96 research outputs found

    A Review of Short Term Load Forecasting using Artificial Neural Network Models

    Get PDF
    AbstractThe electrical short term load forecasting has been emerged as one of the most essential field of research for efficient and reliable operation of power system in last few decades. It plays very significant role in the field of scheduling, contingency analysis, load flow analysis, planning and maintenance of power system. This paper addresses a review on recently published research work on different variants of artificial neural network in the field of short term load forecasting. In particular, the hybrid networks which is a combination of neural network with stochastic learning techniques such as genetic algorithm(GA), particle swarm optimization (PSO) etc. which has been successfully applied for short term load forecasting (STLF) is discussed thoroughly

    A Novel Fractional Order Fuzzy PID Controller and Its Optimal Time Domain Tuning Based on Integral Performance Indices

    Get PDF
    A novel fractional order (FO) fuzzy Proportional-Integral-Derivative (PID) controller has been proposed in this paper which works on the closed loop error and its fractional derivative as the input and has a fractional integrator in its output. The fractional order differ-integrations in the proposed fuzzy logic controller (FLC) are kept as design variables along with the input-output scaling factors (SF) and are optimized with Genetic Algorithm (GA) while minimizing several integral error indices along with the control signal as the objective function. Simulations studies are carried out to control a delayed nonlinear process and an open loop unstable process with time delay. The closed loop performances and controller efforts in each case are compared with conventional PID, fuzzy PID and PI{\lambda}D{\mu} controller subjected to different integral performance indices. Simulation results show that the proposed fractional order fuzzy PID controller outperforms the others in most cases.Comment: 30 pages, 20 figure

    ORDER BASED EMIGRANT CREATION STRATEGY FOR PARALLEL ARTIFICIAL BEE COLONY ALGORITHM

    Get PDF
    Artificial Bee Colony (ABC) algorithm inspired by the foraging behaviors of real honey bees is one of the most important swarm intelligence based optimization algorithms. When considering the robust and phase divided structure of the ABC algorithm, it is clearly seen that ABC algorithm is intrinsically suitable for parallelization. In this paper, we proposed a new emigrant creation strategy for parallel ABC algorithm. The proposed model named order based emigrant creation strategy depends on sending best food source in a subcolony after modifying it with another food source chosen sequentially from the same subcolony at each migration time. Experimental studies on a set of numerical benchmark functions showed that parallel ABC algorithm powered by the newly proposed model significantly improved quality of the final solutions and convergence performance when compared with standard serial ABC algorithm and parallel ABC algorithm for which the best food sources in the subcolonies directly used as emigrants

    Controller Design for Fractional-Order Systems

    Get PDF
    In recent time, the application of fractional derivatives has become quite apparent in modeling mechanical and electrical properties of real materials. Fractional integrals and derivatives has found wide application in the control of dynamical systems, when the controlled system or/and the controller is described by a set of fractional order differential equations. In the present work a fractional order system has been represented by a higher integer order system, which is further approximated by second order plus time delay (SOPTD) model. The approximation to a SOPTD model is carried out by the minimization of the two norm of the actual and approximated system. Further, the effectiveness of a fractional order controller in meeting a set of frequency domain specifications is determined based on the frequency response of an integer order PID and a fractional order PID (FOPID) controller, designed for the approximated SOPTD model. The advent of fuzzy logic has led to greater flexibility in designing controllers for systems with time varying and nonlinear characteristics by exploiting the system observations in a linguistic manner. In this regard, a fractional order fuzzy PID controller has been developed based on the minimization different optimal control based integral performance indices. The indices have been minimized using genetic algorithms. Simulation results show that the fuzzy fractional order PID controller is able to outperform the classical PID, fuzzy PID and FOPID controllers

    Optimized placement of multiple FACTS devices using PSO and CSA algorithms

    Get PDF
    This paper is an attempt to develop a multi-facts device placementin deregulated power system using optimization algorithms. The deregulated power system is the recent need in the power distribution as it has many independent sellers and buyers of electricity. The problem of deregulation is the quality of the power distribution as many sellers are involved. The placement of FACTS devices provides the solution for the above problem. There are researches available for multiple FACTS devices. The optimization algorithms like Particle Swarm Optimization (PSO) and Cuckoo Search Algorithm (CSA) are implemented to place the multiple FACTS devices in a power system. MATLAB based implementation is carried out for applying Optimal Power Flow (OPF) with variation in the bus power and the line reactance parameters. The cost function is used as the objective function. The cost reduction of FACTS as well as generation by placement of different compensators like, Static Var Compensator (SVC), Thyristor Controlled Series Compensator (TCSC) and Unified Power Flow Controller (UPFC). The cost calculation is done on the 3-seller scenario. The IEEE 14 bus is taken here as 3-seller system
    corecore