, 2m guard domains and 2m + 1 extra read
ports are needed to correct an m-step position error. The position
errors are corrected by applying shift current with reverse polarity
[325]. Although the position error correction scheme in [325] signifi-
cantly improves the RTM MTTF, it does not consider the possibility of
position errors inside the position error correction code (p-ECC) bits.
A slightly improved version of the previous scheme eliminates such
errors without incurring any overhead by changing only the mapping
of p-ECC bit to the racetrack [316].

The aforementioned ECC techniques [316], [325] suffer from signifi-
cant area and performance overheads. Every access is performed twice
and additional ports are introduced which causes substantial area
increase. The codes introduced in [35] completely eliminate the area
overhead arises from the additional access ports. The required encoder
and decoder consume little power and the codes are easy to imple-
ment. By decoupling the error detection from correction, the error
correction mechanism is activated only when an error is detected. This
decoupling of error detection and correction allows for faster accesses
to RTM. The adopted Varshamov-Tenengolts (VT) codes in combination
with blocks of delimiter bits can detect up-to two and correct one
position errors.

The two types of errors can also be modeled as deletion (out-of-step)
and sticky-insertion (stop-in-the-middle) errors. Assuming that each
racetrack uses more than one access port, each domain is accessed
more than once where the additional reads are used to detect and
correct the position errors [34–38]. For correcting d deletions, a single
extra domain and d + 1 extra ports are required.

It is worth mentioning that the shift operation in the latest RTM

version is much more controlled and accurate compared to earlier
versions. In RTM 3.0, the DWs tilt during motion due to the combination
of DMI and SHE [26]. This tilting gives rise to inertia of the DW within
the first nanoseconds of a shift pulse. Additionally, friction can cause
a residual tilt angle after the pulse. If a subsequent pulse into the
opposite current direction is applied, the DW would tilt back first
before moving. Hence, an asymmetric pulse pattern would be required
to avoid shifting errors. In contrast, in RTM 4.0 the tilting in the two
AF coupled layers exactly compensates [4]. Consequently, shifting bits
comes with almost no inertia and is symmetric for the positive and
negative shift direction.
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2.1.6 Outlook

To exploit the full potential of RTMs, it is important to consider op-
timizations in many different directions. This section provides an
outlook on potential future studies.

2.1.6.1 Material research and CMOS integration

Ferrimagnetic systems have attracted much attention [71] due to their
low magnetization which in turn leads to fast magnetization dynam-
ics while they are more robust against perturbations and exhibit
efficient DW motion. In RE-TM ferrimagnetic systems, due to the an-
tiferromagnetic coupling of TMs (such as Co, Ni, and Fe) with RE

metals (especially Gd and Tb), the ECT mechanism can be used to
drive DWs. To maximize the efficiency of this mechanism, the mag-
netic moments of the two magnetic sublattices need to be such that
the overall magnetic layer is at angular momentum compensation
(mRE/γRE = mTM/γTM) at the RTM operating temperature. Usually,
REs do not exhibit a ferromagnetically ordered state at room temper-
ature but the close interaction with TMs can induce ferromagnetism
also at 300 K [228]. Consequently, the use of alloys might be favorable
over multilayer structures because the magnetic moments are more in-
termixed in the former. The thermal stability in these systems remains
to be proven for technological applications.

In epitaxial RTMs, well-defined crystalline interfaces in oxides pro-
vide a template for a broad range of functionalities and emergent
electronic and magnetic properties [179]. CMOS compatibility of the
ferrimagnetic iron garnets would require strict specifications on their
growth and integration as aforementioned. On the other hand, thermo-
dynamically stable CTLs provide compatibility of Heusler integration
with CMOS technologies. Heusler materials are a large family of ma-
terials with a wide range of properties that can display low damping
and high spin polarization at room temperature and have tunable
properties that can be simply varied by changing the Heusler alloy
composition. They can exhibit large values of PMA, as shown in their
tetragonally distorted forms [57]. Although, the higher resistivities in
Heuslers like the Mn3Z, Z = Ge, Sn, Sb (compared to conventional
ferro/ferrimagnetic RTMs) could be a limiting factor for RTM design.

There exist many challenges in the fabrication of 3-D vertical race-
tracks. Therefore, to ensure the adoption of a 3-D vertical racetrack
into commercial products, research into multilayer materials is re-
quired that are compatible with silicon and 3-D stacking. However,
the 2-D design can already provide many advantages compared to
other existing technologies, as discussed in Section 2.1.4. In addition
to those presented here, another interesting field of application is
neuromorphic computing. By using an MTJ which provides readout
over the entire racetrack, a multilevel memristor can be realized [300].
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In such a design, a DW can be moved to one of several intermediate
positions inside the track. As the TMR depends on the relative orienta-
tion between the two magnetic layers, the output resistance depends
on the position of the DW, which can potentially serve as a magnetic
synapse in a neural network, allowing a gradual adjustment of the
synaptic weight [30, 73, 204]. A proof of concept has already been
provided [151], [33].

Emerging proposals also suggest the use of skyrmions instead of
DWs in an RTM [258], [205]. Skyrmions can be viewed as point-like
perturbations in a region of uniform magnetization that exist within a
swirl of rotating spins [249]. The direction of rotation has a chirality
that is defined by the DMI in the magnetic system. In comparison to
DWs, it is expected that skyrmions do not interact with the edges of the
wire and are therefore immune to any pinning arising from the edge
roughness of the track. The injection and motion of skyrmions have
already been demonstrated at room temperature [311], [107]. However,
the lateral drift in their motion due to the skyrmion Hall effect and
their instability warrants further work in solving these challenges
[311], [108].

2.1.6.2 Reducing threshold current density

The inception of RTM research into the materials and physical mecha-
nisms of DW motion has led to a significant reduction in the threshold
current density to move DWs. On the one hand, this has been made pos-
sible through the discovery of new physical mechanisms that have led
to new generations of efficient torques to drive the DW at a higher ve-
locity for the same current density. On the other hand, optimization of
the material parameters such as Gilbert damping, gyromagnetic ratio,
anisotropy, spin Hall angle, magnetization or the exchange coupling
constant of RTM systems remains a promising route in this direction.
Finally, improving the quality of the device by reducing edge rough-
ness and crystal defects should give rise to lower threshold current
densities. For that, new methods of growing underlayers have to be
developed.

The latest research on Heusler structures and ferrimagnetic systems
has paved the way for materials with low threshold current densities.
One main driving factor in the systems studied to date is the relatively
low magnetization at room temperature which decreases the pinning
barrier. Depending on the model, a quadratic scaling of the threshold
current density with the magnetization is predicted [21]. However,
engineering toward lower magnetization materials has to be treated
with caution because a lower magnetization also causes a decrease in
the thermal stability and consequently the retention period of the de-
vice. Instead, finding new spin Hall materials that have a significantly
larger spin Hall angle can allow for higher torques while retaining
thermal stability. For example, tungsten in the β−phase exhibits a
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spin Hall angle of almost 50% which is about three times larger than
the spin Hall angle of Pt [55].

Beyond heavy metals and their alloys, recently it has been reported
that topological insulators [86, 175, 188, 312] and layered van der Waals
TM dichalcogenides [262], [78] give rise to much more efficient SOTs

than those observed to date using conventional heavy metals, thereby
allowing for the possibility of more efficient magnetization control by
electrical currents. Such exotic materials have been reported to exhibit
charge to spin current conversions that are an order of magnitude
larger than conventional metals. Whether such materials can be readily
integrated needs to be further studied along with the experimental
demonstration of DW motion from incorporated magnetic layers.

2.1.6.3 Device- and circuit-level investigations

For an earlier version of RTMs, some design space exploration has been
carried out at the device level to analyze the impact of various param-
eters (e.g., nanowire length and resistivity, number and spacing of bits,
distance between nanowires, and influence of stray magnetic fields)
on different performance metrics (e.g., shift current, energy, area, and
speed). However, there is a need to carry out a comprehensive device
level investigation for RTM 4.0 that will facilitate the designer to meet
the system-level optimization goals and design requirements. Simi-
larly, circuit-level optimizations need to rethought by considering the
physics of RTM 4.0. This is required to analyze the influence of various
circuit level parameters (e.g., cell, subarray, port, bitline, and word-
line layouts) and peripheral circuitry (row/column decoder, sense
amplifiers, and write drivers) on overall latency, area, and energy con-
sumption. Finally, existing position-error correction schemes appear
(see Section 2.1.5.3) to be effective but energy consuming. Therefore,
exploring new materials such as multiferroic heterostructures [150]
could help in improving the reliability of RTMs with lesser energy
consumption.

2.1.6.4 HW/SW codesign

To efficiently exploit the inherent potential of RTM via HW-SW codesign
it is necessary to build bridges between: 1) RTM storage; 2) shift-aware
memory controller; 3) runtime system (to facilitate data allocation and
mapping); and 4) SW layers (i.e., how to abstract RTM characteristics to
the application programmer). To realize an effective RTM architecture,
it is necessary to explore techniques that exploit the interesting tradeoff
between speed and density that can be guided by application, compiler,
AND/OR operation system layers. Therefore, the HW-SW codesign
is very important for RTM design in order to achieve simultaneous
performance and energy efficiency.
In the past, many techniques have been proposed to reduce the shift
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cost of DW stripe-shaped RTM [180], [201, 277, 291, 317, 347]. However,
there is a lack of the architectural investigation of the skyrmion, ring-
shaped, and Y-shaped RTM. Therefore, it is necessary to devise efficient
topology-aware (DW- or skyrmion-based) and structure-aware (stripe-
shaped, ring-shaped, or Y-shaped) techniques to leverage its true
potential. For instance, different RTM topologies and structures differ
in their error patterns which need to be analyzed at the architectural
level. Similarly, at the compiler level, the memory access patterns
of applications can be reordered from higher compiler abstractions,
e.g., from a polyhedral model or by additional semantic information
from domain-specific languages [124]. There is a need to investigate
a runtime system that is flexible to adapt to various flavors of the
racetrack (single DW versus multiple DWs; horizontal versus vertical
racetrack) memories and different application characteristics (latency
versus bandwidth sensitive applications).

2.1.6.5 Tools for design space exploration

A detailed RTM design space exploration to carry out aforementioned
optimizations (see Sections 2.1.6.3 and 2.1.6.4) requires the availability
of accurate open-source device-circuit-architecture codesign simula-
tion tools [125] which allow system architects to analyze the limiting
parameters and issues of RTM-based memory. Accurate open-source
simulation tools will allow one to analyze the impact of RTM in terms
of its functionality, performance, energy, and reliability characteristics
before its integration into product systems.

2.1.6.6 RTM as solid state drives (SSDs) replacement

RTM is a promising alternative to existing traditional and emerging
memory technologies. Recent research demonstrates that RTM out-
performs other technologies at lower levels in the memory hierarchy.
However, its potential at the disk level is relatively less explored. Con-
sidering its high density, it is extremely important to also study RTM

as a possible replacement for SSDs.
At present, SDD-based NAND flash technology is the most promi-

nent alternative to conventional HDDs. After NAND flash was con-
ceived in the latter half of the 1980s [184], it has undergone funda-
mental breakthroughs in the last two decades. From single bit per cell
(b/cell) (SLC) to 2 b/cell (MLC), 3 b/cell (TLC), and now 4 b/cell
(QLC), the technology has maintained its scaling pace. The feature
size has been reduced from ∼ 100 nm down to ∼ 1 nm and the gross
bit storage density (GBSD) has increased by a factor of 2× every two
years [48]. However, further reduction in its feature size will lead to
processing and reliability challenges. Therefore, research efforts since
2015 have mainly turned to vertical stacking of the planar NAND flash
arrays. This 3-D architecture, it is forecast, will drive the growth rate
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of the technology with the same pace through the next decade [48,
263].

Despite the technological advances, NAND flash memory cannot ful-
fill the multifaceted requirements of the next-generation data-intensive
applications demanding expanded capacity, improved reliability, and
lower latencies [62]. As per data published by technology manufac-
turers at the IEEE ISSCC, the read latency of NAND flash is of the
order of tens of microseconds [5–7, 100, 282, 301, 334]. A nontrivial
increase in the NAND flash latency is observed when going from
SLC all the way to QLC technologies. As a result, random accesses
to individual cells are extremely costly, thus necessitating sequential
accesses to large chunks of data (pages) which typically are in the
range of kilobyte sizes (8 and 16 kB in the latest technologies). By
contrast, RTM is byte addressable and the read latency of RTM lies in
the range of a few nanoseconds to a few hundreds of nanoseconds.

Similarly, the program time of the NAND flash ranges from a few
hundred microseconds (in SLC technology) to a few milliseconds (in
QLC technologies). The erase operation is performed at the block
granularity with typical block sizes of 4 MB. The erase time lies in
the millisecond range. In contrast to extreme nonsymmetrical flash
technology, RTM does not exhibit significant variation in read/write
latencies. In addition, reliability is still the biggest concern in the
NAND flash technology. The array endurance in state-of-the-art flash
technologies is still in the range of a few program/erase cycles [48].
In contrast, the endurance of RTM technology is equivalent to that of
SRAMs and DRAMs.

As mentioned in Section 2.1.4.4, the 3-D vertical racetrack technology
is a promising candidate to replace SSDs. However, the efficiency of
such RTM disk replacement critically depends on its architecture. Such
an architecture may hierarchically decompose the data into sector,
pages, word, and bytes which can be synchronously read or written.
An RTM controller needs to manage different operations that include
read, write, and in particular shift operations. Other responsibilities of
the RTM controller may include mapping of logical (sector, page, word,
byte, etc.) data to the physical (Bank, DBC, racetrack, port, domain,
etc.) RTM organization. RTMs allow for an interesting tradeoff between
latency and density since the number of DWs in a racetrack can be
dynamically varied from 1 (for minimum latency at the cost of density)
to maximum (for maximum capacity at the cost of latency). The
performance-critical frequently accessed address translation table may
be stored in a latency-optimized racetrack with less DWs per racetrack,
whereas the data may be stored in capacity-optimized racetrack with
more DWs per racetrack. The RTM disk controller may also get useful
information via compiler or operating system hints for hot/cold data
migration between latency and capacity optimized racetracks.
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2.1.7 Conclusions

The discoveries of novel current-induced DW motion mechanisms us-
ing chiral spintronic phenomena within the last decade have paved the
way for bringing RTM to the cusp of application. These developments
in spintronics have enabled an order of magnitude improvement in the
efficiency with which RTM magnetic bits can be moved. In particular, a
recent work on SAFs has realized significantly lower threshold current
densities with much higher DW mobilities. Reducing the threshold
current further remains an important goal that could be solved, for
example, with new materials that give rise to large spin Hall effects,
atomic engineering to optimize the fundamental properties of the
magnetic layer or entirely new mechanisms.

From the architectural perspective, the development of circuit and
architecture level simulators have enabled and expedited RTM research
and its exploration at different levels in the memory stack. The intrinsic
shift operations in RTM appear to be the biggest challenge and per-
formance bottleneck. However, HW/SW techniques can be employed
to minimize the number of shifts or at least mitigate their impact on
the overall system’s performance. Recent research has demonstrated
that RTM, with a carefully designed memory controller for efficient
handling of the RTM shifts, can be as fast as SRAM and DRAM while
being highly energy efficient. It has been shown that the memory
access patterns in various applications can be reordered from higher
programming abstractions to minimize the number of RTM shifts.

The many advances in experimental physics and computer archi-
tectures highlight the very positive prospects of RTM for imminent
technological applications. Key challenges include the reduction of
power consumption and device testing on the nanometer scale with
the development of racetracks that might include artificial pinning
sites to allow for thermally stable and robust DW bits as well as for
reliable shifting of trains of closely spaced DW bits. Realizing a 3-D
design of RTM is a major technological challenge. However, 2-D RTMs

augur a major step forward in memory-storage technology, either as a
single layer 2-D RTM or as multiple horizontal racetracks stacked one
on top of each other. RTM has applications that range from an ultrafast
single DW racetrack that could replace SRAM to ultradense multi-DW,
single or multilayer horizontal racetracks that have the potential to
replace DRAM and V-NAND.

2.2 rtsim : a cycle-accurate simulator for racetrack

memories

Racetrack memories (RTMs) have drawn considerable attention from
computer architects of late. Owing to the ultra-high capacity and
comparable access latency to SRAM, RTMs are promising candidates
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to revolutionize the memory subsystem. In order to evaluate their
performance and suitability at various levels in the memory hierarchy,
it is crucial to have RTM-specific simulation tools that accurately model
their behavior and enable exhaustive design space exploration. To this
end, we propose RTSim, an open source cycle-accurate memory simu-
lator that enables performance evaluation of the domain-wall-based
racetrack memories. The skyrmions-based RTMs can also be modeled
with RTSim because they are architecturally similar to domain-wall-
based RTMs. RTSim is developed in collaboration with physicists and
computer scientists. It accurately models RTM-specific shift operations,
access ports management and the sequence of memory commands
beside handling the routine read/write operations. RTSim is built on
top of NVMain2.0, offering larger design space for exploration.

2.2.1 Introduction

With the transition of computer systems from multi- to many-cores,
the search for low-power and high-capacity memories has gathered un-
precedented momentum. As a result, multiple volatile and non-volatile
memories (NVMs) have emerged in the last decades. The evolutionary
DRAM standards (low power DDR4, die-stacked WIO, HBM and HMC),
spin-transfer-torque RAM (STT-RAM), phase change memory (PCM), resis-
tive RAM (ReRAM) and racetrack memory (RTM) are prominent examples.
While some of these memories have already made it to the market,
others are still in their infancy. Amongst all, the racetrack memory
is believed to offer “faster-than-Moore’s-law” scaling path and is a
promising candidate to bridge the processor memory gap [221, 222].

Proper evaluation and exploration and of these new memory tech-
nologies require availability of accurate simulation tools. In the past,
memory researchers have developed multiple device and architec-
ture level memory simulators. In particular, DRAMSim [297], DRAM-
Sim2 [250], DRAMSys [111] and Ramulator [137] are available to
explore wide varieties of DRAM standards. Similarly, new memory
simulators have been developed to model these emerging NVMs as
well. For instance, NVMain [233], NVMain2.0 [234] and the recently
extended NVMain [123] can model STT-RAM, PCM, HMC and WIDE
I/O besides modeling the conventional DRAM and SRAM technologies.

The relatively newer spin-orbitronics based RTMs are fundamentally
different than all existing memory technologies. Unlike contemporary
memory technologies, a single access point in RTMs can store multiple
bits i.e., 1 to 100. These bits are stored in the form of magnetic domains
in a tape-like structure called track which can be placed vertically (3D)
or horizontally (2D) on the surface of a silicon wafer as depicted in
Figure 4.2. Each track in RTM is equipped with one or more magnetic
tunnel junction (MTJ) sensors, referred to as access port (AP), that are
used to perform read/write operations.
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Figure 2.10: Racetrack horizontal and vertical placements (Ish represents the
shift current)

To evaluate the performance of RTMs and enable system design,
new simulation tools are needed that accurately model the shift op-
erations and manage the access ports. In the literature, people have
reported modifications to existing simulators such as gem5 [20, 189],
simplescalar [11] and NVMain for exploring RTMs at various hierarchy
levels in the memory subsystem [327, 355]. However, these extensions
are not available in the public domain. This not only deprives the
memory research community of exploring RTMs but also makes it near
to impossible to compare results, a process that is key for advancing
the field.

To fill this gap, we present RTSim; an architectural-level cycle-
accurate simulation framework for RTMs that accurately models the
shift operations, manages the access ports and the RTM specific mem-
ory commands sequence. RTSim is configurable and allows architects
to explore the design space of RTMs by varying the design parameters
such as the number of tracks, domains and access ports per track, port
update policy and the domains access policy. The modular design
of RTSim facilitates the development and easy integration of new
extensions such as position error correction schemes [325].

2.2.2 RTSim overview

RTSim is built on top of NVMain2.0. We have made necessary modi-
fications to most of the simulator modules such as address translators
and memory controllers to cater for RTMs. The modifications to the ad-
dress translator are required to translate the physical address to the
corresponding RTM device address which is different than the device
addresses of other memory technologies. A bank in an RTM is made
up of one or more subarrays which in turn consists of multiple Do-
main Block Clusters (DBCs) as shown in Fig. 2.11. Each DBC contains M
tracks and N domains per track, where each domain stores a single
bit. Accessing a bit from a track requires shifting and aligning the
corresponding domain to the track’s port position. Typically, an M-bit
variable is distributed across M tracks of a DBC. The domains of all
tracks in a particular DBC move in a lock step fashion so that all M
bits of a variable are aligned to the port position at the same time for
simultaneous access.
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Table 2.4: RTM device level parameters [342]

Parameter Value

Thickness, width and length of the nano-wire 6 nm, 1F and 128F

Domain Length 2F

Nanowire resistivity 4.8× 10−7Ω m

Critical current density for Shifting (Jc) 6.2× 107 A/cm2

Critical current density for write (Jw) 5.7× 106 A/cm2

In some specific cases, storing a variable serially, in a single racetrack,
may be more beneficial compared to the aforementioned distributed
layout. RTSim implements both layouts and allows designers to set
the Layout parameter to either Interleaved or Serial in the configuration
file.
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Figure 2.11: Racetrack memory architecture (RT: track, b:bit)

As shown in Fig. 2.12, RTSim requires a configuration file and a
memory request stream. The configuration file consists of the system
as well as latency/energy parameters. The system parameters such as
number of ranks, banks, DBCs and word size (number of racetracks
per DBC) are independent of the RTM device and can be configured
according to design requirements. The device level parameters are
listed in Table 2.4. Using these parameters, the latency and energy
values can be extracted from circuit simulators such as NVSim [56] or
Destiny[196].

2.2.2.1 Address mapping scheme

RTSim translates the physical address of the CPU requests to the corre-
sponding memory address. The memory address in RTSim consists of
domain ID, DBC ID, subarray ID, bank ID, rank ID and channel ID. The
lower log2W bits correspond to the word bytes where W represents
the word size in bits.

The address mapping scheme in RTMs is more crucial compared to
other memories. This is due to the fact that other memories optimize
address mapping for exploiting locality, minimizing bank conflicts
and improving parallelism. The address mapping scheme in RTMs

should also optimize the request stream for consecutive accesses in
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Figure 2.12: RTSim overview

Table 2.5: RTM configuration parameters
Parameter Description value

DBCs Number of DBCs per bank Positive integer (depending on the memory size and configuration)

Domains Number of domains per track 1-100 (default value is 64)

WordSize Number of tracks per DBC 1 to N bits (default value is 32 bits)

nPorts Number of access ports per track Less than or equal to the number of domains (default is 1)

PortAccess Port access policy Static / dynamic (default is static)

PortsInitPos Initial position of the access ports Assigned automatically if not specified (default 0 for single port)

Layout variable storage format Serial / Interleaved

PortUpdate Port position after each access eager / lazy

order to mitigate the number of shifts. This implies that spatially
adjacent memory requests should be assigned to consecutive domains
in the same DBC. The default RTSim addressing scheme looks like
RK:BK:CH:DBC:DOM and can be configured as per the design objec-
tives.

2.2.2.2 Memory controller

The memory controller in RTSim buffers CPU requests in a trans-
action queue. Subsequently, each transaction is converted into a set
of RTM commands which are placed in a command queue. Similar to
NVMain2.0, the model and size of command queues are configurable.
The memory controller schedules and issues RTM commands to the
memory banks in an out-of-order manner while respecting both timing
and flow of commands constraints. Memory requests are reordered
based on the current ports positions and commands are issued such
that the shift overhead is minimized. Requests starvation is avoided
with a set threshold.

Once a command is issued, respective sanity checks (for timing
constraints) are performed at rank, bank and subarray levels and
simulation statistics are updated. The shift statistics in RTSim are
computed at the DBC level and can be accumulated at more abstract
levels e.g. subarray, bank, rank, and channel levels. At completion,
requests are returned to the memory controller which removes them
from their respective queues and returns them to the owner of the
request.
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2.2.2.3 Access ports management

Since the number of access ports per track is much smaller than the
number of domains, ports are always shared among domains. While
increasing the sharing degree increases the area efficiency, it leads
to an increased number of shifts which in turn increases the average
access latency. RTSim faithfully models contention that arises due to
shift delay, queuing delays and bank/port conflicts.

RTSim allows users to configure the number of ports. The memory
controller maintains the status/positions of all access ports correspond-
ing to each track. In the default interleaved data layout, tracks are
grouped into DBCs (cf. Fig. 2.4) and all ports in a DBC move together in
the lockstep fashion. This implies that the port positions of all tracks
in a DBC are always the same. At abstract level, it appears as if the
ports are per DBC and not per track inside the DBC. In the serial layout,
ports of individual tracks are managed separately.

The memory controller also decides which port should access a
certain domain if there is more than one access ports per track. The
idea is similar to the tape head selection policy in [355] and is referred to
as the port access policy in RTSim. Similar to other parameters, the port
access policy in RTSim is configurable, and can be set as either static or
dynamic. In the static port access policy, each domain is assigned an
access port statically depending on its initial placement. For instance, if
a track has N domains and P access ports, N/P domains are statically
assigned to each access port. Each access port is then responsible for
accessing its set of domains even if the desired domains are closer to
the other access port(s).

On the contrary, in the dynamic port access policy, the closest access
port accesses the requested domain. While the dynamic policy will
tend to reduce the number of shifts compared to the static policy,
it may increase the number of overflow bits. The overflow bits are
required to prevent the loss of data and store the shifted domains
beyond the shift ports. For a single port per track, N overflow bits are
needed to store the shifted domains. For P access ports and static port
policy, the amount of overflow bits reduces to N/P. In the dynamic
case, P access ports still require N overflow bits.

RTSim supports two different port update policies. Following a
memory access, the port positions in RTM are updated according to
the PortUpdate parameter specified in the configuration file. In the
default lazy policy, the port that accesses the current domain stays
at the position of the current access and all other ports positions
are updated accordingly. On the contrary, all port positions in the
eager policy are restored to their initially assigned locations after each
memory access. While the eager policy is easy to implement and
simplifies ports selection, it may significantlly increase the number
of shifts. The configurability of RTSim allows designers to choose
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the best configuration by performing the aforementioned trade off
analysis.

2.2.2.4 Latency and energy models

RTSim offers flat models for latency and energy. The latency/energy
values are extracted from Destiny [196], employing device level param-
eters from our in-house physics lab. The latency and energy models
in RTSim use these numbers along with the memory access statistics
to compute the total latency and energy of the memory subsystem.

As an example, we simulate a 1 MB cache in Destiny to obtain
the latency and energy numbers for read/write/shift operations in
RTMs. These sample values are given in the RTSim configuration file
RTM.config. Every time the simulator performs a memory operation,
the energy and timing statistics are updated accordingly.

2.2.2.5 RTMs specific configuration parameters

Most of the configuration parameters in RTSim are similar to NVMain.
The newly added RTM-specific parameters are described in Table 2.5.
The initial positions of the access ports are set automatically if not
specified in the configuration file.

RTSim, being developed on top of NVMain2.0, also supports other
NVMs. The RTM-specific features are only enabled if the corresponding
RTM configuration file is provided. The integration with NVMain2.0 fa-
cilitates interface to other simulators. For instance, the existing nvmain-
gem5 patch can be employed to simulate RTMs in full system mode
with the gem5 system simulator. In a stand-alone mode, memory
traces are fed to RTSim to simulate an RTM-based memory subsystem.

2.2.3 Case studies

This section presents a case study to validate the accuracy of the
simulation framework. RTSim adopts the timing and energy models
from NVMain2.0. Since these models are already verified with the
industrial Verilog models and validated against other established
memory simulators, we only focus on verifying the modeling of shift
operations and the access ports management.

Unfortunately, no commercial/research prototypes are available
for RTMs which can be used as a reference for validation. We work
around this problem by establishing our own simulation target. We use
synthetic memory traces as golden references for which we can predict
the number of shifts. The memory traces are developed in a careful
manner such that requests hop among domains, DBCs, subarrays and
banks. We provide these traces to RTSim to verify the number of shifts.
A sample memory trace with expected and observed number of shifts
is shown in Fig. 2.13.
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Req    Phy-address    Mem-address*    Num-shifts 
R        0x1e0           0:0:0:0:0:15           15 x 32
W       0x86bc0       67:0:1:0:0:30         30 x 32  
R        0x86bc0       67:0:1:0:0:30         0
R        0x86b00       83:0:1:0:0:24         24 x 32 
R        0x87e38       75:0:3:0:0:49         49 x 32 
R        0x3c0           0:0:0:0:0:30           15 x 32 
R        0x1400         0:0:2:0:0:32           32 x 32

*DBC:RK:BK:CH:SA:DOM       5280

nPorts 1 

PortAccess static 

BANKS 4 

RANKS 1 

CHANNELS 1 

DBCS 128 

DOMAINS 64 

; WordSize in bits 

WordSize 32 

Shifts per memory request Config

RTM.channel0.rank0.bank0.subarray0.totalnumShifts 960 

RTM.channel0.rank0.bank1.subarray0.totalnumShifts 1728 

RTM.channel0.rank0.bank2.subarray0.totalnumShifts 1024 

RTM.channel0.rank0.rank0.bank3.subarray0.totalnumShifts 1568 

Snapshot from RTSim output

Figure 2.13: Number of shifts computed from the synthetic trace and re-
ported by RTSim. The memory request types and physical ad-
dresses are taken from the trace file while the memory address
is the output of the RTSim decoder. The Num-shifts are manually
computed.

After verifying the functional correctness of RTSim, we stress-test it
by running the whole set of SPEC2006 [92] benchmarks. The vertical
axis (log scale) in Fig. 2.14 reports the number of shifts. The figure
highlights the impact of varying the port access policy as well as the
number of ports while using the best performing lazy ports update
policy. As can be seen, increasing the number of ports reduces the
number of shifts as expected. Similarly, the dynamic port access policy
often reduces the number of shifts compared to the static port access
policy. However, for 16 ports per track configuration, the static policy
mostly outperforms the dynamic access policy. This is due to the fact
that the worst-case shifts in the static policy are always 4 while in
the dynamic policy this can increase up to 63. Detailed analysis of
the two policies is beyond the scope of this section. RTSim enables
memory researchers to perform extensive pros/cons evaluation of the
two policies.

2.2.4 Conclusions

Racetrack memory is a promising alternative to existing (non-)volatile
memories. The lack of simulation and exploration tools in the public
domain hinders their expeditious development and exploration for
novel memory subsystem. To overcome this, we present RTSim, a
cycle-accurate simulation tool for racetrack memories. RTSim accu-
rately models the shift operations and manages the access ports in
RTMs, beside modeling the routine memory operations. The memory
controller in RTSim ensures that commands are issued to memory in
a proper order and all timing constraints are satisfied. We validate the
shift model of RTSim with a set of synthetic memory traces and exem-
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plarily show shift analysis for SPEC2006 benchmarks using different
configurations. Being the first RTM simulator in the public-domain,
we believe RTSim will alleviate the difficulties in RTMs design space
exploration and become a useful tool for the community.

Postscript: The chapter presented a background on the RTMs funda-
mentals (Section 2.1.2) and the simulation tool RTSim (Section 2.2) that
provide a solid foundation to develop RTM-based systems and explore
their optimizations. The next chapter discusses data and instruction
placement solutions for RTMs.



3
S H I F T S - AWA R E S C A L A R S A N D I N S T R U C T I O N
P L A C E M E N T I N R A C E T R A C K M E M O R I E S

Prelude: This chapter presents our data and instruction placement
solutions to minimize shift operations in RTMs. Section 3.1 explains
our developed schemes for intra-DBC scalars placement in a specific
(single DBC) RTM architecture that are followed by generalized and
architecture-independent (inter- and intr-DBC) data placement solu-
tions in Section 3.2. Since RTMs are inherently sequential, and so are
instruction streams, we marry the two together in Section 3.3 of this
chapter and present the evaluation results. The contents in this chapter
are based on our articles: "ShiftsReduce: Minimizing Shifts in Racetrack
Memory 4.0" published in ACM Transactions on Architecture and Code
Optimization (TACO) 2019 [126], "Generalized Data Placement Strate-
gies for Racetrack Memories" published in the Design, Automation and
Test in Europe (DATE) conference 2020 [127] and "SHRIMP: Efficient
Instruction Delivery with Domain Wall Memory" published in the
International Symposium on Low Power Electronics and Design (ISLPED)
conference 2019 [203].

3.1 intra-DBC data placement

Racetrack memories (RM) have significantly evolved since their concep-
tion in 2008, making them a serious contender in the field of emerging
memory technologies. Despite key technological advancements, the
access latency and energy consumption of an RM-based system are still
highly influenced by the number of shift operations. These operations
are required to move bits to the right positions in the racetracks. This
section presents data-placement techniques for RMs that maximize the
likelihood that consecutive references access nearby memory locations
at runtime, thereby minimizing the number of shifts. We present an in-
teger linear programming (ILP) formulation for optimal data placement
in RMs, and we revisit existing offset assignment heuristics, originally
proposed for random-access memories. We introduce a novel heuristic
tailored to a realistic RM and combine it with a genetic search to further
improve the solution. We show a reduction in the number of shifts of
up to 52.5%, outperforming the state of the art by up to 16.1%.

3.1.1 Introduction

Conventional SRAM/DRAM-based memory systems are unable to con-
form to the growing demand of low power, low cost and large capacity

59
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memories. Increase in the memory size is barred by technology scal-
ability as well as leakage and refresh power. As a result, multiple
non-volatile memories such as phase change memory (PCM), spin trans-
fer torque (STT-RAM) and resistive RAM (ReRAM) have emerged and
attracted considerable attention [308, 309, 344, 346]. These memory
technologies offer power, bandwidth and scalability features amenable
to processor scaling. However, they pose new challenges such as
imperfect durability and higher write latency. The relatively new spin-
orbitronics based racetrack memory (RM) represents a promising option
to surmount the aforementioned limitations by offering ultra-high ca-
pacity, energy efficiency, lower per bit cost and higher durability [221,
222]. Due to these attractive features, RMs have been investigated at
all levels in the memory hierarchy. Table 3.1 provides a comparison of
RM with contemporary volatile and non-volatile memories.

The diverse memory landscape has motivated research on hardware
and software optimizations for more efficient utilization of NVMs in the
memory subsystem. For instance, intelligent data placement and other
architectural optimizations have been proposed to improve the lifetime
of PCM [45, 147, 148, 336] and the performance of NVM-S/DRAM hybrid
memory systems [162, 243, 302, 320]. However, these solutions require
additional hardware which not only increases the design complexity
of the memory system but also incur latency and energy overheads. To
avoid the design complexity added by hardware solutions, software-
based data placement has become an important emerging area for
compiler optimization [195]. Even modern days processors such as
intel’s Knight Landing Processor offer means for software managed
on-board memories. Compiler guided data placement techniques have
been proposed at various levels in the memory hierarchy, not only for
improving the temporal/spatial locality of the memory objects but
also the lifetime and high write latency of NVMs [159, 227, 261, 305].
In the context of near data processing (NDP), efficient data placement
improves the effectiveness of NDP cores by allowing more accesses to
the local memory stack and mitigating remote accesses.

In this and the following sections, we study data placement opti-
mizations for the particular case of racetrack memories. While RMs

may not suffer from endurance and latency issues, they pose a sig-
nificantly different challenge. From the architectural perspective, RMs

store multiple bits —1 to 100— per access point in the form of mag-
netic domains in a tape-like structure, referred to as track. Each track
is equipped with one or more magnetic tunnel junction (MTJ) sensors,
referred to as access ports, that are used to perform read/write oper-
ations. While a track could be equipped with multiple access ports,
the number of access ports per track are always much smaller than
the number of domains. In the scope of this section, we consider the
ideal single access port per track for ultra high density of the RM. This
implies that the desired bits have to be shifted and aligned to the port
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Table 3.1: Comparison of RM with other memory technologies [194, 222]
SRAM eDRAM DRAM STT-RAM ReRAM PCM RaceTrack 4.0

Cell Size (F2) 120-200 30-100 4-8 6-50 4-10 4-12 ≤ 2

Write Endurance ≥ 1016 ≥ 1016 ≥ 1016
4 X 1012 1011 109 1018

Read Time Very Fast Fast Medium Medium Medium Slow Fast

Write Time Very Fast Fast Medium Slow Slow Very Slow Medium

Dynamic Write Energy Low Medium Medium High High High Medium

Dynamic Read Energy Low Medium Medium Low Low Medium Low

Leakage Power High Medium Medium Low Low Low Low

Retention Period As long as 30− 100 µs 64− 512 ms Variable Years Years Years

volt applied

positions prior to their access. The shift operations not only lead to
variable access latency but also impact the energy consumption of a
system, since the time and the energy required for an access depend
on the position of the domain relative to the access port. We propose a
set of techniques that reduce the number of shift operations by placing
temporally close accesses at nearby locations inside the RM.

Concretely, we make the following contributions.

1. An integer linear programming (ILP) formulation of the data place-
ment problem for RMs.

2. A thorough analysis of existing offset assignment heuristics,
originally proposed for data placement in DSP stack frames, for
data placement in RM.

