133 research outputs found

    Controllable radio interference for experimental and testing purposes in wireless sensor networks

    Get PDF
    Abstract—We address the problem of generating customized, controlled interference for experimental and testing purposes in Wireless Sensor Networks. The known coexistence problems between electronic devices sharing the same ISM radio band drive the design of new solutions to minimize interference. The validation of these techniques and the assessment of protocols under external interference require the creation of reproducible and well-controlled interference patterns on real nodes, a nontrivial and time-consuming task. In this paper, we study methods to generate a precisely adjustable level of interference on a specific channel, with lowcost equipment and rapid calibration. We focus our work on the platforms carrying the CC2420 radio chip and we show that, by setting such transceiver in special mode, we can quickly and easily generate repeatable and precise patterns of interference. We show how this tool can be extremely useful for researchers to quickly investigate the behaviour of sensor network protocols and applications under different patterns of interference, and we further evaluate its performance

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities

    A Cooja-based tool for coverage and fifetime evaluation in an in-building sensor network.

    Get PDF
    Contiki’s Cooja is a very popular wireless sensor network (WSN) simulator, but it lacks support for modelling sensing coverage, focusing instead on network connectivity and protocol performance. However, in practice, it is the ability of a sensor network to provide a satisfactory level of coverage that defines its ultimate utility for end-users. We introduce WSN-Maintain, a Cooja-based tool for coverage and network lifetime evaluation in an in-building WSN. To extend the network lifetime, but still maintain the required quality of coverage, the tool finds coverage redundant nodes, puts them to sleep and automatically turns them on when active nodes fail and coverage quality decreases. WSN-Maintain together with Cooja allow us to evaluate different approaches to maintain coverage. As use cases to the tool, we implement two redundant node algorithms: greedy-maintain, a centralised algorithm, and local-maintain, a localised algorithm to configure the initial network and to turn on redundant nodes. Using data from five real deployments, we show that our tool with simple redundant node algorithms and reading correlation can improve energy efficiency by putting more nodes to sleep

    Environment-monitoring IoT devices powered by a TEG which converts thermal flux between air and near-surface soil into electrical energy

    Get PDF
    Energy harvesting has an essential role in the development of reliable devices for environmental wireless sensor networks (EWSN) in the Internet of Things (IoT), without considering the need to replace discharged batteries. Thermoelectric energy is a renewable energy source that can be exploited in order to efficiently charge a battery. The paper presents a simulation of an environment monitoring device powered by a thermoelectric generator (TEG) that harvests energy from the temperature difference between air and soil. The simulation represents a mathematical description of an EWSN, which consists of a sensor model powered by a DC/DC boost converter via a TEG and a load, which simulates data transmission, a control algorithm and data collection. The results section provides a detailed description of the harvested energy parameters and properties and their possibilities for use. The harvested energy allows supplying the load with an average power of 129.04 mu W and maximum power of 752.27 mu W. The first part of the results section examines the process of temperature differences and the daily amount of harvested energy. The second part of the results section provides a comprehensive analysis of various settings for the EWSN device's operational period and sleep consumption. The study investigates the device's number of operational cycles, quantity of energy used, discharge time, failures and overheads.Web of Science2123art. no. 809

    Enhanced collision avoidance mechanisms for wireless sensor networks through high accuracy collision modeling

    Get PDF
    Wireless channel and multi-hop communications cause a significant number of packet collisions in Wireless Sensor Networks (WSNs). Although a collision may cause packet loss and reduce network performance, low-power wireless transceivers allow packet reception in the presence of collisions if at least one signal can provide a sufficiently high power compared with other signals. Therefore, with respect to the large number of nodes used in WSNs, which necessitates the use of simulation for protocol development, collisions should be addressed at two layers: First, collisions should be modeled at the physical layer through a high-accuracy packet reception algorithm that decides about packet reception in the presence of collisions. Second, collision avoidance mechanisms should be employed at the Medium Access Control (MAC) layer to reduce packet losses caused by collisions. Unfortunately, the existing packet reception algorithms exhibit low accuracy and impede the development of efficient collision avoidance mechanisms. From the collision avoidance perspective, existing contention-based MAC protocols do not provide reliable packet broadcasting, thereby affecting the initialization performance of WSNs. In addition, despite the benefits of schedule-based MAC protocols during the data-gathering phase, the existing mechanisms rely on unrealistic assumptions. The first major contribution of this work is CApture Modeling Algorithm (CAMA), which enables collision modeling with high accuracy and efficiency at the physical layer. The higher accuracy of CAMA against existing approaches is validated through extensive comparisons with empirical experiments. The second major contribution includes mechanisms that improve the reliability of packet broadcasting. In particular, adaptive contention window adjustment mechanisms and the Geowindow algorithm are proposed for collision avoidance during the initialization phases. These mechanisms considerably improve the accuracy of the initialization phases, without violating duration and energy efficiency requirements. As the third major contribution, a distributed and concurrent link-scheduling algorithm (called DICSA) is proposed for collision avoidance during the data-gathering phase. DICSA provides faster slot assignment, higher spatial reuse and lower energy consumption, compared with existing algorithms. Furthermore, evaluating DICSA within a MAC protocol confirms its higher throughput, higher delivery ratio, and lower end-to-end delay

