20,070 research outputs found

    The effect of high- and low-frequency previews and sentential fit on word skipping during reading

    Get PDF
    In a previous gaze-contingent boundary experiment, Angele and Rayner (2013) found that readers are likely to skip a word that appears to be the definite article the even when syntactic constraints do not allow for articles to occur in that position. In the present study, we investigated whether the word frequency of the preview of a 3-letter target word influences a reader’s decision to fixate or skip that word. We found that the word frequency rather than the felicitousness (syntactic fit) of the preview affected how often the upcoming word was skipped. These results indicate that visual information about the upcoming word trumps information from the sentence context when it comes to making a skipping decision. Skipping parafoveal instances of the therefore may simply be an extreme case of skipping high-frequency words

    A distributional model of semantic context effects in lexical processinga

    Get PDF
    One of the most robust findings of experimental psycholinguistics is that the context in which a word is presented influences the effort involved in processing that word. We present a novel model of contextual facilitation based on word co-occurrence prob ability distributions, and empirically validate the model through simulation of three representative types of context manipulation: single word priming, multiple-priming and contextual constraint. In our simulations the effects of semantic context are mod eled using general-purpose techniques and representations from multivariate statistics, augmented with simple assumptions reflecting the inherently incremental nature of speech understanding. The contribution of our study is to show that special-purpose m echanisms are not necessary in order to capture the general pattern of the experimental results, and that a range of semantic context effects can be subsumed under the same principled account.›

    Availability-Based Production Predicts Speakers' Real-time Choices of Mandarin Classifiers

    Get PDF
    Speakers often face choices as to how to structure their intended message into an utterance. Here we investigate the influence of contextual predictability on the encoding of linguistic content manifested by speaker choice in a classifier language. In English, a numeral modifies a noun directly (e.g., three computers). In classifier languages such as Mandarin Chinese, it is obligatory to use a classifier (CL) with the numeral and the noun (e.g., three CL.machinery computer, three CL.general computer). While different nouns are compatible with different specific classifiers, there is a general classifier "ge" (CL.general) that can be used with most nouns. When the upcoming noun is less predictable, the use of a more specific classifier would reduce surprisal at the noun thus potentially facilitate comprehension (predicted by Uniform Information Density, Levy & Jaeger, 2007), but the use of that more specific classifier may be dispreferred from a production standpoint if accessing the general classifier is always available (predicted by Availability-Based Production; Bock, 1987; Ferreira & Dell, 2000). Here we use a picture-naming experiment showing that Availability-Based Production predicts speakers' real-time choices of Mandarin classifiers.Comment: To appear in proceedings of CogSci 201

    Modeling Task Effects in Human Reading with Neural Attention

    Get PDF
    Humans read by making a sequence of fixations and saccades. They often skip words, without apparent detriment to understanding. We offer a novel explanation for skipping: readers optimize a tradeoff between performing a language-related task and fixating as few words as possible. We propose a neural architecture that combines an attention module (deciding whether to skip words) and a task module (memorizing the input). We show that our model predicts human skipping behavior, while also modeling reading times well, even though it skips 40% of the input. A key prediction of our model is that different reading tasks should result in different skipping behaviors. We confirm this prediction in an eye-tracking experiment in which participants answers questions about a text. We are able to capture these experimental results using the our model, replacing the memorization module with a task module that performs neural question answering

    Modeling Fixation Behavior in Reading with Character-level Neural Attention

    Get PDF
    Humans read text in a sequence of fixations connected by saccades spanning 7–9 characters. While most words are fixated, some are skipped, and sometimes there are reverse saccades. Previous work has explained this behavior in terms of a trade-off between the accuracy of text comprehension and the efficiency of reading, and modeled this using attention-based sequence-to-sequence neural networks. We extend this line of work by modeling the locations of individual fixations down to the character level. We evaluate our model on an eye-tracking corpus and demonstrate that it reproduces human reading patterns, both quantitatively and qualitatively. It achieves good performance in predicting fixation positions and also captures lexical effects on fixation rate and landing position effects

    Lexical Predictability during Natural Reading: Effects of Surprisal and Entropy Reduction

    Get PDF
    What are the effects of word‐by‐word predictability on sentence processing times during the natural reading of a text? Although information complexity metrics such as surprisal and entropy reduction have been useful in addressing this question, these metrics tend to be estimated using computational language models, which require some degree of commitment to a particular theory of language processing. Taking a different approach, this study implemented a large‐scale cumulative cloze task to collect word‐by‐word predictability data for 40 passages and compute surprisal and entropy reduction values in a theory‐neutral manner. A separate group of participants read the same texts while their eye movements were recorded. Results showed that increases in surprisal and entropy reduction were both associated with increases in reading times. Furthermore, these effects did not depend on the global difficulty of the text. The findings suggest that surprisal and entropy reduction independently contribute to variation in reading times, as these metrics seem to capture different aspects of lexical predictability

    Eye Movements in Reading: Models and Data

    Get PDF
    Models of eye movement control in reading and their impact on the field are discussed. Differences between the E-Z Reader model and the SWIFT model are reviewed, as are benchmark data that need to be accounted for by any model of eye movement control. Predictions made by the models and how models can sometimes account for counterintuitive findings are also discussed. Finally, the role of models and data in further understanding the reading process is considered
    corecore