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ABSTRACT

Wireless channel and multi-hop communications cause a significant
number of packet collisions in Wireless Sensor Networks (WSNs). Although
a collision may cause packet loss and reduce network performance, low-power
wireless transceivers allow packet reception in the presence of collisions if at
least one signal can provide a sufficiently high power compared with other
signals. Therefore, with respect to the large number of nodes used in WSNs,
which necessitates the use of simulation for protocol development, collisions
should be addressed at two layers: First, collisions should be modeled at
the physical layer through a high-accuracy packet reception algorithm that
decides about packet reception in the presence of collisions. Second, collision
avoidance mechanisms should be employed at the Medium Access Control (MAC)
layer to reduce packet losses caused by collisions. Unfortunately, the existing
packet reception algorithms exhibit low accuracy and impede the development
of efficient collision avoidance mechanisms. From the collision avoidance
perspective, existing contention-based MAC protocols do not provide reliable
packet broadcasting, thereby affecting the initialization performance of WSNs.
In addition, despite the benefits of schedule-based MAC protocols during the
data-gathering phase, the existing mechanisms rely on unrealistic assumptions.
The first major contribution of this work is CApture Modeling Algorithm
(CAMA), which enables collision modeling with high accuracy and efficiency at
the physical layer. The higher accuracy of CAMA against existing approaches is
validated through extensive comparisons with empirical experiments. The second
major contribution includes mechanisms that improve the reliability of packet
broadcasting. In particular, adaptive contention window adjustment mechanisms
and the Geowindow algorithm are proposed for collision avoidance during the
initialization phases. These mechanisms considerably improve the accuracy
of the initialization phases, without violating duration and energy efficiency
requirements. As the third major contribution, a distributed and concurrent
link-scheduling algorithm (called DICSA) is proposed for collision avoidance
during the data-gathering phase. DICSA provides faster slot assignment, higher
spatial reuse and lower energy consumption, compared with existing algorithms.
Furthermore, evaluating DICSA within a MAC protocol confirms its higher
throughput, higher delivery ratio, and lower end-to-end delay.
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ABSTRAK

Komunikasi multi-lompatan dan saluran tanpa wayar menyebabkan
sejumlah pelanggaran paket yang ketara dalam Rangkaian Penderia Tanpa Wayar
(WSN). Walaupun pelanggaran boleh mengakibatkan kehilangan paket dan
menurunkan prestasi rangkaian, penghantar-terima tanpa wayar berkuasa rendah
membenarkan penerimaan paket dengan kehadiran pelanggaran jika sekurang-
kurangnya satu isyarat dapat menyediakan kuasa tinggi yang mencukupi
berbanding dengan isyarat lain. Maka, bagi bilangan nod yang banyak digunakan
di dalam WSN yang memerlukan penggunaan simulasi untuk pembangunan
protokol, pelanggaran harus ditangani pada dua lapisan. Pertama, pelanggaran
sepatutnya dimodel pada lapisan fizikal menerusi algoritma penerimaan paket
yang tepat yang menentukan penerimaan paket dalam kehadiran pelanggaran.
Kedua, mekanisme pengelakan pelanggaran seharusnya digunakan pada Medium
Kawalan Akses (MAC) bagi mengurangkan kehilangan paket yang disebabkan
pelanggaran. Malangnya, algoritma penerimaan paket sedia ada menunjukkan
ketepatan yang rendah dan menghalang pembangunan mekanisme pengelakan
pelanggaran yang efisien. Dari perspektif pengelakan pelanggaran, protokol
MAC berasaskan perlumbaan yang ada tidak memberikan penyiaran paket yang
boleh dipercayai, seterusnya memberi kesan kepada prestasi permulaan WSN. Di
samping itu, walaupun ada kebaikan pada protokol MAC berasaskan penjadualan
semasa fasa pengumpulan data, mekanisme sedia ada bergantung kepada andaian
yang tidak realistik. Sumbangan utama kajian ini ialah Algoritma Permodelan
Penangkapan (CAMA) yang memungkinkan permodelan pelanggaran dengan
ketepatan dan keberkesanan yang tinggi pada lapisan fizikal. Ketepatan CAMA
yang lebih tinggi berbanding kaedah sedia ada disahkan melalui perbandingan-
perbandingan yang menyeluruh dengan eksperimen empirikal. Sumbangan
utama kedua adalah mekanisme yang meningkatkan kebolehpercayaan penyiaran
paket. Khususnya, penyesuaian mekanisme pelarasan tetingkap pertelagahan
dan algoritma Geowindow dicadangkan untuk pengelakan pelanggaran semasa
fasa-fasa permulaan. Mekanisme tersebut dengan jelas meningkatkan ketepatan
pada fasa permulaan tanpa menyalahi keperluan tempoh dan keberkesanan
tenaga. Sumbangan ketiga penting ialah Algoritma Penjadualan Pautan Teragih
dan Serentak (DICSA) dicadangkan bagi pengelakan pelanggaran semasa fasa
pengumpulan data. DICSA menyediakan penentuan slot yang lebih cepat,
penggunaan semula ruang yang lebih tinggi dan penggunaan tenaga yang lebih
rendah dibandingkan dengan algoritma sedia ada. Tambahan pula, penilaian
DICSA dalam protokol MAC membuktikan truput yang lebih tinggi, kadar
penghantaran yang lebih tinggi dan nisbah kelewatan yang lebih rendah.



vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xiii
LIST OF FIGURES xv
LIST OF ABBREVIATIONS xix
LIST OF SYMBOLS xxi
LIST OF APPENDICES xxv