3. ShiftsReduce, a heuristic that computes memory offsets by ex-
ploiting the temporal locality of accesses.

4. An improvement in the state-of-the-art RM-placement heuris-
tic [42] to judiciously decide the next memory offset in case of
multiple contenders.

5. A final refinement step based on a genetic algorithm to further
improve the results.

We compare our approach with existing solutions on the Offset-
Stone benchmarks [154]. ShiftsReduce diminishes the number of shifts
by 28.8% which is 4.4% and 6.6% better than the best performing
heuristics [154] and [42] respectively.

The rest of the section is organized as follows. Section 3.1.2 explains
the recently proposed RM 4.0, provides motivation for this work and re-
views existing data placement heuristics. Our ILP formulation and the
ShiftsReduce heuristic are described in Section 3.1.3 and Section 3.1.4
respectively. Benchmarks description, evaluation results and analysis
are presented in Section 3.1.5. Section 3.1.6 discusses state-of-the-art
and Section 3.1.7 concludes the section.
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3.1.2 Background and motivation

This section provides background on the working principle of RMs, cur-
rent architectural sketches and further motivates the data placement
problem (both for RAMs and RMs).

3.1.2.1 Racetrack memory

Memory devices have evolved over the last decades from hard disk
drives to novel spin-orbitronics based memories. The latter uses spin-
polarized currents to manipulate the state of the memory. The domain
walls (DWs) in RMs are moved into a third dimension by an electrical
current [219, 221]. The racetracks can be placed vertically (3D) or
horizontally (2D) on the surface of a silicon wafer as shown in Fig. 3.1.
This allows for higher density but is constrained by crucial design
factors such as the shift speed, the DW-to-DW distance and insensitivity
to external influences such as magnetic fields.

Isr

Domain wall
Access port

Isl

Horizontal racetrack

V
ertical racetrack

IslIsr

Figure 3.1: Racetrack horizontal and vertical placements (Isl and Isr represent
left and right shift currents respectively)

In earlier RM versions, DWs were driven by a current through a mag-
netic layer which attained a DW velocity of about 100 m s−1 [89]. The
discovery of even higher DW velocities in structures where the mag-
netic film was grown on top of a heavy metal allowed to increase the
DW velocity to about 300 m s−1 [191]. The driving mechanism is based
on spin-orbit effects in the heavy metal which lead to spin currents
injected into the magnetic layer [253]. However, a major drawback of
these designs was that the magnetic film was very sensitive to external
magnetic fields. Furthermore, they exhibited fringing fields which did
not allow to pack DWs closely to each other.

The most recent RM 4.0 resolved these issues by adding an additional
magnetic layer on top, which fully compensates the magnetic moment
of the bottom layer. As a consequence, the magnetic layer does not
exhibit fringing fields and is insensitive to external magnetic fields. In
addition, due to the exchange coupling of the two magnetic layers, the
DWs velocity can reach up to 1000 m s−1 [222, 319].
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N: Number of domains per race track  M: Number of race tracks per DBC 

RT: Race Track 

DBC: Domain Block Cluster, b: bit  

VN-2

V0

V1

VN-1

B0 Bn-1

RT Memory

n: Number of DBCs per RT memory
V: Variable  

VN-2

V0

V1

VN-1

V0b0

V1b0

VN-2b0

VN-1b0

RT0

VN-1bM-1

VN-2bM-1

V1bM-1

V0bM-1

RTM-1

DBC

Figure 3.2: Racetrack memory architecture [355]

memory architecture

Fig. 3.2 shows a widespread architectural sketch of an RM based
on [355]. In this architecture an RM is divided into multiple domain
wall block clusters (DBCs), each of which contains M tracks with N DWs

each. Each domain wall stores a single bit, and we assume that each
M-bit variable is distributed across M tracks of a DBC. Accessing a bit
from a track requires shifting and aligning the corresponding domain
to the track’s port position. We further assume that the domains of
all tracks in a particular DBC move in a lock step fashion so that
all M bits of a variable are aligned to the port position at the same
time for simultaneous access. We consider a single port per track
because adding more ports increases the area. This is due to the use of
additional transistors, decoders, sense amplifiers and output drivers.
As shown in Fig. 3.2, each DBC can store a maximum of N variables.

Under the above assumptions, the shift cost to access a particular
variable may vary from 0 to N − 1. It is worth to mention that worst
case shifts can consume more than 50% of the RM energy [342] and
prolong access latency by 26× compared to SRAM [355].

b  c  b  a  e  f  d  a  c  e  d  a  c  a  d  e  f

a  b  c  d  e  f

(a) Program variables and access sequence

a
0x0

e b f c d
0x1 0x2 0x3 0x4 0x5

f
0x0

e d a c b
0x1 0x2 0x3 0x4 0x5

(P1) (P2)

(b) Data placements

Figure 3.3: Motivation example
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3.1.2.2 Motivation example

To illustrate the problem of data placement consider the set of data
items and their access order from Fig. 3.3a. We refer to the set of pro-
gram data items as the set of program variables (V) and the set of their
access order as access sequence (S), where Si ∈ V ∀i ∈ {0, 1, . . . , |S|−1},
for any given source code. Note that data items can refer to actual
variables placed on a function stack or to accesses to fields of a struc-
ture or elements of an array. We assume two different, a naive (P1)
and a more carefully chosen (P2), memory placements of the program
variables as shown in Fig. 3.3b.

P2 

b c a e f d a c e d a c a d e f

1 2 2 1 2 1 1 3 1 1 1 1 1 1 1
P1 2 2 1 2 2 5 4 3 4 5 4 4 5 4 22 51

21

b

1
2

Figure 3.4: Number of shifts in placements P1 and P2 from Fig 3.3b (encircled
numbers show the total shift cost)

The number of shifts for the two different placements, P1 and P2

in Fig. 3.3b, are shown in Fig. 3.4. The shift cost between any two
successive accesses in the access sequence is equivalent to the absolute
difference of their memory offsets (e.g, |2 − 4| for b,c in P1). The
naive data placement P1 incurs 51 shifts in accessing the entire access
sequence, while P2 incurs only 21, i.e., 2.4× better. This leads to an
improvement in both latency and energy consumption for the simple
illustrative example.

Source 
code

    Trace 
generation
     pass

    Data 
placement  Memory

  layout 

Traces

Figure 3.5: Data placement in RMs

3.1.2.3 Problem definition

Fig. 3.5 shows a conceptual flow of the data placement problem in
RMs. The access sequence corresponds to memory traces which can be
obtained with standard techniques. They can be obtained via profiling
and tracing, e.g., using Pin [169], inferred from static analysis, e.g.,
for Static Control Parts using polyhedral analysis, or with a hybrid
of both as in [251]. In this chapter we assume the traces are given
and focus on the data placement step to produce the memory layout.
We investigate a number of exact/inexact solutions that intelligently
decide memory offsets of the program variables referred to as memory layout
based on the access sequence. The memory for which the layout is
generated could either be a scratchpad memory, a software managed
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flat memory similar to the on-board memory in intel’s Knight Landing
Processor or the memory stack exposed to an NDP core.

The shift cost of an access sequence depends on the memory offsets
of the data items. We assume that each data item is stored in a single
memory offset of the RM (cf. Section 3.1.2.1). We denote the memory
offset of a data item u ∈ V as β(u). The shift cost between two data
items u and v is then:

∆(u, v) = |β(u)− β(v)| ∀u, v ∈ V (3.1)

The total shift cost (C) of an access sequence (S) is computed by
accumulating the shift costs of successive accesses:

C =

(
|S|−2

∑
i=0

∆(Si, Si+1)

)
(3.2)

The data placement problem for RMs can be then defined as:

Definition 1 Given a set of variables V = {v0, v1, , . . . , vn−1} and an ac-
cess sequence S = (S0, S1, . . . , Sm−1), Si ∈ V , find a data placement β for
V such that the total cost C is minimized.

3.1.2.4 State-of-the-art data placement solutions

The data placement problem in RMs is similar to the classical single
offset assignment (SOA) problem in DSP’s stack frames [10, 16, 154,
164]. The heuristics proposed for SOA assign offsets to stack variables;
aiming at maximizing the likelihood that two consecutive references
at runtime will be to the same or adjacent stack locations.

Most SOA heuristics work on an access graph and formulate the
problem as maximum weighted Hamiltonian path (MWHP) or maximum
weighted Hamiltonian path cover (MWHPC). An access graph G = (V, E)
represents an access sequence where V is the set of vertices corre-
sponding to program variables (V). An edge e = {u, v} ∈ E has weight
wuv if variables u, v ∈ V are accessed consecutively wuv times in S. The
assignment is then constructed by solving the MWHP/MWHPC prob-
lem. The access graph for the access sequence in Fig. 3.3a is shown in
Fig. 3.6.

bc

d f

3

3

22

11

1

a

e

1

2

Figure 3.6: Access graph for the access sequence in Fig. 3.3a
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The SOA cost for two consecutive accesses is binary. That is, if the
next access cannot be reached within the auto-increment/decrement
range, an extra instruction is needed to modify the address register
(cost of 1). The cost is 0 otherwise. In contrast, the shift cost in RM

is a natural number. For RM-placement, the SOA heuristics must be
revisited since they only consider edge weights of successive elements
in S. This may produce better results on small access sequences due
to the limited number of vertices and smaller end-to-end distance in
S, but might not perform well on longer access sequences. Chen et al
recently proposed a group-based heuristic for data placement in RMs

which performs relatively better compared to the SOA heuristics [42]. In
this section, we extend both the SOA heuristics and the Chen heuristic
to account for the more general cost function and efficient grouping
of data objects respectively.

3.1.3 Optimal data placement: ILP formulation

This section presents an ILP formulation for the data placement prob-
lem in RM. Unlike Chen’s formulation for multi-port RMs [42], we use
realistic single port RMs and develop our formulation accordingly.

Consider the access graph G and the access sequence S to variables
v ∈ V , the edge weight wvivj between variables vi, vj can be computed
as:

wvivj =

∑m−2
x=0 Υix · Υj,x+1 + Υjx · Υi,x+1, i 6= j

0, i = j
(3.3)

with i, j ∈ {0, 1, .., n− 1}, n = |V|, m = |S| and Υ defined as:

Υix =

1, if Sx = vi

0, otherwise
(3.4)

To model unique variable offsets we introduce binary variables (Θio):

Θio =

1, if vi has memory offset o, ∀i, o ∈ {0, 1, .., n− 1}

0, otherwise
(3.5)

The memory offset of vi is then computed as:

β(vi) =
n−1

∑
o=0

Θio · o (3.6)

Since edges in the access graph embodies the access sequence infor-
mation, we use them to compute the total shift cost as:

C =

(
n−1

∑
i=0

n−2

∑
j=i+1

wvivj · ∆(vi, vj)

)
(3.7)
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The cost function in Equation 3.7 is not inherently linear due to the
absolute function in ∆(vi, vj) (cf. Equation 3.1). Therefore, we generate
new products and perform subsequent linearization. We introduce
two integer variables (pij, qij) ∈ Z to rewrite |β(vi)− β(vj)| as:

∆(vi, vj) = pij + qij ∀i, j ∈ {0, 1, .., n− 1} (3.8)

such that
β(vi)− β(vj) + pij − qij = 0 (C1)

pij · qij = 0 (C2)

The second non-linear constraint (C2) implies that one of the two
integer variables must be 0. To linearize it, we use two binary variables
aij, bij and a set of constraints:

aij ≤ pij ≤ aij · n (C3)

bij ≤ qij ≤ bij · n (C4)

0 ≤ aij + bij ≤ 1 (C5)

C5 guarantees that the value of both binary variables aij and bij can
not be 1 simultaneously for a given pair i, j. This, in combination with
C3-C4, sets one of the two integer variables to 0. We introduce the
following constraint to enforce that the offsets assigned to data items
are unique:

pij + qij ≥ 1 (C6)

It ensures uniqueness because the left hand side of the constraint is
the difference of the two memory locations (cf. Eq. 3.8).

Finally, the linear objective function is:

C = min

(
n−1

∑
i=0

n−2

∑
j=i+1

wvivj · (pij + qij)

)
(3.9)

The following two constraints are added to ensure that offsets are
within range.

0 ≤ β(vi) ≤ n− 1 (C7)

i=n−1

∑
i=0

β(vi) =
n · (n− 1)

2
(C8)

3.1.4 Approximate data placement

In this section we describe our proposed heuristic and use the insights
of our heuristic to extend the heuristic by Chen [42].
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3.1.4.1 State of the art heuristic

Chen et al recently proposed a group-based heuristic for data place-
ment in RMs [42]. Based on an access graph G = (V, E), it assigns offsets
to vertices by moving them to a group g. The position of a data item
within a group indicates its memory offset.

Consider the access graph from Fig. 3.6, Chen’s heuristic first finds
the vertex that has the maximum vertex-weight in G and assigns it
to the first location in g. The vertex-weight is defined as the sum of
all edge weights that connect a vertex to other vertices G. In other
words, it indicates the count of successive accesses of a vertex with
other vertices in S, i.e., wv = ∑u:{u,v}∈E wuv. Fig. 3.7 demonstrates that
vertex a has the maximum weight and is assigned to the first location
in g. The remaining elements in G are then iteratively added to the
group, based on their vertex-to-group weights (maximum first). The
vertex-to-group weight of a vertex u is the sum of all edge weights
that connect u to the vertices in g.

Definition 2 The vertex-to-group weight α(v, g) of a vertex v ∈ V is de-
fined as the sum of all edge weights that connect v to other vertices in g, i.e.,
α(v, g) = ∑u∈g:{u,v}∈E wuv.

Vertex C has the maximum vertex-to-group weight (3) and is as-
signed to the next offset. Other vertices in G are assigned to g in the
same fashion as demonstrated in the figure.

bc ea d f

0 3 4 5 1 2 Offsets

Iteration t3 t4 t5 t2 t1 t0 

Figure 3.7: Grouping in Chen’s heuristic

3.1.4.2 The ShiftsReduce heuristic

ShiftsReduce is also a group-based heuristic but unlike Chen’s heuris-
tic, it effectively exploits the locality of accesses in the access sequence
and assigns offsets accordingly. In addition, ShiftsReduce does not
statically assign highest weight vertex to offset 0 because it seems
restrictive. The algorithm starts with the maximum weight vertex
in the access graph and iteratively assigns offsets to the remaining
vertices by considering their vertex-to-group weights. Note that the
maximum weight vertex may not necessarily be the vertex with the
highest access frequency, considering repeated accesses of the same
vertex. ShiftsReduce maintains two groups referred to as left-group
gl (highlighted in red in Fig. 3.8) and right-group gr (highlighted in
green). Both gl and gr are lists that store the already computed vertices
in V. The heuristic assigns offsets to vertices based on their global and
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local adjacencies. The global adjacency of a vertex v ∈ V is defined
as its vertex-to-group weight with the global group, i.e., α(v, gl ∪ gr)1

while the local adjacency is the vertex-to-group weight with either of
the sub-groups, i.e., gl or gr.

For the example in Fig. 3.6, ShiftsReduce first selects vertex a because
it has the highest vertex weight (equal to 3 + 3 + 1 + 1 = 8) and places
it at index 0 in both sub-groups. Vertices c and d have maximum edge
weights with a and are added to the right and left groups respectively
(cf. lines 6 and 8). At this point, the two sub-groups contain two
elements each. The next vertex e is added to gl because it has higher
local adjacency with gl compared to gr. In a similar fashion, b and f
are added to gr and gl respectively. ShiftsReduce ensures that vertices
at far ends of the two groups have least adjacency (i.e., vertex weights)
compared to the vertices that are placed in the middle. Note that
the number of elements in gl and gr may not necessarily be equal.
Finally, offsets are assigned to vertices based on their group positions
as highlighted in Fig. 3.8.
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Figure 3.8: Grouping in ShiftsReduce

Pseudocode for the ShiftsReduce heuristic is shown in Algorithm 1.
The sub-groups gl and gr initially start at index 0, the only shared
index between gl and gr, and expand in opposite directions as new
elements are added to them. We represent this with negative and
positive indices respectively as shown in Fig. 3.8. The algorithm selects
the maximum weight vertex (vmax) and places it at index 0 in both
sub-groups (cf. lines 3-4).

The algorithm then determines two more nodes and add them to
the right (cf. line 6) and left (cf. line 8) groups respectively. These
two nodes correspond to the nodes with the highest vertex-to-group
weight (α), which boils down to the maximum edge weight to vmax.
Lines 10-25 iteratively select the next group element based on its
global adjacency (maximum first) and add it to gl or gr based on its
local adjacency. If the local adjacency of a vertex with the left group
is greater than that of the right group, it is added to left group (cf.
lines 12-14). Otherwise, the vertex is added to the right group (cf.
lines 15-17).

The algorithm prudently breaks both inter-group and intra-group
tie situations. In an inter-group tie situation (cf. line 18), when the

1 We abuse notation, using set operations (∪, \) on lists for better readability.
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Algorithm 1 ShiftsReduce Heuristic

Input : Access graph G = (V, E) and a DBC with minimum n empty
locations

Output : Final data placement β

1: . vn = fixed element in gl , vm = fixed element in gr

2: . vq = last element in gl , vp = last element in gr

3: β← ∅, vmax ← argmaxv∈Vwv

4: gr.append(vmax), gl .append(vmax), V ← V \ {vmax}
5: v∗ ← argmaxv∈Vα(v, gr)
6: gr.append(v∗), V ← V \ {v∗}, vp ← v∗

7: v∗ ← argmaxv∈Vα(v, gr \ {v∗})
8: gl .prepend(v∗), V ← V \ {v∗}, vq ← v∗

9: vn ← vmax, vm ← vmax

10: while V is not empty do
11: v∗ ← argmaxv∈Vα(v, gr ∪ gl)
12: if α(v∗, gl) > α(v∗, gr) then
13: gl .prepend(v∗)
14: (vq, vn)← Tie-break(v∗, vq, vn, gl)
15: else if α(v∗, gl) < α(v∗, gr) then
16: gr.append(v∗)
17: (vp, vm)← Tie-break(v∗, vp, vm, gr)
18: else . inter-group tie
19: if wv∗vq > wv∗vp then
20: gl .prepend(v∗)
21: (vq, vn)← Tie-break(v∗, vq, vn, gl)
22: else
23: gr.append(v∗)
24: (vp, vm)← Tie-break(v∗, vp, vm, gr)

25: V ← V \ {v∗}
26: Assign-offsets(β, gl .append(gr.tail()))

vertex-to-group weight of the selected vertex is equal with both sub-
groups, the algorithm compares the edge weight of the selected vertex
v∗ with the last vertices of both groups (vp in gr and vq in gl) and
favors the maximum edge weight (cf. lines 19-24).

To resolve intra-group ties, we introduce the Tie-break function.
The intra-group tie arises when vs and vk have equal vertex-to-group-
weights with g (cf. line 2 in Tie-break). Since the two vertices have
equal adjacency with other group elements, they can be placed in any
order. We specify their order by comparing their edge weights with
the fixed vertex (vn for gl and vm for gr) and prioritize the highest
edge weight vertex. The algorithm checks the intra-group tie for every
vertex before assigning it to the left-group (cf. line 14) or right-group
(cf. line 17).
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Tie-break Function
1: function Tie-break(vs, vk, vfix, g)
2: if α(vs, g \ {vk}) = α(vk, g \ {vk}) then
3: if wvsvfix > wvkvfix then
4: vfix ← vs

5: swap(vk, vs) . swap positions of vk, vs

6: else
7: vfix ← vk , vk ← vs

8: else
9: vfix ← vk , vk ← vs

return (vk, vfix)
10: procedure Assign-offsets(β, g)
11: for i← 0 to n− 1 do
12: var ← variable represented by vertex gi
13: β = β ∪ {(var, i)}

Given that we add vertices to two different groups, there are less
occurrences of tie compared to algorithms such as Chen’s [42] where
vertices are always added to the same group. For comparison reasons,
we extend Chen’s heuristic with tie-breaking in the following section.

3.1.4.3 The Chen-TB heuristic

Chen’s heuristic does not specify the case when more than once
vertices in G have the equal vertex-to-group weights. We argue that
intelligent tie-breaking in such situations deserves investigation. Chen-
TB is a heuristic that extends Chen’s heuristic with the Tie-break

strategy introduced for ShiftsReduce. As shown in Algorithm 2 (lines 2-
11) and Fig. 3.9, Chen-TB initially adds three vertices from V referred
to as v0, v1, and v2 to the group. The first element in the group is
v0 = a because a has the largest vertex weight (wa = 8) (line 2). Next,
v1 = c because c has the maximum edge weight (wac = 3) with a (cf.
line 4). Note that c and d have equal edge weights with a but since
there is only one element in the group, Chen-TB randomly picks one
of the two (c in this case). Similarly, v2 = d because it has the maximum
vertex-to-group weight (which is 3) with a∪ c (cf. line 6). In contrast to
Chen, we intelligently swap the order of the first two group elements
by inspecting their edge weights with the third group element. Since
the edge weight between a and d (i.e., wad = 3) is higher than the edge
weight between c and d (i.e., wcd = 0), we swap the positions of a and c
in the group (cf. lines 8-9). At this point, the group elements are c, a, d.
The position of a is fixed while d is the last group element.

The next selected vertex is e due to its highest vertex-to-group
weight with g. In this case, the vertex-to-group weight of d and e
is compared with c ∪ a (cf. line 2 in Tie-break). Since d has higher
vertex-to-group weight, e becomes the last element while the position
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a, c a, c, d c, a, d c, a, d, e

c, a, d, e, b c, a, d, e, b, f c, a, d, e, f, b

(t0) (t3)(t1) (t2)

(t4) (t5) (t6)

Figure 3.9: Chen-TB heuristic. The fixed element is underlined. The green
element has higher edge weight with the fixed element and is
moved closer to it. (ti shows the iteration)

of d is fixed (cf. line 9 in Tie-break). Following the same argument, the
next selected element f becomes the last element while the position
of e is fixed. The next selected vertex b and the last element f have
equal vertex-to-group-weights i.e. 3 with the fixed elements c, a, d, e.
Chen-TB prioritizes f over b because it has the higher edge weight
with the last fixed element e. Lines 12-16 iteratively decide the position
of the new group elements until V is empty.

Algorithm 2 Chen-TB Heuristic

Input : Access graph G = (V, E) and a DBC with minimum n empty
locations

Output : Final data placement β

1: . vm : fixed element in g, vp : last element in g
2: β← ∅, v0 ← argmaxv∈Vwv

3: g.append(v0), V ← V \ {v0}
4: v1 ← argmaxv∈Vα(v, g)
5: g.append(v1), V ← V \ {v1}
6: v2 ← argmaxv∈Vα(v, g)
7: g.append(v2), V ← V \ {v2}
8: if wv0v2 > wv1v2 then
9: vm ← v0, swap(v0, v1)

10: else
11: vm ← v1

12: while V is not empty do
13: v∗ ← argmaxv∈Vα(v, g)
14: vp ← g.last(), g.append(v∗)
15: (vp, vm)← Tie-break(v∗, vp, vm, g)
16: V ← V \ {v∗}
17: Assign-offsets(β, g)

The final data placements of Chen, Chen-TB and ShiftsReduce are
presented in Fig. 3.10. For the access sequence in Fig. 3.6, Chen-TB
reduces the number of shifts to 31 compared to 33 by Chen, as shown
in Fig. 3.10. ShiftsReduce further diminishes the shift cost to 21. Note
that the placement decided by ShiftsReduce is the optimal placement
shown in Fig. 3.3b. We assume 3 or more vertices in the access graph
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for our heuristics because the number of shifts for two vertices, in
either order, remain unchanged.

ab cdefChen

Chen-TB

ShiftsReduce 21

31

33

cf adeb

fc edab

0offsets 1 2 3 4 5 shift cost

Figure 3.10: Final data placements and costs of Chen, Chen-TB and ShiftsRe-
duce. Initial port position marked in green

3.1.4.4 Genetic algorithms

Apart from heuristics, genetic algorithms (GAs) have also been employed
to solve the SOA problem [152] and the data placement problem in
RMs [180]. GAs imitate the biological evolution process to achieve good
solutions by performing the select, crossover and mutate operations
on chromosomes. The genetic algorithm for SOAs represents variables
(V) by chromosomes where each gene in a chromosome represents
one variable and its position in the chromosome represents its offset.

The GA population initially consists of 30 individuals, having both
randomly generated and more carefully selected permutations. The
chosen permutations are the output of order of first use (OFU), Chen-
TB and ShiftsReduce heuristics provided as seed to the GA in order
to accelerate its convergence. The GA evaluates the fitness i.e., the
shift cost (cf. Eq. 3.2) of all individuals in the population in each
iteration and selects the fittest (those having minimum shift cost) for
crossover. The crossover operation generates new individuals in the
GA population in order to accelerate the GAs convergence. Our GA uses
the standard order crossover operation that generates two offspring
individuals from two parental individuals as explained in [152].

The mutation operation is performed on the offsprings generated by
crossover. In order for the mutation operation to be permutation pre-
serving, we use transpostions to mutate chromosomes. A transpostion
refers to the interchange of contents of two genes in a chromosome.
The positions of the two genes, to be mutated, are randomly selected
and the permutation probability of each gene is 1/(n− 1). For termi-
nation, the GA waits until 5000 iterations (generation) are completed
or the shift cost does not change for 2000 iterations.

The improved genetic algorithm (IGA) proposed for data placement
in RMs [180] also starts with carefully selected initial populations.
IGA takes the output of three heuristics proposed in [180] as initial
input and carefully selects the crossover and mutation points in each
generation. Our modified genetic algorithm IGA-Ours takes the output
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of OFUs, Chen-TB and ShiftsReduce as initial population and provide
better results compared to IGA (cf. Sec. 3.1.5.4).

3.1.5 Results and discussion

This section provides evaluation and analysis of the proposed solutions
on real-world application benchmarks. It presents a detailed quali-
tative and quantitative comparison with state-of-the-art techniques.
Further, it brings a thorough analysis of SOA solutions for RMs.

3.1.5.1 Experimental setup

We perform all experiments on a Linux Ubuntu (16.04) system with
Intel core i7-4790 (3.8 GHz) processor, 32 GB memory, g++ v5.4.0
with −O3 optimization level. We implement our ILP model using the
python interface of the Gurobi optimizer, with Gurobi 8.0.1 [80].

As benchmark we use OffsetStone [154], which contains more than
3000 realistic sequences obtained from complex real-world applica-
tions (control-dominated as well as signal, image and video process-
ing). Each application consists of a set of program variables and one or
more access sequences. The number of program variables per sequence
varies from 1 to 1336 while the length of the access sequences lies in
the range of 0 and 3640. We evaluate and compare the performance of
the following algorithms.

1. Order of first use (OFU): A trivial placement for comparison pur-
poses in which variables are placed in the order they are used.

2. Offset assignment heuristics: For thorough comparison we use
Bartley [16], Liao [164], SOA-TB [153], INC [10], INC-TB [154]
and the genetic algorithm (GA-SOA) in [152].

3. Chen/Chen-TB: The RM data placement heuristic presented in [42]
and our extended version (cf. Algorithm 2).

4. ShiftsReduce (cf. Algorithm 1).

5. IGA (cf. Section 3.1.4.4).

6. GA-Ours/IGA-Ours: Our modified genetic algorithm for RM data
placement described in 3.1.4.4.

7. ILP (cf. Section 3.1.3).

3.1.5.2 Revisiting SOA algorithms

We, for the first time, reconsider all well-known offset assignment
heuristics. The empirical results in Fig. 3.11 show that the SOA heuris-
tics can reduce the shift cost in RM by 24.4%. On average, (Bartley,
Liao, SOA-TB, INC and INC-TB) reduce the number of shifts by (10.9%,
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10.9%, 12.2%, 22.9%, 24.4%) compared to OFU respectively. For brevity,
we consider only the best performing heuristic i.e., INC-TB for detailed
analysis in the following sections.
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Figure 3.11: Comparison of offset assignment heuristics

3.1.5.3 Analysis of ShiftsReduce

In the following we analyze our ShiftsReduce heuristic.

results overview : An overview of the results for all heuristics
across all benchmarks, normalized to the OFU heuristic, is shown in
Fig. 3.12. As illustrated, ShiftsReduce yields considerably better per-
formance on most benchmarks. It outperforms Chen’s heuristic on all
benchmarks and INC-TB on 22 out of 28. The results indicate that INC-
TB underperforms on benchmarks such as mp3, viterbi, gif2asc,dspstone,
and h263. On average, ShiftsReduce curtails the number of shifts by
28.8% which is 4.4% and 6.6% better compared to INC-TB and Chen
respectively.

Closer analysis reveals that Chen significantly reduces the shift cost
on benchmarks having longer access sequences. This is because it con-
siders the global adjacency of a vertex before offset assignment. On the
contrary, INC-TB maximizes the local adjacencies and favors bench-
marks that consist only of shorter sequences. ShiftsReduce combines
the benefits of both local and global adjacencies, providing superior
results. None of the algorithms reduce the number of shifts for fft,
since in this benchmark each variable is accessed only once. There-
fore, any permutation of the variables placement results in identical
performance.

impact of access sequence length : As mentioned above,
the length of the access sequence plays a role in the performance of
the different heuristics. To further analyze this effect we partition the
sequences from all benchmarks in 6 bins based on their lengths. The
concrete bins and the results are shown in Fig. 3.13, which reports the
average number of shifts (smaller is better) relative to OFU.
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Figure 3.12: Individual benchmark results (sorted in the decreasing order of
benefit for ShiftsReduce)
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Figure 3.13: Impact of sequence length on heuristic performance

Several conclusions can be drawn from Fig. 3.13. First, INC-TB per-
forms better compared to other heuristics on short sequences. For the
first bin (0-70), INC-TB reduces the number of shifts by 26.3% com-
pared to OFU which is 10.9%, 7.1% and 2.2% better than Chen, Chen-TB
and ShiftsReduce respectively. Second, the longer the sequence, the
better is the reduction compared to OFU. Third, the performance of
INC-TB aggravates compared to group-based heuristics as the access
sequence length increases. For bin-5 (501-800), INC-TB reduces the
shift cost by 25.2% compared to OFU while Chen, Chen-TB and Shift-
sReduce reduces it by 38.3%, 38.6% and 41.2% respectively. Beyond
800 (last bin), INC-TB deteriorates performance compared to OFU and
even increases the number of shifts by 97.8%. This is due to the fact
that INC-TB maximizes memory accesses to consecutive locations (i.e.,
edge weights) without considering its impact on farther memory ac-
cesses (i.e., global adjacency). Fourth, Chen performs better compared
to INC-TB on long sequences (average 36.6% for bins 3-6) but falls after
it by 6.9% on short sequences (bins 1-2). Fifth, Chen-TB consistently
outperforms Chen on all sequence lengths, demonstrating the posi-
tive impact of the tie-breaking proposed in this chapter. Finally, the
proposed ShiftsReduce heuristic consistently outperforms Chen in all
6 bins. This is due to the fact that ShiftsReduce exploit bi-directional
group expansion and considers both local and global adjacencies for
data placement (cf. Section 3.1.4.2). On average, it surpasses (INC-TB,
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Chen and Chen-TB) by (39.8%, 3.2% and 2.8%) and (0.3%, 7.3% and
4.5%) for long (bins 3-6) and short (bins 1-2) sequences respectively.

Table 3.2: Distribution of short, long and very long access sequences in Off-
setStone benchmarks

Category Benchmarks Short Long Very Long

Seqs (%) Sequences (%) Sequences (%)

category-I

(ShiftsReduce

performs better)

mp3 65.1% 25.6% 9.3%

veterbi 35.0% 40.0% 25.0%

gif2asc 17.7% 50.0% 33.3%

dspstone 63.0% 29.6% 7.4%

gsm 65.1% 21.6% 13.3%

cavity 20.0% 40.0% 40.0%

h263 0.0% 75.0% 25.0%

codecs 59.7% 33.3% 8.0%

flex 75.8% 16.9% 7.3%

sparse 69.6% 22.8% 7.6%

klt 54.5% 15.9% 29.6%

triangle 75.4% 17.2% 7.4%

f2c 79.5% 15.2% 6.3%

mpeg2 50.7% 32.4% 16.9%

bison 63.8% 26.4% 9.8%

cpp 43.7% 33.3% 13.0%

gzip 50.1% 35.2% 14.7%

lpsolve 44.6% 38.5% 16.9%

jpeg 54.5% 15.9% 29.6%

category-II

(comparable

performance± 2%)

bdd 85.8% 10.8% 3.4%

adpcm 93.2% 3.4% 3.4%

fft 100.0% 0.0% 0.0%

anagram 100.0% 0.0% 0.0%

eqntott 100.0% 0.0% 0.0%

category-III

(INC performs

better)

fuzzy 100% 0.0% 0.0%

hmm 79.7% 10.3% 0.0%

8051 80.0% 20.0% 0.0%

cc65 84.6% 13.1% 2.3%

Based on the above analysis, we classify all benchmarks into 3

categories as shown in Table 3.2 and categorize access sequences into
three ranges i.e., short (0− 140), long (greater than 140) and very-
long (greater than 300). The first benchmark category comprises 19

benchmarks; each containing at least 15% long and 5% very long
access sequences. The second and third categories mostly contain
short sequences.

Fig. 3.14 shows that ShiftsReduce provides significant gains on
category-I and curtails the number of shifts by 31.9% (maximum up-to
43.9%) compared to OFU. This is 8.1% and 6.4% better compared to
INC-TB and Chen respectively. Similarly, Chen-TB outperforms both
Chen and INC-TB by 2.3% and 4% respectively. INC-TB does not pro-
duce good results because the majority of the benchmarks in category-I
are dominated by long and/or very long sequences (cf. Table 3.2 and
Section 3.1.5.3). Category-II comprises 5 benchmarks, mostly dom-
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Figure 3.14: Evaluation by benchmark categories

inated by short sequences. INC-TB provides higher shift reduction
(19.6%) compared to Chen (13.2%) and Chen-TB (15.3%). However
it exhibits comparable performance with ShiftsReduce (within ±2%
range). On average, ShiftsReduce outperforms INC-TB by 1.1%. INC-
TB outperforms ShiftsReduce only on the 4 benchmarks listed in
category-III.

3.1.5.4 Comparison of genetic algorithms

This section leverages four genetic algorithms (namely GA-SOA, GA-
Ours, IGA and IGA-Ours) for RM data placement. We analyze the
impact on the results of GA using our solutions compared to solu-
tions obtained with SOA heuristics and heuristics in [180] as initial
population. All algorithms use the same parameters as presented
in [154]. The initial populations of GA-SOA, GA-Ours, IGA and IGA-
Ours are composed of (OFU, Liao [164], INC-TB [154]), (OFU, Chen-TB,
ShiftsReduce), (OFU, MAIM [180], MAF [180]) and (OFU, Chen-TB,
ShiftsReduce) respectively.

Experimental results demonstrate that GAs populated with our
heuristics as initial solution (GA-Ours, IGA-Ours) are superior com-
pared to others (GA-SOA, IGA) in all benchmarks. The average reduction
in shift cost across all benchmarks (cf. Fig. 3.16) translate to 35.1%,
38.3%, 36.4% and 39.8% for GA-SOA, GA-Ours, IGA and IGA-Ours re-
spectively.

3.1.5.5 ILP results

As expected, the ILP solver could not produce any solution in almost
30% of the instances when given three hours per instance. In the re-
maining instances, the solver either provides an optimal solution (on
shorter sequences) or an intermediate solution. We evaluate ShiftsRe-
duce and IGA-Ours on those instances where the ILP solver produces
results and show the comparison in Fig. 3.15. On average, the Shift-
sReduce results deviate by 8.2% from the ILP result. IGA-Ours bridges
this gap and deviate by only 1.7%.
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Figure 3.15: Comparison with ILP solution (* mark benchmarks for which an
optimal solution was found)
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Figure 3.16: Results summary

3.1.5.6 Summary performance and energy analysis

Recall the results overview from Fig. 3.16. In comparison to OFU, Shift-
sReduce and Chen-TB mitigate the number of shifts by 28.8% and
24.5% which is (4.4%, 0.1%) and (6.6%, 2.3%) superior than INC-TB
and Chen respectively. Compared to the offset assignment heuristics
in Fig. 3.11, the performance improvement of ShiftsReduce and Chen-
TB translate to (17.9%, 17.9%, 16.6%, 5.9%) and (13.6%, 13.6%, 12.3%,
1.6%) for Bartley, Liao, SOA-TB and INC respectively. IGA-Ours further
reduces the number of shifts in ShiftsReduce by 11%. The average run-
times of Chen-TB and ShiftsReduce are 2.99 ms, which is comparable
to other heuristics, i.e., Bartley (0.23 ms), Liao (0.08 ms), SOA-TB (0.11

ms), INC (2.3 s), INC-TB (2.7 s), GA-SOA (4.98 s), GA-Ours (4.96 s), IGA

(4.76 s), IGA-Ours (4.73 s) and Chen (2.98 ms).
To analyze the impact of the shifts reduction on the overall memory

system performance and energy consumption, we run all benchmarks
in the RM simulator RTSim [125] and report results in Fig. 3.17. For
evaluation, we take a 32 KiB scratchpad memory (SPM) with configu-
ration parameters listed in Table 3.3. The overall performance and
energy benefits of (Chen, ShiftsReduce and IGA-Ours) compared to
OFU translate to (22.2%, 25.4% and 31.7%) and (12.4%, 17.5% and
26.4%) respectively. The suitability of RMs compared to other memory
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technologies such as SRAM, STT-MRAM and DRAM has already been
established [124, 182, 355].