    7. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze

    Get PDF
    In dem vorliegenden Tagungsband sind die Beiträge des Fachgesprächs Drahtlose Sensornetze 2008 zusammengefasst. Ziel dieses Fachgesprächs ist es, Wissenschaftlerinnen und Wissenschaftler aus diesem Gebiet die Möglichkeit zu einem informellen Austausch zu geben – wobei immer auch Teilnehmer aus der Industrieforschung willkommen sind, die auch in diesem Jahr wieder teilnehmen.Das Fachgespräch ist eine betont informelle Veranstaltung der GI/ITG-Fachgruppe „Kommunikation und Verteilte Systeme“ (www.kuvs.de). Es ist ausdrücklich keine weitere Konferenz mit ihrem großen Overhead und der Anforderung, fertige und möglichst „wasserdichte“ Ergebnisse zu präsentieren, sondern es dient auch ganz explizit dazu, mit Neueinsteigern auf der Suche nach ihrem Thema zu diskutieren und herauszufinden, wo die Herausforderungen an die zukünftige Forschung überhaupt liegen.Das Fachgespräch Drahtlose Sensornetze 2008 findet in Berlin statt, in den Räumen der Freien Universität Berlin, aber in Kooperation mit der ScatterWeb GmbH. Auch dies ein Novum, es zeigt, dass das Fachgespräch doch deutlich mehr als nur ein nettes Beisammensein unter einem Motto ist.Für die Organisation des Rahmens und der Abendveranstaltung gebührt Dank den beiden Mitgliedern im Organisationskomitee, Kirsten Terfloth und Georg Wittenburg, aber auch Stefanie Bahe, welche die redaktionelle Betreuung des Tagungsbands übernommen hat, vielen anderen Mitgliedern der AG Technische Informatik der FU Berlin und natürlich auch ihrem Leiter, Prof. Jochen Schiller

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    SensoTrust: trustworthy domains in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) based on wearable devices are being used in a growing variety of applications, many of them with strict privacy requirements: medical, surveillance, e-Health, and so forth. Since private data is being shared (physiological measures, medical records, etc.), implementing security mechanisms in these networks has become a major challenge. The objective of deploying a trustworthy domain is achieving a nonspecific security mechanism that can be used in a plethora of network topologies and with heterogeneous application requirements. Another very important challenge is resilience. In fact, if a stand-alone and self-configuring WSN is required, an autosetup mechanism is necessary in order to maintain an acceptable level of service in the face of security issues or faulty hardware. This paper presents SensoTrust, a novel security model for WSN based on the definition of trustworthy domains, which is adaptable to a wide range of applications and scenarios where services are published as a way to distribute the acquired data. Security domains can be deployed as an add-on service to merge with any service already deployed, obtaining a new secured service

    A review of the role of sensors in mobile context-aware recommendation systems

    Get PDF
    Recommendation systems are specialized in offering suggestions about specific items of different types (e.g., books, movies, restaurants, and hotels) that could be interesting for the user. They have attracted considerable research attention due to their benefits and also their commercial interest. Particularly, in recent years, the concept of context-aware recommendation system has appeared to emphasize the importance of considering the context of the situations in which the user is involved in order to provide more accurate recommendations. The detection of the context requires the use of sensors of different types, which measure different context variables. Despite the relevant role played by sensors in the development of context-aware recommendation systems, sensors and recommendation approaches are two fields usually studied independently. In this paper, we provide a survey on the use of sensors for recommendation systems. Our contribution can be seen from a double perspective. On the one hand, we overview existing techniques used to detect context factors that could be relevant for recommendation. On the other hand, we illustrate the interest of sensors by considering different recommendation use cases and scenarios
    corecore