1 INTRODUCTION 1
1.1 Overview 1
1.2 Problem Background 3

1.2.1 Collision Modeling 3
1.2.2 Collision Avoidance 6

1.2.2.1 Collision Avoidance during the
Initialization Phases 6

1.2.2.2 Collision Avoidance during the
Data-Gathering Phase 8

1.3 Problem Statement 9
1.3.1 First Research Problem: Collision

Modeling with High Accuracy and
Efficiency 10

1.3.2 Second Research Problem: Adaptive
and Efficient Collision Avoidance dur-
ing the Initialization Phases 11



viii

1.3.3 Third Research Problem: Fast and Dis-
tributed Link Scheduling for Collision
Avoidance during the Data-Gathering
Phase 11

1.4 Objectives 12
1.5 Contributions 12
1.6 Significance of the Research 14
1.7 Scope 15
1.8 Thesis Organization 16

2 LITERATURE REVIEW 17
2.1 Introduction 17
2.2 Collision Modeling and Collision Relationship 18

2.2.1 Characteristics of Low-Power RF
Transceivers 20
2.2.1.1 Transceiver Synchronization 20
2.2.1.2 The Capture Effect 23
2.2.1.3 Bit Error Probability 26
2.2.1.4 Noise Floor 26

2.2.2 Packet Reception Algorithms for Colli-
sion Modeling 28
2.2.2.1 Inter-Node Interference 28
2.2.2.2 Packet Reception Algorithms

of NS2 30
2.2.2.3 Analyzing the Packet Recep-

tion Algorithms of NS2 33
2.2.2.4 Other Packet Reception Algo-

rithms 34
2.2.2.5 Analytical and Trace-Based

Packet Reception Modeling 35
2.2.3 Establishing Precise Collision Relation-

ship between Nodes 36
2.2.3.1 Path Loss and Multipath

Channel 37
2.2.3.2 Radio Irregularity 38
2.2.3.3 Transmission Power and Noise

Floor Heterogeneity 41
2.2.4 Implementation Architecture 42

2.3 Collision Avoidance 43



ix

2.3.1 Operational Phases and the Traffic
Patterns 44
2.3.1.1 Neighbor Discovery and Link

Estimation (NDLE) 45
2.3.1.2 Collection Tree Construction

(CTC) 47
2.3.1.3 Data Gathering 47

2.3.2 Collision Avoidance during the NDLE
and CTC Phases 48
2.3.2.1 Carrier Sense Multiple Access

(CSMA) 49
2.3.2.2 Collision Avoidance with

CSMA 52
2.3.3 Collision Avoidance during the Data-

Gathering Phase 57
2.3.3.1 Time Slot Assignment

Schemes 58
2.3.3.2 Collision Avoidance through

Scheduling Mechanisms 59
2.4 Findings of the Literature Review 69
2.5 Summary 71

3 RESEARCH METHODOLOGY 73
3.1 Introduction 73
3.2 Research Framework 73

3.2.1 First Stage: Collision Modeling 75
3.2.2 Second Stage: Collision Avoidance

during the Initialization Phases 78
3.2.3 Third Stage: Collision Avoidance

during the Data-Gathering Phase 82
3.3 Performance Evaluation 85

3.3.1 Hardware Platforms and Parameters 85
3.3.2 Simulation Tool 87

3.4 Summary 90

4 COLLISION MODELING THROUGH A
PACKET RECEPTION ALGORITHM WITH
HIGH ACCURACY AND EFFICIENCY 92



x

4.1 Introduction 92
4.2 Collision Modeling 93

4.2.1 Modeling Signal Arrival and Reception 93
4.2.2 SINR Characterization 95
4.2.3 Capture Modeling Algorithm (CAMA) 97

4.2.3.1 Discussion 104
4.2.4 CAMA Correctness 104

4.3 Implementation Architecture 106
4.3.1 Wireless Channel Module 107
4.3.2 Physical Layer Module 108
4.3.3 Discussion 109

4.4 General Configurations for Performance Evalua-
tions 109

4.5 Validation and Comparison 109
4.5.1 Evaluation Metrics 110
4.5.2 The 3-Node Experiment 111
4.5.3 The 3-Node Experiment: Long Pream-

ble and Comparison with CTMA and
SINRA 113

4.5.4 The 4-Node Experiment 115
4.5.5 The 36-Node Experiment 118
4.5.6 Comparing the Efficiency of CAMA

versus SINRA and CTMA 123
4.6 Investigating Collisions and the Capture Effect

in Large-Scale Wireless Sensor Networks 125
4.6.1 Simulation Settings, Definitions, and

Evaluation Metrics 125
4.6.2 Packet Reception Analysis 127
4.6.3 Sensitivity Analyses 130

4.6.3.1 Environmental Parameters
and Carrier-Sensing
Threshold 130

4.6.3.2 Contention Window Size 132
4.6.3.3 Preamble and Payload Size 132
4.6.3.4 Bit Rate 134

4.7 Summary 135

5 ADAPTIVE AND EFFICIENT COLLISION



xi

AVOIDANCE MECHANISMS FOR THE INI-
TIALIZATION PHASES 137
5.1 Introduction 137
5.2 Collision Avoidance for Improving Neighbor

Discovery and Link Estimation 138
5.2.1 Collision Detection and Partial Packet

Reception 138
5.2.2 Contention Window Adjustment Mech-

anisms 138
5.2.3 Utilizing Partially Received Packets for

Accuracy Improvement 139
5.2.4 Mathematical Modeling of Collision

Probability during Packet Broadcast 140
5.2.5 Performance Evaluation Configuration 143

5.2.5.1 Simulation Settings 143
5.2.5.2 Evaluated Mechanisms 144
5.2.5.3 Evaluation Metrics 145

5.2.6 Performance Evaluations and Discus-
sions 146

5.3 Improving Collection Tree Construction 153
5.3.1 Child-Parent Cost Distribution 155
5.3.2 Computation of the λ Value 156