Table 3.3: Configuration details for RM

Technology 32 nm

Word/bus size 32 bits (4 B)

Number of banks 4

Leakage power [mW] 19.3

Read / Write / Shift energy [pJ] 19.8 / 30.6 / 13.7

Read / Write / Shift latency [ns] 0.95 / 1.27 / 1.04

Number of tracks/DBC 32,

Number of DBCs/bank, domains/track 32, 64
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Figure 3.17: Impact on performance and energy

Using the latest RM 4.0 prototype device in our in-house physics
lab facility, a current pulse of 1 ns, corresponding to a current density
of 5x1011Amp/m2, is applied to the nano-wire to drive the domains.
Employing a 50 nm wide, 4 nm thick wire, the shift current corre-
sponds to 0.1mA. With a 5V applied voltage, the power to drive a
single domain translates to 0.5 mW (P = VxI = 5Vx0.1mA = 0.5mW).
Therefore, the energy required for a single shift amounts to 0.5pJ
(E = Pxt = 0.5mWx1ns = 0.5pJ). Note that this is much smaller com-
pared to the per-shift energy in Table 3.3 which also includes the
latency/energy of the peripheral circuitry. The RM 4.0 device charac-
teristics indicate that domains in RM 4.0 shift at a constant velocity
without inertial effects. Therefore, for a 32-bit data item size, the total
shift energy amounts to 16pJ without inertia. The overall shift energy
saved by a particular solution is calculated as the total number of
shifts for all instances across all benchmark multiplied by per data
item shift energy (i.e., 16pJ). Using RM 4.0, the shift energy reduction
for ShiftsReduce relative to OFU translates to 35%. In contrast to RM 4.0,
the domains in earlier RM prototypes show inertial effects when driven
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by current. Considering the inertial effects in earlier RM prototypes,
we expect less energy benefits compared to RM 4.0.

3.1.6 Related work

Conceptually, the racetrack memory is a 1-dimensional version of the
classical bubble memory technology of the late 1960s. The bubble
memory employs a thin film of magnetic material to hold small mag-
netized areas known as bubbles. This memory is typically organized
as 2-dimensional structure of bubbles composed of major and minor
loops [109]. The bubble technology could not compete with the Flash
RAM due to speed limitations and it vanished entirely by the late
1980s. Various data reorganization techniques have been proposed for
the bubble memories [109, 295, 307]. These techniques alter the relative
position of the data items in memory via dynamic reordering so that
the more frequently accessed items are close to the access port. Since
these architectural techniques are blind to exact memory reference
patterns of the applications, they might excerbate the total energy
consumption.

Compared to other memory technologies, RMs have the potential
to dominate in all performance metrics, for which they have received
considerable attention as of late. RMs have been proposed as replace-
ment for all levels in the memory hierarchy for different application
scenarios. Mao and Wang et al. proposed an RM-based GPU register file
to combat the high leakage and scalability problems of conventional
SRAM-based register files [182, 299]. Xu et al. evaluated RM at lower
cache levels and reported an energy reduction of 69% with compara-
ble performance relative to an iso-capacity SRAM [347]. Sun et al. and
Venkatesan et al. demonstrated RM at last-level cache and reported
significant improvements in area (6.4x), energy (1.4x) and Performance
(25%) [355, 367]. Park advocates the usage of RM instead of SSD for
graph storage which not only expedites graph processing but also
reduces energy by up-to 90% [345]. Besides, RMs have been proposed
as scratchpad memories [180], content addressable memories [330]
and reconfigurable memories [334].

Various architectural techniques have been proposed to hide the
RM access latency by pre-shifting the likely accessed DW to the port
position [355]. Sun et al. proposed swapping highly accessed DWs
with those closer to the access port(s) [367]. Atoofian proposed a
predictor-based proactive shifting by exploiting register locality [9].
Likewise, proactive shifting is performed on the data items waiting
in the queue [182]. While these architectural approaches reduce the
access latency, they may increase the total number of shifts which
exacerbates energy consumption.

To abate the total number of shifts, techniques such as data swap-
ping [347, 367], data compression [317], data reorganization for bubble
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memories [109, 295, 307], and efficient software supported data and
instruction placement [42, 180, 203] have been proposed. In addition,
reconfigurable cache organizations have been proposed that mitigate
the number of RM shifts by (de-)activating RM-cache sets/ways which
are far from the access ports at run time [244, 276]. Amongst all, data
placement has shown great promise because it effectively reduces the
number of shifts with negligible overheads.

Historically, hardware/software guided data placement has been
proposed for different memory technologies at different levels in the
memory hierarchy. It is demonstrated that efficient data placement
improves energy consumption and system performance by exploiting
temporal/spatial locality of the memory objects [31]. In a multi level
cell (MLC) PCM device, intelligent page placement in logically decou-
pled fast/slow regions significantly improve both performance and
energy [321]. More recently data placement techniques have been
employed in NVM-S/DRAM hybrid memory systems in order to im-
prove their performance and lifetimes. For instance [158, 159] employ
data placement techniques to hide the higher write latency and hence
cache blocks migration overhead in an STT-SRAM hybrid cache. The
caching policies in [320] mitigate the costly PCM row buffer misses by
caching rows with higher reusability and lower row buffer hit rate
in the DRAM row buffer in a DRAM-PCM hybrid memory. In another
similar configuration, rank based page placement and page migra-
tion policies track pages with high access frequencies and high write
intensities and migrate highest rank pages to DRAM [243]. However
individual optimizations for row buffer locality, write intensity and
access frequencies do not capture the overall system’s performance
and may lead to sub-optimal placement decisions. Li et al. proposed
a utility based hybrid memory management that uses several factors
to determine the impact of page migration on the overall system’s
performance and migrate only pages with the greatest estimated
system level performance benefits [162]. Similarly in [227, 239, 261,
305], data-placement techniques have been proposed to make efficient
utilization of the memory systems equipped with multiple memory
technologies. While most of these solutions effectively improve both
performance and energy, their applicability to RMs is of secondary
interests (hybrid RM-S/DRAM memory system). Fundamentally, the
data placement solutions in RMs such as for GPU register files [163],
scratchpad memories [124, 180] and stacks [133] aim at reducing the
number of RM shifts.

In the past, various data placement solutions have been proposed
for signal processing in the embedded systems domain (i.e. SOA,
cf. 3.1.2.4). These solutions include heuristics [10, 16, 153, 154, 164], ge-
netic algorithms [152] and ILP based exact solutions [112, 176, 177]. As
discussed in Section 3.1.5 our heuristic builds on top of this previous
work, providing an improved data allocation.
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3.1.7 Conclusions

This section presented a set of techniques to minimize the number of
shifts in RMs by means of efficient data placement. We introduced an
ILP model for the data placement problem for an exact solution and
heuristic algorithms for efficient solutions. We show that our heuristic
computes near-optimal solutions, at least for small problems, in less
than 3 ms. We revisited well-known offset assignment heuristics for
racetrack memories and experimentally showed that they perform
better on short access sequences. In contrast, group-based approaches
such as the Chen heuristic exploit global adjacencies and produce
better results on longer sequences. Our ShiftsReduce heuristic com-
bines the benefits of local and global adjacencies and outperforms
all other heuristics, minimizing the number of shifts by up to 40%.
ShiftsReduce employs intelligent tie-breaking, a technique that we use
to improve the original Chen heuristic. To further improve the results,
we combined ShiftsReduce with a genetic algorithm that improved the
results by 9.5%. In future work, we plan to investigate placement deci-
sions together with reordering of accesses from higher abstractions in
the compiler, e.g., from a polyhedral model or by exploiting additional
semantic information from domain-specific languages. We also plan
to research hybrid solutions where a simplified hardware logic in the
shift controller of RMs will support the placement decisions to hide
the shift latencies.

3.2 generalized data placement strategies for race-
track memories

Ultra-dense non-volatile racetrack memorys (RTMs) have been investi-
gated at various levels in the memory hierarchy for improved per-
formance and reduced energy consumption. However, the innate
shift operations in RTMs hinder their applicability to replace low-
latency on-chip memories. Recent research has demonstrated that
intelligent placement of memory objects in RTMs can significantly
reduce the amount of shifts with no hardware overhead, albeit for spe-
cific system setups. However, existing placement strategies may lead
to sub-optimal performance when applied to different architectures.
In this section we look at generalized data placement mechanisms that
improve upon existing ones by taking into account the underlying
memory architecture and the timing and liveliness information of
memory objects. We propose a novel heuristic and a formulation using
genetic algorithms that optimize key performance parameters. We
show that, on average, our generalized approach improves the number
of shifts, performance and energy consumption by 4.3×, 46% and 55%
respectively compared to the state-of-the-art.



84 shifts-aware scalars and instruction placement in racetrack memories

3.2.1 Introduction

The increasing capacity requirements along with the quest for higher
performance and lower energy consumption have made memory sys-
tem design extremely challenging. Traditional SRAM technologies are
unable to meet these antithetical requirements of today’s applications
due to larger cells and higher leakage power. On the contrary, emerg-
ing nonvolatile memory (NVM) technologies such as STT-RAM, phase
change memory, magnetic RAM and racetrack memory (RTM) [222] offer
a promising solution to fulfill these conflicting requirements. Recently,
RTM has emerged as a leading contender due to its unprecedented ca-
pacity, energy efficiency and improved latency [194, 222]. For a feature
size of F, the cell size of RTM is 2̃F2 whereas for STT-RAM and PCM

cell sizes are 6̃-50F2 and 4̃-12F2 respectively. Due to these promising
characteristics, recent research advocate using RTM at various levels in
the memory hierarchy [197].

A single RTM cell is a magnetic nanowire – called nanotrack – that
can store up to 100 domains where each domain represents a single
bit [222]. Each RTM nanotrack is equipped with one or more access ports
that perform read/write operations (cf. Fig. 3.18). To access a domain
in a nanotrack, the relevant domain must be shifted and aligned to
the access port. Typically, multiple nanotracks are grouped together
into domain wall block clusters (DBCs) to overlap the access transistor’s
footprint and thus effectively use the chip area budget. These shift
operations not only induce latency and energy overheads but also lead
to variable access latencies, making RTM controller design especially
challenging.

Domain wall Access port

Ish
Ish

Substrate

Figure 3.18: RTM cell structure (red and blue dots on the nanowire represent
upward and downward magnetization directions respectively)

Recent literature suggests that intelligent placement of memory
objects in a DBC substantially reduces the amount of RTM shifts (up
to 50%), improving both latency and energy consumption [42, 126].
These initial solutions showed promising results for simplified system
setups. For instance, the heuristics in [42, 126] provide data placement
solution for a single DBC and the multi-DBC heuristic in [42] assumes
a fixed multi-port architecture. In addition, the multi-DBC heuristic
in [42] ignores valuable information of memory traces such as timing
and liveliness information of memory objects, leading to sub-optimal
solutions. To this end, we propose a set of generalized data placement
strategies that are independent of the RTM architecture and exploit
the timing information in memory traces before deciding the layouts.
The proposed solutions carefully distribute memory objects across
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DBCs and judiciously assign exact locations to objects within DBCs.
Concretely, we make the following contributions:

1. A novel fast heuristic that analyzes the memory trace for objects
with disjoint lifespans and steer disjoint and non-disjoint memory
objects to separate DBCs. This separation significantly improves
temporal locality of the memory objects and reduces the number
of shifts.

2. A more time-consuming heuristic based on genetic algorithms
that achieves near optimal results.

3. A thorough analysis of the interplay of different solutions for
inter- and intra-DBC placements of memory objects. We also ana-
lyze the impact of increasing the number of DBCs on performance,
energy and area.

3.2.2 Background

This section presents a detailed description of RTM architectures and
their organization. It also provides background on both inter and
intra-DBC data placements and highlights the importance of inter-DBC

memory objects distribution.

DBCBank

RT0 RTT-1

b0 bT-1

Sub-
array

V0

V1

VK-1

Figure 3.19: RTM architecture

3.2.2.1 RTM architecture

Fig. 3.19 illustrates a common RTM architecture. Similar to other mem-
ory technologies, RTM consists of multiple banks where each bank
contains one or more subarrays. Each subarray in RTM comprises
multiple DBCs, each of them with T nanotracks. A nanotrack stores
K domains (i.e., bits) and has one or more access ports to perform
read/write operations (cf. Fig. 3.18). Typically, data is stored in a bit-
interleaved fashion so that all T bits of a memory object are kept in the
T nanotracks of a DBC as illustrated in Fig. 3.19. To access a memory
object, bits are shifted in a lock-step fashion until they are aligned to
the access port positions [355].
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3.2.2.2 State-of-the-art data placement in RTMs

The data placement problem in RTMs can be artificially decomposed
into two subproblems, the inter-DBC distribution problem which steers
program variables (or memory objects) to different DBCs, and the intra-
DBC data assignment problem. The latter finds a suitable assignment
of the variables to the exact locations in a particular DBC. To this end,
heuristics are employed which aim to provide near-optimal intra-DBC

data assignment in reasonable time [42, 126]. These solutions pay little
to no attention to the inter-DBC distribution of memory objects.

Intra-DBC placement heuristics are inspired by the well-known
heuristics for single offset assignment [112, 154]. The problem con-
sists in assigning a set of variables V = {v1, . . . , vn} a location in
the memory, based on an access trace referred to as access sequence
S = (s1, . . . , sk) where s1, . . . , sk ∈ V. The access sequence is typically
summarized in a weighted undirected access graph. Vertices in the ac-
cess graph represent variables while an edge e = {u, v} expresses that
the variables corresponding to u and v were consecutively accessed
in S. The edge weight wuv models the number of such consecutive
accesses. Finally, the access frequency of a variable u is the number of
times u is accessed in S.

Based on the information in the access graph, heuristics aim to
place memory objects within a DBC to maximize the likelihood that
consecutive accesses in S access the same or nearby locations in a DBC,
resulting in a reduced shift cost. The shift cost between two accesses u
and v in S is the absolute difference of their exact locations in a DBC,
as this corresponds to the number of shifts a RTM controller will need
to execute in order to access u after accessing v [42, 126].

State-of-the-art heuristics mainly focus on addressing the intra-DBC

data placement problem. What has got little attention is the inter-DBC

distribution of memory objects which is equally important because, as
evidenced by Sec. 3.2.2.1, typical RTM organizations have more than
one DBCs. Chen et al. briefly explain the inter-DBC data placement
and present a heuristic that distributes memory objects across DBCs

based on their access frequencies (cf. Sec. 3.2.3.1). However, we argue
that access frequencies alone are not sufficient to find a good memory
layout. Memory objects with disjoint lifespans when placed in the
same DBC while maintaining their access order substantially reduces
the amount of shifts. Similarly, Chen’s multi-DBC heuristic is designed
for RTMs with two or more access ports per track. The next section
discusses generalized data placement solutions that are independent
of the number of ports and use timing and liveliness information of
the memory objects to find efficient inter- and intra-DBC placement.
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3.2.3 Generalized data placement in RTM

This section describes our proposed solutions for data placement in
RTMs after explaining the state-of-the-art inter-DBC placement tech-
nique.

3.2.3.1 Baseline inter-DBC placement

To the best of our knowledge, the current best inter-DBC data place-
ment heuristic was proposed in [42]. The access frequency based distri-
bution (AFD) heuristic initially sorts the variables in V in descending
order of their access frequencies. It then iteratively selects variables
and distributes them to DBCs in a round-robin manner. The basic idea
is to place frequently accessed variables as close as possible to reduce
the shift overhead.

Fig. 3.20 shows a placement example to two DBCs for the variables in
Fig. 3.20-(a) and access sequence in Fig. 3.20-(b). The AFD heuristic, in
Fig. 3.20-(c), assigns variables a, g, b, d, and h to DBC0 and e, i, c, and
f to DBC1. Since accesses are partitioned between DBC0 and DBC1,
the access sequence S is split into two disjoint subsequences S0 and
S1. Applying the AFD heuristic to the sample access sequence incurs
24 and 15 shifts for accessing variables in S0 and S1 respectively. As
a result, the overall shift cost of the AFD distribution amounts to 39.
In the next section, we show that by better exploiting the access order
and timing information an improved distribution can be obtained.

3.2.3.2 Sequence-aware inter-DBC distribution

The access graph, commonly used to summarize the access sequence,
discards the order and the timing information of memory objects. Our
heuristic takes these information into account and combines them with
the access frequencies for a more efficient inter-DBCs distribution. Two
variables u and v are said to have disjoint lifespans if the last occurrence
of u in S is before the first occurrence of v in S and vice versa. The
lifespan of a variable is then defined as the absolute difference of its
first and last occurrences. For instance, in the access sequence S in
Fig. 3.20-(b), the lifespan of variable b is 2 (4− 2) and variables b and
c have disjoint lifespans.

Our heuristic exploits the fact that l disjoint variables, if stored
in the same DBC while respecting their access order, require at most
l − 1 RTM shifts. This implies that once an access port is aligned to
one of the l variables in the DBC, the following accesses to the same
variable will not incur any shifts at all. Accessing the next variable
in the same DBC will always incur only a single shift. To explain this
further, let us consider the sample access sequence from Fig. 3.20-(b)
and the corresponding access frequency and timing information from
Fig. 3.20-(e). Our heuristic extracts all possible variable combinations
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Figure 3.20: Example showing (a) Variable set (b) Access sequence and the
time of occurrence of each access (c) AFD placement [42] (d)
Sequence-aware placement (e) Timing and access frequency of
each variable

having disjoint lifespans and selects one that maximizes the sum of
access frequencies of all variables. In other words, the heuristic picks a
variable combination that maximizes the number of self accesses which
in turn reduces the total amount of shift operations. For the illustrating
example, our heuristic analyses memory object a by comparing its
access frequency with the sum of access frequencies of all those objects
that lie in the lifespan of a (b, c, d). If the access frequency of a (5) is
greater than the sum of access frequencies of all those memory objects
(6), the heuristic appends a to the list of disjoint variables otherwise
it moves to the next object and repeats this exact same process. For
the illustrating example, our heuristic selects combination b, c, d, e, h
having sum of access frequencies equal to 11.

Variables in the selected combination are allocated to the same DBC
(i.e., DBC0 in the illustrating example) in their access order. Note
however that this preservation of access order is only restricted to
the DBC that stores variables with disjoint lifespans. For other DBCs,
heuristics such as [42, 126] are employed to find an efficient intra-DBC
placement. The leftover variables (i.e., a, f , g, and i) are assigned
to the remaining DBCs (i.e., DBC1), which is shown in Fig. 3.20-(d).
Compared with the AFD solution [42] in Fig. 3.20-(c), the shift cost is
reduced from 39 to 11 (i.e., 3.54× shifts improvement).

Algorithm 3 shows the pseudocode of our proposed data placement
heuristic. The heuristic maintains two sets of variables, Vndj and Vdj
storing disjoint and non-disjoint variables respectively. Similarly, the
variables Av, Fv and Lv store the access frequency, first and last occur-
rence information of all variables in V respectively. Initially, Vndj stores
all variables in V (line 5), and when we iterate through it (line 8) we
do so in the ascending order of their first occurrences F. Vdj is initial-
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Algorithm 3 Proposed data distribution heuristic

Input : Access sequence S, list of variables V and q DBCs each having
N empty locations

Output : Final data distribution across all DBCs

1: . Initialize access freq., first and last accesses
2: for all v ∈ V do Av = ∑u∈S,u=v 1

3: for all v ∈ V do Fv = min {i ∈ {1, . . . , |S|} | Si = v}
4: for all v ∈ V do Lv = max {i ∈ {1, . . . , |S|} | Si = v}
5: Vndj ←Variables V sorted in the ascending order of Fv

6: Vdj ← ∅
7: tmin ← 0
8: for all v ∈ Vndj do
9: if Fv > tmin then

10: if Av > ∑u∈Vndj:Fu>Fv ,Lu<Lv
then

11: Vdj ← Vdj ∪ {v}
12: Vndj ← Vndj \ {v}, tmin ← Lv

13: K ←
⌈ |Vdj|

N

⌉
14: while |Vdj| > 0 do
15: for i← 1, . . . , K do
16: v∗ ← argminv∈Vdj

Fv

17: DBCi. append(v∗), Vdj ← Vdj \ {v∗}
18: while |Vndj| > 0 do
19: for i← K + 1, . . . , q do
20: v∗ ← argmaxv∈Vndj

Av

21: DBCi. append(v∗), Vndj ← Vndj \ {v∗}
22: for i← k + 1, q do
23: Apply Chen [42] or ShiftsReduce [126] on DBCi

ized as an empty set (line 6). The algorithm then iteratively selects
variables vi from Vndj, examines disjointness and appends only those
variables to Vdj that maximize the number of self accesses (lines 8-12).
The variable K (line 13) computes the number of DBCs required for
storing disjoint variables (Vdj). The variables in Vdj are assigned to
DBCs 1→ K and Vndj to the remaining (q− k) DBCs (lines 14-21) where
q represents the total number of DBCs. Finally, lines 22-23 apply the
single DBC heuristics from [42, 126] to optimize within DBC placement
of program variables.

3.2.3.3 Genetic algorithms for data placement in RTM

Practicality in compilers demands fast-executing heuristics, like the
one we propose. However, as a baseline to evaluate heuristics it is
extremely useful to know the optimal solution to a problem. Given
that finding an optimal multi-DBC placement is an NP complete prob-
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lem [42], we present a formulation using genetic algorithms (GAs) for
finding near-optimal results that serve as baseline.

In our formulation, individuals represent the final variable place-
ments (both inter- and intra-DBC). We represent them as lists of DBC

assignments I = (DBC1, . . . , DBCq), whereby each DBC assignment
DBCi = (v(i)

1 , . . . , v(i)
|DBC1|

) is in turn a list with the variable placements
in the selected order. The fitness value of an individual is the shifts
cost of that variable placement. Our GA formulation uses a µ + λ algo-
rithm, whereby we produce λ = 100 offspring each iteration and select
µ = 100 individuals for the next generation. The individual selection
follows a tournament model, selecting the individual with the best
fitness value out of 4 randomly-selected individuals in the population.
These parameters were chosen to get best-effort results in a reasonable
time in our implementation.

To produce offspring, we use a 2-fold crossover on the individuals.
Let I, J be two individuals. Let V = v1, . . . , vn where the vi are indexed
in the same order as they appear in the sequence S. We randomly select
two variables v f , vl , f < l,∈ V as crossover points, and separate V into
the disjoint union V = Vswap ∪Vleave, where Vswap = {v f , v f +1, . . . , vl}
and Vleave = V \Vswap. Then we swap the assignments of variables in
Vswap between I and J:

∀v ∈ Vswap, s.t. v ∈ DBCI
r , v ∈ DBCJ

s and r 6= s :

DBCI
r . remove(v), DBCI

s . append(v)

DBCI
s . remove(v), DBCI

r . append(v),

This ensures that the within-DBC variable placements that are not
swapped are kept and that both new individuals are still valid place-
ments. A mutation, on the other hand, selects one of three possible
mutations at random:

• Move a variable from one DBC to another, placing it at the end
of the new DBC and leaving the rest of the variables in the same
order.

• Transpose two variables in a single DBC.

• Apply random permutation to each DBC.

The first mutation slightly modifies the inter-DBC assignment. The
second and third mutations change the permutation within a single
DBC. Since the third option is more destructive, we skew the probability
so that it is less likely to happen with in a ratio of 10 : 3. These
mutations make sure that both, the mutated assignments are still
correct assignments, and for any two possible assignments, there
is a series of mutations taking one to the other. This way we can
explore the whole design space of assignments. For comparison, we
also implemented a random-walk search which generates random
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assignments of variables to DBCs and the create random permutations
within every DBC, selecting the best individual.

3.2.4 Evaluation

This section describes the experimental setup and compares our pro-
posed solutions to the state-of-the-art.

3.2.4.1 Experimental setup

For evaluation, we use the open-source RTSim simulator [125] that
takes application memory traces and produces latency and energy
results. We simulate all 30 benchmarks of the OffsetStone benchmark
suite [154], including real-world application domains such as image,
signal and video processing, and control-dominated applications such
as GZIP, BISON, Flex and CPP. Benchmarks vary in terms of number
of access sequences, number of program variables per sequence (i.e., 1

to 1336) and the length of access sequences (1 to 3640).
The latency, energy and area numbers for different RTM configura-

tions are obtained from the destiny circuit simulator [196] and are
listed in Table 3.4. These values also include the latency incurred and
the energy consumed by the DBC/domain decoders, access ports, mul-
tiplexers, write and shift drivers. All iso-capacity RTM configurations
are chosen so that each of them has different number of DBCs (i.e, 2 to
16) and domains per DBC (i.e., 64 to 512).

Table 3.4: Memory system parameters (4 KiB RTM, 32 nm, 32 tracks / DBC)

Number of DBCs 2 4 8 16

Number of domains in a DBC 512 256 128 64

Leakage power [mW] 3.39 4.33 6.56 8.94

Write energy [pJ] 3.42 3.65 3.79 3.94

Read energy [pJ] 2.26 2.39 2.47 2.54

Shift energy [pJ] 2.18 2.03 1.97 1.86

Read latency [ns] 0.81 0.84 0.86 0.89

Write latency [ns] 1.08 1.14 1.17 1.20

Shift latency [ns] 0.99 0.92 0.86 0.78

Area [mm2] 0.0159 0.0186 0.0226 0.0279

We evaluate six different data placement solutions as listed below.
Unless otherwise stated, all results are normalized to the results of the
genetic algorithm.

• AFD-OFU: The baseline inter-DBC distribution heuristic [42]. The
intra-DBC assignment of variables is based on their order of first
use (OFU).
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• disjoint memory accesses (DMA)-OFU: Our proposed heuristic
separating disjoint memory accesses (DMA) from non-disjoint ac-
cesses (cf. Sec. 3.2.3.2) with OFU assignment.

• DMA-Chen: Our proposed heuristic paired with the intra-DBC

optimization heuristic (Chen [42], single DBC).

• DMA-SR: Our proposed heuristic paired with the ShiftsReduce
heuristic [126].

• GA: Our proposed genetic algorithm (cf. Sec. 3.2.3.3).

• RW: A random walk (RW) search (cf. Sec. 3.2.3.3).

We execute GA for 200 generations, and RW for 60000 iterations,
which is the upper bound on the number of individuals that could be
evaluated by GA with these parameters.

3.2.4.2 Analysis of heuristics: Reduction in shifts

Fig. 3.21 shows the normalized shift improvement of our proposed
solutions compared to the baseline. The results are normalized to
the costs obtained from the placement in GA (i.e. the costs for GA are
always 1).
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Figure 3.21: Number of shifts for various distribution algorithms and RTM

configurations

As can be seen, our proposed heuristic significantly reduces the
number of RTM shifts. More concretely, the reduction as expressed
by the geometric mean over all benchmarks is 2.4×, 2.9×, 2.8× and
1.7× compared to AFD for 2, 4, 8, and 16 DBC RTM configurations
respectively. DMA-Chen and DMA-SR further diminish the amount of
shifts by (1.8×, 1.6×, 1.3×, 1.4×) and (2.0×, 1.8×, 1.5×, 1.6×) for (2,
4, 8, 16) DBCs respectively. Fig. 3.21 also demonstrates that the shift
reduction is less pronounced when more DBCs are employed. This is
because an increase in the number of DBCs leads to a more sparse
variable distribution, making the shift problem less severe. For the
same reason, the gain from intra-DBC placement is less prominent as
we increase the DBC count.

RW results serve to put the GA results in perspective, as RW evaluated
more individuals for every benchmark. To asses how far the heuristics
are from the optimal solution, we executed GA significantly longer for
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the benchmark with the largest access sequence. After 2000 genera-
tions, the result from the best variant of the heuristics was around 38%
worse than the best solution found by the GA. This indicates that our
solutions are likely within a reasonable range of the optimum, less
than an order of magnitude.

The simulation results also suggest that our distribution heuristic
consistently performs well irrespective of the DBC count and the intra-
DBC optimization. In fact, it provides a promising base for the Chen
and ShiftsReduce heuristics to further improve its performance and
minimize the shift cost. For the above reasons, we expect our heuristic
to perform well with future optimization policies as well.

3.2.4.3 Overall performance and energy analysis

We also compare the heuristics in terms of latency and energy con-
sumption. DMA improves the RTM access latency by 50.3%, 50.5% and
33.1%, 10.4% for 2, 4, 8 and 16 DBC configurations respectively. DMA-
Chen and DMA-SR further improve the latency by (68.1%, 60.1%, 36.5%,
13.4%) and (70.1%, 62%, 37.7%, 14.6%) for (2, 4, 8, 16) DBCs respectively.
The performance and energy results indicate that our distribution
heuristic greatly outperforms AFD distribution in both metrics. The la-
tency gain primarily stems from reduced number of RTM shifts which
reduces the RTM access latency and ultimately the overall runtime.
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Figure 3.22: Overall energy breakdown

Fig. 3.22 highlights the significant reduction in the total energy
consumed by DMA (61%, 62%, 44%, 13%) and DMA-SR (77%, 70%, 50%,
21%) relative to AFD for (2, 4, 8, 16) DBCs respectively. By breaking
down the energy consumption into leakage energy, read/write and
shift energy, we observe that (1) the gain in shift energy is proportional
to the reduction in the number of shifts, (2) leakage energy becomes
more significant as the number of DBCs increases (cf. Table 3.4), and (3)
in both DMA and DMA-SR, the leakage energy marks a substantially
drop-down. Our analysis of the results suggest that the latter is due to
the runtime reduction. The performance and energy results indicate
that our distribution heuristic greatly outperforms AFD distribution in
both metrics.
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Figure 3.23: Impact of varying the number of DBCs for DMA-SR configuration

Fig. 3.23 shows the trade-off among various parameters for the best
performing DMA-SR configuration as we increase the number of DBCs

from 2 to 16. The area values indicate a clear rising trend with the
increase in the number of DBCs (or ports). The major reason is that,
access ports have a larger footprint compared to other components of
an RTM. In terms of energy consumption, Fig. 3.23 demonstrates that a
2-DBC RTM is not competitive due to its high shift energy contribution
(Fig. 3.22). In this case, the positive impact of a reduced leakage power
is negatively offset by increase in the shift energy. We also notice that
the latency and the shift improvement diminish significantly with an
increased DBC count. As a consequence, the shift energy contribution
becomes less prominent and in turn a 16-DBC RTM consumes more
energy than a 4-DBC or 8-DBC variant.

3.2.5 Related work

RTMs have been employed at various levels in the memory hierarchy
to demonstrate its performance and energy benefits. For instance, it
has been shown that shifts reduction to the bare minimum in RTM

scratchpad improves the performance and the energy saving by 24%
and 74% respectively compared to an iso-capacity SRAM for tensor
contraction [124]. Likewise, similar benefits have been demonstrated at
higher levels, e.g., caches [277, 355], main memory [98], and disk [345].

Many techniques have been proposed in the past to mitigate the
negative impact of RTM shift overhead. These include data compres-
sion [317], reconfigurability of RTM in terms of deactivating (or acti-
vating) rarely (or highly) used domains, runtime data swapping [367],
proactively aligning the likely accessed domains to the port posi-
tions [9, 180, 355, 367], and intelligent instruction [203] and data place-
ment [42, 124, 126, 133, 163]. Among these proposals, data placement
has demonstrated significant benefits with trivial or no overheads.
These techniques primarily focus on intra-DBC variable assignment to
curtail the shift overhead [42, 126]. We showed that the most recent
inter-DBC placement from [42] leads to sub-optimal performance as it
only consider the access frequency of individual variables but ignores
the variable liveliness information (cf. Sec. 3.2.2.2, 3.2.3.1).
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Hardware- and software-guided data placement techniques have
also been used in the past in the context of other NVMs and hybrid
memory systems [162, 227] to hide higher NVM write latency. However,
for RTMs we aim at finding a layout for memory objects that minimizes
the number of RTM shifts, a problem that does not pertain to other
random access volatile or non-volatile memories. As a result, these
data placement solutions are not directly applicable to RTMs.

3.2.6 Conclusions and outlook

In this section, we presented a novel solution for generalized data
placement in RTM. We proposed a novel heuristic that analyzes the
lifespans of memory objects and steers them to DBCs with the objec-
tive to minimize the total number of shifts. Our evaluation showed
a substantial reduction of shifts by 4.3× compared to the state of
the art heuristic. The average improvements in latency and energy
consumption across all benchmarks and all configurations was of 46%
and 55% respectively. We demonstrated that our heuristic consistently
outperformed the state-of-the-art for different number of DBCs and
can be paired with existing single DBC data placement solutions. Our
formulation as genetic algorithms, with customized genetic operators
and our heuristic result as initial population, showed that the heuristic
results are likeely within an order of magnitude of the optimum. In
future work, we plan to explore placement of more than one sets
of disjoint variables in the same DBC and in different DBCs and their
integration with non-disjoint variables in a way that further reduces
the overall shift cost.

3.3 shrimp : efficient instruction delivery with domain

wall memory

Domain Wall Memory (DWM) is a promising emerging memory tech-
nology but suffers from the expensive shifts needed to align memory
locations with access ports. Previous work on DWM concentrates on
data, while, to the best of our knowledge, techniques to specifically
target instruction streams have not yet been studied. In this section,
we propose SHRIMP, the first instruction placement strategy suited for
DWM which is accompanied with a supporting instruction fetch and
memory architecture. The proposed approach reduces the number
of shifts by 40% in the best case with a small memory overhead. In
addition, SHRIMP achieves a best case of 23% reduction in total cycle
counts.
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3.3.1 Introduction

It is estimated that the information and communication technology sec-
tor will consist up to 20% of global electricity production by 2025 [101].
This is due to the ever-increasing complexity of computational work-
loads and the era of internet of things (IoT), introducing billions of
compute devices to novel contexts. While processing density and effi-
ciency has followed Moore’s law until recently, memory systems have
not improved at a similar pace to provide adequate bandwidth and
latency – a phenomenon known as the memory wall [314]. In addition
to limiting the processing speed, DRAM power consumption in con-
temporary computing systems often accounts for as much as half of
the total consumption [256].

The scaling difficulties of traditional memory technologies have mo-
tivated research efforts on different emerging memory technologies,
such as phase change memorys (PCMs), spin-transfer torque (STT)-RAM
and resistive RAM (ReRAM). Although a clear winner among the candi-
dates is yet to be determined, these memories are expected to provide
major improvements in power consumption, density and speed while
often being non-volatile, reducing the need for a separate persistent
backing store in many use cases.

An emerging technology that has received wide interest thanks to its
extreme density improvement and power reduction promises is domain
wall memory (DWM) [221, 222]. Its efficiency is achieved by a structure
that allows costly access ports to be shared by multiple memory
locations instead of separate access transistors for each memory cell.
DWM uses thin nanotapes to store data in magnetic domains, which
are moved by passing a current along the tape. As the tapes are small
compared to the access ports and can be 3D-fabricated on top of them,
DWM features a high area-efficiency. However, a higher density leads to
additional energy consumption and time required to shift the domains
to seek the desired address.

Memory access patterns have a major impact on the number of shifts
required; consecutive accesses require only a single shift in between.
In conjunction with access patterns, careful consideration of design
parameters such as number of access ports and amount of domains
sharing a port is required to receive optimal returns from DWMs.

Previous work[124, 126, 180, 181, 265, 355] has proposed hardware
architectures and placement strategies for data streams. What has
received less attention is the fact that in software programmable pro-
cessors, instruction streams greatly contribute to the overall memory
accesses. In comparison to data, instruction streams have a mostly
compile-time analyzable structure, presenting an interesting target for
offline optimizations that reduce costly shifting on DWMs.

We propose the first instruction-optimized placement technique
for DWM. We show how to reduce the shifting penalty and reduce
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Figure 3.24: Horizontal and vertical configurations of DWM.

total cycle counts by exploiting the fact that instructions in program
basic blocks are fetched in order from the memory hierarchy. Concrete
contributions are:

• An instruction placement method optimized for DWM technol-
ogy.

• An accompanying hardware design for the DWM and the instruc-
tion fetch unit.

We evaluate our proposed approach, shift-reducing instruction mem-
ory placement (SHRIMP), with 12 CHStone [87] benchmarks using RISC-
V [304] instruction set architecture and Spike simulator. Compared to
a linear baseline placement, SHRIMP reduces the number of shifts on
average by 40% in the best case, with a worst-case average overhead
in memory usage of 2.5%. The total cycle count averaged over the 12

benchmarks is reduced by 23%.

3.3.2 Domain wall memory

Domain wall memory, also called racetrack memory, is a non-volatile
technology, where the spin of electrons is used to describe logical bit
values. Fig. 3.24 illustrates the structure of a DWM nanotape and its
access ports. Different spins are contained within domains, separated
by notches in the tape. A number of tapes with their access ports
are typically clustered together and organized as domain wall block
clusters (DBCs) [355]. The whole DBC is activated simultaneously, so
that all tapes are read, written or shifted simultaneously.