5.3.2.1 Mathematical Approach 157
5.3.2.2 Adaptive Approach 158

5.3.3 The Geowindow Algorithm 159
5.3.4 Exploiting Collision Detection 161
5.3.5 Performance Evaluation Configuration 163

5.3.5.1 Simulation Settings 164
5.3.5.2 Evaluated Mechanisms 164
5.3.5.3 Evaluation Metrics 164

5.3.6 Performance Evaluations and Discus-
sions 165

5.4 Summary 169

6 DISTRIBUTED AND CONCURRENT LINK-
SCHEDULING ALGORITHM FOR COLLI-
SION AVOIDANCE DURING THE DATA-
GATHERING PHASE 171
6.1 Introduction 171



xii

6.2 Link Scheduling versus Node Scheduling 172
6.2.1 Formulation 172
6.2.2 Requirements 173

6.3 Design and Implementation of DICSA 173
6.3.1 Forbidden Slots 173
6.3.2 Algorithms 175
6.3.3 Timing 181

6.4 Performance Evaluation Configuration 183
6.4.1 Simulation Settings 183
6.4.2 Evaluated Algorithms 184
6.4.3 Evaluation Metrics 184

6.5 Performance Evaluations and Discussions 185
6.5.1 One-Hop Scenario 185
6.5.2 Multi-Hop Scenario 187
6.5.3 Schedule Update 189
6.5.4 Data-Gathering Applications 190

6.6 Summary 193

7 CONCLUSIONS 195
7.1 Overview 195
7.2 Achievements 195

7.2.1 Collision Modeling 195
7.2.2 Collision Avoidance 197

7.3 Directions for Future Work 199

REFERENCES 202
Appendices A – B 221 – 227



xiii

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Low-power RF transceivers and their characteristics 21
2.2 The noise parameters, theoretical noise floor and empirical

noise floor of CC1000 and CC2420 transceivers 27
2.3 The input of the packet reception algorithms, the expected

real-world behavior, and the output of CTMA and SINRA 34
2.4 The characteristics of packet reception algorithms and

hardware and signal propagation models implemented on
existing simulation platforms 44

2.5 Overview of the mechanisms proposed for collision
avoidance through channel access scheduling 67

3.1 The research framework of the first stage of this research 76
3.2 The research framework of the second stage of this

research 80
3.3 The research framework of the third stage of this research 83
3.4 The characteristics and configuration of CC1000

transceiver (used in Mica2) for the empirical and
simulated experiments 86

3.5 The characteristics and configuration of CC2420
transceiver (used in TelosB) for the empirical and
simulated experiments 86

3.6 The default packet formats 87
3.7 Environmental parameters 87
4.1 Description of the variables and operations used by

CAMA 97
4.2 The input of the packet reception algorithms, the expected

real-world behavior, and the output of CAMA, CTMA
and SINRA for the scenario presented in Figure 4.4 103

4.3 Experimental Parameters 110
4.4 Evaluation scenarios of the 36-node experiment 120



xiv

4.5 The start (90% packet reception rate) and end (10%
packet reception rate) of the transitional region for the
indoor and outdoor environments 129

5.1 Simulation configuration 144
5.2 The networks used for performance evaluations 144
6.1 Simulation configuration 183



xv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 The overall structure of the literature review with respect
to a sample topology 18

2.2 The structure and main observations of the literature
review conducted with respect to collision modeling 19

2.3 The structure and main observations of the literature
review conducted with respect to collision avoidance 20

2.4 Sample packet formats using CC1000 and CC2420 22
2.5 Sample stronger-first and stronger-last capture scenarios 24
2.6 This figure shows how the stronger-last capture scenario

shown in Figure 2.5(b) results in partial packet reception,
collision detection, and collision recovery 25

2.7 The state machine of CTMA 31
2.8 The state machine of SINRA 32
2.9 A sample packet reception scenario to represent the

operation of CTMA and SINRA 33
2.10 Effect of radio irregularity on the size and shape of the

connected and transitional regions 40
2.11 Radio irregularity changes the interference relationship

between nodes, and affects the performance of collision
avoidance mechanisms 41

2.12 Sample node placement for analyzing collision avoidance
through carrier sensing and random backoff 50

2.13 The CSMA mechanism used in IEEE 802.11 DCF 51
2.14 The CSMA mechanism used in TinyOS CSMA MAC

protocol 51
2.15 Combining CSMA with beaconing rate reduces the

number of hidden-node collisions during the NDLE phase 54
2.16 The difference between node and link scheduling for a

sample topology 59
2.17 The state machine of DRAND 66



xvi

3.1 The overall research framework 74
3.2 The overall architecture of the developed simulation tool 88
4.1 Utilizing the messaging and self-messaging mechanisms for

modeling signal synchronization and packet reception 95
4.2 Probability of signal synchronization and correct packet

reception against SINR (not in dB) for CC1000 and
CC2420 96

4.3 The state machine of CAMA 98
4.4 Sample packet reception with CAMA in the presence of

collision 102
4.5 The overall architecture of the Wireless Channel and

Physical Layer modules 106
4.6 The architecture of the Wireless Channel module 108
4.7 The 3-node experiment conducted with Mica2 nodes 112
4.8 The results of the empirical and simulated 3-node

experiment with 6-byte preamble 112
4.9 The results of the empirical and simulated 3-node

experiment with 49-byte preamble 113
4.10 The topology of the 4-node experiment conducted with

TelosB nodes 115
4.11 Comparing the number of packet receptions obtained from

the empirical experiments and CAMA 116
4.12 Comparing the number of packet receptions obtained from

the empirical experiments, SINRA and CTMA 118
4.13 Comparing the number of collision detections obtained

from the empirical experiments and CAMA 119
4.14 The results of empirical and simulated experiments for

evaluating packet reception, collision detection and MAC
Header recovery using 6-byte preamble in the 36-node
experiment 121

4.15 The results of empirical and simulated experiments for
evaluating packet reception, collision detection and MAC
Header recovery using 719-byte preamble in the 36-node
experiment 122

4.16 The simulation speeds of the scenarios of the 36-node
experiment 124

4.17 The simulation speed of CAMA against CTMA and
SINRA for 4 network sizes 125



xvii

4.18 The simulation speed of CAMA against CTMA and
SINRA for 4 preamble sizes 126

4.19 The number of receptions and the number of receptions
with high-power collision in Network1 (a) and Network2
(b) 128

4.20 The effects of environmental parameters and carrier-
sensing threshold on collision detection and packet
reception efficiency 131

4.21 The effects of contention window duration on collision
detection and packet reception efficiency 133

4.22 The effects of packet formatting on collision detection and
packet reception efficiency 134

4.23 The effects of transceiver bit rate on collision detection
and packet reception efficiency 135

5.1 Mathematical analysis of broadcasting success probability 143
5.2 Influence of the MAC mechanisms and number of beacons

on link estimation accuracy 146
5.3 The average packet reception percentage of the nodes from

those neighbors that their average link quality is higher
than 10% 147

5.4 The number of corruption-causing collisions and the
number of MAC Header recoveries 150

5.5 Influence of the MAC mechanisms and number of beacons
on neighbor discovery 151

5.6 Influence of the MAC mechanisms on NDLE duration 153
5.7 Influence of the MAC mechanisms on the average

percentage of battery consumption per node 154
5.8 Probability of cost broadcast with respect to the child-

parent link costs 156
5.9 Link cost distribution with various network deployments 157
5.10 The frequency of various λ values with three network

densities 159
5.11 The assigned sub-CW corresponding to various cost values 162
5.12 Influence of the MAC mechanisms on CTC accuracy 166
5.13 Influence of the MAC mechanisms on CTC duration 167
5.14 Percentage of packet delivery at the sink node 169
6.1 Primary State Machine (PSM) 176
6.2 Secondary State Machine (SSM) 179
6.3 A sample slot reservation scenario with DICSA 182



xviii

6.4 Evaluating the execution performance of DICSA and
DRAND in various-size one-hop networks 186

6.5 Evaluating the execution performance of DICSA and
DRAND in multi-hop scenarios with various two-hop
neighborhood sizes 187

6.6 The slot assignment efficiency of various scheduling
algorithms 189

6.7 Recovery cost of DICSA and DRAND versus the number
of nodes applying for slot update 190

6.8 Minimum time slot duration with respect to time
synchronization accuracy (τ) and transceiver switching
delay ($) 191

6.9 Performance evaluation of various scheduling algorithms
versus traffic rate in data-gathering applications 192

6.10 Throughput evaluation of various scheduling algorithms
versus neighborhood size in data-gathering applications 193

A.1 Effects of propagation range confinement on network
throughput 224

A.2 Effects of propagation range confinement on the number
of corruption-causing collisions and simulation speed 225

A.3 Effects of propagation range confinement on NDLE
performance 225



xix

LIST OF ABBREVIATIONS

ACK – Acknowledgement
BEB – Binary Exponential Backoff
BER – Bit Error Rate
BFS – Breadth First Search
CAMA – CApture Modeling Algorithm
CDMA – Code Division Multiple Access
CI – Constant Interval
CRC – Cyclic Redundancy Check
CSMA – Carrier Sense Multiple Access
CSMA/CA – Carrier Sense Multiple Access/Collision Avoidance
CTC – Collection Tree Construction
CTM – Capture Threshold Model
CTMA – CTM-based packet reception Algorithm
CTS – Clear To Send
CW – Contention Window
DCF – Distributed Coordination Function
DICSA – DIstributed and Concurrent link Scheduling Algorithm
DRAND – Distributed RANDomized scheduling
DSSS – Direct-Sequence Spread Spectrum
DOI – Degree Of Irregularity
ECDF – Empirical Cumulative Distribution Function
ETX – Expected number of Transmissions
FCS – Frame Check Sequence
FDMA – Frequency Division Multiple Access
Geowindow – Geometric-distribution-based contention window

adjustment
LPL – Low-Power Listening
MAC – Medium Access Control
MPDU – MAC Protocol Data Unit



xx

NCFSK – Non-Coherent Frequency Shit Keying
NCR – Neighborhood-aware Contention Resolution
NDLE – Neighbor Discovery and Link Estimation
NP – Non Polynomial
OQPSK – Offset Quadrature Phase-Shift Keying
PDF – Probability Density Function
PRR – Packet Reception Rate
PSM – Primary State Machine
RF – Radio Frequency
RIM – Radio Irregularity Model
RMSE – Root Mean Square Error
RS – Reception Slot
RSSI – Received Signal Strength Indicator
RSO – Reception Slot of One-hop neighbor
RTS – Request To Send
RX – Reception
SEEDEX – SEED EXchange scheduling
SFD – Start of Frame Delimiter
SNR – Signal-to-Noise Ratio
SINR – Signal-to-Interference-plus-Noise Ratio
SINRA – SINR-based packet reception Algorithm
SSM – Secondary State Machine
TDMA – Time Division Multiple Access
TX – Transmission
UDG – Unit Disk Graph
VDEC – Vizing-based Distributed Edge Coloring
VDOI – Variance of Degree Of Irregularity
WSN – Wireless Sensor Network



xxi

LIST OF SYMBOLS

A – Anisotropy matrix
B(x, y) – Binomial random variable with x trials and success

probability y
Bn – Noise bandwidth
ci,j – Link cost between node i and node j
Ctx,rx – Correlation between transmission power and noise floor