Introducing a current from one end of a nanotape to the other shifts
the domains, with the electron flow determining the shift direction. By
shifting the domains, each access port consisting of CMOS transistors
can be used to access multiple domains, which explains the extreme
density of the DWM technology. The area of a DWM consists mostly of
the access transistors [355] with the trade-off in shifting delays and
additional energy to access the domains.

As shifting a domain over the tape end is destructive, overhead
domains are used in one or both ends of tapes to avoid data loss
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when shifting bits. In this section, we refer to the amount of accessible
domains as effective number of domains2.

If density is the most important requirement, one access port at-
tached to a long tape can be used. The maximum practical length,
however, is determined by the delays and resulting execution latencies
incurred from shifting. Previous work proposes multiple access ports
per tape, so that the number of domains accessed through each access
port is relatively low [342]. This keeps the average number of shifts
low, while still sharing shifting circuitry for the entire tape. Read-only
ports are smaller than write or read-write ports, as more current is
required to write a value to a domain, requiring a larger transistor.

3.3.3 The SHRIMP approach

The proposed SHRIMP approach utilizes an instruction placement
based on static control flow graph (CFG) analysis together with sup-
porting hardware circuitry. The compilation flow and overall structure
of the target DWM-based architecture are shown in Fig. 3.25. As shown
in the figure, the DWM consists of DBCs mapped consecutively in mem-
ory, with DBCs consisting of m tapes with a single read-write port and
a read port each and n effective domains.

The instruction placement is performed before assembling and link-
ing a program, using a compiler framework such as GCC. A CFG is first
generated from intermediate representation of the code for each func-
tion. Then, function BBs are split into two halves and remapped to start
from addresses aligned with the DWM access ports with instructions
of the latter BB half reversed. Unconditional branches are inserted
in the gaps left between the BB halves and to replace fallthroughs be-
tween the remapped BBs. Finally, the modified code is assembled into
an executable. Comparison between a linear and SHRIMP placement of
a simple if-then-else structure is presented in Fig. 3.26.

During execution, the first half of a BB is read normally from the
first access port of a DBC by incrementing the program counter (PC)
and, thus, shifting the DBC tapes in one direction. A jump inserted
at the end of a first half switches execution to the latter half. As the
target address resides in the latter half of the DBC, the fetch unit starts
decrementing the PCs, shifting the DBC tapes towards their starting
position. This reduces the total number of shifts and branching delay
in repeatedly executed program BBs, as useful instructions are fetched
while shifting in both directions and executing the BB again requires
little or no shifting to start.

An example of execution with SHRIMP is presented in Fig. 3.27. Here,
a BB with four instructions is split into a single DBC. For clarity, indi-
vidual tapes are not pictured. Each column represents the same DBC,
with clock cycles advancing from left to right. Light colour represents

2 Alternatively, they are also referred to as useful domains.
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Figure 3.25: Programming flow with SHRIMP and hardware support. Contri-
butions of this work highlighted.

the accessible domains and the instruction read at each cycle is high-
lighted. First, instructions a0 and a1 are read sequentially from the
top access port. As a0 is initially located at the access port, no shifts
are required. Next, the DBC tapes are shifted once to reach a1 and
after that, once again to reach the jump J, targeting a2. The execution
continues from the bottom access port. No shifting is required for a2

as it is aligned with the access port. For a3 and the jump out of the
DBC, two shifts in total are required.

The instruction placement pass and the associated hardware is
described with more detail in the following subsections.

3.3.3.1 Instruction placement

The proposed placement algorithm used in SHRIMP is presented in
Algorithm 4. On Lines 2–3, the algorithm identifies program BBs and
constructs CFGs for each function. During CFG construction, an implicit
optimization is done: function calls are treated as instructions not
affecting the control flow. By later placing the function caller and
callee in separate DBCs, the caller’s DBC is left in ideal position after
the function returns. Resuming execution at the return address only
requires a single shift.

On Lines 6–11, BBs that do not fit in a single DBC are split every
instructionsPerDBC/2 instructions. The order of instructions placed to
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Figure 3.26: If-then-else structure using linear placement and SHRIMP place-
ment. (a) CFG and corresponding linear placement. (b) SHRIMP

placement. Inserted branches highlighted.

latter halves of DBCs is reversed, as the underlying hardware assumes
the opposite shift direction for them. If a non-branching instruction
at the end of either DBC half is reached, the hardware performs an
implicit jump of instructionsPerDBC/2 to reach the next instruction.

Next, the remainders of each BB are categorized as executed once, or
able to be executed multiple times. Loops, functions called from inside
loops, and functions called from multiple locations in the code are
placed into the latter category. To consider BBs with either even or odd
amount of instructions, the first dk/2e instructions are assigned to the
first half of a DBC, and remaining bk/2c instructions to the second half.
On Lines 12–18, BBs that are able to execute multiple times are split
and each half is placed to align with an individual port in a DBC. The
next free address is set to the start of the next available DBC. On Lines

 
 

a0

a1

J

 
 
J
a3

a2

 
a0

a1

J

 
J
a3

a2

a0

a1

J

J
a3

a2

a0

a1

J

J
a3

a2

 
a0

a1

J

 
J
a3

a2

 
 

a0 
a1

J
 
 

J
a3

a2

Figure 3.27: Execution example with SHRIMP.
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19–24, linear placement is used for the remainders of BBs that can only
be executed once, as it is not beneficial to split them. Again, the order
of instructions placed to lower halves of DBCs is reversed. As splitting
a BB requires inserting two jumps, it also incurs two additional shifts
to access them. These are only avoided partly in BBs spanning multiple
DBCs, as the fallthrough implementation in SHRIMP is based on the
next address to be read. To avoid a negative impact on shift amount
and execution time, a threshold for the minimum length of a BB is
introduced. If the splitting threshold were not used, shifting to the
jump instructions in short BBs would increase the amount of shifts.

Algorithm 4 Instruction Placement Algorithm
1: nextFreeAddress = programStartAddress
2: for all f unction in f unctions do
3: build CFGs

4: for all CFG in CFGs do
5: for all BB in CFG do
6: for i in bnumBBInstructions/instructionsPerDBCc do
7: split BB at index instructionsPerDBC ∗ (i + 1/2)
8: place first half to nextFreeAddress
9: nextFreeAddress += instructionsPerDBC/2

10: place second half to nextFreeAddress in reverse order
11: nextFreeAddress += nextFreeDBCAddress
12: if BB can be executed multiple times and numBBInstructions−
13: (numBBInstructions%instructionsPerDBC) > splittingThreshold then
14: split BB at index numBBInstructions −

(numBBInstructions%instructionsPerDBC)
15: place first half to nextFreeAddress
16: nextFreeAddress += instructionsPerDBC/2
17: place second half to nextFreeAddress in reverse order
18: nextFreeAddress = nextFreeDBCAddress
19: else
20: place numBBInstructions−
21: (numBBInstructions%instructionsPerDBC)
22: with linear placement
23: reverse order of instructions placed in lower half of DBC
24: nextFreeAddress += numBBInstructions
25: insert unconditional jumps between split BB halves
26: insert unconditional jumps to and from split BBs

27: fix branch targets

On Line 25, jumps are inserted between the BB halves. Handling
fallthroughs (CFG edges without branches) to other BBs presents an-
other problem. A solution would be to insert no operation instruc-
tions (NOPs) between the relocated BBs and let the processor execute
NOPs until the successor BB is reached. However, this clearly increases
the execution time and costly shifts. It could be more efficient to insert
a jump after the last instruction of the fallthrough BB. As branching
delay is architecture and microarchitecture dependent, we chose to
always replace fallthroughs with jumps for the evaluated proof-of-
concept implementation, on Line 26. Aligning BBs with DBC access
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ports breaks their sequentiality, leaving gaps which did not exist in
the original program. Thus, jump addresses are updated on Line 27.

3.3.3.2 Hardware support

The hardware designs for the DWM and the instruction fetch unit are
shown in Fig. 3.25. For the DWM, we use a scheme where the memory
peripheral circuits decode an address into the corresponding DBC and
domain, and calculate the required shifting amount based on a head
status array [355] holding the current shifting position for each DBC.

DWM design decisions and modifications to the instruction fetch
logic for SHRIMP are described in the next subsections.

3.3.3.3 DWM design

As access ports dominate the area of a DBC over the nanotapes, we
chose one read-write and one read port to maximize the amount of
bits stored per area unit illustrated in Fig. 3.25. As domains are always
shifted in a back-and-forth manner, only domains mapped to the first
access ports require an overhead area. Assuming n as the effective
tape length, additional n/2− 1 overhead domains are required per
tape.

Shifting the DWM tapes requires ensuring correct positioning of
tapes in relation to access ports. Previous work [355] considers static
and dynamic policies for head selection. The static policy assigns a
fixed access port for every domain. The dynamic policy uses the head
closest to the domain to be read at run time. As the program CFGs

provide predictability for the instruction memory accesses, SHRIMP

utilizes a static head selection policy. Due to the sequential access
patterns of BBs, dynamically computing the access port to use on each
read operation seems excessive.

In addition to which access port to use, a policy for when to shift the
tape is required. Previous work [355] considers eager and lazy policies.
We adopt the lazy policy for SHRIMP, as for a sequential access pattern,
an eager shifting policy would dramatically increase the number of
shifts.

Regarding the head status array required by the lazy policy in
conjunction with the static policy, for d accessible domains per access
port, the maximum number of shifts is d− 1. Each entry of the array
requires log2(d− 1) bits to store the offset amount. For odd or even
number of instructions, a split BB results in writing either zero or one
to the head status array. Thus, it would be tempting to use a single bit
per DBC. However, the linear placement of single-execution BBs and
those below the splitting threshold requires log2(d− 1) bits.
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3.3.3.4 Instruction fetch logic

Switching the shifting direction between BB halves is achieved by
incrementing or decrementing the PCs. For a DBC with an effective
tape length of n, address bit log2(n) can be directly used to control
the direction. If the bit is zero, the memory location is in the range of
the upper access port and vice versa for the lower port. The proposed
hardware uses this bit to control a mux, which chooses either -1 or 1

to be added to the PCs.

3.3.4 Evaluation

Table 3.5: Benchmark characteristics.

instructions able to avg. instructions

execute repeatedly (%) loops per BB

adpcm 88 16 17

aes 91 18 22

blowfish 94 10 29

dfadd 45 1 10

dfdiv 68 3 11

dfmul 55 1 11

dfsin 64 4 11

gsm 41 19 12

jpeg 84 47 11

mips 91 4 7

motion 76 11 9

sha 79 12 14

For evaluation, we considered 12 CHStone benchmarks, with their
characteristics listed in Table 3.5. Exact instruction set flavour of the
RISC-V was RV32I, with no variable length instructions included. To
produce instruction access traces and verify correct execution of modi-
fied programs, we executed the binaries using the RISC-V instruction
set simulator Spike.

As a baseline, we compiled and simulated all benchmarks without
SHRIMP, assuming the memory layout from Section 3.3.3.3. We used
linear DWM placement without reversing instructions in latter half of
DBCs and assuming only one shifting direction as opposed to two in
SHRIMP.

To measure the impact of SHRIMP on the number of shifts and exe-
cution cycles, we used the RTSim [125] simulator. The cycle-accurate
simulation framework models the DWM shifting operations and sim-
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Figure 3.28: Number of shifts across split thresholds from 4 to 64 compared
to linear placement, tape length 8.
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Figure 3.29: Number of shifts across split thresholds from 4 to 64 compared
to linear placement, tape length 64.

ulates the access ports positions. It takes instruction access traces
generated from the Spike simulator and configuration parameters for
the DWM device and architecture. The simulator produces the total
amount of shifting operations and the execution cycles for a given
trace. For the evaluation, we assumed that reading an instruction and
each shift requires one clock cycle.

We used RISC-V GCC 7.2.0 compiler to produce the assembly input
to the SHRIMP instruction placement pass. As the RISC-V compiler
produces a rather large amount of identical initialization code for each
application, we only took into account the actual application code to
better highlight differences between the benchmarks.

To prevent RISC-V GCC linker optimizations, where some load oper-
ations are converted from one to two instructions, we passed --no-relax
switch to the linker to maintain the alignment of BBs with DBC limits.
Similarly, we inserted placeholder NOPs before call operations in the
intermediate assembly, as these were converted into an auipc + jalr pair
by the compiler. We removed the placeholders before compiling. To
keep the remapped BB addresses during assembly, we inserted NOPs
into the unused addresses left by SHRIMP.

3.3.4.1 Effect on shifting amount and execution cycles

The total shifts per benchmark are presented in Figs. 3.28 and 3.29.
With effective tape length 8, shift reductions in all benchmarks were
similar, on average 40%. The effect of split threshold was non-negligible
only in motion, containing many BBs with less than 4 instructions. Pre-
venting their splitting with the threshold increased the total shifts. At
tape length 64, increasing the splitting threshold increased shifts in
all benchmarks except dfadd, dfdiv, dfmul, dfsin. These shared a simi-
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Figure 3.30: Execution cycles across split thresholds from 4 to 64 compared
to linear placement, tape length 8.
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Figure 3.31: Execution cycles across split thresholds from 4 to 64 compared
to linear placement, tape length 64.

lar structure of a single loop with relatively many instructions. This
lead to a large BB filling multiple DBCs with all splitting thresholds,
resulting in homogeneous shifting amounts.

Total cycle counts are presented in Figs. 3.30 and 3.31. As tape size
increased, the reduction compared to linear placement decreased in
most of the benchmarks. In jpeg, motion and sha, with small splitting
thresholds, the reduction improved from tape size 8. Total cycle counts
were increased in mips, which had a combination of relatively high
amount of instructions probable to execute multiple times, small BB

sizes and only a few loops, as seen in Table 3.5. This lead to the inserted
jumps between the BB halves negating the benefits from SHRIMP.

3.3.4.2 Instruction overhead and memory utilization

We illustrate the increase in instructions fetched due to inserted jumps
in Table 3.6. As differences between tape lengths were small, we
averaged the results for lengths 8 to 64. As the splitting threshold
was increased, the overhead of instructions fetched decreased, due
to short BBs not being split and, therefore, jumps not being inserted.
Figs. 3.28 and 3.29 show that there is a trade-off between a decreased
fetch amount and an increased shifting amount. At splitting threshold
64, the amount of instructions fetched did not significantly differ from
the baseline, as the placement resembled the linear placement with
latter DBC halves reversed. mips and motion fetched significantly more
instructions during their execution compared to the other benchmarks.
This is related to the execution cycles in Fig. 3.31 and stems from the
same reasons as discussed in Section. 3.3.4.1.
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Figure 3.32: Increase in memory usage with basic block splitting thresholds
from 4 to 64, tape effective length 8 domains.

adpcm aes blowfish dfadd dfdiv dfmul dfsin gsm jpeg mips motion sha
0

5

10

15

20

25

4 8 16 32 64

%

37

Figure 3.33: Increase in memory usage with basic block splitting thresholds
from 4 to 64, tape effective length 64 domains.

As SHRIMP placement leaves some memory addresses unused, we
evaluated the effective memory utilization, presented in Figs. 3.32

and 3.33, with tape lengths 8 and 64. Tape sizes 8, 16, 32 and 64 were
evaluated, with the utilization per benchmark degrading quite linearly
between sizes 8 and 64. With short tape lengths, split BBs ended up
filling the majority of DBCs, with only the last instructions of a BB

requiring insertion of jumps and NOPs. Increasing the tape length
worsened the utilization, as short BBs still occupied a full DBC. As the
split threshold increased, utilization improved due to less BBs being
split and ending up consecutively in memory. Comparing to total cycle
counts in Figs. 3.30 and 3.31, there was still improvement over the
linear placement in most benchmarks due to the reversed placement
of SHRIMP.

3.3.4.3 Discussion

As instruction and data access patterns are inherently different, differ-
ent DWM structures for each seems optimal. This is natural for Harvard
architecture devices with separate instruction and data buses and typ-
ically a cache or a scratchpad for each. However, in Von Neumann
architectures, where instructions and data share the same bus, one
memory is typically used for both. This raises a question: What is
the optimal DWM structure for storing instructions and data? If the
optimization target is area, energy, or performance, the memory can
be designed to favour either one. Another option is to implement
separate instruction-optimized and data-optimized physical address
ranges.
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Table 3.6: Increase in instructions fetched averaged over
tape lengths from 8 to 64.

Basic block splitting threshold

4 8 16 32 64

adpcm 5.0% 5.0% 3.5% 0.9% 0.0%

aes 6.5% 5.1% 3.7% 2.4% 0.3%

blowfish 4.7% 3.5% 2.3% 0.2% 0.2%

dfadd 0.4% 0.4% 0.4% 0.4% 0.4%

dfdiv 0.5% 0.3% 0.3% 0.3% 0.3%

dfmul 0.4% 0.4% 0.4% 0.4% 0.4%

dfsin 0.1% 0.1% 0.1% 0.1% 0.0%

gsm 4.0% 3.7% 1.8% 0.6% 0.5%

jpeg 7.5% 4.0% 2.1% 0.7% 0.1%

mips 15.2% 12.6% 8.9% 3.6% 3.6%

motion 20.0% 13.4% 0.2% 0.0% 0.0%

sha 5.3% 5.1% 4.6% 4.6% 0.0%

Moreover, contemporary processor systems typically implement
memory hierarchy with multiple levels of caches, whose operation is
based on linear placement of instructions and data. Further research is
required on efficient methods of integrating SHRIMP with mainstream
memory hierarchies.

Multiple ports per tape could be used to allow sharing shifting logic
for the tape. As the maximum length of a tape is limited, and the
access port transistors dominate the physical area in a DBC, we use two
ports per tape, the minimum viable amount for SHRIMP. This is done
in order to maximize the amount of tapes per area unit and, therefore,
effective bit density of the memory. Typically only one instruction
is fetched and decoded per clock cycle in a software programmable
processor. In this context, multiple ports per tape would also increase
the leakage power consumption.

3.3.5 Related work

Previous work proposes caches [355], scratchpad memories [124, 126,
180] and GPGPU register files [181]. However, they are primarily tar-
geted for data. Instruction scheduling in order to reduce data memory
shifts was considered by Gu et al.[265]. They ordered instructions
based on the data access patterns in programs to minimize shift
amounts of data memory, but did not consider reading the instruc-
tions from a DWM.
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Previous work[342], where DWM is used as a data memory, utilizes
multiple access ports per tape. This is done in order to minimize
the shifting delay when accessing different memory locations, but
simultaneously using only one shifting circuitry for the entire tape as
opposed to using multiple shorter tapes with fewer access ports.

3.3.6 Conclusions

In this section we proposed SHRIMP, the first instruction placement
strategy specifically designed for DWM technology. Based on static
control flow graph analysis, frequently executed program BBs were
split into halves, where the latter half was placed in reverse order to
reduce energy and time consuming shifts specific to DWM technology.
According to our measurements, the proposed method was able to
reduce total shift amounts in 12 CHStone benchmarks by 40% on
average when compared to a linear instruction placement. Reduction
in total clock cycles was reduced by 23% on average.

The results indicate that further research on strategies for placing
multiple BBs in the split or back-and-forth fashion could provide addi-
tional improvements in memory usage overhead, shifting reduction
and total clock cycle counts.

Postscript: This chapter presented our data and instruction placement
solutions. The data placement solutions are general purpose but par-
ticularly beneficial for scalar accesses. For optimization problems such
as the instruction stream, the proposed solutions in Section 3.1 and
Section 3.2 will most likely underperform. The sequence-aware heuris-
tic may identify non-repeating BBs and assign them to separate DBCs.
However, since all instructions in a repeating BB have the same access
frequencies, the intra-DBC heuristic may fail to compute an intelligent
mapping and may fall back to the OFU mapping, leading to an exe-
cution stall before each new iteration. The proposed data placement
solutions are also expected to miss potential optimization opportuni-
ties in array accesses for the same reasons. The pattern-based SHRIMP

solution, on the other hand, searches for a certain pattern and performs
more aggressive and intelligent optimizations. In the next chapter, we
investigate the pattern-based optimizations for array accesses.
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O P T I M I Z I N G C O M P I L E R S F O R R A C E T R A C K
M E M O R I E S

Prelude: Motivated by our data and instruction placement solutions
in the previous chapter, this section explores transformations and
optimizations for array accesses in RTMs. We start by assuming a
fixed RTM architecture and explore optimizations for the tensor con-
traction operations. In Section 4.2, we build upon the hand-crafted
transformations in Section 4.1 and extend them in a systematic way
for cross-domain optimizations. The optimizations are integrated in
the polyhedral optimizer Polly of the mainstream LLVM compiler. The
contents in this chapter are based on our articles entitled "Optimizing
Tensor Contractions for Embedded Devices with Racetrack Memory
Scratch-Pads" published in the International Conference on Languages,
Compilers, Tools and Theory of Embedded Systems (LCTES) 2019 [124] and
"Polyhedral Compilation for Racetrack Memories" published in the
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 2020 [129].

4.1 tensor contractions in RTMs

Tensor contraction is a fundamental operation in many algorithms with
a plethora of applications ranging from quantum chemistry over fluid
dynamics and image processing to machine learning. The performance
of tensor computations critically depends on the efficient utilization
of on-chip memories. In the context of low-power embedded devices,
efficient management of the memory space becomes even more crucial,
in order to meet energy constraints. This work aims at investigating
strategies for performance- and energy-efficient tensor contractions
on embedded systems, using racetrack memory (RTM)-based scratchpad
memory (SPM). Compiler optimizations such as the loop access order
and data layout transformations paired with architectural optimiza-
tions such as prefetching and preshifting are employed to reduce the
shifting overhead in RTMs. Experimental results demonstrate that the
proposed optimizations improve the SPM performance and energy con-
sumption by 24% and 74% respectively compared to an iso-capacity
SRAM.

4.1.1 Introduction

Tensors are multi-dimensional data structures that generalize matrices.
Consequently, tensor contraction generalizes the operation of matrix

109



110 optimizing compilers for racetrack memories

multiplication. The abstractions offered by tensors and their operations
are central to many algorithms in modern application domains such as
signal and media processing, computer vision, and machine learning.
Recent years have seen a surge in the emergence of new programming
languages and frameworks specifically designed for the handling of
tensor-based computations in these application domains [1, 18, 138,
341], also targeting heterogeneous platforms, e.g. [39, 110, 134]. In
the age of the Internet of Things, media processing, computer vision
and machine learning are key application domains for embedded
devices, which enable ubiquitous computing in environments that call
for extremely low energy footprint and tiny form factors. Examples of
such environments are wearables and autonomous vehicles or aircraft,
where tensor processing on the device allows for efficient inference in
intelligent applications, cf. Figure 4.1.

The typical constraints on size, power and energy consumption in
the embedded domain make the design of systems for processing large
multi-dimensional tensors especially challenging. Particular pressure
is put on the design of the memory subsystem, which must accom-
modate large tensorial data structures within the given constraints.
This pushes traditional approaches and technologies to their limits.
For example, as was already observed in the mid-2000s, traditional
SRAM-based memory is power hungry and suffers from severe leakage
power consumption that is responsible for up to 33.7% of the total
memory energy consumption [114, 115].
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Figure 4.1: Applications domains for embedded systems in the Internet of
Things.

A radically new approach to the design of on-chip memories and
the memory hierarchy is offered by non-volatile memories (NVM). One
particularly promising NVM technology is the spin-orbitronics-based
racetrack memory (RTM), which is more reliable and has lower read-
/write latency than alternative NVM technologies [221, 222]. Moreover,
RTM is very energy-efficient and has ultra-high capacity, which is why
it is particularly interesting for deployment in embedded devices that
process large tensors.

In this chapter we propose and analyze data layouts and architec-
ture support for optimizing the important tensor contraction operation
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for RTM-based scratchpad memory (SPM). Unlike conventional memo-
ries, a single memory cell in RTM stores data in a tape-like magnetic
nanowire called track. Each track is equipped with a read/write port,
and accessing data on a track requires shifting and aligning it to the
port position. If the programmer or compiler does not manage data
layout judiciously, additional shifts become necessary. The data layout
we propose in this chapter asymptotically halves the number of shifts
required for tensor contractions. As our analysis shows, this halving
of the number of shifts is in fact necessary to give RTM a competitive
edge over SRAM-based SPM.

Specifically, we make the following contributions.

1. For tensors that fit entirely into the SPM, we derive a data lay-
out that reduces the number of shifts necessary for a tensor
contraction to the absolute minimum.

2. We discuss how contractions of large tensors are handled by
processing tiles of the tensors in SPM. We show how, in the
presence of tiling, the number of shifts can also be reduced to
the bare minimum by switching the data layout when brining
new tiles into the SPM.

3. Our simulations show that the proposed data layout for tensors
in the SPM, paired with suitable architecture support, is required
to outperform SRAM in terms of latency. This also reduces the
SPM energy consumption by 74%.

We also discuss how languages and compilers can support the gener-
ation of efficient code and suitable data layouts for tensor contractions
with RTM-based SPM.

The rest of the this is organised as follows. Section 4.1.2 gives a
brief overview of the RTM technology, the SPM layout and the tensor
contraction operation. Section 4.1.3 discusses how various data layouts
impact the overall shifting overhead and presents the best data layout
for tensor contraction. Section 4.1.4 provides a qualitative and quan-
titative comparison of both the naive and the proposed data layouts
with SRAM. Section 4.1.5 discusses the state of the art and Section 4.1.6
concludes the section.

4.1.2 Background

This section briefly explains the working principle and architecture
of racetrack memories. In addition, it provides background on the
tensor contraction operation, layout of scratch-pad memories and their
placement in embedded systems.
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4.1.2.1 Racetrack memory

Racetrack memories have evolved significantly over the last decade.
Since their conception in 2008, RTMs have made fundamental break-
throughs in device physics. In RTM version 4.0, several major impedi-
ments have been eliminated and improvements in device speed and
resilience have been demonstrated [222].

Unlike in conventional memories, a single cell in RTM is a magnetic
nano-wire (track) that can have up to 100 magnetic domains where
each domain represents a bit. Domains in a nano-wire are separated
by magnetic domain walls (DWs). The track can be placed vertically
(3D) or horizontally (2D) on the surface of a silicon wafer as shown
in Figure 4.2. While the vertical placement of tracks achieves the
storage density of today’s magnetic disk drives, it faces several design
challenges. In the horizontal configuration, the cell size can be much
smaller than the smallest memory cell today. With state-of-the-art
materials, the RTM cell size can be 1.5 F2 compared to 120–200 F2 in
SRAM and 4–8 F2 in DRAM [194, 280].

Ish

Domain wall
Access port

Ish

Horizontal racetrack

V
ertical racetrack

IshIsh

Figure 4.2: RTM horizontal and vertical placement

The access latency of RTMs depends on how quickly DWs inside a
wire can be moved when a shift current is applied. In the RTM 1.0,
the maximum DW velocity reported was 100 m s−1 [221]. With the
development of new structures where a magnetic film is grown on top
of a heavy metal, the velocity of DW increased to up to 300 m s−1 [191].
However, a major drawback of these designs is that the magnetic
film is very sensitive to external magnetic fields. They also exhibit
fringing fields, restricting closer packing of DWs in the nano-wire. RTM

4.0 eliminates these impediments by adding an extra magnetic layer
on top, which fully compensates the magnetic moment of the bottom
layer. Consequently, the magnetic layer does not exhibit fringing fields
and is insensitive to external magnetic fields. Moreover, due to the
exchange coupling of the two magnetic layers, the DWs velocity can
reach up to 1000 m s−1 [222, 319].

4.1.2.2 Scratch-pad memory

Scratch-pad memory is a faster on-chip memory, usually based on
SRAM. Compared to hardware-managed on-chip caches, the SPMs,
which are managed by software (i.e. by the programmer or compiler),
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offer a number of advantages. SPMs have relatively simple architecture
and do not require the complex peripheral circuitry of caches; saving
both area and energy. SPMs do not need any tag comparison, making
access to the on-chip memory faster. Particularly in the embedded
domain, SPMs perform better than caches because embedded appli-
cations often have regular memory access patterns. With SPMs, it is
very easy to efficiently choreograph the data movement between the
on-chip and off-chip memories. This also enables better predictability
of the application timings, a key feature of embedded systems.

Figure 4.3 shows a typical embedded system architecture with the
address space partitioned between the off-chip memory and the SPM.
Typically, the off-chip memory is accessed via cache. However, in this
work we are only interested in the data layout in SPM and the data
movement between the off-chip memory and SPM. Therefore we drop
the on-chip cache from our design consideration. We assume that
scalar variables can be stored in registers and only focus on the tensor
layouts in SPM. SPMs have been successfully used already in the design
of accelerators for machine learning, e.g., in [40].

CPU core

Off-chip memory 

       interface

Off-chip memory (DRAM)

Address space

Data
Control signals

Instruction memory

  Scratch-pad
memory (RTM)

Figure 4.3: System architecture

Figure 4.4 shows the detailed SPM architecture. Since the typical
SRAM-based SPMs have small capacity [40], we consider a comparable
48 KiB SPM which is divided into three banks. Each bank stores one
tensor and is made up of 64 domain wall block clusters (DBCs). A DBC is
a group of w tracks with each track storing n domains. Similar to [355],
we assume that each w−bit value is stored in an interleaved fashion
across the w tracks of a DBC and that the tracks in DBC can be moved
together in a lock-step fashion. For this work, we consider w equals
32 and n to be 64. This implies that each bank in the SPM can store a
64× 64 tensor. Larger tensors can be partitioned into tiles, as explained
in Section 4.1.3.4.

4.1.2.3 Tensor contraction

Tensors are multi-dimensional data structures. Special cases of ten-
sors are vectors (1-dimensional tensors) and matrices (2-dimensional
tensors). Matrix-vector and matrix-matrix multiplication are low-
dimensional instances of the more general operation of tensor contrac-
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Figure 4.4: Architecture of the proposed RTM-based SPM

tion. To introduce tensor contractions, let us consider the example of a
5-dimensional tensor A and a 3-dimensional tensor B. Five indices are
required to access an entry in A, and the entry at indices i1, i2, i3, i4, i5
is denoted as Ai1i2i3i4i5 . Analogously, Bi6i7i8 is an entry in the tensor B,
at indices i6, i7, i8. Each index can take values in a fixed integer domain,
say iα ∈ {1, . . . , Mα} for α = 1, . . . , 8. The Mα are the dimensions of the
tensors A and B. That is, A has dimensions M1, M2, M3, M4, M5, and
B has dimensions M6, M7, M8. An example contraction of A and B
along two dimensions is the following sum-of-products that yields a
tensor C,

Cj1 j2 j3 j4 =
M5

∑
n=1

M2

∑
m=1

Aj1mj2 j3n · Bj4mn . (4.1)

Here the contraction is over the dimensions indexed with m and n. For
this contraction to make sense, certain dimensions of A and B must
match. Specifically, M2 = M7 and M5 = M8 must hold. In other words,
the pairs of dimensions that are indexed with m and n, respectively,
must match. The tensor C that results from the contraction in Equa-
tion (4.1) then is 4-dimensional, with dimensions M1, M3, M4, M6.

Equation (4.1) can be rearranged to emphasise that tensor contrac-
tion is indeed a generalized version of matrix multiplication. To this
end, let Ã, B̃ be tensors that are obtained from A, B by permuting
indices as follows,

Ãi1i3i4i2i5 = Ai1i2i3i4i5 ,

B̃i7i8i6 = Bi6i7i8 .

The same tensor C as in Equation (4.1) is obtained by contracting Ã
and B̃ as follows,

Cj1 j2 j3 j4 =
M5

∑
n=1

M2

∑
m=1

Ãj1 j2 j3mn · B̃mnj4 . (4.2)

If indices are further arranged into groups k1, k3, l such that k1 =
(j1 j2 j3), k3 = (j4), and l = (m n), then C can be written as

Ck1k3 =
M2·M5

∑
l=1

Ãk1l · B̃lk3 . (4.3)
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Equation (4.3) is readily recognized as matrix multiplication.
Reorganizing the tensor contraction from Equation (4.1) into the

form of matrix multiplication is a standard trick that is commonly
referred to as TTGT, e.g. [271]. The key problem with TTGT is that the
reorganization of the original tensors A, B into Ã, B̃ requires costly
transposition operations, i.e. costly changes of data layout. Moreover,
the need for the new tensors Ã, B̃ in TTGT doubles the memory
footprint of tensor contraction. In the presence of SPM, the copying
of tensors to the SPM is necessary anyway before the contraction
operation itself can be carried out. This offers an opportunity for
hiding the latency of transposition, provided transfers between off-
chip memory and the SPM have uniform latency and can be carried
out with a stride1.

4.1.3 Data layout for minimal shifting

In this section, we explain the impact that data layout and access order
in RTM-based SPM have on the shifting overhead. We move from a naive
layout to an optimized layout by successively removing unnecessary
shifts that do not do any useful work. To process large tensors in
the SPM, they must be broken up into tiles. Switching between tiles
generally comes with a latency but also offers further opportunities
for reducing the number of shifts by overlapping data transfers and
computation, and for latency hiding by prefetching.

4.1.3.1 Overview

The operation we implement for SPM is tensor contraction in the
form specified by Equation (4.3). If the dimensions of tensors Ã, B̃ are
very small, these tensors can fit entirely in the SPM. We focus on this
situation in Sections 4.1.3.2 and 4.1.3.3, deriving an optimized data
layout and access order for a minimal number of shifts.

However, in the relevant application domains of media processing
and machine learning, tensors are typically large to begin with. Even
if one starts out with moderately sized tensors, after grouping dimen-
sions as in the derivation of Equation (4.3), the resulting matrices Ãk1l ,
and B̃lk3 will have large dimensions. To still carry out tensor contrac-
tion with a fixed-size SPM, the tensors involved must be tiled [202] (or
blocked [2]).

We assume that the SPM can fit three quadratic n× n-matrices. Then,
the tensors Ã, B̃, and C must be divided into tiles of size n× n. To ease

1 One typically speaks of gather and scatter accesses to memory when referring to reads
or writes with a stride.
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the discussion of tiling, we introduce new labels for the dimensions of
Ã, B̃, and C in Equation (4.3):

dimensions of Ã : N1, N2

dimensions of B̃ : N2, N3

dimensions of C : N1, N3

We further assume that n evenly divides these dimensions, i.e. that
there are natural numbers T1, T2, T3 such that N1 = T1 · n, N2 = T2 · n,
and N3 = T3 · n. If this is not the case initially, one can always pad
Ã, B̃, and C with rows or columns of zeros, which does not affect
the result of tensor contraction2. The tensor C now consists of T1 × T3

tiles, Ã of T1 × T2 tiles, and B̃ of T2 × T3 tiles, and the tiled version of
Equation (4.3) is

C(t1·n+k1)(t3·n+k3) =
T2−1

∑
t=0

n

∑
l=1

Ã(t1·n+k1)(t·n+l) · B̃(t·n+l)(t3·n+k3) . (4.4)

For a fixed value of t (in the outer summation), the inner summation
(over l) can now be carried out inside the SPM. When the inner sum-
mation for fixed t has been completed, new tiles of Ã and B̃ must
be brought into the SPM. Specifically, the tiles for the next value of t,
i.e. t + 1, are needed. The tile of C stays in the SPM and accumulates the
results of the inner summations for each fixed t = 0, . . . , (T2 − 1). The
tile of C is written back to off-chip memory only after all summations
over t and l have been completed. At this point, the evaluation of
tensor contraction moves on to the next entry in the rows or columns
of tiles of C.

As we will see in Section 4.1.3.2, a sizeable portion of the shifts in
tensor contraction may be spent on resetting access ports of DBCs to
their initial positions for processing again a row of Ã or a column
of B̃ that has previously been traversed in computing an entry of C.
While Section 4.1.3.3 discusses how the portion of these shifts can be
reduced, Section 4.1.3.4 demonstrates how unnecessary shifts can be
fully eliminated in tiled tensor contraction. Section 4.1.3.5 explains
that although prefetching parts of the next tiles cannot further reduce
the number of shifts, it can hide latencies in the full tensor contraction
operation. The same statement applies to preshifting, cf. Section 4.1.3.6.

4.1.3.2 Naive memory layout

In a naive layout, the tensors Ã, B̃ and C are stored in RTM in their order
of access. Specifically, tensor Ã is accessed row-wise and is stored in
the RTM with each DBC storing one row. Similarly, tensor B̃ is accessed
column-wise and is stored column-wise in DBCs. The resultant tensor
C is computed and stored row-wise. Figure 4.5 sketches this layout,

2 This is because contraction is a linear operation.
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which is assumed to be the starting point for the tensor contraction
operation. All access ports of all DBCs are aligned with the first entries
in rows (for Ã and C) or the first entries in columns (for B̃).
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Figure 4.5: Tensor contraction with a naive memory layout

To compute the entry C00 in the resultant tensor C, the first row of
Ã (stored in DBC-0) is multiplied with the first column of B̃ (stored in
DBC-n). More explicitly, Ã00 is multiplied with B̃00 and both DBCs are
shifted once so that the access ports point to next elements Ã01 and B̃10

respectively. Next, Ã01 and B̃10 are multiplied and the DBCs are shifted
once again. This continues until Ã0(n−1) and B̃(n−1)0 are reached and
multiplied. The blue arrows in Figure 4.5 demonstrate this process
that results in the entry C00 of the tensor C, which is marked by a blue
dot. At this point in time, each of DBC-0 and DBC-n have been shifted
n− 1 times, resulting in a total number of 2(n− 1) shifts. These shifts
cannot be avoided as they are required to access the entries in the first
row of Ã and the first column of B̃. Hence, we refer to these shifts as
compulsory shifts.

The access ports of both DBC-0 and DBC-n now point to locations
n− 1. Before computing C01, DBC-0 needs to be shifted n− 1 times in
order to align its access port to location 0, i.e. to the entry Ã00. These
shifts do not perform any useful work, and we call them overhead
shifts. With these overhead shifts, the total amount of shifts increases
to 2(n− 1) + (n− 1). The exact same process is repeated to compute the
remaining n− 1 elements in the first row of tensor C. After computing
the last element (C0n−1) in the first row of C, the port position of DBC-0
is restored to position 0. Thus, the total amount of shifts required for
computing R0 in C is

Shifts′R0 = 2n(n− 1) + n(n− 1) , (4.5)

with the second term in the expression on the right hand side repre-
senting the overhead shifts.

After computing the first row of C, the access ports of all DBCs of
tensor B̃ point to location n− 1. They must be shifted back to location
0 before the computation of the next row of C can start. This incurs
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n(n − 1) overhead shifts. The updated sum of the total number of
shifts then becomes

ShiftsR0 = 2n(n− 1)︸ ︷︷ ︸
compulsory shifts

+ n(n− 1) + n(n− 1)︸ ︷︷ ︸
overhead shifts

. (4.6)

Computing each of the remaining n− 1 rows of C incurs the same
amount of shifts, leading to the total number of shifts required for
contracting the n× n tensors Ã, B̃,

Total shifts′ = n · ( 2n(n− 1)︸ ︷︷ ︸
compulsory shifts

+ 2n(n− 1)︸ ︷︷ ︸
overhead shifts

) . (4.7)

For writing the entries of C, which result from the computations,
n(n− 1) compulsory shifts are needed. The same amount of overhead
shifts is required to reset the port position to location 0 in all DBCs for
tensor C. Adding these to Equation (4.7) and expanding yields

Total shifts (naive) = 2n3 − n2 − n︸ ︷︷ ︸
compulsory shifts

+ 2n3 − n2 − n︸ ︷︷ ︸
overhead shifts

(4.8)

From Equation (4.8) it is clear that half of the total number of shifts
are overhead shifts. Thus, avoiding the overhead shifts can improve
the memory system’s performance by as much as 2×.

4.1.3.3 Optimized layout

The large proportion of overhead shifts in the naive layout of tensors in
the RTM occur due to the uni-directional accesses of the tensors’ entries:
rows of Ã are always accessed from left-to-right and columns of B̃
from top-to-bottom. In this section we eventually fully eliminate the
overhead shifts by laying out tensors in the RTM so that bi-directional
accesses become possible.

First, instead of always accessing R0 of Ã from left to right to
compute a new entry in the first row of C, we can access R0 in a back
and forth manner, and thus completely avoid the overhead shifts for
R0. Specifically, after computing C00, the access port of DBC-0 is not
reset to location 0. Instead, C01 is computed by accessing the elements
of R0 (in Ã) in the reverse order. For this to produce the correct result,
the column C1 of B̃ must be stored in reverse order in DBC-(n+1), as
depicted in Figure 4.6. Note that this way of computing C01 relies on
the associativity of addition3.

The same procedure works for the computations of all elements of
C, provided the columns of B̃ are stored in DBC-n to DBC-(2n-1) with
alternating directions. Since the rows of Ã are now accessed in a back
and forth manner, no overhead shifts are incurred for accessing Ã.

3 For floating-point numbers, associativity of addition is typically also assumed when
aggressive compiler optimizations are enabled with fast-math compiler flags.
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Figure 4.6: Tensor contraction with partially optimized memory layout (note
the layout of C1 in B̃ and the access order of R0 in Ã)

However, the DBCs that store the columns of B̃ must be fully reset
after computing each row of C, leading to a total of n(n− 1) overhead
shifts per row of C. The numbers of compulsory and overhead shifts
required for accesses to C are the same as in the naive layout. Thus,
the total number of shifts for the alternating layout of columns of B̃ is

Total shifts (partial-opt) = 2n3 − n2 − n︸ ︷︷ ︸
compulsory shifts

+ n3 − n︸ ︷︷ ︸
overhead shifts

, (4.9)

which one arrives at by subtracting the n2(n− 1) overhead shifts for
resetting the rows of Ã from the right hand side of Equation (4.8).

The vast majority of overhead shifts in the previously discussed
alternating column layout of B̃ occurs when the computation of one
row of C has been completed and one advances to the next row. At
this point, all access ports for the DBCs that store columns of B̃ point to
the last entry in each column. To compute the next row of C, the next
row of Ã, say R1, must be multiplied into the columns of B̃. The access
port for DBC-1 points to the first entry in R1 of Ã, which necessitates
that the access ports for the columns of B̃ (DBC-n to DBC-(2n-1)) be
reset to point at the first entry of the columns. However, this resetting
of DBC-n to DBC-(2n-1) can be avoided, if the next row of Ã is stored
in reverse order. Then, multiplication of R1 into a column of B̃ can
be carried out in a backwards fashion. This alternating row layout
for Ã is depicted in Figure 4.7, in combination with the alternating
column layout of B̃. The total number of shifts is now comprised of
the compulsory shifts and only those n(n− 1) overhead shifts that are
needed to reset the DBCs for the rows of C after the full contraction
operation has been completed, i.e.

Total shifts (opt) = 2n3 − n2 − n︸ ︷︷ ︸
compulsory shifts

+ n2 − n︸ ︷︷ ︸
overhead shifts

. (4.10)

Note in particular that no overhead shifts are required to reset the
DBCs for Ã, B̃ after completing the full tensor contraction. Since the
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Figure 4.7: Tensor contraction with the optimized memory layout (note the
layout of R1 in Ã and the access order of columns in B̃)

rows of Ã and the columns of B̃ are traversed in a back and forth
manner, the access ports for their DBCs point back to the first entries
in the rows of Ã and columns of B̃, respectively, exactly when the
computation of the last entry in C has been completed. This reasoning
relies on n being even. In practice, n is actually a power of two, for
efficient utilization of address bits.

By comparing Equation (4.10) with the corresponding equation for
the naive layout, i.e. Equation (4.8), we see that the alternating row and
column layout asymptotically cuts the total number of shifts necessary
to implement tensor contraction in half.

4.1.3.4 Contraction of large tensors

We now use the optimized layout from the previous section to optimize
the number of shifts needed for contracting large tensors that must
be processed in the SPM tile by tile, as explained in Section 4.1.3.1.
Equation (4.3) says that each pair of tiles from Ã and B̃ is contracted
exactly as discussed in the previous sections, where it was assumed
that Ã and B̃ fit entirely into the SPM. Equation (4.3) also says that
each tile of C is computed by accumulating the results of contracting
a row of tiles of Ã with a column of tiles of B̃. This is depicted by
Figure 4.8, where T1, T2, T3 are the respective numbers of tiles in each
dimension, as in Section 4.1.3.1.

Based on Equation (4.10), the overall number of shifts needed to
contract all tiles of Ã with all tiles of B̃ is

Shifts′tiled = T1T2T3 ·
{

(2n3 − n2 − n) + (n2 − n)
}

. (4.11)

This accounts for resetting the access ports of the DBCs that hold a tile
of C after the contraction of each pair of tiles of Ã, B̃. What is not yet
accounted for are the number of shifts needed to bring new tiles into
the SPM.

To copy a new tile of Ã or B̃ into the SPM, n(n− 1) compulsory shifts
are required. The same number of shifts is needed to reset the access
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Figure 4.8: Tile-wise tensor contractions (tile-size: n× n)

ports for the newly copied tile. The computation of each new tile of
C must start with a zero-initialized tile. This initialization requires
again n(n− 1) compulsory shifts and n(n− 1) overhead shifts. After
the computation of a tile of C has completed, the tile must be copied
back to off-chip memory, incurring once again n(n− 1) compulsory
shifts and n(n− 1) overhead shifts. Bearing in mind that the tensor
C consists of T1T3 tiles, adding all of these shifts to Equation (4.11)
yields

Total shiftstiled =

T1T2T3 · (2n3 − n2 − n)

+T1T2T3 · 2n(n− 1)

+T1T3 · 2n(n− 1)


compulsory

shifts

+T1T2T3 · (n2 − n)

+T1T2T3 · 2n(n− 1)

+T1T3 · 2n(n− 1)


overhead

shifts

Although the number of overhead shifts only grows quadratically
with n, for a fixed n they can still accumulate to a noticeable num-
ber. We eliminate them by judiciously laying out tiles that are newly
brought into the SPM. Instead of restoring the positions of access ports
to location 0 before and after loading/writing each tile, the rows and
columns of tiles are loaded and processed in a back and forth man-
ner, completely analogous to our discussion in Section 4.1.3.3. This
completely removes the shifting overhead caused by tiling. Further-
more, the initialization of a tile of C with zeros can take place at the
same time as the writing back to off-chip memory of the previously
computed tile. Thus, the final total number of shifts required for tiled
tensor contraction in the RTM-based SPM is

Total shifts (opt)tiled = T1T2T3 · {2n3 + n2 − 3n}
+ T1T3 · {n2 − n} . (4.12)
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4.1.3.5 Hiding tile-switch latency with prefetching

For large tensors, as soon as the result of contracting the current tiles of
Ã and B̃ has been computed, these tiles need to be replaced, requiring
2n2 off-chip reads. In addition, after every T2 tiles, the contents of the
resultant tile of C must also be written back to the off-chip memory,
incurring another n2 off-chip writes. For the access latencies, let us
assume that the off-chip access latency, including the data transfer,
is toff and both the off-chip memory and the SPM are read/write
symmetric. The tile-switch latency then becomes

Tile-switch latency = β +

2n2 × toff , every tile ,

3n2 × toff , after every T2 tiles ,
(4.13)

where β represents the transfer initiation cost.
Since the off-chip latency toff is significantly higher than the access

latency of the SPM (cf. Tables 4.1, 4.2), the tile-switch latency con-
tributes significantly to the total latency and can thus pose a serious
performance problem.

To reduce the impact of the off-chip latency on the embedded sys-
tem’s performance, we can use compiler-guided prefetching to overlap
the off-chip access latency with the computation latency. Specifically,
as soon as the computation of the first row in the resultant tile has
been completed, the first row of Ã can already be replaced with the
elements of the new tile. This replacement can happen while the pro-
cessing unit operates on the next row of Ã. Thus, the load latency of
Ã can be completely overlapped with the computation latency. Since
every element in the resultant tensor requires n scalar multiplications
and n− 1 additions, computation of the entire row of the resultant
tile provides sufficient time for accessing n elements from the off-chip
memory (accessed in burst-mode).

When the computation of the last row of the resultant tensor C starts,
the first n − 2 rows in the next tile of Ã have already been loaded
into the SPM. The compiler can then start prefetching the (n− 1)-th
row of Ã and the columns of the next tile of B̃. One new column of B̃
can be loaded into the SPM after the computation of each entry in the
last row of C. After computing the last entry in the resultant tile of C,
the processing unit can immediately start multiplying the first row in
the next tile of Ã with the first column in the next tile of B̃, without
incurring any latency. At this point, the compiler requests prefetching
the last row of Ã and last column of B̃ for the new tiles. This way,
the significant tile-switch latency is fully hidden by overlapping it
with computations. Note that the amount of off-chip accesses remains
unchanged.
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4.1.3.6 Overlapping shift and compute latency with preshifting

In Section 4.1.3.3 we described an optimized memory layout and
access order that incurs zero overhead shifts. In Section 4.1.3.5 we
introduced prefetching to completely hide the tile-switch latency (for
off-chip memory accesses) by overlapping the loading of tiles with
the computation process. In this section we explain how preshifting
optimizes the access latency of the on-chip RTM-based SPM.
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Figure 4.9: Overlapping DBCs shift latency with computation (DBC X and Y
store the elements of Ã and B̃ respectively)

Typically, SRAM-based SPMs have a fixed access latency of one cycle.
Since RTMs are sequential in nature, even with the best memory layout,
the DBCs in RTM-based SPM must be shifted once before the next entry
can be accessed. This shifting typically takes one cycle, and another
cycle is needed to read out the next entry. Hence, the access latency of
the RTM-based SPM is 2 cycles.

Fortunately, in the case of tensor contractions, the access pattern is
known and the compiler can accurately determine the next memory
location to be accessed. We take advantage of this and completely hide
the shift latency by preshifting, an operation that aligns the access ports
of the active DBCs with the memory locations to be accessed next. For
instance, when the processing unit is busy multiplying Ã00 with B̃00,
both DBCs storing the current row and column are preshifted to point
to the next entries, i.e. Ã01 and B̃10. The next memory request made
by the program will ask for these entries, and the ports will already
be aligned to positions of Ã01 and B̃10 in their respective DBCs. This
effectively hides the shift overhead and halves the SPM access latency,
as illustrated in Figure 4.9. Note that this does not interfere with the
prefetching operation which affects different DBCs.

4.1.3.7 Code generation for tensor contractions

The memory layout and access order that we have identified to re-
duce the number of shifts in tensor contractions can be automatically
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generated by a compiler. This includes the appropriate handling of
tiling, and even the prefetching and preshifting operations. The major
complication in getting a compiler to automatically generate efficient
code for tensor contractions is the detection of contractions in the
program source code. For programs written in a general-purpose
language, this is a non-trivial task: the way in which loop nests and
multi-dimensional tensor accesses are structured may obscure the true
nature of a tensor operation.

Previous work has suggested methods for detecting matrix multi-
plication and, more recently, tensor contraction in programs written
in general-purpose programming languages. For the Fortran pro-
gramming language, this is described in [190]. A suggestion for de-
tecting tensor contractions in general-purpose languages has been
made in [68], relying on polyhedral methods for the analysis of loop
nests [59]. To the best of our knowledge, no assessment exists of how
effective the described detection techniques are in detecting contrac-
tions in real application domains such as signal and media processing,
computer vision, and machine learning.

Domain-specific languages (DSL), on the other hand, offer an alter-
native approach that makes the nature of domain-specific operations,
such as tensor contraction, obvious to the compiler or, more generally,
to any code analysis. This is achieved by making tensor contraction
a primitive operation of the language, as is the case in virtually all
DSLs that are in wide-spread use in the area of machine learning [1,
18, 225]. In the form of MATLAB/Simulink, DSLs are also commonly
used in the signal-processing domain. Note that the method for de-
tecting matrix multiplication in [190] is also applicable to MATLAB
programs. New DSLs for signal processing [236, 270] have recently
been developed, in particular also for embedded applications [144].

In the area of scientific computing, DSLs for tensor operations have
been in use for some time, e.g. [17]. Continued interest and recent
new developments in this area show that DSLs for tensors are a practi-
cally relevant approach to increasing programmer productivity and
application performance [138, 248].

4.1.4 Evaluation

This section describes our experimental setup. Based on this, we
compare the performance and energy consumption of the optimized
RTM-based SPM with that of the naive and the SRAM-based SPM.

4.1.4.1 Experimental setup

The architectural simulations are carried out in the racetrack mem-
ory simulator RTSim [125]. The configuration details for SRAM- and
RTM-based SPM are listed in Table 4.1. Given that access sequences
are independent of data, we synthetically generate memory traces
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for the naive and optimized layouts and fed them to RTSim for the
architectural evaluation.

Table 4.1: Configuration details for SRAM and RTM

Technology 32 nm

SPM size 48 KiB

Number of banks 3

Word/bus size 32 bits (4 B)

Transfer inititation cost (β) 30 ns

Off-chip latency 60 ns

Off-chip bus latency 2 ns

Number of RTM ports per track 1

Number of tracks per DBC in RTM 32

Number of domains per track in RTM 64

The latency, energy and area numbers for iso-capacity SRAM and
RTM are extracted from Destiny [196] and are provided in Table 4.2.
These values include the latency incurred and the energy consumed
by the row/column decoders, sense amplifiers, multiplexers, write
drivers, shift drivers (only for RTM).

For evaluation, we compare the following configurations:

• RTM-naive: The naive RTM-based SPM, cf. Section 4.1.3.2.

• RTM-opt: The optimized RTM-based SPM, cf. Section 4.1.3.3.

• RTM-opt-preshift (RTM-opt-ps): RTM-opt with preshifting.

• SRAM: Conventional SRAM-based SPM.

We apply prefetching on top of all configurations to hide the latency
of off-chip accesses as explained in Section 4.1.3.5.

4.1.4.2 Performance and energy evaluation

The main performance and energy consumption results of our eval-
uation are summarized in Figure 4.11 and Figure 4.12 respectively.
As depicted, our RTM-opt-preshift improves the average performance
by 1.57×, 79% and 24% compared to RTM-naive, RTM-opt and SRAM

respectively. Likewise, the energy improvement translates to 23%, 8.2%
and 74% respectively.

comparing RTM-naive and RTM-opt: Figure 4.10 compares the
number of shifts incurred by the naive and the optimized layouts.
As highlighted, the optimized layout (Section 4.1.3.3) approximately
cuts the number of shifts in half. Although for smaller tensors, the
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Table 4.2: SRAM and RTM values for a 48 KiB SPM

Memory type SRAM RTM

Leakage power [mW] 160.9 25.3

Write energy [pJ] 38.6 35.4

Read energy [pJ] 58.7 22.5

Shift energy [pJ] 0 18.9

Read latency [ns] 1.24 1.01

Write latency [ns] 1.17 1.38

Shift latency [ns] 0 1.11

Area [mm2] 0.84 0.24
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Figure 4.10: Number of shifts in the optimized layout for different tensor
sizes (normalized against naive)

reduction in shifts is less than 50% and the impact of overhead shifts
incurred by tensor C is more evident (cf. Equation (4.10)); however,
this becomes insignificant as the tensors’ size increases beyond 128.

As a result, the optimized layout reduces the average runtime by
77% and the overall energy consumption by 15% compared to the
naive layout. The energy reduction is delivered by simultaneous im-
provement in both shift and leakage energy (cf. Figure 4.12). The shift
energy gain (cf. Figure 4.13) comes from reducing the number of shifts
while the reduction in leakage energy is due to shorter runtime.

impact of preshifting: Although RTM-opt is more efficient in
terms of performance and energy consumption compared to RTM-
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Figure 4.11: Latency comparison
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Figure 4.12: Overall energy breakdown
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Figure 4.13: Dynamic energy breakdown

naive, it still suffers from shift-read serialization latency as depicted
in Figure 4.9(a). To completely eliminate this serialization latency, the
preshift optimization (Section 4.1.3.6) entirely overlaps the shift and the
read latency (cf. Figure 4.9b). This improves the average runtime and
energy consumption by 79.8% and 8.2% respectively compared to the
RTM-opt configuration. The decrease in the energy consumption comes
from the reduced leakage energy which stems from the reduction in
runtime.

comparison with SRAM: The performance comparison with SRAM

shows that naively replacing RTM by SRAM for tensor contraction does
not provide any benefits in terms of performance, at least for the
same capacity. Employing RTM-naive, we witness an average 1.33×
runtime degradation compared to SRAM. This runtime degradation is
caused by the increased shift cost (cf. Figure 4.10) and the shift-read
serialization latency (cf. Figure 4.9a). Although RTM-opt reduces the
shift cost, its average runtime is still 56% worse compared to SRAM.
Our combined optimizations (i.e. RTM-opt-preshift), employing the
optimized RTM layout and preshifting, reduce the average runtime by
24% compared to SRAM.

Figure 4.11 shows that the runtime advantage of our combined
optimizations is more pronounced in larger tensors. For smaller ten-
sors, the initial tile load latency almost completely offsets the runtime
improvement in SPM accesses. In contrast, the impact of initial tile load
latency is imperceptible in larger tensors where the average runtime
is dominanted by the SPM accesses.

The energy results in Figure 4.12 clearly indicate that each variant
of RTM greatly outperforms SRAM in terms of energy consumption.
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As highlighted, the SRAM leakage energy is the major contributor (i.e.
79%) to the overall energy consumption. The SRAM energy degradation
is due to significantly higher leakage power consumed in the larger
SRAM cells compared to RTM cells. Another interesting observation
is that the contribution of the dynamic energy in smaller tensors is
not very prominent. Since smaller tensors produce fewer SPM accesses
and the relative runtime for smaller tensors is larg, the contribution of
dynamic energy to the total energy consumption is small.

To underscore the importance of the dynamic energy consumption,
we separate it from the leakage energy in Figure 4.13. As can be
observed, the total dynamic energy of RTM (naive) can get worse
compared to SRAM if the shifting overhead is not handled properly.
However, with the combined optimizations in place where each SPM

access requires at most one shift, the dynamic energy consumption of
RTM reduces by 30.6% compared to SRAM.

The dynamic read energy of SRAM (58.7 pJ) is higher than the com-
bined read plus single shift energy required in RTM (22.5 + 18.9 =
41.4 pJ) for the optimized layout (cf. Table 4.2). Although the com-
bined write plus single shift energy in RTM (35.4 + 18.9 = 54.3 pJ)
is higher compared to SRAM (38.6 pJ) dynamic write energy. How-
ever, the RTM write energy does not have a significant impact on the
dynamic energy consumption because the tensors contractions are
dominated by reads. The number of reads in tensors contractions is
approximately 2n times higher than the number of writes. As a result,
the contribution of the write energy becomes less prominent when the
tensor size gets larger, as can be seen in Figure 4.13.

Finally, since an SRAM cell is significantly larger than an RTM cell, the
overall area used by SRAM is 71% larger compared to the iso-capacity
RTM, cf. Table 4.2.

4.1.5 Related work

This section reviews the relevant literature on tensor and matrix pro-
cessing, the recent developments in RTM and the state of the art in the
utilization of SPM in embedded systems.

4.1.5.1 Matrix and tensor processing

Matrix multiplication (MM), its applications and optimized implemen-
tations have been widely studied for a long time. In numerical linear
algebra, MM is a key operation and a major bottleneck in a large class
of matrix problems such as the least-square and the eigenvalue prob-
lems. By clever algorithm design, the computational complexity of
multiplying two n× n-matrices can be reduced from O(n3) to less than
O(n2.376) [50, 287]. MM has been implemented on almost all novel and
parallel compute platforms [72, 142, 210, 328].
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Various linear algebra libraries exist that efficiently implement MM.
For instance, the standard basic linear algebra subprograms (BLAS) li-
brary offers efficient and portable implementations of common op-
erations on matrices and vectors [145]. The automatically tuned linear
algebra software (ATLAS) library auto-detects the underlying architec-
ture and automatically optimize algorithms for it [46, 306]. Other
work [72, 79] focuses on the partitioning of matrices that best suits the
memory hierarchy. For embedded platforms, efficient implementations
of MM have been presented on ARMv7 [61], DSP [207] and FPGA [141].
All these implementations are optimized for conventional random ac-
cess memories. The challenges that are introduced by the sequential
but energy- and area-efficient RTMs have not been addressed.

The present work even goes one step further: instead of addressing
MM in RTMs, we have studied the more general operation of tensor
contraction. On conventional platforms, i.e. with traditional random
access memory, implementing tensor contraction efficiently has been
approached in ways similar to ours [134, 271]. Alternative approaches
that avoid transpositions [185] or are based on polyhedral compilation
methods [68] have also been explored. It has also recently been demon-
strated that, instead of relying on polyhedral methods for the analysis
and transformation of loops, meta-programming techniques can be
used at least as effectively in optimizing tensor kernels [341], includ-
ing parallelization for multi-core platforms. Frameworks that attempt
to optimize tensor-based computations by auto-tuning, analogous to
ATLAS for computations involving low-dimensional linear algebra,
also exist and can target diverse and heterogeneous architectures [39,
286].

4.1.5.2 Racetrack memory

RTMs, being a promising alternative to existing conventional and non-
conventional memory technologies, have been explored all across
the memory hierarchy with different optimization objectives. For
instance, the RTM-based GPU register file has been reported to be both
energy as well as area efficient compared to the traditional SRAM-
based register file [182, 299]. On lower cache levels, RTM reduced
the energy consumption by 69% compared to an iso-capacity SRAM.
When evaluated at last level in the cache hierarchy, RTM reportedly
outperformed SRAM and STT-RAM by improving the area, energy and
performance efficiency by 6.4x, 1.4x and 25% respectively [355, 367].

Despite being energy and area efficient, RTMs can severely degrade
the memory system’s performance and energy footprint if the shifting
operation is not handled properly. Shifting consumes more than 50%
of the RTM energy [342] and can increase the access latency by up-
to 26×, in the worst case, compared to the SRAM [355]. Even in our
small-size RTM-based SPM, we observed an average 1.33× performance
degradation in the naive layout compared to the SRAM.
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To mitigate the impact of the shifting overhead, isolated efforts have
been made and hardware/software solutions have been proposed. At
the architectural front, researchers have proposed techniques such as
pre-shifting, data-swapping and re-ordering of the memory requests
to minimize the number of shifts [9, 182, 296, 355, 367]. However,
these solutions are infeasible in the embedded domain as they require
additional hardware that costs area, latency and energy. Similarly, the
software techniques presented in [42, 126, 180] are not ideal fits to
optimize tensors applications. To the best of our knowledge, this is
the first work that explores tensors’ layout in RTMs for the contraction
operation.

4.1.5.3 Scratch-pad memory

On-chip SPMs have long been used in embedded systems [15, 114]. Due
to their excellent storage structure, they have also been employed in the
accelerators designed for convolutional and deep neural networks [40].
Compared to caches, SPMs are faster, consume less power and are
under the full control of the programmer/compiler [113]. Historically,
SRAMs have remained the lone choice of realizing SPMs because of their
low access latency. However, with the emergence of NVMs such as STT-
RAM [344, 346] and PCM [308], researchers have proposed NVM-based
SPMs because they consume less static power and offer higher storage
capacity [303]. Nevertheless, these emerging NVMs suffer from higher
access latency and endurance issues. To combine the latency benefit of
SRAM with the energy benefit of NVMs, NVM-SRAM hybrid SPMs have
also been proposed [97].

To make effective utilization of the SPMs and improve their per-
formance, various techniques have been proposed. For instance, the
data allocation algorithms presented in [15, 214] judiciously partition
the program variables into the on-chip SPM and the off-chip DRAM

at compile-time. However, the data allocation is static, i.e., does not
change during program execution. The algorithms presented in [283]
make dynamic allocation of both stack and global data in the SPM.
While all these data allocation techniques were aimed at improving
data locality, none of them consider energy and I/O overhead.

To minimize the data transfer between the off-chip DRAM and the
on-chip SPM, Kandemir et al. [113] first proposed techniques that
analyze the application, perform loop and layout transformations and
dynamically partition the SPM space in a way that reduces the number
of off-chip accesses. To improve the life-time of hybrid SPMs, Hu et
al. [97] proposed dynamic data-allocation algorithm that allocates read
intensive program objects to the PCM-based SPM and write intensive
objects to SRAM. The RTM-based SPMs do not suffer from any of the
limitations mentioned above. However, they incur the unique shift
operations which, if not handled properly, can severely degrade their
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performance (cf. 4.1.5.2). The proposed layout effectively diminishes
the amount and impact of RTM shifts in tensor contractions.

4.1.6 Conclusions

In this section, we present techniques to find optimal tensor layouts
in RTM-based SPMs for the tensor contraction operation. We explain
the rationale that led to the derivation of the optimized layout. We
show that the proposed layout reduces the number of RTM shifts to the
absolute minimum. To enable contractions of large tensors, we divide
them into smaller tiles and employ prefetching to hide the tile-switch
latency. Moreover, we put tile switching to good use by alternating
the tiles’ layout, which further diminishes the number of shifts. Fi-
nally, to improve the access latency of the on-chip SPM, we employ
preshifting that suppresses the shift-read serialization and enables
single-cycle SPM access. Our experimental evaluation demonstrates
that the proposed layout, paired with suitable architecture support,
improves the RTM-based SPM’s performance by 24%, energy consump-
tion by 74% and area by 71% compared to the SRAM-based SPM. The
demonstrated benefits substantiate that RTM is a promising alternative
to SRAM, particularly in embedded devices that process large tensorial
data structures and thus enable inference and similar applications.

4.2 polyhedral compilation for racetrack memories

Traditional memory hierarchy designs, primarily based on SRAM

and DRAM, become increasingly unsuitable to meet the performance,
energy, bandwidth and area requirements of modern embedded
and high-performance computer systems. Racetrack Memory (RTM),
an emerging non-volatile memory technology, promises to meet these
conflicting demands by offering simultaneously high speed, higher
density, and non-volatility. RTM provides these efficiency gains by not
providing immediate access to all storage locations, but by instead
storing data sequentially in the equivalent to nanoscale tapes called
tracks. Before any data can be accessed, explicit shift operations must
be issued that cost energy and increase access latency. The result is a
fundamental change in memory performance behavior: the address
distance between subsequent memory accesses now has a linear effect
on memory performance. While there are first techniques to optimize
programs for linear-latency memories such as RTM, existing auto-
matic solutions treat only scalar memory accesses. This work presents
the first automatic compilation framework that optimizes static loop
programs over arrays for linear-latency memories. We extend the poly-
hedral compilation framework Polly to generate code that maximizes
accesses to the same or consecutive locations, thereby minimizing the
number of shifts. Our experimental results show that the optimized
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code incurs up to 85% fewer shifts (average 41%), improving both
performance and energy consumption by an average of 17.9% and
39.8%, respectively. Our results show that automatic techniques make
it possible to effectively program linear-latency memory architectures
such as RTM.

4.2.1 Introduction

The memory system is an essential component of any computer sys-
tem. The rapid increase in the number of cores per processor in the
last decade puts tremendous pressure on memory system designers to
increase memory capacity and improve memory system performance
at a rate proportional to the increase in core count. This, however,
is highly constrained by the technological scaling, high leakage, and
refresh powers of conventional SRAM and DRAM technologies. In the
embedded domain where area and power budgets are restricted, the
efficient design of the memory system becomes particularly challeng-
ing. To fill this void and catch up with the development in compute
capabilities, various new memory technologies have been proposed of
late, including ferroelectric RAM (FeRAM), phase change memory (PCM),
spin transfer torque (STT-RAM), resistive RAM (ReRAM) and racetrack
memory (RTM) also known as domain wall memory [222, 259, 308, 309,
346]. While all these new technologies, being non-volatile, are highly
energy efficient, most of them have large cell sizes, limited durability,
and high write latencies, restricting their applicability in embedded
devices. RTM, on the other hand, presents a favorable option that not
only offers SRAM comparable access latency but also promises to pass
the density barrier (satisfying the area constraint), and avoid the mem-
ory power wall [273]. A direct comparison of the RTM device features
to other prominent memory technologies is presented in [22].

The fundamental benefit of RTM over other technologies comes from
its ability to store multiple data bits – up to 100 – per cell [22, 222].
A cell in RTM is a magnetic nanowire (track) that densely packs data-
bits in the form of magnetic domains separated by domain walls and is
associated with one or more access ports. Accessing a data bit from the
nanowire requires shifting and aligning it to a port position. These shift
operations in RTM not only induce energy overhead but also make the
access latency location-dependent (up to 26-fold latency penalty [356]).
Various architectural optimizations and data placement solutions have
been proposed to mitigate the number of RTM shifts. However, there
exists no compilation framework that automatically generates efficient
code for RTM-based systems. Traditional spatial locality optimizations
thoroughly studied for mainstream (random access) technologies, do
not suffice for these linear-latency memories. We identify a new kind
of spatial locality called minimal-offset locality which is offset sensitive,
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and optimize it so that the offset distance in subsequent memory
accesses is minimized.

In the following sections, we present extensions to LLVM’s poly-
hedral loop optimization framework Polly [75] to cater for RTMs. We
introduce optimization passes that improve the minimal-offset locality
by enabling back and forth accesses to memory locations, thus mini-
mizing the number of shifts. The RTM passes can be enabled together
with the default Polly optimizations for data locality and parallelism
or in stand-alone mode. We demonstrate the efficacy of our framework
on the PolyBench [235] and COSMO [352] kernels, which represent a
good mix of compute and memory intensive kernels. Our proposed
framework uses existing and newly developed memory passes to
analyze the memory access pattern of a program and automatically
transforms both the loop structure and the data layout to minimize
the RTM shifts.

Our contributions are:

1. We introduce an RTM-specific memory analysis that examines the
memory access pattern of a program and identifies potential loop
candidates for transformations. The analysis looks for memory
accesses that can potentially be optimized by changing their
access order and passes on the information to the schedule
optimizer.

2. We present optimizations that transform a program’s loop struc-
ture and data layout to reduce large address jumps between
subsequent memory accesses.

3. We integrate our analysis and transformation passes in LLVM
Polly to make an end-to-end automatic compilation framework
for RTM-based systems.

4. We evaluate our framework on a rich set of benchmarks and
perform a detailed performance/energy consumption analysis
of the transformed programs.

Our experimental results show that our framework can reduce the
number of shifts by up to 85% in 62.5% of the cases which on average
improves the RTM performance and energy consumption by 17.9% and
39.8%, respectively.

4.2.2 Background

This section explains the RTM principle, cell structure, and overall
architecture. Further, it provides background on the elements of the
polyhedral model relevant to this work.
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4.2.2.1 Racetrack memory

The nanowires in RTM can be organized horizontally or vertically on
the surface of a silicon wafer as depicted in Fig. 4.2. Each wire in
RTM stores K bits and is associated with an access port usually made
up of a magnetic tunnel junction (MTJ) transistor. While there may be
more than one access port per track, there are always less than the
number of domains due to the larger footprint of the access transistor.
In our case, we consider the highest density RTM architecture and thus
assume one port per track. The access latency of RTM also depends
on the velocity with which domains move inside the nanowire, which
in turn depends on the shift current density as well as the number of
domains per nanowire.

I

Domain wall Access port

Horizontal racetrack

Vertical racetrack

I

I I

Figure 4.14: RTM cell structure

The RTM nanowires are grouped together to form domain wall block
clusters (DBCs) which are basic building blocks of an RTM array [22, 126,
355]. The hierarchical organization of RTM, similar to other technolo-
gies, consists of ranks, banks, and subarrays as illustrated in Fig. 4.15a.
As for the data storage, each DBC comprising T nanowires stores data
bits in an interleaved fashion which facilitates parallel access of all bits
belonging to the same data word. Access ports of all nanowires in a
DBC point to the same location and domains can be moved together in
a lock-step fashion as shown in the figure.

4.2.2.2 Polyhedral compilation

The polyhedral model is a mathematical framework for describing
programs consisting of affine loop nests and affine accesses. It can
express potentially complex loop transformations as a single affine
function and can optimize all programs that satisfy the following
properties. The program has code regions with static control, also
referred to as static control parts (SCoPs) [361, 364], loop bounds are
affine expressions of the surrounding loop variables, each loop has
exactly one induction variable, and the SCoP statements operate on
multi-dimensional arrays with indices being affine functions of the
loop variables and parameters.
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Figure 4.15: An overview of the RTM architecture. A DBC consists of T (e.g., 32)
nanowires and stores K (e.g., 64) T-bit words in a bit-interleaved
fashion. The figure on the right shows parallel accesses to DBCs

for improved bandwidth utilization and hiding shift latency.

The polyhedral model has three major components: iteration do-
main, access relation, and schedule. To explain them we consider the
SCoP in Listing 4.1 as a running example.

for (int i = 0; i < I; i++) {

for (int j = 0; j < J; j++)

R: C[i][j] *= beta;

for (int k = 0; k < K; k++)

for (int j = 0; j < J; j++)

S: C[i][j] += alpha * A[i][k] * B[k][j]; }

Listing 4.1: GEMM kernel from PolyBench [235]

iteration domain The iteration domain (D) of a statement is the
set of its dynamic instances during execution. This corresponds to a
vector space having dimensionality equal to the depth of the loop nest
and where each point in the space represents a statement instance
with coordinates reflecting the values of the iteration variables. For
the example in Listing 4.1, the iteration domain of statement S is:

DS = {S(i, k, j) | 0 ≤ i < I ∧ 0 ≤ k < K ∧ 0 ≤ j < J}

where i, k, and j represent iteration variables while I, K, J are global
(structure) parameters.

access relation The memory access relation links statement
instances to the array elements on which they operate. The relation
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corresponds either to a read or a write, represented by two sets (R,
W). The relations for S in the example are:

RS = { S(i, k, j)→ A(i, k) } ∪ { S(i, k, j)→ B(k, j) }
∪ { S(i, k, j)→ C(i, j) }

WS = { S(i, k, j)→ C(i, j) }

schedule A schedule assigns a logical time-stamp in the form of
a tuple to each statement instance. Statements are then scheduled in
the lexicographical order of the tuples. The original schedule for the
running example is:

{ S(i, k, j)→ (i, 1, k, j) } ∪ { R(i, j)→ (i, 0, j, 0) },

which specifies that for any given combination of values of i, k, j
statement R will be executed before statement S.

schedule trees Schedules in polyhedral compilers are repre-
sented in different ways depending on how they are computed. Most
scheduling algorithms compute schedules in a recursive way with each
level computing a partial schedule. A partial schedule is a (piecewise)
quasi-affine function. The overall schedule is then obtained by concate-
nating all partial schedules. Considering this, Verdoolaege et al. [294]
argued that representing schedules with explicit tree-like structures is
not only more natural but also more practical and proposed schedule
trees (current schedule representation in Polly). Nodes in the schedule
tree can be one of the following types.