heterogeneity
costi – Cost of node i towards the sink
CSth – Carrier-sensing threshold
CNi – Set of the contenders of node i
CWc – Congestion contention window size
CWN – N -th sub-contention window
CWi – Initial contention window size
CW δ – Contention window duration in terms of the number of

backoff slots
CW δ

th – Minimum acceptable number of backoff slots in a
sub-contention window

d – Distance
d0 – Reference distance
dcs – Carrier-sensing distance
di,j – Distance between node i and node j
dprop – Propagation range
Eb – Energy per bit
Eδ
N – End of N -th contention window

fc – Carrier frequency
Fn – Noise figure
h – Number of hops to destination
k – Boltzmann constant
Kθ – Path-loss coefficient at direction θ



xxii

li,j – The link between node i and node j
Lpacket – Number of bits in a packet
Lsettling – Number of settling bits
maxC – Maximum number of children per node
maxN1 – Maximum neighborhood size
maxN1,2 – Maximum one-hop and two-hop neighborhood size
N(x, y) – Gaussian random variable with mean x and standard

deviation y

N0 – Spectral noise density
Nnode – Number of nodes in the network
N1 – The average number of one-hop neighbors per node
N2 – The average number of two-hop neighbors per node
N1
i – The set of the one-hop neighbors of node i

N2
i – The set of two-hop neighbors of node i

Npending
i – The set of neighbors from which node i expects to receive

response during a time slot reservation round
p – Forward link quality
PL(d) – Path loss at distance d
PL(d0) – Path loss at reference distance d0

Pr(bit) – Bit error probability
Pr(packet) – Packet reception probability
q – Backward link quality
R – Transceiver bit rate
RS(i) – Set of the reception time slots of node i
RSO(i) – Set of the reception time slots of one-hop neighbors of node

i

S – The set of the signals currently being received at a node
Si – A signal corresponding to a packet sent by a node
SδN – Start of N -th contention window
Si(tm, tn) – A signal that starts at time tm and finishes at time tn
SCRi (tm, tn) – Complete reception of packet i during tm to tn
SPRi (tm, tn) – Partial reception of packet i during tm to tn
SINRth – Threshold SINR value
SINRj(Si) – SINR value corresponding to signal Si received at node j
SINRj(Si, t) – SINR value corresponding to signal Si received at node j at

time t



xxiii

Tpacket – Packet transmission duration
T δpacket – Packet transmission duration in terms of the number of

backoff slots
TS(i) – Set of the transmission time slots of node i
TSO(i) – Set of the transmission time slots of one-hop neighbors of

node i
TST(i) – Set of the transmission time slots of two-hop neighbors of

node i
W (x, y) – Weibull random variable with scale parameter x and shape

parameter y
Vi – A sample node in the network
V – Set of nodes in the network
Xarea – Width of the area
γ – Minimum link cost between a node and its neighbors
Γi→j – The set of nodes that their transmission time overlap (fully

or partially) with the packet reception from node i at node
j

δi – Selected backoff slot by node i
ζ – Total propagation, encoding and decoding delays
η – Path-loss exponent
θ – Degree of a given direction
ϑ – Speed of light
κtj – Priority of node j at time slot t
λ – Rate parameter of the geometric distribution
Λ (cj,i, λ) – The probability of cost broadcast by node j after receiving

a cost packet from node i
$ – Maximum transceiver switching delay
% – Environmental temperature
σch – Standard deviation of signal power variations caused by

multipath channel
σrx – Standard deviation of noise floor heterogeneity
σtx – Standard deviation of transmission power heterogeneity
σWGN – Standard deviation of additive white Gaussian noise
τ – Synchronization accuracy
υ – One-way message delay
Υ(x) – The distance at which a specific packet reception rate (x) is

achieved



xxiv

ϕi,j – A link belonging to set Φu
l

Φu
l – Those links between a node and its neighbors that the floor

of their ETX cost is in range [l, u]
Ψj(Si) – Reception power corresponding to signal Si received at

node j
Ψj(Si, t) – Reception power received at node j at time t corresponding

to signal Si
Ψ̄ – Average noise floor
Ψ̄adj
i – Adjusted noise floor of node i considering hardware

heterogeneity
Ψ̄adj
i (t) – Adjusted noise floor of node i at time t

Ωi – Output power corresponding to node i
Ωadj
i – Adjusted output power of node i considering hardware

heterogeneity
< i, k, o > – A time slot reservation entry indicating i as sender, k as

receiver, and o as the reserved time slot



xxv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Eliminating Unimportant Collisions through Propagation
Range Confinement 221

B Publications 227



CHAPTER 1

INTRODUCTION

1.1 Overview

Wireless Sensor Network (WSN)s are currently being used for various
applications, ranging from medical monitoring to military surveillance [1, 2]. A
WSN is composed of nodes with scarce energy resources, therefore, low-power
Radio Frequency (RF) transceivers and microcontrollers are employed in the
design of wireless sensor nodes. Meanwhile, wireless transceiver spends most of
a node’s energy and makes efficient wireless communications a very challenging
problem [3].

Since the wireless channel is a broadcast medium, each node’s transmission
propagates in all directions and affects other nodes based on the distance from
the sender. In addition, due to the use of low-power wireless communications,
WSNs operate in a distributed manner and employ multi-hop packet forwarding.
With respect to these issues, while the packet corresponding to the signal
transmitted by a node may be received at the intended receiver, this signal may
act as an interfering signal for other ongoing communications. In other words,
when two nodes are communicating, usually the signal being received from the
sender is overlapped with other interfering signals. Therefore, as each node’s
transmission may cause interference on other nodes, the term packet collision (or
simply collision) would better reflect interference. Generally, collision is defined
as below [4, 5],

Definition 1.1. Collision. When at least one signal is present at a node,
the arrival of each subsequent signal causes a collision.