• Domain is typically the root of the tree and represents the itera-
tion domain.

• Band holds partial schedules.

• Filter puts restriction on the iteration domain, i.e., selects a subset
of statement instances from the outer domain.

• Sequence enforces order on children nodes. Only Filter nodes can
be children of a sequence node.

• Set is similar to Sequence node but children nodes may be exe-
cuted in any order.

• Mark allows the user to mark subtrees in the schedule.
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the polyhedral affine scheduler The default affine schedul-
ing algorithm in Polly – named as isl scheduler – is inspired by Pluto [364]
and is implemented in the isl library [292]. It transforms an input
program for different optimization objectives while considering the
architectural features of modern processors. Similar to Pluto, it aims
at maximizing temporal locality and parallelism while preserving
program semantics. However, it offers different groups of relations
such as validity relations, proximity relations, and coincidence rela-
tions that make it more powerful and enables more (target-specific)
optimizations. The isl scheduler provides support for various loop
transformations such as loop fusion, distribution, and (multi-level)
parallelism by operating on the data-dependence graph and using
different groups of relations. It provides a thorough analysis of the
memory accesses and their dependencies and offers a unified model
to maximize temporal and spatial locality while avoiding false-sharing.
Using its rich set of features, it can generate efficient schedules for
modern multi-core CPU and GPU targets.

4.2.2.3 Motivation

The memory performance of an application primarily depends on
how well temporal and spatial locality is exploited. For kernels such
as gemm (see Listing 4.1) and stencils (see Sec. 4.2.3) that generally
exhibit high spatial locality, techniques such as tiling can be used
to improve their temporal locality by splitting large size arrays into
blocks that fit in the on-chip memories (cache, scratchpad). If all tiles
for the gemm kernel are loaded in a mainstream on-chip memory, the
latency of the next access depends upon whether the data is in the
same cache block (irrespective of the exact position/offset inside the
block) or not. In case the next access references a new cache block,
its location inside the memory does not affect the access latency. The
gemm kernel within a tile can be computed in many different orders
without affecting the performance. Specifically, long strides do not
hurt performance.

The performance and energy consumption of RTM depends on an
application’s minimal-offset locality since the offset distance in subse-
quent accesses determines the number of shifts required to access the
data. Since a single shift operation is almost as expensive as a read
operation (see Table 4.3), long jumps within DBCs (consecutive accesses
to locations that are far from each other) can lead to significant perfor-
mance degradation. In the worst case, shifting can make RTMs up to
(K− 1)× slower while in the best-case scenario, they can outperform
SRAM by more than 12% [356]. In this work, we specifically focus on
optimizing within DBC accesses to avoid long jumps and maximize
the minimal-offset accesses.

As an example, let us assume that all rows of A, B, and C are stored
in separate DBCs and the access ports in all DBCs initially point to
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location 0. For larger row sizes, conventional tiling can be used to
split them into blocks that fit in DBCs. For i = k = 0, the innermost j
loop will incur J − 1 shifts each in DBCs storing row-0 of both matrices
A and C. However, for the next iteration of loop k, the access ports
in both these DBCs need to be reset to location 0, incurring another
J − 1 shifts without doing any useful work. These overhead shifts
amount to 50% of the overall shifts in the gemm kernel which can
be prevented if we change the memory access order. For instance,
the order of memory accesses generated by the code in Listing 4.2
cuts the number of shifts to roughly half compared to the code in
Listing 4.1. Further optimizations such as parallel accesses to DBCs and
preshifting can be applied on top of our optimizations to overlap the
access and shift latencies in different DBCs, improving the performance
and bandwidth efficiency (see Fig. 4.15b). Similarly, with prefetching,
the access latency can be overlapped with the operation latency [124].

for (int i = 0; i < I; i++)

for (int j = 0; j < J; j++)

C[i][j] *= beta;

for (int k = 0; k < K ; k++)

if ((i % 2) + (k % 2) != 1)

for (int j = 0; j < J; j++) // forward

C[i][j] += alpha * A[i][k] * B[k][j]

else

for (int j = J - 1; j >= 0; j--) // backward

C[i][j] += alpha * A[i][k] * B[k][j]

Listing 4.2: Optimized code for the GEMM kernel in Listing 4.1

4.2.3 Program transformations for RTMs

This section presents a high-level overview of the overall compilation
flow and describes our proposed loop and layout transformations to
generate efficient code for RTMs. Polyhedral codes operate on array
accesses and can be transformed to improve spatial locality. How-
ever, array regions are often accessed more than once (e.g., in stencils)
which requires undoing shifts as illustrated in Sec. 4.2.2.3. We explain
our mechanism of identifying such patterns in a program and subse-
quently elucidate on our loop transformations. The section closes with
an analysis of the correctness of the transformations and their current
limitations.

4.2.3.1 Overall compilation flow

Fig. 4.16 presents a high-level overview of the compilation flow. Our
transformations are independent passes that do not affect the front-
end and back-end optimizations of LLVM. Polly takes the LLVM IR,
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Figure 4.16: A high-level overview of the overall compilation flow

preprocesses it, builds SCoPs (if any), performs dependence analysis,
and computes the schedule tree. This original schedule can be further
optimized using the default isl scheduler [337] in Polly. We place the
isl scheduler before our transformations because we expect standard
optimizations (see Section 4.2.2.2) to improve the reach of our transfor-
mations. Also, note that the isl scheduler applies transformations from
scratch and could thus not start from a partially optimized scheduler
(e.g., after our RTM Scheduler). The RTM scheduler (see Section 4.2.3.2),
similar to the isl scheduler, takes the dependence analysis and the
schedule tree and returns a modified schedule tree representing a
shifts-optimized schedule. After the RTM scheduler, we perform layout
transformations (see Section 4.2.3.3) that further reduce shifts, in par-
ticular for loops with dependencies. The Polly backend then translates
the modified schedule tree into an AST and ultimately to LLVM IR.

4.2.3.2 Schedule transformations for RTMs

Let us consider the simple kernel in Listing 4.3 from the horizontal
diffusion stencil in the COSMO model – an atmospheric model used
for climate research and operational applications by various meteo-
rological services [352]. Let us assume that each DBC stores exactly
one row of an array and access ports in all DBCs point to location 0.
To compute the resulting array lap, each row in array in needs to
be accessed 3 times (i− 1, i, i + 1). In general, since several statement
instances access the same memory location, the loop nest exhibits
potential for data-reuse (locality). However, from the RTM perspective,
the longer delays required for resetting access ports may adversely
affect both the performance and the energy consumption, offsetting
the locality benefits.

for(int i = 1; i < I - 1; i++)

for(int j = 1; j < J - 1; j++)

R1: lap[i][j] = in[i][j] + in[i+1][j] + in[i-1][j] + in[i][j+1] + in[i

][j-1];

Listing 4.3: Simplified stencil for horizontal diffusion from the COSMO
model
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Figure 4.17: Shifts within a DBC. The figure demonstrates the shifting opera-
tion by highlighting one row/DBC (R2/DBC-2) and shows how
the access port in the DBC (represented by the arrow) needs to be
reset after each iteration of i for the example code in Listing 4.3.
The transformed code in Listing 4.4 eliminates the overhead
shifts by enabling bi-directional accesses.

The long delays in RTM could be circumvented by enabling two-way
accesses to array in as shown in Fig. 4.17. The bi-directional accesses in
in are generated from the optimized code shown in Listing 4.4 which
reduces the number of RTM shifts by around 40% (the original code
incurs approximately (3× J + 2× J)× I while the transformed code
needs only (3× J)× I shifts). To be able to generate this optimized
code, we first need to identify potential targets, i.e., array in and loop j
in this case, by analyzing the memory access pattern and subsequently
change the order of memory accesses so that long shifts are avoided.
For the example, this means that the execution order of all statement
instances in the j loop needs to be reversed for every second iteration
of the outer loop i. Since the alternation decision is based on the value
of i, we name it alternation base (AB) in the rest of this chapter while
loop j is referred to as the alternation candidate (AC). Note that there
can be more than one ACs and ABs in any given n-deep loop nest
where n > 2.

for (int i = 1; i < I - 1; i++)

if (i % 2 == 1) // forward

for (int j = 1; j < J - 1; j++)

lap[i][j] = in[i][j] + in[i+1][j] + in[i-1][j] + in[i][j+1] + in[i][j

-1];

else // backward

for (int j = J - 2; j > 0; j--)

lap[i][j] = in[i][j] + in[i+1][j] + in[i-1][j] + in[i][j+1] + in[i][j

-1];

Listing 4.4: Transformed code for the kernel in Listing 4.3
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The schedule optimizer is shown in Algorithm 5. It takes a SCoP S
and dependencies D of a program as input. Assuming that S is not
empty, the algorithm extracts the schedule tree from the schedule map
and normalizes it (see lines 1–2 in Algorithm 5). The normalization
step traverses the schedule tree to make sure that each band node (see
Sec. 4.2.2.2) represents exactly one dimension. This eases subsequent
operations to annotate band nodes in the tree as AC and AB.

Analysis for optimization targets: The proposed transformations for
bi-directional accesses are only effective in mitigating RTM shifts if
an input program has memory regions that are accessed by multiple
statement instances. To identify this, we iterate through the access
maps of all arrays that are referenced by stmt, and for each map l,
check the injectivity (see line 6).

In the example, the access map of lap is injective because each of its
location is referenced by exactly one statement instance (i.e., R1(i,j)
→ lap(i,j)) while in is not because each in[i][j] is referenced
by statement instances (R1(i,j), R1(i-1,j), R1(i+1,j), R1(i,j-1),
R1(i,j+1)). If the access function is injective, there is no need for
optimization because array locations are accessed only once and the
order of accesses may not have a significant impact on the number of
shifts.

For non-injective access maps, the algorithm first splits the access
map l and groups memory accesses by their loop access order (see
line 7). Memory accesses in[i][j], in[i][j+1], in[i+1][j] etc. are
all of the same loop access order because the order of loop variables
in the index expressions does not change while memory accesses
in[i][j], in[j][i], in[0][j] for example have different loop order.
Each referenced array in the SCoP body can have one or more groups,
depending on the loop access order in the accesses. For each group, the
algorithm searches for ABs and ACs and annotates them (see line 10).

Locating and annotating ACs and ABs: The algorithm identifies the
innermost access dimension by dropping all but the last dimension of
the access map (dimension j in the example). We name it the innermost
index for the rest of the discussion. Note that there can be more than
one innermost index in an access map, e.g., in tmp[i][i+j]. To find the
AC, we locate the innermost access index in the statement dimensions
(see line 18). If the innermost index involves more than one dimension,
i.e., we get more than one statement dimensions as AC, the algorithm
does nothing and moves to the next group (see lines 19–20). These
kinds of accesses are irregular and alternation for one dimension may
negatively impact the number of shifts. In order to mark AC in the
schedule tree, we take the schedule tree and traverse it (bottom-up)
up to the first band node that has dimension in SD and mark it (see
lines 21-27).
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Algorithm 5 RTM schedule optimizer

Input : SCoP as S, Dependencies D
Output : S with RTM optimized schedule Global: bool ACF, ABF;

Band AC, AB
1: T ← Get schedule tree from S
2: T ← Normalized T
3: for all stmt ∈ S do
4: L← List of arrays accessed by stmt
5: for all l ∈ L do
6: if ł is not injective then
7: G ← split l by access order
8: N ← Find stmt leaf in T
9: for all g ∈ G do

10: T ← AnnotateBands(T, N, g)
11: if ACF = true ∧ ABF = true then
12: if coincidence flag of AC is true then
13: Alternate the AC loop based on AB (cf. List-

ings 4.2, 4.4)

14: return S
15:

16: function AnnotateBands(T, N, g)
17: ACF ← f alse, ABF ← f alse
18: SD ← Set of statement dimensions that affects the innermost

dimension of g
19: if |SD| 6= 1 then
20: return T
21: while N is not a Filter node do
22: N ← Parent of N in T
23: if N is a Band node then
24: if schedule dimension of N is in SD then
25: AC ← N
26: ACF ← true
27: break
28: DS← compute distance set of statement instances from g−1

29: PAB← find potential alternation base loops for g in DS
30: while N is not a Domain node do
31: N ← Parent of N in T
32: if N is a Band node then
33: if schedule dimension of N is in PAB then
34: AB← N
35: ABF ← true
36: break

return T

For the identified AC (j in our example), we search through the
remaining statement dimensions (i in this case) to find a base for alter-
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nation. For this, the algorithm first inverses the access map and sorts
the statement instances lexicographically to find the first statement in-
stance. Subsequently, it finds the distance set of all statement instances
from the first instance (see line 28). In our example, each statement in-
stance R1(i, j) accesses (in(i,j), in(i+1,j), in(i-1,j), in(i,j+1),
in(i,j-1)) (see Listing 4.3). The computed inversed map gives the
information that each memory location in(i,j) is accessed by five in-
stances (R1(i,j), R1(i-1,j), R1(i+1,j), R1(i,j-1), R1(i,j+1)) where
R1(i-1,j) is lexicographically minimal. However, since we are only
interested in dimensions other than AC, we fix j to 0 and find poten-
tial alternation bases from the computed distance set (1, 0), (0, 0), (2, 0)
which, in this case, indicates that loop i is to be used as a potential base
for alternation (see line 29). This is determined by fixing dimensions
to zero, one by one, and checking that the resulting set is a non-empty
strict subset of the original distance set. In our example, we have only
one remaining dimension i, fixing this to 0 makes it a non-empty strict
subset of the original distance set. The algorithm, therefore, selects i
as a potential AB.

Similar to the AC, we locate and mark the AB band in the schedule
tree (see lines 30-36). Note that the traversal of the schedule tree for
AB starts from the node above AC to make sure that the AB band is
up in the hierarchy in the tree (outer loop of AC). At this point, the
algorithm leaves the AnnotateBand function and returns the marked
schedule tree (see line 36).

Transformation: In the returned schedule tree, if the AC and AB nodes
are marked successfully and the AC band does not carry dependencies
i.e., its associated coincidence flag is set to true, all correctness checks
are passed and the schedule of the AC band can be safely modified
(see lines 11-12). The optimizer replaces the schedule of the AC band
by creating two partial schedules with distinct domains representing
the schedules for forward and backward accesses respectively (see
lines 13).

For the example codes in Listings 4.1 and 4.3, the transformed codes
are presented in Listings 4.2 and 4.4, respectively. The schedule opti-
mizer eliminates the longer shifts in all array accesses by alternating
the inner-most loop j in both kernels.

4.2.3.3 Data layout transformations

The schedule transformation mitigates the number of RTM shifts by
modifying the execution order of statement instances. Generally, such
transformations are beneficial and effective in kernels such as the ones
in Listings 4.1 and 4.3. However, in other cases such as Listing 4.5, data
dependencies in SCoP statements strictly prohibit statement reordering.
In this case, Algorithm 5 would make no changes and return the
identity schedule. To eliminate the longer RTM shifts in such kernels
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we propose a layout transformation, similar to those proposed for
optimizing stencil computations on SIMD architectures [363].

for (int i = 1; i < I - 1; i++)

for (int j = 1; j < J - 1; j++)

a[i][j] = a[i-1][j] + a[i+1][j] + a[i][j-1] + a[i][j] + a[i][j+1];

Listing 4.5: SCoP example for data layout transformation. The SCoP statement
bears data dependencies.

For stencil kernels such as Listing 4.5, we first find the number
of distinct rows (dr) that are accessed in each iteration of i, 3 in the
example, and then change the data layout by storing dr-consecutive
rows of the original layout in one column in the transformed layout.
This means that J (equal to 3 in this example) elements of each row
are now distributed across J-DBCs and dr rows across dr× J DBCs in
total (see Fig. 4.18). In case the number of available DBCs in RTM is less
than dr× J, techniques such as tiling could be used [363].
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Figure 4.18: Data layout transformation. Each column in the transformed
layout stores 3 rows (clarified with color-coding). In general,
each column stores dr rows where dr is determined by the
pseudocode in Algorithm 6.

For the first complete iteration of the inner loop j, no shifts are
required because all elements of the first 3 rows are stored at location
0 in each DBC. For the next iteration, the outer loop increments by one
which means all elements in the first J-DBCs storing the elements of the
4th row need to be shifted by one, pointing to location 2 now. Note that
these elements are stored in the same DBCs which store the elements
of row 1. However, since the first row will not be accessed again, there
is no need for shifting backward. Further, DBCs storing rows 2 and
3 can reuse elements without any additional shifting. Access ports
in those DBCs are realigned to new elements only when there is no
further reuse of the data elements in them. This interleaving of rows
and elements across DBCs eliminates long shifts. Every new iteration
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of the outer loop requires at most one shift in J DBCs out of the total
3× J DBCs while the inner loop iterations require no shifting.

Algorithm 6 analyzes the memory access pattern to determine dr.
Similar to Algorithm 5 and the description in the previous section,
we first group memory accesses by array names (see line 1). The
example code in Listing 4.5 has only array a. The algorithm then
checks injectivity (see Sec 4.2.3.2) and fixes the innermost index to
0 for each non-injective array. This is due to the fact that data is
stored in row-major layout in DBCs and the innermost index (in this
example j) corresponds to within DBC accesses. For the remaining
dimensions (i in this case), we compute the distance set (see Sec 4.2.3.2)
which determines the number of distinct rows in the stencil i.e., 3 in
our example. The algorithm then applies the layout transformation
illustrated in Fig. 4.18.

Algorithm 6 Layout transformation

Input : SCoP as S, dbcs
1: L← List of referenced arrays
2: for all l ∈ L do
3: if l has more than one access orders then
4: return
5: if l is not injective then
6: Set the innermost index to 0

7: Find the distance set
8: Compute stencil size i.e., dr
9: Apply memory transformation

4.2.3.4 Correctness and limitations

A program transformation is only valid if it respects all dependencies.
For our alternation transformation in specific, we use the same con-
straints that are used for loop parallelization. The isl scheduler already
provides information for this which is reused in the RTM scheduler
(placed after the isl scheduler, see Fig. 4.16). Since our scheduler can
also be run as a standalone pass, it also includes a dependency checker
to make sure program semantics are preserved.

For a dependence relation D of the form (stmt → stmt) and a
schedule map M of the form (stmt → ldate) where ldate is a logical-
date representing a schedule tuple, we construct a new relation R =
{(ldate1, ldate2); ldate1 = M(stmt1), ldate2 = M(stmt2) ∀(stmt1, stmt2) ∈
D} i.e., each element in R represents a pair of logical-dates of depen-
dent statements. By taking the difference of all tuples in R, we end up
having a set L of logical-dates. If the value for a specific loop is zero
for all ldate ∈ L, it can be safely alternated otherwise the scheduler
moves to the next memory access group.
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Note that our transformation operates on SCoP statements and does
not optimize across loop nests. For an array accessed in multiple loop
nests of the same program, our scheduler optimizes accesses in each
loop nest separately. The reason is that the penalty of not optimizing
across loop nests is negligible. It boils down to a one-time long shift
to align the access port(s).

For our transformations, we assume that the memory subsystem
allows us to reason about access locality. In modern computing sys-
tems where security is a prime design consideration and the memory
subsystem, in particular, is vulnerable to attacks such as bus snoop-
ing and memory extraction, memory encryption becomes necessary
to protect memory contents. If encryption is performed in software
similar to [362], our transformations are unaffected. However, if a
memory device uses dedicated hardware for encryption similar to
intel SGX [77] or the AMD variant [119], it may not allow reasoning
about access locality at the current abstraction layer. For such systems,
techniques need to be developed that allow optimization such as ours
to be applied at a point where access locality can be reasoned about.

4.2.4 Results and discussion

This section presents our experimental setup and a description of
the evaluated benchmarks followed by an analysis and evaluation
of our proposed transformations for RTMs. We first look into the
shifts reduction and then analyze the kernels’ latency and energy
consumption.

4.2.4.1 Experimental setup and benchmarks

Our transformations are integrated in the LLVM/Polly pipeline (9.0.1).
The compilation host is an Intel core i7 (3.8 GHz) processor and 32 GB
of memory running Linux Ubuntu (16.04). As target system we use
an RTM-based scratchpad memory backed by off-chip DRAM. We use
the RTM simulator RTSim [125] in trace-drive mode, with memory
traces extracted from Polly. The memory parameters of RTSim are
listed in Table 4.3. The latency and energy numbers are extracted from
the circuit-level memory simulator Density [196]. The per-access and
per-shift latency and energy numbers also include the latency/energy
of the peripheral circuitry.

For evaluation, we use two well-known benchmark suites, namely,
the standard polyhedral polybench suite and kernels from an atmo-
spheric model COSMO, which is widely used in climate research and
operational applications. Polybench consists of 29 applications from
different domains including linear algebra, data mining, and stencil
kernels [235]. The Consortium for Small-Scale Modelling (COSMO)
is a numerical atmospheric model for weather forecasting and large-
scale climate modeling used by numerous national meteorological
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Table 4.3: RTM parameters (256 MB RTM, 32 nm, 32 tracks / DBC)

Number of DBCs 1024 × 1024

Domains per DBC 64

Leakage power [mW] 753.9

Write energy [pJ] 576.2

Read energy [pJ] 447.3

Shift energy [pJ] 420.5

Read latency [ns] 12.82

Write latency [ns] 17.57

Shift latency [ns] 11.14

Area [mm2] 78.84

services and academic communities [29]. A central part of the COSMO
implementation applies over 150 stencils and operates on 13 arrays on
average. However, most of these stencils are not compute-bound. As
such, the performance of the model largely depends upon the efficient
use of the memory system. We use 3 representative benchmarks of
the COSMO model (horizontal diffusion, vertical advection, and fast
waves) for evaluating our transformations.

For evaluation purposes, we enable/disable different transforma-
tion passes in the compilation flow (see Fig 4.16) and compare the
generated code. Concretely, we evaluate the following configurations:

• identity: Program with the original identity schedule (baseline),
i.e., with transformations disabled.

• isl: Program with only the isl optimized scheduler [337], i.e.,
RTM-specific transformations disabled. This configuration helps
us understand the impact of a state-of-the-art optimizer, without
modifications, on an RTM-based system.

• rtmst: Program with the RTM schedule transformations (see
Sec. 4.2.3.2) applied directly to the original schedule, i.e., isl
scheduler and layout transformations disabled.

• isl-rtmst: Program with the isl and RTM schedule transformations
enabled.

• rtm-slt: Program with the RTM schedule and layout transforma-
tions enabled (see Sec. 4.2.3.3).

• isl-rtm-slt: Transformed code with the entire compilation pipeline
enabled (isl scheduler, RTM scheduler, and layout transforma-
tion).
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4.2.4.2 RTM shift analysis

Fig. 4.19 presents a summary of the RTM shifts of all configurations
across all benchmarks compared to the baseline (identity). On average
(geometric mean), the (rtmst, rtm-slt, isl, isl-rtmst, isl-rtm-slt) con-
figurations reduce the RTM shifts by (9%, 21.8%, 6.2%, 13%, 30.9%)
respectively. Note however that these averages include results of those
benchmarks where no configuration alters the RTM shifts e.g., gesummv,
jacobi-1d, ludcmp, mvt.
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Figure 4.19: Comparison of RTM shifts reduction in different configurations.
All results are normalized to the baseline identity configuration.

To highlight the reduction in RTM shifts by our transformations
alone, Figure 4.20 presents only those benchmarks where rtmst or
rtm-slt always reduce shifts. On average for these benchmarks, the
rtm-slt and isl-rtm-slt configurations reduce RTM shifts by 41.6% and
53.3% respectively. The rtmst reduces the number of shifts in 9 cases
by an average of 26% (maximum up to 49% in the gemm kernel).
In the remaining kernels, the optimizer either marginally improves
or worsens the number of shifts i.e., ≤ ±2% (doitgen and advection)
or returns the identity schedule (no change). This is in line with
the description of the schedule optimizer in Sec. 4.2.3.2 where we
explain how we only transform potentially beneficial programs and
leave others unaffected. The only kernel where rtmst increases the
number of shifts by a mere 2% is advection. Our analysis of the code
suggests that this is due to the conflicting optimization demands of
the memory accesses in the SCoP statement which could be resolved
by either enabling layout transformations or running isl before rtmst
(to split the loop nest and enable optimization).

By enabling the data layout transformation, the schedule optimizer
(rtm-slt) further reduces the number of RTM shifts by 12% (maximum
up to 83% in seidel-2d). While the additional shifts reduction in rtm-slt
mostly stems from the data layout transformation, in some specific
cases layout transformation also enables schedule transformations for
efficient shifts reduction (e.g., in fdtd-2d and advection).

The impact of the isl affine scheduler [337], alone, on the RTM

shifts, is arbitrary. To demonstrate this, Fig. 4.21 presents only those
benchmarks where the isl scheduler always affects RTM shifts, either
positively or negatively. It may reduce the number of RTM shifts by
as much as 85% (e.g., in diffusion) or exacerbate them by more than
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Figure 4.20: Comparison of RTM shifts reduction in different configurations.
All results are normalized to the baseline identity configuration.
The figure presents only those benchmark kernels where our
transformations reduce RTM shits. For all other kernels, our
transformations does not change the original schedule.

100% (e.g., in gramschmidt). This is expected because the scheduling
algorithm tries to maximize parallelism and locality with no regard
to RTM shifts (see Section 4.2.2.2). For the experimental results in
Fig. 4.19-4.21, we run the scheduler with all possible options and
select the best configuration (the isl implemented pluto [364] variant +
schedule_whole_component) [293], in terms of the RTM shifts. Close
analysis of the kernels where the isl scheduler minimized the RTM

shifts reveals that the reduction in shifts either comes from loop-fusion
(as in the case of diffusion) or loop-reordering (e.g., in gemver). In both
cases, the transformed code maximizes memory accesses to the same
DBC location, i.e., all n accesses to a DBC-location are performed before
moving to the next location in some or all arrays, thus reduces the
number of RTM-shifts.
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Figure 4.21: Normalized results of RTM shifts reduction in different con-
figurations. All results are normalized to the baseline identity
configuration. The figure presents only those kernels where the
isl scheduler affects the RTM shifts.

In kernels bicg, gramschmidt and syr2k, isl exacerbates the number
of RTM shifts. The RTM scheduler, if enabled after isl in the pipeline,
improves the isl results in the majority of the cases but still in some
kernels the number of shifts is higher compared to the baseline.

On average, isl-rtmst reduces the RTM shifts by 13.7% which is 11.4%
less compared to isl. Some interesting kernels to analyze are the gemver,
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threemm, trmm, twomm where the isl scheduler moves the data flow
dependencies from inner to outer loops and enables the RTM scheduler
to split and alternate the inner loops. In some cases, such as symm and
twomm, both rtmst and isl when applied separately do not mitigate
the RTM shifts. However, together they reduce the number of shifts by
14% and 26% respectively. The isl optimized code does not improve
the number of RTM shifts but it splits the outer-loop, in the case of
symm for example, which allows the rtmst to alternate the inner loop.

The isl-rtm-slt configuration combines the impact of the individual
gains of each configuration. More importantly, the optimized schedule
of this configuration complements the locality and parallelism benefits
of the isl scheduler with RTM shifts optimizations. On average, the
shifts reduction compared to the baseline translates to 29.5% which is
(3.5%, -8.5%, 27.3%, and 15.8%) better compared to (rtmst, rtm-slt, isl,
and isl-rtmst) respectively. More importantly, it significantly increases
the optimization coverage, that is, the ratio of the number of kernels
where shifts are minimized to the total number of kernels. The isl-
rtm-slt mitigates shifts in 62.5% of the cases which is (25%, 12.5%,
31.3%, and 15.6%) better compared to (rtmst, rtm-slt, isl, and isl-rtmst)
respectively.

4.2.4.3 RTM performance analysis

Fig. 4.22 presents the impact of shifts reduction on the RTM latency
(smaller is better). On average, the improvement (geometric mean
across all reported benchmarks) in latency for all configurations (rtmst,
rtm-slt, isl, isl-rtmst and isl-rtm-slt) is (5.9%, 13.1%, 3.8%, 7.1% and
17.9%) respectively.
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Figure 4.22: Impact of the schedule and layout transformations on the over-
all latency/runtime. All results are normalized to the baseline
identity configuration. The ideal random access (accesses require
no shifts) RTM gives a lower bound on the latency.

Rtmst alone reduces the RTM latency by up to 22% (in the heat-3d
and gemm kernels). Interestingly, the absolute shift savings in different
applications not necessarily directly correlate with the RTM latency
reduction. For instance in rtmst, the shifts reduction in the gemm
kernel (with respect to the baseline) is higher compared to that of the
heat-3d kernel. However, for the same configuration, the RTM latency
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improvements are comparable (22% in both cases). Our analysis of
results suggests that this is due to the higher number of per-access
shifts in the heat-3d kernel compared to that of the gemm kernel in their
identity schedules. Rtm-slt further reduces the latency of the heat-3d
kernel by 24%.

The latency results of isl generally show a similar trend to the shifts
reduction in Fig. 4.21. The kernel gramschmidt displays an interesting
behavior with only 17% increase in the RTM latency compared to
a more than 100% increase in the RTM shifts. This kernel mostly
references similar or consecutive locations in memory (bearing on
average 1 shift per 4 accesses). As a result, although isl exacerbates
the number of shifts significantly, the impact on the RTM latency is
not as severe. The isl-rtm-slt configuration clearly shows that except in
isolated cases, it outperforms all other configurations and can improve
the RTM access latency by as much as 52.6% in heat-3d, and 48.2% in
diffusion. As for the COSMO kernels alone, the significant reduction in
RTM shifts (61.3% on average) improves the RTM latency by an average
35.4% (in the best configuration i.e., isl-rtm-slt).
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Figure 4.23: RTM energy consumption in various configurations. All results
are normalized to the baseline identity configuration. The ideal
random access (accesses require no shifts) RTM configuration
gives a lower bound on the energy consumption.

4.2.4.4 RTM energy consumption analysis

Fig. 4.23 reports the normalized RTM energy consumption (smaller
is better) of all configurations compared to the baseline. On average
(geometric mean), the gain in energy consumption for (rtmst, rtm-slt,
isl, isl-rtmst and isl-rtm-slt) is (12.1%, 28.6%, 8.6%, 17.4% and 39.8%)
respectively. The reduction in the RTM energy consumption is due
to the simultaneous improvements in both the leakage energy and
the dynamic energy. While the improvement in the dynamic energy
comes from the reduction in the RTM shifting operations, the gain
in the leakage energy consumption stems from a shorter execution
time. For rtmst, the average leakage energy reduction is 5.9% while
for isl-rtm-slt it is 17.9%. Similar to our results analysis in Sec. 4.2.4.2,
isl-rtm-slt combines the benefits of all other configurations and reduces
more energy compared to others. For instance, in the heat-3d kernel,
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the isl configuration itself does not affect the number of RTM shifts and
hence its energy consumption, however, it enables transformations
that lead to 85.3% reduction in the RTM energy consumption compared
to 35.6% alone by the rtmst configuration. For the COSMO kernels, the
RTM energy consumption is reduced by a significant 67.1% (geometric
mean). For the diffusion kernel alone, the significant reduction in
the RTM shifting operations (81%) reduces its runtime by 48.2% (see
Fig. 4.22) and its energy consumption by 81.3%.

Compared to other memory technologies, there are plenty of works
that demonstrate that RTMs are significantly more energy-efficient than
SRAM, STT-MRAM, and DRAM and can improve the energy consump-
tion by more than 3× [98, 124, 296, 355, 356].

4.2.4.5 Impact on code size and compilation time

The code size of the rtmst increases by an average of 25% across
all benchmarks which is 16% higher than the code size of the isl
configuration. For the polybench kernels alone, the code size compared
to the baseline increases by 8.2% which is 2.8% less than the code size
of the isl. For the COSMO kernels, the rtmst increases the code size by
1.9× compared to the identity schedule while the isl reduces the code
size by 9.5%. The reason is that the isl scheduler fuses multiple loop
nests while the RTM scheduler alternates every loop nest separately,
increasing code size.

As for the compilation time, overall, there is no measurable differ-
ence in isl-rtmst and isl as shown in Fig. 4.24. The rtmst configuration
slightly increases the compilation time. However, except in isolated
cases such as diffusion and heat-3d, this increase in compilation time is
negligible. Our analysis of the source code suggests that the compi-
lation time for rtmst increases because it treats loop nests separately
while the isl and isl-rtmst configurations operate on fused loops, when
possible, making them slightly faster.
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4.2.5 Related work

Racetrack memory has been evaluated across the memory hierarchy
for different application domains and different system setups. Owing
to its unprecedented density, Park et al. [345] evaluated RTM as an
SSD replacement in a graph processing application and observed not
only a significant boost in performance but also up to 90% reduc-
tion in energy consumption. As main memory, RTM has reportedly
outperformed iso-capacity DRAM in terms of performance (49%) and
energy consumption (75%) [98, 296]. When explored at the last-level
cache, RTM demonstrated significant improvements in performance
(25%), energy (1.4×), and area (6.4×) [355, 367]. Similar trends have
been shown at lower cache levels [347], at gpu-register files [182, 299],
and for RTM-based scratchpad memories [124, 180]. Exploiting its
physical properties, recent works have also proposed RTM based logic
devices [172] and in-memory acceleration of neural networks [368].

The shift operations in RTM can lead to errors that can be elim-
inated using correction techniques such as [183, 211]. In addition,
the significant performance and energy gain in RTM-based systems
is strictly dependent on the number of RTM shifts. If not handled
properly, these shift operations can degrade the RTM performance by
up to 26× compared to an iso-capacity SRAM [356] and can consume
more than 50% of the energy [342]. Various hardware and software
solutions have been proposed in the past for efficient handling of the
RTM shift operations. Among them, memory request-reordering, data
swapping, preshifting and intelligent data and instruction placement
have shown good promise [9, 42, 126, 127, 180, 182, 203, 296, 367].
Since the architectural optimizations add to the design complexity
of RTM controllers, software optimizations such as data placement
and high-level transformations are highly desirable but, unfortunately,
less explored. To the best of our knowledge, Khan et al. [124, 128]
is the only work where the authors explore manual loop and layout
transformations to mitigate the number of RTM shifts for the tensor
contraction operations and give suggestions for code generation. How-
ever, no real efforts have been made to develop more general and
automatic compilation frameworks for RTM-based systems.

The polyhedral model is vastly used for automatic optimization/-
parallelization of programs [25, 58–60, 364] and is used in various
source-to-source and IR-to-IR compilers, e.g., Pluto [364], CHiLL [343],
Polly [74, 75], GRAPHITE [232], URUK [361], and the polyhedral
extension of the IBM’s XL compiler suite [245], and as underlying
model for higher-level domain-specific languages, e.g., in TeML [341]
and TensorComprehensions [354]. While most of these tools focus on
improving parallelism and temporal/spatial locality for multi-core
architectures, some of them attempt to optimize for more specific
platforms including to GPUs [353, 360], FPGAs [351], memory hier-
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archy [23, 361], systolic arrays [49], or application domains such as
stencils [365] and tensors [357]. In this work, we extend the polyhedral
optimizer Polly, to generate efficient codes for RTMs by maximizing
successive accesses to the same or nearby locations.

4.2.6 Conclusions

We introduce RTM-specific program transformations in the polyhedral
compilation framework Polly to reduce the amount of RTM shifts re-
quired by a program execution. The shift optimization comes from
reordering the memory accesses and/or transforming the data layout
in the RTM. We explain how the schedule optimizer identifies potential
optimization targets and modifies the schedule in a way that elimi-
nates longer (overhead) shifts. In kernels where data dependencies
prohibit schedule transformations, we show how data layout transfor-
mation can effectively reduce RTM shifts. We empirically demonstrate
that our optimizations effectively reduce RTM shifts both with and
without the Polly default affine scheduler. However, when applied
together, our optimizer not only preserves the optimizations of the
affine scheduler but also exploits the optimizations it enables for RTMs.
The jointly optimized solution improves the RTM shifts by up to 85%
(average 41%), which improves the performance, and energy con-
sumption by an average of 17.9% and 39.8% respectively. We believe
our framework will pave the way for RTMs to go mainstream and
attract the architectural community to investigate hardware-software
co-optimization for RTMs. Our work contributes and fits within larger
efforts to architect hardware and software abstractions for emerging
computing systems [349].