Since interference can also be generated by the sources outside the
network (e.g., IEEE 802.11 and Bluetooth networks) [6, 7], the term ”collision”
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only refers to the interference caused by network nodes. Nevertheless, this thesis
explicitly employs the term ”external interference” for those collisions caused by
sources outside the network.

Since WSNs are highly collision-prone, various collision avoidance
mechanisms have been proposed to overcome the negative effects of collisions.
However, although collisions affect packet reception performance [3, 8, 9], they
may not necessarily cause packet loss. Specifically, the capture effect, also called
interference tolerance [10], is the ability of a transceiver to receive a signal in the
presence of interfering signals as long as the Signal-to-Interference-plus-Noise
Ratio (SINR) of the signal being received is above a certain threshold value
[4, 11, 12]. The capture effect is supported by most of low-power RF transceivers
(e.g., CC1000 [13] and CC2420 [14]) and it has a significant effect on packet
reception performance when packets are subject to collision [4, 11, 12, 15–18].
Therefore, as a collision may not cause packet corruption, the literature usually
employs definitions that are more specific. For example, the literature on
Medium Access Control (MAC) mechanisms normally focuses on those collisions
that cause packet corruption. Similarly, in this thesis, while Definition 1.1 is
particularly useful for collision analysis and modeling from the physical-layer
point of view, related but different definitions are used for the analyses preformed
from the MAC-layer perspective.

Most of the applications of WSNs usually employ a large number
of nodes (viz., hundreds or even thousands of nodes). Therefore, since empirical
experiment with a large number of nodes is very costly and time consuming,
researchers rely on simulation for protocol development and evaluation.
Accordingly, dealing with collisions in WSNs should be considered from two
highly correlated point of views, which are corresponding to the physical layer
and MAC layer:

(i) Physical Layer. As WSNs are collision-prone, usually two or more
signals arrive and overlap at the physical layer of the nodes. In other
words, each signal arriving at the physical layer usually overlaps with other
signals with various powers and durations. Therefore, collisions highly
affect the performance of wireless networks [19–24]. The packet reception
algorithm (a.k.a., packet reception model) employed at the physical layer
is responsible to model collisions and make decision about the reception
of incoming packets. Especially, it is mainly the responsibility of the
packet reception algorithm to represent the real behavior of low-power
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RF transceivers. Inaccuracy of collision modeling avoids revealing the real
efficiency of collision avoidance mechanisms, highly affects the operation
and performance of higher-layer protocols, and hinders cross-layer protocol
optimizations through the physical layer [9, 25–27]. Accordingly, various
interference models and packet reception algorithms have been proposed
by the literature (e.g., [19, 20, 28–33]).

(ii) MAC Layer. As a collision may cause a packet loss, it affects
the reliability and energy efficiency of transmissions. In addition,
when a transmitted packet is not received at its intended receiver,
it unnecessarily occupies the channel and results in lower effective
throughput. Furthermore, as stated earlier, collisions affect the
performance of higher-layer protocols. For example, packet losses during
the data-gathering phase of WSNs reduce the number of packets delivered
to the sink node, and this directly affects the application for which the
network has been deployed. Therefore, many efforts have been made
to improve network performance through collision avoidance mechanisms.
Specifically, since the MAC layer manages access to the common channel,
collision avoidance is mainly addressed at this layer through channel access
mechanisms [3, 34–38]. However, it should be noted that a collision
avoidance mechanism should not necessarily be implemented at the MAC
layer. For example, a module implemented above the MAC layer can
improve and manage the operation of a MAC protocol.

1.2 Problem Background

As accurate collision modeling is crucial for the design, development
and evaluation of collision avoidance mechanisms, this section, first, studies
the challenges of collision modeling. Then, it proceeds with the challenges of
providing collision avoidance during the operational phases of WSNs.

1.2.1 Collision Modeling

As stated earlier, collision modeling requires employing a packet reception
algorithm at the physical layer to evaluate the incoming signals and model the
effects of collisions on packet reception. Meanwhile, a packet reception algorithm
relies on an interference model [20, 29, 33] (e.g., SINR, Capture Threshold
Model (CTM)) to decide whether an incoming packet should be received and
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how collisions affect an ongoing reception [19, 28, 30, 31, 39].

There are, in general, two approaches for designing a packet reception
algorithm: (i) packet-level modeling is computationally efficient but do not
accurately reproduce many aspects of collisions with respect to the capture
effect; (ii) physical-level modeling has high fidelity but is computationally
infeasible to be used for long, multi-packet network traces or large-scale networks
such as WSNs. Packet-level algorithms typically perform one or two evaluation
to determine the effects of collisions on a signal being received [20, 28, 31, 40, 41].
From the simulation point of view, packet-level modeling requires a lightweight
algorithm and provides fast simulation. Unfortunately, packet-level algorithms
present drawbacks as follows [4, 20, 27, 28, 30, 31, 39]:

(i) Inaccuracy of Collision Modeling and Packet Reception. When multiple
signals collide at a receiver, these algorithms cannot correctly decide which
packet should be received. In comparison with a real-world scenario, either
these algorithms indicate correct reception for the packets that could not
be actually received, or they do not receive the packets that could be
actually received. The inaccuracy of these algorithms is mainly due to the
incorrect representation of the real behavior of low-power RF transceivers
in terms of the capture effect and transceiver synchronization [4, 20, 28,
30, 31]. For example, when a strong signal collides with the beginning of
a weaker signal, although it might be possible to receive the weaker signal
correctly, these algorithms do not represent any reception. In particular,
as the accuracy of these models depends on the factors such as collision
intensity, signal arrival times, MAC protocol operation and packet format,
they do not provide an accurate solution for collision modeling.

(ii) Lack of Collision Recovery, Partial Packet Reception, and Collision
Detection. Since most of the commonly used RF transceivers support
the capture effect, they can switch to a new packet reception after a
collision that corrupts the packet currently being received. Therefore,
subject to the power of a newly arrived signal, transceivers may recover
from a collision. Furthermore, depending on the collision time, some data
parts of the corrupted packet may have been correctly received. These
received bytes can be delivered by the physical layer to the higher layers
[4, 27]. Collision recovery and partial packet reception also allow the MAC
layer to perform collision detection. These features are particularly useful
for the optimization of higher layers (e.g., [9, 18, 25–27]). However, packet-
level algorithms do not provide partial packet reception because these
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features depend on accurate modeling of the capture effect, transceiver
synchronization modeling, and the SINR values computed during specific
fields or bits of the packet. Consequently, packet-level algorithms cannot
be used to develop or analyze cross-layer protocol optimization.

On the other hand, physical-level modeling requires SINR calculations at
the bit-level; therefore, providing the upper-layer protocols with a high-fidelity
estimate of collision impact. Unfortunately, physical-level modeling is very
expensive from the computational point of view. It involves a comparison of the
signal strength of every possible transmitter at all possible receivers for every
bit. Therefore, the overhead of these algorithms scales with the number of bits
per packet, the number of packets sent, and the square of the number of nodes
in the network. This approach is particularly infeasible in large-scale WSNs
with low-power MAC protocols, many of which use extremely long preambles
or packet cycling techniques (e.g., [35, 42, 43]). Therefore, new techniques are
needed to achieve collision modeling with high accuracy and low overhead.

While collision modeling enables the nodes to make decision about
the reception of the incoming signals, the power of the signals received at each
node depends on the collision relationship between nodes. Recent studies on
low-power wireless communications revealed particular characteristics (e.g., radio
irregularity and hardware heterogeneity) that highly affect collision relationship
between nodes [44–49]. In other words, in addition to the well-known models of
signal propagation (e.g., log-normal shadowing model), these models also affect
the signal power level each node receives from other nodes. For example, assume
that these models are neglected, and the transmission of node i causes a collision
of power x on node j. After considering the radio irregularity and hardware
heterogeneity models, the received signal power from node i at node j changes
to x′, and this change might affect packet reception performance at node j. On
the other hand, the accuracy and performance of collision avoidance mechanisms
depend on collision relationship between nodes [44, 50–52]. For example,
contention-based collision avoidance mechanisms highly rely on the carrier
sensing information received from the physical layer. In addition, schedule-based
collision avoidance mechanisms rely on collision relationship between nodes
for channel access scheduling. Therefore, accurate collision modeling would be
meaningless without establishing precise collision relationship between nodes
[29]. Although the literature proposes models for establishing precise collision
relationship between nodes, unfortunately, investigating the implementation
architectures used for implementing these models on simulation platforms
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indicates the lack of these models. Consequently, for example, the real-world
performance of a link-scheduling algorithm (used for collision avoidance during
the data-gathering phase) may be highly different than the result obtained
by simulation [50, 52]. Therefore, implementing an accurate packet reception
algorithm along with the models that affect collision relationship between nodes
requires a sophisticated architecture. Using this architecture, the aforementioned
algorithms and models can be implemented on a simulation platform such as
OMNeT++ [53].

1.2.2 Collision Avoidance

As stated earlier, WSNs are highly collision-prone, therefore, collision
avoidance mechanisms are required to improve the performance of these networks.
This thesis addresses collision avoidance with respect to the actual operational
phases of WSNs: initialization, and data gathering. Therefore, collision avoidance
should be investigated according to the particular characteristics of each phase.
For each phase, before presenting the importance and challenges of collision
avoidance, the operation of that phase is described.

1.2.2.1 Collision Avoidance during the Initialization Phases

The initialization phase has two sub-phases: Neighbor Discovery and
Link Estimation (NDLE), and Collection Tree Construction (CTC). Since
WSNs operate in a distributed manner, a NDLE protocol should be executed
after network deployment to gather neighborhood information and estimate link
qualities [54–60]. This information is later used by protocols such as routing and
MAC to perform their operation [61, 62]. In addition, since the main observable
traffic pattern in WSNs is many-to-one (a.k.a., convergecast) [3, 63–65], it is
the responsibility of the CTC phase to establish efficient paths from each node
towards the sink [64, 66–69]. Consequently, NDLE and CTC are the essential
phases to operationalize a WSN.

During the NDLE phase, nodes should broadcast a fixed number of
beacon packets to identify their neighbors and estimate their link qualities
[54, 56, 58, 59, 62, 70]. Similarly, CTC is a packet flooding (started from the
sink node) in which every node broadcasts its minimum cost towards the sink
[64, 67–69]. Consequently, collisions highly affect the accuracy of these phases
because they rely on a significant number of broadcast transmissions. During
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the NDLE phase, for those missing beacon packets caused by collision, nodes
cannot distinguish between the packet losses caused by link unreliability and
those caused by collisions. Therefore, a node that misses a beacon packet
cannot properly estimate its link cost to the node from which the packet
has been originated. In addition, collisions affect the number of discovered
neighbors. Packet collision during the CTC phase causes cost update failure
and increases the cost of the constructed tree, compared with the optimal-cost
tree. Particularly, missing a cost packet not only affects the node that has lost
the packet, but it also affects the path cost of the nodes that could have used
this node as their ancestor. The inaccuracies introduced by the NDLE and
CTC phases affect the efficiency of higher-layer protocols. For example, the
inaccuracy of neighbor discovery affects the efficiency of scheduling algorithms,
because they rely on neighborhood information to assign collision-free time slots
to the nodes. In addition, inaccurate estimation of the links prevents the routing
protocol to perform efficient packet forwarding. Furthermore, the inaccuracy of
the CTC phase results in data transmission over non-optimal paths and causes
lower delivery ratio, longer delay and higher energy consumption.