Postscript: This chapter presented our porposed schedule and layout
transformations for shift minimization in RTMs. The automatic compila-
tion framework presented in Section 4.2 generalize the domain-specific
transformations from Section 4.1 and generate RTM-efficient code for
any SCoP having repeatedly accessed memory blocks. This chapter
also completes our set of solutions for shifts minimization in RTMs.
In the next chapter, we discuss the RTM potential in CIM systems and
explore the transverse read (TR) operation to implement various logic
and compute operations.



5
B R A I N - I N S P I R E D C O G N I T I O N I N N E X T
G E N E R AT I O N R A C E T R A C K M E M O R I E S

Prelude: This chapter demonstrates RTM’s potential in CIM systems
by accelerating an entire HDC framework. We exploit the RTM device
characteristics to implement various logic and compute operations
in place. The contents in this chapter are based on our article titled
"Brain-inspired Cognition in Next Generation Racetrack Memories",
a joint with the University of Pittsburgh, which is currently under
review in the ACM Transactions on Embedded Computing Systems and
publicly available on Arxiv [130].

5.1 hyperdimensional computing in RTMs

Hyperdimensional computing (HDC) is an emerging computational frame-
work inspired by the brain that operates on vectors with thousands
of dimensions to emulate cognition. Unlike conventional computa-
tional frameworks that operate on numbers, HDC, like the brain, uses
high dimensional random vectors and is capable of one-shot learning.
HDC is based on a well-defined set of arithmetic operations and is
highly error-resilient. The core operations of HDC manipulate HD vec-
tors in bulk bit-wise fashion, offering many opportunities to leverage
parallelism. Unfortunately, on conventional Von-Neuman architec-
tures, the continuous movement of HD vectors among the processor
and the memory can make the cognition task prohibitively slow and
energy-intensive. Hardware accelerators only marginally improve re-
lated metrics. On the contrary, only partial implementation of an
HDC framework inside memory, using emerging memristive devices,
has reported considerable performance/energy gains. This chapter
presents an architecture based on racetrack memory (RTM) to conduct
and accelerate the entire HDC framework within the memory. The
proposed solution requires minimal additional CMOS circuitry and
uses a read operation across multiple domains in RTMs called trans-
verse read (TR) to realize exclusive-or (XOR) and addition operations.
To minimize the overhead the CMOS circuitry, we propose an RTM
nanowires-based counting mechanism that leverages the TR opera-
tion and the standard RTM operations. Using language recognition
as the use case demonstrates 7.8× and 5.3× reduction in the overall
runtime and energy consumption compared to the field-programmable
gate array (FPGA) design, respectively. Compared to the state-of-the-art
in-memory implementation, the proposed HDC system reduces the
energy consumption by 8.6×.

155
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5.2 introduction

The success of machine learning has fueled the transformation of
industry and society in recent decades. A key factor for the ubiquity
of these learning algorithms is their use in mobile devices such as
smartphones, tablets, or sensor networks. However, classic approaches
such as deep learning require enormous computing and power re-
sources [281]. A single training of of a transformer-based deep learning
model requires weeks on modern GPUs and produces carbon foot-
prints (a proxy for energy consumption) ≈ 5× more than the entire
lifetime carbon footprint of a passenger car [272]. Unfortunately, these
characteristics are at odds with the requirements of many IoT de-
vices, namely limited bandwidth, memory and compute power, and
battery capacity. Architectural innovations such as near-memory and
in-memory computing, along with the alternate models for machine
learning such as hyperdimensional computing, substantially reduce
the area and energy consumption of cognitive-inspired computing
systems without compromising accuracy [120].

The idea of hyperdimensional computing (HDC) is inspired by biologi-
cal systems that generally combine a lower yet sufficient accuracy with
a very high energy efficiency. HDC frameworks and classification algo-
rithms mainly operate on binary or bi-polar hypervectors, typically
having thousands of dimensions [118]. The base or seed hypervectors
are randomly generated and describe input features. In HDC training,
class hypervectors are generated by performing a set of basic algebraic
operations (XOR, permutation, addition, thresholding, and multipli-
cation) that combine several hypervectors and the properties of the
desired class. In inference, the same encoding is applied to the input
data to generate a query hypervector and reason about a given dataset.
The query hypervector is then classified by performing a similarity
match operation.

With conventional Von-Neumann machines, shuttling of hyper-
vectors between the memory and the processor makes the overall
classification process prohibitively slow. To overcome this, state-of-the-
art proposals use accelerators and near-memory processing to achieve
parallelism and energy efficiency [53, 241, 242]. Since the algebraic
operations in most of the HDC frameworks are memory intensive and
inherently parallel, they are particularly well-suited for in-memory
computing. Furthermore, in most emerging memory technologies, the
physical properties of the memory cells can be exploited to realize
some, if not all, HDC operations in place [102, 247].

In one of the most recent works, an entire HDC framework is im-
plemented on an integrated system using memristor crossbars with
additional CMOS logic [120]. Specifically, the multiplication oper-
ation required for “binding” and “similarity search” operations is
implemented using phase change memory (PCM) crossbars while the



5.2 introduction 157

addition, permutation and thresholding operations are realized by
additional near-memory CMOS logic. Although the in-PCM HDC sys-
tem significantly reduces energy consumption (by more than 6×), it
has three major limitations. First, the additional CMOS logic incurs
large area and energy penalties. In the ideal case, the entire framework
should be implemented using memory devices. Second, the write
operation in resistive memories such as PCM is extremely expensive
(in terms of latency and energy) and induces wear on the endurance-
limited PCM cells. Although the proposed solutions avoid repetitive
programming of the memristive devices, the fundamental problem
of expensive writes and finite endurance remains. Third, memristive
devices compute values in the analog domain. Besides accuracy im-
plications, which are not as severe due to the inherent resilience of
HDC, analog computation requires power hungry [340] back-and-forth
conversion between the analog and digital domains (via ADC/DAC).

To overcome these challenges, we use another class of emerging
nonvolatile memory technologies called racetrack memory (RTM) or
domain wall memory [22] to implement the entire HDC framework. An
RTM cell consists of a magnetic nanowire that stores multiple data bits
in magnetic domains and is associated with one or more access ports.
RTM promises to realize the entire framework in the digital domain
with relatively low additional logic and without compromising on
accuracy.

We present HDCR or, HyperDimensional Computing in Racetrack,
a complete in-RTM HDC system where all HDC operations are imple-
mented in RTM using the RTM device characteristics. Namely, a novel
access mode called transverse read (TR) is used to conduct processing
within the RTM [211, 359]. By applying a sub-shift-threshold current
across two access points along the nanowire, the resistance state of
the nanowire can be used to count ‘1’s at each bit position across mul-
tiple adjacent data words within the memory. HDCR leverages the TR

operation and makes appropriate changes to the peripheral circuitry
to realize the XOR operation. Together with our design for in-memory
counting, majority operation, and “permutation,” TR enables all neces-
sary HDC processing operations to be performed in a highly parallel
fashion within RTM.

Our experimental results show that for the well-known use case of
language recognition, our HDC system is an order of magnitude faster
than the state-of-the-art FPGA solution and consumes 5.3× and 8.6×
less energy compared to the state-of-the-art FPGA and PCM-crossbar
solutions, respectively.

The main contributions in this chapter are as follows:

1. We present a complete HDC system with precise control and
datapaths based on nonvolatile racetrack memory.
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2. For the rotation operation, we make necessary changes to the
RTM row buffer to enable rotation of HD vectors with a simple
copy (read and write) operation.

3. We propose a first RTM nanowires-based counter design to per-
form the majority operation and compute the Hamming weight.

4. For binding, we implement the XOR logic by doing a transverse
read operation and using the modified row buffer to infer the
result.

5. For bundling, we use RTM counters to find the majority output
at each position in the hypervectors.

6. For comparison with the class vectors, we compute the Ham-
ming distance between the query vector and each class vector
leveraging a TR-based XOR operation and the RTM counter.

7. We evaluate our system on a standard benchmark and com-
pare the runtime and energy consumption with state-of-the-art
FPGA [242] and in-PCM implementations [120].

The remainder of this chapter is organized as follows: Section 5.3
provides background information about HDC, language recognition,
RTM and TR. Section 5.4 proposes the architectural modification needed
to perform operations inside RTM and explains the implementation of
our RTM counter. Section 5.5 explains different HDCR modules and their
integration to perform HDC operations in RTM. Section 5.6 evaluates
HDCR, demonstrating the energy and latency advantages of using RTM.
Section 5.7 presents some of the most related work in the literature.
Finally, Section 5.8 concludes the chapter.

5.3 background

In this section, we introduce the fundamentals of HDC, its major op-
erations, and main components. We then describe our use case and
provide details on classes and input features/symbols. Finally, we pro-
vide background on RTM technology, its properties and organization,
and the working principles of the transverse read operation.

5.3.1 Hyperdimensional Computing

Hyperdimensional computing, also referred to as brain-inspired com-
puting, is based on the observation that neural activity patterns can be
regarded as one fundamental component behind cognitive processes.
These patterns can be modeled by leveraging the mathematical prop-
erties of hyperdimensional spaces. In conjunction with a well-defined
algebra, they can be used to implement machine learning tasks with
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less computational effort than other approaches such as SVM [93].
Since the dimension D of the hyperdimensional space is on the order
of 104, this approach is extremely robust to variation and errors within
its hypervectors.

In HD computing, each hypervector describes a unique point in
space and encodes either a feature, a group of features, or a class
in the given machine learning problem. As shown in Fig. 5.1-I, the
base or seed hypervectors describe input features, and are built up
element-wise from random values. In HDC training, class hypervec-
tors are generated by performing a set of algebraic operations that
combine several hypervectors and the properties of the desired class.
In inference, the same encoding is applied to the input data to gen-
erate a query hypervector and reason about a given dataset. The
query hypervector is then classified by performing a similarity match
operation.

Various HDC frameworks exist that implement HDC in different
ways such as (1) using different types of hypervectors (bipolar, bi-
nary, integer, etc.), (2) using a different distribution of elements in
hypervectors, and (3) employing a different set of algebraic operations.
Since we focus on a digital, in-memory implementation of HDC, we
consider a binary HDC subset. Thus hypervectors consist of binary
values, and the framework leverages Boolean operations to implement
the required algebraic operations, i.e., binding, bundling, permutation,
and similarity checking. For the hypervectors, we consider the dimen-
sionality of a hypervector D = 8192 and a probability of P = 0.5 for
each component to be a one or a zero. We use the Hamming distance
dH(~a,~b) metric to compare the hypervectors~a and~b, resulting in the
normalized number of dissimilar elements of both vectors. For large
vector sizes, the Hamming distance between random vector pairs, in
98% of the cases, results in dH(~a,~b) = D/2. In this context, we classify
any two vectors as similar (dH < 0.5) or dissimilar (dH ≥ 0.5). Since
dH(~a,~b) ≈ B(D, P = 1/2) with B representing the binomial distribu-
tion, random, i.e., unrelated, vectors are unlikely to deviate from D/2.
Thus, HDC defines sufficiently dissimilar (e.g., dH ≥ 0.5) vectors to be
orthogonal1.

In the context of HDC for binary hypervectors, relevant algebraic
operations are:

• Multiplication or Binding is used for combining related hyper-
vectors. This operation is implemented as element-wise XOR
operation between N hypervectors e.g., ~c = ~x1 ⊕ ~x2 . . . ~xN binds
~xi : i = 1, 2, ..., N together.

• Permutation is used to generate a new hypervector that is or-
thogonal to the original hypervector by performing a reversible

1 Mathematically, orthogonal vectors would have dH = 1, HDC relaxes this definition to
dH ≥ 0.5 because it attempting to distinguish between similar and dissimilar vectors.
HDC redefines vectors with dH = 1 as diametrically opposed.
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operation. The permutation is a unary operation ~xp = ρ(~x) such
that the resulting vector ~xp is orthogonal to ~x. In the context
of this work, we use piece-wise circular shifts to perform this
operation (see Section 5.5.3.1). Rotating a hypervector n times is
expressed as ~xp = ρn(~x).

• Addition Superposition or Bundling is used to generate a hy-
pervector representing a set of hypervectors. This operation is
implemented by performing the vector sum and element-wise
thresholding, also referred to as the majority operation. For an
even number of binary hypervectors, the tie is broken by a fixed
random hypervector. The bundling operation generates a repre-
sentative hypervector which is non-orthogonal to the operand
hypervectors.

• Similarity Check: This operation computes the Hamming dis-
tance between the query hypervector and all class hypervectors
in order to find the closest match. The similarity check is carried
out on a so-called associative memory holding all relevant class
hypervectors.

5.3.2 Use Case: Language Recognition

In the context of this work, we use the language recognition (LR) classifi-
cation task, which has already been used as a benchmark in several pre-
vious works [120, 241, 242]. With this example application, we demon-
strate the scalability and efficiency of our architecture compared to the
state-of-the-art FPGA [242] and in-memory [120] implementations. We
use the language recognition code published on [81] that classifies an
input text to one of 22 European languages. The input features consist
of 26 letters of the Latin alphabet and the space character (represented
by τ). As a first step in building the hyperdimensional (HD) model,
hypervectors are generated for all input letters and are stored in an
item memory (item memory (IM)) Θ = {a→ ~a, b→~b, . . . , z→ ~z, τ → ~τ}
(see Fig. 5.1-I). The dimensionality of the hypervectors (D = 8192) is
carefully chosen to ensure better utilization of the memory architec-
ture.

After the IM is created, the training of the HD model is carried
out using one text for each of the 22 languages. In order to model
the probability distribution of individual letters in the respective lan-
guage, the text is broken down into substrings of length N called
N-grams. In the binding operation, a hypervector is generated for each
N-gram of the input text which are subsequently combined by the
bundling operation into a single hypervector. This is in contrast to
models which use dictionaries and banks of phrases, which increases
the complexity of similarity checking without a commensurate ad-
vantage in accuracy or efficiency [288]. For example, the first N-gram
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Figure 5.1: An overview of the HDC operations

of the phrase "dont panic" for N = 4 would be "dont". This is en-
coded to a single N-gram vector, as shown in Fig. 5.1-II, by permuting
and XORing the individual hypervectors from the IM (~Θ) as follows:
~Φdont = ρ3(~d)⊕ ρ2(~o)⊕ ρ(~n)⊕~t. Due to the properties of the selected
encoding, all generated N-gram vectors Vz = {~Φdont, ~Φontτ , . . . , ~Φanic}
are orthogonal. Finally, the language vector ~T is generated as follows:
~~T = Majority (~Φdont, ~Φontτ , . . . , ~Φanic) (see Fig. 5.1-III). In the training
phase, ~T represents a (language) class hypervector ~L and is stored
in the associative memory. In the inference phase of HDC, ~T , the
query hypervector, represents the input sentences or phrases and is
generated with exactly the same operations.

After the query hypervector is generated, the distance between the
query vector and the class vectors must be determined. As shown in
Fig. 5.1-IV and mentioned in Section 5.2, this is done by calculating
the Hamming distance between the input vector and each of the
22 class vectors dh(~T , ~L) = cntp(~T ⊕ ~L). The Hamming distance is
computed by performing an element-wise XOR operation followed
by a population count on the resultant vector. As a final step, ~T is
classified into ~Lξ where ξ = argmini∈{1,...,22}

(
dH

(
~T , ~Li

))
.

This method is based on the fact that the language vectors lie
in a linear space that is spanned by a unique N-gram distribution
of the associated language. The class vector with the closest N-gram
distribution has the smallest distance to the input vector and represents
the resulting language.

5.3.3 Racetrack Memory

The basic storage unit in racetrack memory is a magnetic nanowire
that can be grown vertically or horizontally on a silicon wafer, as
shown in Fig. 5.2. The nanoscale magnetic wires, also referred to as
tracks or racetracks, can be physically partitioned into tiny magnetic
regions called domains that are delineated by domain walls (DWs) wher-
ever the magnetization changes. This magnetization direction can
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be based on either in-plane (± X) or perpendicular (± Z) magnetic
anisotropy (IMA/PMA). The state of any given domain exhibits a
different resistance when it is parallel/antiparallel to a fixed reference
domain, which can be interpreted as bits representing 1s and 0s [22].
Generally, each track in RTM has its associated access port(s) and can
store K bits delineated by K− 1 physical notches along the nanowire,
where K can be up to 128. The number of access ports per nanowire is
usually less than the number of domains due to the larger footprint
of the access ports [331]. This mismatch in the number of domains
and access ports leads to compulsory shifts, i.e., each random access
requires two steps to complete: 1© shift the target domain and align it
to an access port and 2© apply an appropriate voltage/current to read
or write the target bit.

Read/Write Port Read-Only Port

RWL WWL

WWL RWL

GND

SL

BL

SL

BL

... ...

Data Domain

Extra-Domain

Domain Wall

Access Port Access Port

...

... ...Access Ports

Horizontal Racetracks

Silicon Substrate

II

A B

Figure 5.2: RTM nanowire structure (A) and anatomy(B).

Shifting is conducted by passing spin-polarized current along the
nanowire from either an access point or an endpoint to another ac-
cess or endpoint; sufficient densities of spin-polarized current can
overcome a potential well (“pinning”) created at notches and in turn
advance all the domain walls toward the next notch position. This
inherent behavior of RTM can be imprecise, generating what is known
as a “shifting fault” in the literature. Several solutions have been pro-
posed to mitigate this fault mode [8, 211, 325]. Due to shifting, the
access latency of RTM is limited by the velocity with which domains
move within the nanowire as well as the amount of shifts. The max-
imum number of domains per track depends on device parameters,
but depending on the user/application requirements and the number
of access ports, the number of addressable domains per track varies
to accommodate shifting each addressable domain to align with any
port.

Fig. 5.2 depicts the major components of a DWM nanowire and its
access circuitry. The blue domains represent the actual data stored
in memory. The yellow domains are extra domains used to prevent
data loss while shifting domain walls (and the data between them)
along the nanowire. The dark blue elements and the connected access
transistors form read-only or read-write ports. A read-only port has a
fixed magnetic layer, indicated in dark blue, which can be read using
RWL. The read-write port is shown using shift-based writing [290]
where WWL is opened and the direction of current flows between BL
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and BL, and reading conducted from BL through the domain and RWL
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Figure 5.3: RTM organization. SA stands for subarray, DBC for domain wall
block cluster, AP for access port, and SensAmp for sense amplifier.

Similar to contemporary memory technologies, RTM cells are grouped
together to form a 2D memory array. The hierarchical organization
consists of banks, subarrays, and tiles, as shown in Fig. 5.3. As il-
lustrated, the basic building block of the RTM array is a group of T
nanowires and is referred to as domain wall block clusters (DBCs) [126,
355]. A DBC therefore can accommodate K T-bit memory objects. Data
in a DBC is distributed across nanowires which facilitates parallel ac-
cess of all bits belonging to the same data word. Access ports of all T
tracks of a DBC point to the same location and domains can be moved
together in a lock-step fashion. For our proposed system, we use
K = 32 and T = 512, the standard cache line size, as shown in Fig. 5.3.
Note that for simplicity, we do not show the overhead domains in
Fig. 5.3 and K refers to only addressable domains in the nanowires. We
assume 16 DBCs per tile, 16 tiles per subarray. Furthermore, we assume
a single compute-in-memory tile or cim-tile per subarray, capable of
performing in-RTM computations (see Section 5.4).

Transverse Read Operation in RTM: The transverse read (TR) operation
is an alternate access mode which conducts reads along the nanowire
rather than across it [211]. By applying a sub-shift-threshold current
at an access port, and performing a normal read at the next nearest
access port (for example, between the two access ports in Fig. 5.2), it
is possible to detect how many of the domains between the ports are
in a particular magnetic orientation. The resultant magnitudes of the
difference of resistances is small compared to the normal access mode,
which limits how many domains can be accurately read in this manner
without inadvertently shifting the domain walls. However, using a
transverse read distance (TRD) of five domains can reliably produce a
count of domains which are in either magnetic orientation[350].

Prior work used this count to detect misalignment when shifting
nanowires [211], but this count can also be used to conduct bitwise
logical operations on the data within the TRD [359]. Using a level-
detecting sense amplifier, we can detect different voltage thresholds
when 0, 1, ..., n bits are set, where exceeding any given threshold
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implies that all lower thresholds are also exceeded. For example, if
a TR is conducted across four words at a specific bit position in a
nanowire, we derive logical OR if any of the thresholds are exceeded,
logical AND if the threshold for four bits is exceeded, and XOR if the
threshold for one or the threshold for three is exceeded. For a fixed TR

distance, these levels can be be used to realize carry-sum operations
which can be composed to realize addition and multiplication [359].
In the next section we show how a modified version of these level
operations combined with handful of additional CMOS logic gates
can be used to implement the fundamental HDC operations.

5.4 enabling computation in racetrack memory

This section presents the extensions to the cim-tile circuitry that enable
in-place logical operations and counting in RTMs.

5.4.1 Logical Operations in RTM

Similar to [241, 242], we use the binary spatter-coding (BSC) [117]
framework that has four primary operations, i.e., XOR and circular
shift operations for binding, the majority for bundling, and XOR for
the similarity check as described in Section 5.3.1.

To implement these operations in RTM, HDCR exploits the nanowires’
properties and modifies the peripheral circuitry in selected RTM tiles
(see Fig. 5.3), referred to as compute-in-memory tiles. Concretely, one
tile (T15) in each subarray is designated as a cim-tile. Fig. 5.4a shows
the necessary support circuitry similar to [359], with the logic required
for compute-in-memory operation outlined in red. Sense amplifiers
(Si) shown in blue are aligned with access points at bitline Bi to
conduct either a normal read at that bit position, or a TR as described
in Section 5.3. During a TR operation, the sense amplifier outputs five
bits indicating the five possible reference thresholds corresponding
to a particular count of 1s between the access port at Bi and another
access port at a TRD = 5 distance in the same nanowire. For example,
2:3 indicates that the voltage threshold between 2 and 3 ones was
exceeded, indicating that at least 3 ones exist in the TR. To realize TR-
based computations, we introduce the CIM block as shown in Fig. 5.4b.
Based on the thresholds representing the count of ones in the TR, and
XOR is high when only the threshold for 0:1 or only the threshold for
2:3 is high. The results of all operations are output simultaneously, to
be selected using the multiplexer immediately below the CIM blocks.

During a normal read operation, each sense amplifier outputs the
value of the single bit position directly beneath the access port. This
output bypasses the CIM tile and feeds directly to the first row of
multiplexers to enable a fast read path. This same read path for bit
line Bi is routed to the multiplexer for the prior bit line Bi−1 and the
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subsequent bit line Bi+1, shown with orange and turquoise arrows,
respectively. These paths enable circular shifting (permutation) of
words by one bit position at a time. Together with the six outputs
of the CIM block, the topmost row of multiplexers selects from eight
operations on the input data. The second row of multiplexers from
the top is added to select from the CIM/shifting data path or the direct
read path. The final row of multiplexers and the writeback drivers are
identical to the architecture of the non-cim tiles; data for writeback
can be fed in from local row buffers Wi, or read from the current tile
to move data or write back the result of a cim operation.

Operating this circuitry requires a new pseudo-instruction in the ISA
called cimop. Each cimop instruction consists of a source address (src),
indicating which data to align to the access ports, a size, indicating
the number of nanowires to be included in the TR operation, and op,
which selects the cim operation from the topmost row of multiplexers.
Note that this psuedo-instruction entails some primitive operations
to conduct the alignment and pad operands for sizes less than the
TRD. We assume that these primitive operations are scheduled by the
compiler and conducted by the memory controller.

5.4.2 Counting in RTM

Fig. 5.5a presents an overview of the proposed in-RTM counter. It com-
bines the TR operation in the RTM nanowire with the basic read/write
operations to realize counters. The RTM nanowires used for counters
must be equipped with two read-write APs, necessary for the TR op-
eration. For a base2·X counter, the two access ports in the nanowires
must be X− 2 domains apart, i.e., the TRD in the nanowire must be X.

In HDCR, we need decimal counters for the majority operation and
the population count. As such, we use X = 5, delimited by APs in dark
blue in Fig. 5.5b and with arrows in Fig. 5.5a. Note that each nanowire
in the RTM counter only uses the domain between the access ports and
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the number of nanowires in the counter are defined by the counter
size. For instance, in a decimal counter, i.e., X = 5, a single nanowire
can only count between 0 and 9 (see Fig. 5.5a). If we want to count
from 0 and 99, the RTM counter requires at least two nanowires. In
general, for a decimal counter having size C, an RTM counter requires
at least blog10(C)c + 1 nanowires.

The RTM counter operates using the same principle as a Johnson
counter. Let us assume a two-nanowire decimal counter that can count
up to 99 and is initially set to 0 (see Fig. 5.5a). The counter value at any
instant in time is determined by the number of 1s between the APs
and the state of bit P, the bit under AP2, i.e., the right AP in Fig. 5.5b.
The bit P determines if the counter is in the first or second half of
counting, in this case between 0-4 or between 5-9. For the decimal
value 0, the X bits are all filled with 0s and hence the bit P is zero. If
we want to increment the counter by four, for instance, four 1s need
to be shifted under AP1, as shown in Fig. 5.5a. To count beyond 5,
i.e., when all bits between APs including the P bit are 1, 0s are shifted
under AP1. The decision to shift a 1 or a 0 under AP1 is controlled by
the P bit position: when P = 0, we interpret the counter value as the
count of ones between access points, and when P = 1, we interpret the
counter value as ten minus the count of ones (or five plus the count
of zeros) between access points. To realize this behavior, toggling the
value of P also toggles the value pushed into the nanowire when the
counter is incremented, as shown for the decimal value 12 in Fig. 5.5a.
The table of Fig. 5.5a represents all TR and P combinations and their
associated values.
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Figure 5.5: RTM counter: overview and details.

The RTM counter requires nanowires in DBCs to be shifted inde-
pendently. This drastically increases the shift controller complexity
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since each nanowire AP position needs to be stored and controlled
independently instead of a single position per DBC (512 nanowires).
In order to reduce this impact on the nanowire shifting logic, we
also used the notion of transverse write (TW) [359]. Traditionally, to
perform a shift based write under the left AP on Fig. 5.5b, RWL0 and
one WWL0 would be closed, the current flows though the fixed layer,
one domain and then go to the ground, writing a new value and
erasing the previous value under the left AP. However, by closing one
WWL0 and RWL1, while sending a higher current density, our design
can perform a write operation and perform a partial shift along the
nanowire rather than between the fixed layer and ground. We called it
partial (i.e., segmented) shift since only the bits between the heads are
shifted. Thus, a TW from the leftmost AP writes a value under that
AP, and shifts the remaining bits between the APs to the right, erasing
the bit that was under the right AP.

In the next section, we use these in-RTM compute-in-memory con-
cepts and present our proposed architecture for HDCR. Further, we
explain how the cim-tile operations implement each of the fundamen-
tal HDC operations.

5.5 hyperdimensional computing in racetrack memory

This section presents the implementation details of the proposed
HDCR. It provides an overview of the overall system and explains the
individual modules and their system integration.

5.5.1 Overview

Fig. 5.6 presents an overview of the proposed in-RTM HDC system.
As explained in Section 5.3.1, the 27 hypervectors of the input letters
are initially mapped to the item memory, 9 DBCs in each subarray as
shown in Fig. 5.6a. Note that for simplicity, we only show the cim-
tiles in the subarrays. For the encoding operation, the hypervectors
in the item memory are loaded into the encoder module. This re-
quires the hypervectors in the item memory to be shifted and aligned
to the port positions in their respective DBCs (Step 1.1 in Fig. 5.6b).
Subsequently, HDCR copies the hypervectors to the encoder module
implemented in DBC9 of the subarray (see Step 1.2 in Fig. 5.6b and
Line 7 in Algorithm 8). HDCR then permutes the hypervectors in the
encoder module (see Lines 9-11 in Algorithm 8) and performs the
XOR operation to generate their N-gram hypervector (see Step 1.3 in
Fig. 5.6b and Line 16 in Algorithm 8). Since the N-grams represent N
contiguous characters in the input text, the encoder module produces
a new N-gram hypervector for each new character in the text. Thus for
an input text of S characters, the encoder module generates S− N + 1
hypervectors in total.
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Figure 5.6: An overview of the HDCR. The figure shows hypervectors’ map-
ping to cim-tiles and provides detail of the individual operations
in HDCR. Note that all tiles shown in the figure are cim-tiles.

For each new N-gram hypervector, the counters for each bit posi-
tion implemented in DBCs10−15 are incremented based on the XOR
result (see Step 1.4, Lines 18-20 in Algorithm 8). The counting module
performs the majority operation on all N-gram hypervectors and gen-
erates a single hypervector based on the final counters’ state (Step 1.4).
In the training phase of the HDC this generated hypervector repre-
sents a language class hypervector (~Li). This is stored in the associative
memory, and the process is repeated for all remaining languages. In
contrast, during the inference phase, the resultant hypervector (~Ti)
represents the input text. After generating this hypervector, it is passed
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Algorithm 7 HDC Procedures

1: Global variables: Vz ← ∅, θ, associative memory(AM), THR
2: . θ = item memory, AM = Associative memory, (cf. Section 5.3.2)
3: function HDC_Train(LS, θ)
4: . LS: List of Lang strings for training
5: for all Li ∈ LS do
6: ~Li ← Encode(Li)
7: Store ~Li in AM

8: return AM

9: function HDC_Classify(L, θ, AM)
10: . L: Text string to be classified
11: ~T ← Encode(L)
12: LangLabel← Sim_Check(~T )
13: Display: L is LangLabel language.

14: function ρ(~e)
15: ~η ← [], ~ψ← []
16: PG_size← dim(~e)

T . T = 512
17: for Itr ← 0 to PG_size do
18: . Rotate left within each SA
19: ~η ← rol ( ~e[512·Itr]:[512·(Itr+1)]−1)
20: . Concatenate rotated chunks
21: ~ψ[512·Itr]:[512·(Itr+1)]−1 ← ~η

22: return ~ψ

23: function Sim_Check(~T )
24: for all ~Li ∈ AM do
25: . Implemented with TRs (cf. Sec 5.5.4)
26: dH(~T , ~Li)← Hamdist(~T , ~Li)
27: . Implemented at the MemControl level
28: ξ = argmini∈{1,...,22}(dH(~T , ~Li))

29: return Label of language class ~Lξ

on to the similarity search module in Step 2 to classify it into one of
the language classes, as shown in Fig. 5.6b. In the following sections,
we provide the implementation details of the individual modules.

5.5.2 Item Memory

The HDC framework operates on D = 8192 bit wide binary vectors.
Since our DBCs are only 512 bits wide, this requires dividing the
hypervectors into 16 chunks of 512 bits each to store the complete
8192-bit hypervector. These chunks can be stored in DBC(s) of the same
subarray, as we are doing in Section 5.5.4, or in the same DBC (e.g.,
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Algorithm 8 HDC Procedures - Part 2

1: function Encode(String L)
2: ~v0 = ~v1 = ~v2 = ~v3 ← 0
3: N ← 4, D ← 8192
4: charCount← 0
5: counters← 0 . D counters in total
6: for all ci ∈ L do
7: ~ci ← θ(ci) . Read HV from IM

8: . Rotate HVs in the N-gram
9: ~v3 ← ρ(~v2)

10: ~v2 ← ρ(~v1)
11: ~v1 ← ρ(~v0)
12: ~v0 ← ~ci
13: charCount← charCount + 1
14: if charCount ≥ N then
15: . XOR with a TR operation
16: ~φ = ~v0 ⊕ ~v1 ⊕ ~v2 ⊕ ~v3

17: . Push counters at all bit positions
18: for Itr ← 0 to D do
19: if ~φItr == 1 then
20: countersItr + +
21:

22: . Check all counters’ state against THR
23: for Itr ← 0 to D do
24: if countersItr > THR then
25: ~TItr ← 1
26: else
27: ~TItr ← 0
28: return ~T

DBCi) across 16 different subarrays. However, for the encoder module
in HDCR, to enable performing the TR operation in parallel across all
8192 bit-positions, the hypervector (HV) chunks need to be distributed
across different subarrays, as shown in Fig. 5.6a. This group of 16

subarrays sharing and manipulating chunks of the same hypervectors
is referred to as a processing group (PG). A PG generates the output of a
CIM operation on TRD hypervectors in a single cycle.

For the LR application, the IM is composed of 27 hypervectors (HVs),
one for each character of the Latin alphabet plus the space character
(see Section 5.3.2). Since a DBC in our proposed system has 32 domains
per nanowire, the 27 HVs can be stored in a single DBC (e.g., DBC0)
across all subarrays in a PG. However, since each new character con-
sumed from the input text accesses the IM to retrieve its corresponding
HV, this tight packing of HVs in a single DBC can lead to a significant
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number of shift operations in RTM. In the worst case, access to the
IM can incur 27− TRD = 23 shifts, which stalls the other modules in
HDCR and substantially increases the overall runtime. To overcome
this, HDCR dedicates 9 DBCs (see Fig. 5.6a) to the IM and distributes the
HVs in the IM such that accessing an HV requires at most one RTM shift.
That is, by placing each character HV directly at or adjacent to one of
the two access ports, we can access the 18 HVs beneath the access ports
without shifting, and the remaining 9 HVs by shifting by one position.

To efficiently map the character HVs into the IM, we profiled each
language to rank the frequency of each character in our corpus. The
most frequently occurring characters are then placed directly under
the access ports, and the remaining characters are distributed among
the bit positions adjacent to the access ports.

5.5.3 Encoding

The encoder module transforms the entire language into a representa-
tive vector (see Section 5.3.1). From the implementation perspective,
the encoder module performs three major operations, i.e., binding,
permutation and bundling (see Fig. 5.6b). In the following sections,
we explain how these operations are implemented.

5.5.3.1 Binding and Permutation in RTM

As explained in Section 5.3.1, the binding operation in HDC gener-
ates a new hypervector by XORing the permuted versions of the N
character hypervectors which form each N-gram in the input text.

Initially, all hypervectors of the respective N-gram are iteratively
loaded into the encoder module i.e., DBC9 (see step 1.2 in Fig. 5.6b).
Depending on the HVs position in the IM, this may require a shift
operation in RTM, as demonstrated in Fig. 5.6b (step 1.1). In the next
step, the hypervectors are rotated by M times, where the value of
M for a particular hypervector depends upon its position in the N-
gram. This rotation is functionally equivalent to a bitwise circular shift,
where the M most significant bits overwrite the M least significant bits
after shifting the remaining 512−M bits left by M bit positions. Note
that this shifting is different from the RTM nanowire shift operation.
In this case, the HV bit positions along the nanowire do not change,
rather the HV representing the character is shifted across all nanowires
it spans, using the peripheral circuitry in Fig. 5.4a. For instance, for
the first N-gram “dont” in the running example, the hypervector ~d
of the first character d is rotated by 3, the hypervector~o is rotated by
2, the hypervector ~n is rotated by 1, and the hypervector ~t is taken
unchanged. This is important for differentiating this permutation of
these four characters from any other permutation.

To efficiently rotate a hypervector, which spans many DBCs, the
rotate control signal is enabled and a read operation is performed on
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all subarrays in a PG. The resultant hypervector in the row-buffer is the
rotated-by-one version of the original hypervector. A subsequent write
command is issued to the RTM controller to update the new value in
RTM. To perform a rotation by three, our RTM architecture will perform
three rotated-by-one operations sequentially.

Note that rotating an entire 8192 bit HV in RTM requires considerable
modifications to the RTM row buffer. The customization in Fig. 5.4a
only allows rotating a 512-bit chunk of the HV, i.e., rotation at the
granularity of the subarray. HDCR performs chunk-wise permutation
on all subarrays in a PG and concatenates the permuted chunks to
generate the permuted HV, as demonstrated in Fig. 5.6b (Step 1.3)
and Algorithm 7 (Lines 19-21). This chunk-wise rotation operation is
reversible and the generated hypervector was empirically verified to
not adversely impact the accuracy of the HDC framework.

Once the required N hypervectors for a particular N-gram are
loaded and N − 1 (all but last) hypervectors are permuted, they are
XORed together to generate the resultant N-gram hypervector (~φi). As
described in Section 5.3.3, a TR operation and sense amplifiers detect
how many ones exist between the TR access ports. When exactly one
or exactly three are detected, the logic in Fig. 5.4b asserts the XOR
output, representing the XOR of all TRD operands.

This binding operation is performed iteratively for all N-grams in
the input text. As the input text is consumed, each character hypervec-
tor in each N-gram is used at least N times in different permutations
to generate N N-gram vectors. For instance, the hypervector~t is used
as-is to generate the first N-gram vector in the running example. How-
ever, for the second N-gram (ontτ) vector,~t is rotated by 1. Similarly,
for third and fourth N-gram vectors,~t is rotated by 2 and 3, respec-
tively. Since the sequence of operations is known, we can reuse each
permutation result in the next iteration to save execution cycles.

To accomplish this we leverage both upper and lower access points
to align, read/shift into the row buffer, and then write back the rotated
into the access points while minimizing alignment operations. The
detailed approach is described in Algorithm 9 referencing DBC loca-
tions from Fig. 5.3 in the encoder DBC9 shown in Fig. 5.6. Using the
example, we first read ~v0 and rotate and then write it back to complete
p1(~n). We then align ~v1 with the lower access point to complete p2(~o).
We then align the outgoing ~v3 with the upper access point to reset it to
zero. We then align ~v2 with the upper access point to complete p3(~d)
and then align the lower access point to write~t from the IM.

As a result of the binding and permute operation, a new N-gram
vector is generated and is consumed by the bundling unit, as explained
in the next section. For the entire input text, a whole set of N-gram
vectors is generated where each vector corresponds to an N-gram
in the text. Recall, Vz represents all N-gram vectors of the input text
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Algorithm 9 Memory operations required for computing an N-gram
HV

1: . ~vi, i ∈ {0, 1, 2, 3, 4} represents HV stored in DBC

locations 0,1,2,3,4, i.e., all five locations between APs (see Step 1.3
in Fig. 5.6b)

2: . At any time Shift (if necessary) to align ~ci to AP in IM

3: Algorithm Step: ~v1 ← ρ(~v0) (see Line 11 in Algorithm 8)
4: Memory operations:

(i) Read ~v0 (with rotate signal enabled)
(ii) Write the row buffer contents to lower access point (old V0,
new V1)

5: Algorithm Step: ~v2 ← ρ(~v1) (see Line 10 in Algorithm 8)
6: Memory operations:

(i) Shift down one position to align ~v1 to lower AP
(ii) Read ~v1 (with rotate signal enabled)
(iii) Write the row buffer contents to lower access point (old V1,
new V2)

7: Clear old ~v3:
8: Memory Operations

(i) Shift up by three positions to align ~v3 to upper AP while
resetting row buffer
(ii) Write the row buffer contents to upper access point (old V3,
new V4)

9: Algorithm Step: ~v3 ← ρ(~v2) (see Line 9 in Algorithm 8)
10: Memory operations:

(i) Shift up by one position to align ~v2 to AP
(ii) Read ~v2 (with rotate signal enabled)
(iii) Shift to align DBC location three to AP
(iv) Write the row buffer contents to the DBC upper access point
(old V2, new V3)

11: Algorithm Step: ~v0 ← ~ci (see Line 12 in Algorithm 8)
12: Memory operations:

(i) Shift down by one position to align DBC new V0 to lower AP
and Read ~ci
(ii) Write the row buffer contents to the DBC V0

(see Section 5.3)2. The bundling operation combines all elements in
Vz by taking the bit-wise majority on each bit position, as explained
in Section 5.3. In the next section, we discuss the implementation of
bundling in HDCR.

2 Vz is distinct from V0..31, which represents logical locations in the DBC (see Fig. 5.3).
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5.5.3.2 Bundling Operation in RTM

Bundling in the HDC framework is a conjunctive operation that forms
a representative vector for the set of N-gram hypervectors Vz (see
Section 5.3.1). Concretely, it computes a new hypervector~Γ by adding
all hypervectors in Vz, i.e., ~Γ = ∑~Φ∈Vz

~Φ. Each component in ~Γ is
then compared to a fixed threshold to make it binary , i.e., ∀i ∈
{1, 2, . . . 8192}, ~Ti = βi, and

βi =

1, if ~Γi > threshold

0, otherwise

(see Algorithm 7, Lines 23-27). The threshold value for binary hy-
pervectors is typically the greatest integer less than 0.5 times the
number of elements in Vz. For instance, for |Vz|= 5, the threshold
value will be b5× 0.5c = 2, which also means that the resultant hy-
pervector ~T is equivalent to the output of the majority function, i.e.,
~T = Majority( ~Φ, ∀~Φ ∈ Vz).

HDCR uses RTM counters (see Section 5.4.2) for each bit position
to implement the majority function. As shown in Fig. 5.6b (step 1.2-
1.4), each subarray dedicates DBCs10−15 for RTM counters. At each bit
position in a PG, the 6 nanowires in DBCs10−15 are used to implement
the counter for that particular position. With 6 nanowires, the RTM

counters can count from 0 to 106− 1, far more than what is required for
the LR use case. For each new N-gram hypervector, HDCR updates all
counters simultaneously based on the XOR result. Once a particular
counter hits the threshold, it ignores subsequent incrementing. To
simplify the thresholding, the memory controller can preset the state
of the counter to M− T where M is the maximum value represented
by the counter and T is the desired threshold. Thus, the thresholding
does not require any additional logic and can be represented by the
status of the P bit of the most-significant digit of the counter.

In our evaluated system, we have 128 PGs (see Section 5.6.1). To
reduce the overall runtime, the input text is divided into 128 chunks,
and each chunk is provided to a separate PG. Once the computation in
all PGs is finished, the majority output of all PGs is combined to make
a single final vector. In the training phase of the HDC framework,
this final computed hypervector represents the language (class) hy-
pervector and is written to the associative memory (same DBCs as for
item memory i.e., DBCs0−9 but different positions). In inference, this
hypervector is referred to as the query hypervector and is compared
to all class hypervectors to infer the final result, as shown in Fig. 5.6b
(step 2) and explained in the next section.
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5.5.4 Inference

The inference phase of the HDC framework uses the same encoding
module to generate a query hypervector for the input text. Since
the language class hypervectors are pre-generated in the training
phase and are stored in the cim-tiles, classification is conducted by
computing the Hamming distance of the query vector with all class
vectors to find the closest match (see Section 5.3.1).

This similarity search is encapsulated in a module which performs
three main operations. First, the query hypervector is XORed with all
class hypervectors for bit-wise matching. Subsequently, the Hamming
weight is computed by performing a population count of set bits
within each of the computed hypervectors. Finally, the language with
the minimum Hamming weight is inferred as the output.

From the implementation perspective, HDCR uses one subarray per
language hypervector. For the 22 language hypervectors, HDCR uses
22 subarrays (2 PGs). As shown in Fig. 5.7, the language vectors in
subarrays are stored across different DBCs of the same subarray, unlike
the encoding module which stores hypervectors across different sub-
arrays. The query vector is then written to all 22 subarrays to compute
the Hamming weights independently.
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Figure 5.7: Similarity search module

The XOR operation generates 16×512 bits for each language. In each
subarray (for each language), the 16 chunks are processed sequentially,
with each iteration producing one 512-bit chunk of the XOR operation
in a single cycle, and then storing the results adjacent to one another in
the same DBC (DBC14 in Fig. 5.7) for the subsequent population count
operation. For each of these 16 parallel 512 bit results, the TR operation
sequentially performs the ‘1’ counting in DBC14. HDCR uses the TR

result to shift bits in the RTM counter implemented in DBC15, as shown
in Fig. 5.7. Since the maximum count value in the similarity search
module can be 8192, HDCR uses four nanowires for the RTM counter
in this module. Note that, unlike the per-bit counting for the majority
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operation in the encoding module, the similarity search module uses
a single RTM counter per DBC to find a single Hamming weight value
per language. This necessitates the counters to be updated sequentially
for all 512 TR outputs after each TR operation.

Once the counting operations of the inference is done, the TR and P
values for all counters packed like in Fig. 5.8 and sent sequentially to
the memory controller for final input language selection.

Index 0..4 5 6 .. 10 11 12 .. 16 17 18 .. 22 23 24 .. 511

Value TR00 .. TR04 P0 TR10 .. TR14 P1 TR20 .. TR24 P2 TR30 .. TR34 P3 ∅ .. ∅

Figure 5.8: Example of packing TR and P values from the counters into local
subarray rowbuffer.

5.6 evaluation

This section explains our experimental setup, provides details on
the dataset, and compares our proposed system to state-of-the-art
solutions for performance and energy consumption. Concretely, we
evaluate and compare the following designs.

• HDCR: Our proposed in-RTM HDC system.

• FPGA: The FPGA based HDC system from [241].

• PCM: The in-PCM HDC implementation from [120].

• CPU: For the sake of completeness, we also compare to a software/CPU

control.

5.6.1 Experimental Setup

As a target system, we consider an RTM-based 8GB main memory that
consists of 32 banks, having 64 subarrays each. A subarray consists
of 16 tiles composed of 16 DBCs, which are 512 bits wide and have 32

columns/data domains per racetrack. We assume two access ports
per nanowire and an operating clock frequency of 1000 MHz. The
peripheral circuitry in cim-tiles does not affect the storage capability
or otherwise prevent its use to store data beyond the marginal delay
of a single multiplexer. The majority of the latency overhead results
from the reducing the number of domains between the ports, from 16

to 5, which increases the average shift distance in the cim-tiles. For the
LR use case, the entire training and test data sets fit in RTM. However,
since the proposed solution is generic and use case independent,
the data sets can also be partially loaded into RTM as needed to
accommodate larger inputs with the same size working set. The energy
and latency numbers of the memory subsystem are estimated using
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Table 5.1: RTM latency and energy parameters

Domains per track 32

Tracks per DBC 512

Background power [mW] 212

Read energy [pJ]/bit 0.5

Shift energy [pJ]/bit 0.3

Shift latency [Cycle] 1

Read latency [Cycle] 1

Write latency [Cycle] 1

the CIM architecture presented in [359], the parameters from [323] and
are shown in Table 5.1.

Baseline Systems: For the FPGA design, we use the System Verilog
implementation from [241]. We synthesize the design on a Xilinx
Virtex 7 FPGA (7vx1140tflg1930) using Vivado 19.2. The maximum
clock frequency was 80 MHz and the device utilization is 61% and
23%, for LUTs and flip flops, respectively. We get the throughput result
from the post place & route simulation, which was also used to record
the switching characteristics of the design. The switching activity
file is fed to the Vivado power estimator to get the overall energy
consumption.

For the CPU results, we use an Intel(R) Core(TM) i7-5650U CPU @
2.20 GHz, with 8 GB RAM. We use Matlab R2021b and the LR use case
implementation from [81]. For comparison with the PCM configuration,
we used the numbers reported in [120].

5.6.2 Data Set

The language training data is taken from a corpora [238], which con-
tains sample texts in 22 languages. For inference, an independent data
set from [139] is used, which comprises 1000 sentences per language.
The training, respectively the derivation of the language hypervectors,
was carried out with the entire training data set, which contains a text
of 120000-240000 words per language. The classification and thus the
evaluation of the accuracy is carried out on multiple instances of one
sentence per language. Concretely, 1000 tests with one sentence per
test are performed for each language. We implement both the training
and the inference phases of the HDC framework and report the results
in the following sections.
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Figure 5.9: Runtime of HDC training on different platforms.
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Figure 5.10: Runtime of the HDC inference on different platforms. The results
are generated on average length input text for all languages.

5.6.3 Performance Comparison

The runtime comparison for training and inference in HDCR and FPGA

designs is presented in Fig. 5.9 and Fig. 5.10, respectively. The runtime,
and also the energy consumption in the next section, for the training
and inference phases are computed and reported separately because
training is typically performed once and in advance. In contrast, the
inference is performed more frequently in real-world applications.
Therefore, the measured values for the inference should be regarded
as having a higher relevance. Since the runtime depends on the number
of letters in the input text, which varies for different languages, the
evaluation is performed for each language.

On average (geomean), HDCR is an order of magnitude faster com-
pared to the FPGA design. Note that the FPGA implementation we used
for comparison is already optimized for a high degree of concurrency
and parallelism. All hypervectors are stored in registers, and encoding
an N-gram requires only a single clock cycle, i.e., all N HVs are simul-
taneously permuted, and the XOR operation is performed directly in
the same combinational path. This results in long combinational paths,
which leads to a lower clock frequency of 80 MHz. The massively par-
allel implementation of bit operations on the vectors also results in an
enormous consumption of resources, limiting the given FPGA design
to large devices, e.g., from the Virtex 7 series. Unlike the encoding
operation, the similarity check module compares HVs sequentially
and requires 8192 cycles to compare the query HV to a single class
HV. This module is replicated 22 times to compare to all languages
simultaneously.
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In HDC training, only the encoding module is used to encode large
training texts3 into +their respective class vectors. Despite the sequen-
tial rotation of hypervectors in HDCR, it outperforms the FPGA design
by a geometric mean of ≈ 10.2× (see Fig. 5.9). This is mainly attributed
to the smaller clock period in HDCR 1 ns compared to 12.5 ns in the
FPGA design.

In HDC inference, due to the smaller input text4, the overall runtime
of the FPGA design is largely dominated by the similarity checking
module. We use an average sentence size per language generated
from all 1000 test sentences per language in the test data set for this
evaluation. Again, despite the sequentiality in population counting,
HDCR on average (geomean) reduces the runtime by ≈ 6× compared
to the FPGA design (see Fig. 5.10). This is because the FPGA design
performs the vector comparison sequentially while HDCR compares in
512-bit chunks, in parallel across languages.

On the CPU machine, the training and inference modules require
6.58× 103 sec and 1.12× 103 sec for all 22 languages, which are five
and eight orders of magnitude more compared to HDCR, respectively.

5.6.4 Energy Consumption

In terms of energy consumption, HDCR is comparable to the FPGA

design during the HDC training phase (see Fig. 5.11) and ≈ 5.3× better
during the inference phase. In the similarity checking module alone,
HDCR reduces the energy consumption by ≈ 95× (see Fig. 5.12). How-
ever, this is masked by the roughly equivalent energy consumption
of the encoder module in both designs. The dominant impact on the
energy consumption for the HDCR encoding phase is attributed to the
parallel implementation of the majority operation with RTM counters.
This requires 8192 counters which enable the required number of
parallel bit-write operations. Since the energy consumption for RTM is
proportional to such write operations, it is correspondingly large for
the encoding step. The result presented in Fig. 5.11 shows the energy
consumption during the training phase, which includes the encoder.
While the results vary less than 1% different between FPGA and HDCR,
this analysis does not consider I/O energy associated with moving
data to and from the accelerator. In both cases, the input letters need
to be transferred from the main memory to the computing unit. While
HDCR only needs the input letter to be read and sent to the RTM mem-
ory controller, the FPGA system must also forward the data on the bus
to the FPGA implementation. This omission makes our results more
conservative, but independent of how the external system interfaces
the implementation. Regardless, the reduced inference-time energy

3 The number of characters for the training texts was between 100000 and 200000.
4 The number of characters for the test sentences was between 100 and 200 for all

languages.
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Figure 5.11: Energy consumption (µJ) of the HDC training.
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Figure 5.12: Energy consumption (µJ) of different modules in the HDC infer-
ence.

allows the HDCR implementation to immediately realize a net energy
benefit over the FPGA implementation as presented in Fig. 5.12.

In the case of inference, the similarity checking in HDRC requires
a single counter per language, and the operation is performed only
once. As soon as the bitwise comparison with the XOR operation is
performed, the 1s in the resultant vector are aggregated using the TR

operation and the RTM counter while the FPGA synthesizes a direct 1s
counting circuit.

To summarize, with regard to the overall energy efficiency, the HDCR

implementation reduces the energy consumption by 5.3× (geomean).

5.6.5 Comparison between HDCR and PCM

In the paper from Karunaratne et al. [120], they propose to use the
novel PCM memory to implement HDC. This work does not report the
latency of their implementation, thus here we only show the energy
comparison. Table 5.2 compares the inference energy consumption of
the HDCR and PCM designs for an average-sized input text. Overall,
HDCR outperforms the PCM design by 10.1× in the encoding module
and 1.08× in the similarity search module. Although the PCM design
reports dramatic reduction in the energy consumption in the simi-
larity checking module, largely due to parallel multiplications and
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current accumulation in the crossbar architecture, its overall energy
consumption is still higher than HDCR. This is due to the higher write
energy of the memristive devices compared to RTM. Comparing with
the CMOS-only design of the same reference, HDCR achieves a 51.6×
improvement.

Table 5.2: Energy consumption in HDCR vs PCM (µJ).

Encoder Sim_Check Total

all-CMOS [nJ] 1474 1110 2584

PCM [nJ] 420.8 9.44 430.3

HDCR [nJ] 41.4 8.67 50.07

Improvement (PCM / HDCR) 10.1× 1.08× 8.59×

5.7 related work

Hyperdimensional computing has been used for learning and classi-
fication problems in many application domains. Among others, HDC

has been used for analogy-based reasoning [116], language classifi-
cation [242], hand gesture and activity recognition [200], text classi-
fication [104], and medical applications such as epileptic seizure de-
tection [28]. Although compared to conventional learning algorithms,
HDC is considered lightweight, the dimensionality of the hypervectors
still makes HDC resource-intensive, particularly on embedded and IoT
devices. To improve the performance and energy consumption of the
HDC frameworks, they have been accelerated on various platforms.
These include: FPGAs [257], conventional CPUs and GPUs [54], and
domain-specific accelerators [105, 136, 199]. Since HDC is a memory-
intensive application and is based on simple mathematical and logical
operations, the in-memory compute capabilities of emerging non-
volatile memory technologies can be exploited to accelerate it.

Many recently proposed architectures conduct near- or in-memory
computation using emerging nonvolatile memory technologies [155],
typically tuned to leverage the strength of the particular memory
technology and the intended application. These works can be broadly
categorized based on the underlying technology (phase-change mem-
ory (PCM), ReRAM, STT-MRAM), and further by how they conduct their
processing (bitwise operations, arithmetic logic, vector multiplication).

Vector multiplication and arithmetic is a fundamental operation
to many machine learning and neural network tasks. In HDC, the
same is applied in the encoding and similarity search modules to
compute the n-gram hypervector and similarity score. Karunaratne
et al. [120] implement dot-product operations using PCM in a cross-
bar architecture. Using an on-chip network and DAC/ADC circuits,
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smaller multiply-accumulate subarrays are composed to realize larger
dot-product results. This and similar works leveraging ReRAM [157,
166, 313] provide acceleration and improved energy consumption rel-
ative to GPU/CPU implementations, but offer limited flexibility for
input size, limited accuracy associated with computation in the analog
domain, and require additional area to interpret and accumulate the
analog results. This makes such approaches unscalable for our target
application.

Besides PCM and ReRAM, STT-MRAM technology can also be used
for in-memory computation. For instance, HieIM [224] and MLC-STT-
CIM [213] exploit customized STT-MRAM memories to conduct bitwise
operations on memory contents and build arithmetic operations by
combining bitwise operations. These designs offer energy and area
benefits for simple large matrix operations such as convolution. Still,
they are less efficient than other general PIM proposals and require cus-
tomized cell designs, which are difficult to fabricate. A more efficient
design in STT-CIM [106] conducts computation by opening multiple
rows and sensing the combined current on shared bitlines. Using
modified reference voltages at the sense amplifiers allows OR, AND,
and XOR operations, which are then composed to realize arithmetic
operations. This is more efficient than prior designs since the addi-
tional circuitry is restricted to the sense amplifiers, and more realistic
to fabricate since it does not modify the fundamental cell structures.
Unfortunately, STT-MRAM designs require an access point and a fixed
reference layer for every cell. While some of this area’s cost is miti-
gated by the use of crossbar architecture, the density is limited to the
feature size of the access network. A similar density limitation exists
for computation using phase-change memories [160], with the added
complication of limited endurance in the underlying memory cells. In
contrast, planar racetrack memories only need as many access points
as the length of the DBC, and in turn can achieve superior densities.

There are relatively fewer instances of processing-in-memory ap-
plied to racetrack memories. The state-of-the-art offers three approaches:
S-CNN [165], DW-NN [323], and PIRM [359]. SPIM adds a dedicated
processing unit utilizing skyrmions that can compute logical OR and
AND operations. Unfortunately, these operations require dedicated
circuitry for a fixed number of operands, limiting the utility of the
approach when more complex computation is required [359]. DW-NN
uses dedicated racetrack pairs, which store data from either operand
and compute logical functions by reading across the stacked magnetic
domains. Simple XOR operations are computed directly, and in con-
cert with an additional precharge sensing amplifier, can be used to
compute a SUM and CARRY for addition. These results are then trans-
ferred to conventional racetracks, which can be shifted and summed
to perform multiplication. Unfortunately, performance is bottlenecked
in two places: first, the data must be read from the conventional race-
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tracks to the paired racetracks one bit at a time. Second, each bit
position in the paired nanowires must be shifted under the access port,
serializing the computation. While the architecture offers an energy
and throughput advantage compared to Von-Neumann, this serial-
ization limits the utility of the approach. Finally, PIRM offers a more
generalized computation framework, utilizing a more capable cim-tile
to compute arbitrary logical operations, addition, and multiplication.
PIRM accelerates computation by leveraging TR and multi-operands,
and does not require specialized racetracks to do its work. Our cim-tile
is uses the same philosophy but is tuned for for the operations needed
to compute HDC. Additionally, we explore new operations such as
counters and majority determination.

5.8 conclusions

The data dimensionality and mathematical properties of the HDC

frameworks make them ideal fits for in-memory computations. Many
conventional and emerging memory technologies allow (partial) im-
plementation of the HDC framework in-memory. In this chapter, we
present a complete racetrack memory based HDC system, requiring
inconsiderable additional CMOS logic. Most of the HDC operations
are implemented with the transverse read operation that reports the
number of 1s in the nanowire, exploiting its properties and magnetic
domain (walls) arrangement. For the majority and the population
count operations, we propose RTM nanowires-based counters that
are scaleable and area and energy-efficient compared to their CMOS
counterparts. The hypervectors are organized in RTM in a way that
allows maximum possible parallelism and minimum possible data
movement. For the in-RTM computations, we dedicate one tile per
subarray – the cim-tile – and make minimal but necessary changes
to its peripheral circuitry. For the logic operations, a few additional
logic gates are added to the row buffer circuitry to infer the transverse
results into different logic operations. Our hardware customization
and extensions are negligible compared to other memory technolo-
gies, e.g., the power-hungry ADC/DAC converters, etc., in memristive
devices. For the language recognition use case, our proposed system,
on average, consumes 5.33× and 8.59× less energy compared to the
state-of-the-art FPGA and PCM-crossbar designs, respectively.





6
C O N C L U S I O N S A N D O U T L O O K

This chapter summarizes this thesis and discusses promising research
avenues that are not yet thoroughly investigated.

6.1 conclusions

Emerging nonvolatile memory technologies show great promise to
overcome the performance, capacity, power, and bandwidth barriers
of future computing systems. Among others, the spintronics-based
racetrack memories offer unprecedented capacity, with SRAM compa-
rable latency and better write endurance. However, unlike any other
memory technology, it has a unique challenge in its sequentiality.
This dissertation surveyed the landscape of RTM applications and op-
timization schemes, which helped identify the missing gaps. On the
architectural front, the shift operations in RTM exacerbate its perfor-
mance and energy consumption and can lead to position errors. While
eliminating RTM shifts is not possible, unless it is used to store a single
bit per cell, their impact on the system performance can be mitigated.
Numerous hardware-based shifts optimization techniques exist in the
literature that effectively reduce RTM shifts, but the hardware overhead
associated with these techniques offset the RTM energy and capacity
benefits. We presented compilation and simulation tools that enable
RTM exploration in various system setups to better understand its
behavior and challenges, and reduce the number of shift operations
without any significant overhead.

This dissertation presented a multitude of architectural, software,
and compiler optimization techniques that improve the usability, pro-
grammability, performance, and energy consumption of the next-
generation RTM based systems. We presented RTSim, an architectural
simulation tool that helps understand the tradeoffs in different system
configurations and various optimization schemes. For our experimen-
tation, we mostly employed RTM as a scratchpad memory. This is
because we primarily focused on software optimization techniques,
and scratchpads can be managed from software, e.g., by programmers
or compilers. For results comparison, we used either an SRAM or a
naive RTM as baseline except for the CIM system, where we compared
our architecture to an FPGA accelerator and memristors’ based CIM

system.
For shifts minimization, we proposed approximate, near-optimal,

and optimal solutions for scalar, arrays, and instruction placement in
RTMs. We started by exploring solutions for a simplified single-DBC

185
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RTM architecture for scalar placement. We reconsidered optimization
schemes from other domains and evaluated the state-of-the-art pro-
posals for RTMs. We proposed four new algorithms, i.e., the modified
state-of-the-art heuristic for RTMs (Chen-TB), our novel ShiftsReduce
heuristic, an ILP formulation, and a genetic algorithm. We evaluated
a set of 13 heuristics in total on a set of benchmarks consisting of
applications from different domains. ShifsReduce outperformed all
other heuristics and minimized the number of RTM shifts by up to
40%. Compared to the optimum, ShiftsReduce solutions were within a
reasonable range, i.e., less than 50% from the optimum. Our solutions
for generalized RTM architectures built upon ShiftsReduce and min-
imized the number of RTM shifts by a substantial 4.3× compared to
the state-of-the-art, leading to 46% and 55% improvements in latency
and energy consumption, respectively.

We are the first to explore RTMs and propose solutions for instruc-
tion and array placements. In both cases, the memory accesses are
more sequential and predictable than the scalar accesses. We identified
memory locations that are repeatedly accessed and developed solu-
tions to eliminate the longer shifts required for resetting access ports
before each new iteration. We started from the tensor contraction use
case and hand-crafted layout optimizations for arrays, which proved a
stepping stone to developing the first polyhedral compiler for RTMs.
Our evaluation on the set of PolyBench benchmarks suit and ker-
nels from the COSMO atmospheric model showed that our compiler
could reduce the RTM shifts by up to 85%, leading to 18% and 40%
improvements in performance and energy consumption, respectively.

Finally, we presented an RTM-based CIM system to accelerate a
hyperdimensional computing framework for the language recognition
use case. In this joint work with the University of Pittsburgh, we
demonstrated that exploiting the fundamental properties of the device,
complex logic, and compute operations can be implemented in RTM.
Compared to memristors’ based accelerators, RTMs devices showed
superior performance and energy benefits in implementing bit-wise
operations in the digital domain.

6.2 future work

We see this work as a major step that unveils and enables interesting
future research. We presented an architectural simulation tool that,
in its current form, models only the basic functionalities of the RTM

systems. In the future, it can be extended to implement more intelligent
memory controllers to model RTM-specific optimizations such as pre-
shifting and data swapping/migration. Similarly, misalignment fault
injection and reliability schemes could be integrated into RTSim for a
thorough evaluation and better tradeoff analysis. New simulation tools
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are needed to derive circuit-level parameters that accurately model
various RTM device types and compute device parameters.

From the optimization perspective, we showed that RTM shifts could
be greatly minimized, or at least their impact can be mitigated by sys-
tem re-designing or by performing RTM-specific analysis and transfor-
mations. However, the scope of our solutions can be further extended
to capture more optimization opportunities and cover a broader range
of applications. For instance, we present a polyhedral optimizer that
targets a specific class of (affine) loop programs. The idea can be ex-
tended to non-affine loop structures but would require more detailed
analysis and more careful transformations. Similarly, even in the poly-
hedral optimizer, we currently search for independent loop nests and
optimize them. Performing a more rigorous analysis may allow for
more aggressive optimizations across loop nests.

Similarly, we perform a zig-zagging (back and forth) transformation
in most of our optimizations which introduces additional control struc-
tures (conditional statements) in the program. It would be interesting
to analyze how these transformations affect the overall system’s perfor-
mance. This requires a full-system simulation to capture, for instance,
the number of branch instructions, branch predictor decisions, and
their impact on the overall system.

Existing RTM optimization and reliability schemes are blind to each
other. In a collaborative work with the University of Pittsburgh, we
have recently proposed a joint reliability and optimization scheme (not
part of this dissertation). However, even in our design, the two schemes
are loosely coupled. We believe a more natural and tightly coupled
solution could be developed by considering the misalignments and
shift problems in the construction of the solution.

Finally, as the memory subsystem is getting heterogenuous, the
software stack needs to be revisited. For RTM-based CIM systems, novel
compilation and runtime models need to be developed to ease their
programmability and integration into future heterogeneous systems.
Frameworks such as our open CIM compiler [268] provide a solid foun-
dation and could be extended to support RTMs and other technologies
and cater to their optimizations.
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Figure 4.7 Tensor contraction with the optimized memory
layout (note the layout of R1 in Ã and the access
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B̃ respectively) 123

Figure 4.10 Number of shifts in the optimized layout for
different tensor sizes (normalized against naive) 126

Figure 4.11 Latency comparison 126

Figure 4.12 Overall energy breakdown 127

Figure 4.13 Dynamic energy breakdown 127

Figure 4.14 RTM cell structure 134

Figure 4.15 An overview of the RTM architecture. A DBC

consists of T (e.g., 32) nanowires and stores K
(e.g., 64) T-bit words in a bit-interleaved fash-
ion. The figure on the right shows parallel ac-
cesses to DBCs for improved bandwidth utiliza-
tion and hiding shift latency. 135

Figure 4.16 A high-level overview of the overall compila-
tion flow 139

Figure 4.17 Shifts within a DBC. The figure demonstrates
the shifting operation by highlighting one row/DBC

(R2/DBC-2) and shows how the access port in
the DBC (represented by the arrow) needs to be
reset after each iteration of i for the example
code in Listing 4.3. The transformed code in
Listing 4.4 eliminates the overhead shifts by
enabling bi-directional accesses. 140

Figure 4.18 Data layout transformation. Each column in the
transformed layout stores 3 rows (clarified with
color-coding). In general, each column stores
dr rows where dr is determined by the pseu-
docode in Algorithm 6. 144

Figure 4.19 Comparison of RTM shifts reduction in different
configurations. All results are normalized to
the baseline identity configuration. 148

Figure 4.20 Comparison of RTM shifts reduction in different
configurations. All results are normalized to
the baseline identity configuration. The figure
presents only those benchmark kernels where
our transformations reduce RTM shits. For all
other kernels, our transformations does not
change the original schedule. 149

Figure 4.21 Normalized results of RTM shifts reduction in
different configurations. All results are normal-
ized to the baseline identity configuration. The
figure presents only those kernels where the isl
scheduler affects the RTM shifts. 149



234 list of figures

Figure 4.22 Impact of the schedule and layout transforma-
tions on the overall latency/runtime. All results
are normalized to the baseline identity config-
uration. The ideal random access (accesses re-
quire no shifts) RTM gives a lower bound on the
latency. 150

Figure 4.23 RTM energy consumption in various configura-
tions. All results are normalized to the baseline
identity configuration. The ideal random access
(accesses require no shifts) RTM configuration
gives a lower bound on the energy consump-
tion. 151

Figure 4.24 Average compilation time (in seconds) of dif-
ferent configurations for all benchmarks 152

Figure 5.1 An overview of the HDC operations 161

Figure 5.2 RTM nanowire structure (A) and anatomy(B). 162

Figure 5.3 RTM organization. SA stands for subarray, DBC

for domain wall block cluster, AP for access
port, and SensAmp for sense amplifier. 163

Figure 5.4 Cim-tile architecture. 165

Figure 5.5 RTM counter: overview and details. 166

Figure 5.6 An overview of the HDCR. The figure shows hy-
pervectors’ mapping to cim-tiles and provides
detail of the individual operations in HDCR.
Note that all tiles shown in the figure are cim-
tiles. 168

Figure 5.7 Similarity search module 175

Figure 5.8 Example of packing TR and P values from the
counters into local subarray rowbuffer. 176

Figure 5.9 Runtime of HDC training on different plat-
forms. 178

Figure 5.10 Runtime of the HDC inference on different plat-
forms. The results are generated on average
length input text for all languages. 178

Figure 5.11 Energy consumption (µJ) of the HDC train-
ing. 180

Figure 5.12 Energy consumption (µJ) of different modules
in the HDC inference. 180



L I S T O F TA B L E S

Table 2.1 RTM comparison with other memory technolo-
gies [48, 52, 121, 187, 194, 275] 21

Table 2.2 Comparison of threshold current densities for
different magnetic materials 31

Table 2.3 Summary of spin polarization direction, DMI

direction, spin hall angle, and Sot contribu-
tion to the DW motion driven mainly by STT for
Mn3Ge, Mn3Sn and Mn3Sb. Note that HDM is
along the nanowire axis. 35

Table 2.4 RTM device level parameters [342] 52

Table 2.5 RTM configuration parameters 53

Table 3.1 Comparison of RM with other memory tech-
nologies [194, 222] 61

Table 3.2 Distribution of short, long and very long access
sequences in OffsetStone benchmarks 77

Table 3.3 Configuration details for RM 80

Table 3.4 Memory system parameters (4 KiB RTM, 32 nm,
32 tracks / DBC) 91

Table 3.5 Benchmark characteristics. 103

Table 3.6 Increase in instructions fetched averaged over
tape lengths from 8 to 64. 107

Table 4.1 Configuration details for SRAM and RTM 125

Table 4.2 SRAM and RTM values for a 48 KiB SPM 126

Table 4.3 RTM parameters (256 MB RTM, 32 nm, 32 tracks
/ DBC) 147

Table 5.1 RTM latency and energy parameters 177

Table 5.2 Energy consumption in HDCR vs PCM (µJ). 181

L I S T I N G S

Listing 4.1 GEMM kernel from PolyBench [235] 135

Listing 4.2 Optimized code for the GEMM kernel in List-
ing 4.1 138

Listing 4.3 Simplified stencil for horizontal diffusion from
the COSMO model 139

Listing 4.4 Transformed code for the kernel in Listing 4.3 140

Listing 4.5 SCoP example for data layout transformation.
The SCoP statement bears data dependencies. 144

235


	Dedication
	Abstract
	Publications
	Acknowledgments
	Contents
	1 Introduction
	1.1 Beyond the walls: The landscape of emerging non-volatile memory technologies
	1.1.1 Phase change memory (PCM)
	1.1.2 Resistive RAM (ReRAM)
	1.1.3 Ferroelectric RAM (FeRAM)
	1.1.4 Magnetic RAM (MRAM)
	1.1.5 Racetrack memory (RTM)
	1.1.6 Prospects

	1.2 Computation in (racetrack) memory
	1.3 RTM challenges
	1.3.1 The shifting problem
	1.3.2 Lack of simulation tools
	1.3.3 The unfathomed potential of compuation-in-RTM

	1.4 Problem statement and overview
	1.4.1 Device physics and simulation
	1.4.2 Data placement in RTM
	1.4.3 Instruction placement
	1.4.4 Optimizing compilers for RTMs
	1.4.5 Hyperdimensional computing in RTMs

	1.5 Dissertation contributions and roadmap
	1.6 Other contributions

	2 Understanding device physics and simulations
	2.1 Magnetic Racetrack Memories
	2.1.1 Introduction
	2.1.2 RTM preliminaries
	2.1.3 Physical and material developments in RTM
	2.1.4 RTM applications in the memory subsystem
	2.1.5 HW/SW optimizations for RTM
	2.1.6 Outlook
	2.1.7 Conclusions

	2.2 RTSim: A cycle-accurate simulator for racetrack memories
	2.2.1 Introduction
	2.2.2 RTSim overview
	2.2.3 Case studies
	2.2.4 Conclusions


	3 Shifts-aware Scalars and Instruction Placement in Racetrack Memories
	3.1 Intra-DBC data placement
	3.1.1 Introduction
	3.1.2 Background and motivation
	3.1.3 Optimal data placement: ILP formulation
	3.1.4 Approximate data placement
	3.1.5 Results and discussion
	3.1.6 Related work
	3.1.7 Conclusions

	3.2 Generalized data placement strategies for racetrack memories
	3.2.1 Introduction
	3.2.2 Background
	3.2.3 Generalized data placement in RTM
	3.2.4 Evaluation
	3.2.5 Related work
	3.2.6 Conclusions and outlook

	3.3 SHRIMP: Efficient Instruction Delivery with Domain Wall Memory
	3.3.1 Introduction
	3.3.2 Domain wall memory
	3.3.3 The SHRIMP approach
	3.3.4 Evaluation
	3.3.5 Related work
	3.3.6 Conclusions


	4 Optimizing compilers for racetrack memories
	4.1 Tensor contractions in RTMs
	4.1.1 Introduction
	4.1.2 Background
	4.1.3 Data layout for minimal shifting
	4.1.4 Evaluation
	4.1.5 Related work
	4.1.6 Conclusions

	4.2 Polyhedral Compilation for Racetrack Memories
	4.2.1 Introduction
	4.2.2 Background
	4.2.3 Program transformations for RTMs
	4.2.4 Results and discussion
	4.2.5 Related work
	4.2.6 Conclusions


	5 Brain-inspired Cognition in Next Generation Racetrack Memories
	5.1 Hyperdimensional computing in RTMs
	5.2 Introduction
	5.3 Background
	5.3.1 Hyperdimensional Computing
	5.3.2 Use Case: Language Recognition
	5.3.3 Racetrack Memory

	5.4 Enabling Computation in Racetrack Memory
	5.4.1 Logical Operations in RTM
	5.4.2 Counting in RTM

	5.5 HyperDimensional Computing in Racetrack Memory
	5.5.1 Overview
	5.5.2 Item Memory
	5.5.3 Encoding
	5.5.4 Inference

	5.6 Evaluation
	5.6.1 Experimental Setup
	5.6.2 Data Set
	5.6.3 Performance Comparison
	5.6.4 Energy Consumption
	5.6.5 Comparison between HDCR and PCM

	5.7 Related work
	5.8 Conclusions

	6 Conclusions and outlook
	6.1 Conclusions
	6.2 Future work

	 Bibliography
	List of Figures

	List of Figures
	List of Tables

	List of Tables
	Listings

	List of Listings