Contention-based channel access (a.k.a., Carrier Sense Multiple
Access (CSMA)) is the only possible way to arbitrate channel access during
the NDLE and CTC phases, because: First, as these phases are executed
after network deployment, nodes do not have any neighborhood information,
therefore, sophisticated channel access mechanisms (e.g., [38, 71]) cannot be
employed. Second, the initialization phases should provide adaptive and fast
initialization using lightweight protocols with minimum overhead. On the
other hand, achieving reliable broadcasting through CSMA is a challenging
problem due to the following reasons: First, no contention window adjustment
can be applied because collision detection through mutual handshaking or
Acknowledgement (ACK) is not possible with broadcast transmissions [72–
76]. Second, utilizing multiple unicast transmissions instead of a broadcast
transmission is not feasible because it requires the nodes to be aware of their
neighbors, which is not available at the network initialization [77]. In addition,
unicast transmissions significantly increase the duration and energy consumption
of the initial phases [56]. Unfortunately, although the literature proposes
many MAC protocols for improving the reliability of unicast transmissions
during the data-gathering phase, no considerable contribution can be found
on improving broadcast reliability during the initialization phases [3, 5, 56, 64, 78].

The most straightforward way to improve broadcast reliability is to
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broadcast multiple copies of each packet. Although this approach has been used
in vehicular networks (e.g., [79, 80]), it cannot be used during the NDLE phase of
WSNs, because this phase requires a predetermined number of transmissions. In
addition, as this approach multiplies the duration and energy consumption, it is
not useful for the CTC phase. Considering the challenges of achieving broadcast
reliability, conservative approaches such as extra-large backoff duration and
constant beaconing interval have been used to reduce collisions [56, 62, 64].
However, these approaches do not provide collision detection and they are not
adaptive to network dynamics. Specifically, due to the influence of various
parameters (such as network density, transmission power, path loss, beacon
length and transceiver speed) on the number of collisions, it is hard to achieve
a trade-off between accuracy and duration. This is even more challenging when
no exact network density can be considered for large-scale WSNs with random
deployment. For example, the fixed beaconing rate approach either has been
used in small-scale networks [61], or it has a very long inter-packet interval.
These discussions indicate that CSMA should be improved through adaptive
and efficient collision avoidance mechanisms for the broadcast traffic pattern.

1.2.2.2 Collision Avoidance during the Data-Gathering Phase

The fundamental traffic pattern observable in WSNs is packet forwarding
towards the sink node [36, 63, 81–83]. A WSN enters this phase after the
initialization phases. In order to make accurate and quick decisions, data-
gathering applications usually require high delivery ratio with minimum
end-to-end delay [81–84]. From the channel access perspective, employing
contention-based access mechanisms during this phase results in a significant
number of collisions, which is the result of traffic direction, multi-hop packet
forwarding, and more importantly hidden-node collisions. Since collisions
reduce network performance in terms of effective throughput and delivery ratio,
scheduling algorithms have been proposed to eliminate the negative effects
of collisions on the performance of data-gathering applications [3, 36, 85].
Accordingly, the literature proposes two types of scheduling algorithms: Node-
scheduling algorithms assume each node’s transmission should be received by all
of its neighbors. Therefore, they assign time slots to the nodes to avoid those
collisions that may cause a node’s transmission to be corrupted at any of its
neighbors. In contrast, link-scheduling algorithms assume a specific direction for
each transmission. In this instance, the collision avoidance strategy is to avoid
those collisions that may cause packet corruption at the intended receiver of
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each packet.

Since link-scheduling algorithms rely on transmission directions, time slot
assignment is less constrained and fewer number of time slots can be used for
transmission scheduling. Therefore, link-scheduling algorithms provide higher
spatial reuse, which results in elevated network throughput [37, 86, 87]. Besides,
as the CTC phase establishes an almost static child-parent relationship between
nodes, it justifies the benefits of employing link scheduling for improving the
performance of data-gathering phase [36, 88, 89]. However, while most of these
algorithms are centralized (e.g., [90–93]), others rely on specific assumptions
that are not realistic in WSNs (e.g., the requirement to have an interference-free
tree topology [94, 95]). In particular, despite significant research on the
theoretical aspects of collision avoidance through link scheduling, less attention
has been paid to the design of practical scheduling algorithms. Meanwhile,
DRAND [38, 61] is a distributed node-scheduling algorithm that does not
require any assumption regarding the underlying network. However, considering
the convergecast traffic pattern, this algorithm cannot achieve the potential
improvements of link scheduling. For example, even if the transmissions of two
neighboring nodes to their parents do not cause packet corruption, DRAND
prevents concurrent transmission of these nodes. Beside this drawback, as
DRAND does not allow one-hop and two-hop neighbors to concurrently apply
for time slot reservation, nodes should perform their time slot assignment
sequentially. The lack of concurrency increases the execution duration and
energy consumption of this algorithm. Based on these discussions, a fast,
distributed and applicable link-scheduling algorithm is required to improve
packet transmission efficiency during the data-gathering phase.

1.3 Problem Statement

Considering the negative effects of collisions, each node should employ
collision avoidance mechanisms to avoid packet corruption at the intended
receivers. Although collisions increase the chance of packet corruption at a
receiver, the capture effect provides certain conditions under which a packet can
be received in the presence of collisions; therefore, accurate collision modeling
is required at the physical layer. The previous discussions have revealed the
importance and challenges of collision modeling and avoidance from the physical
layer (corresponding to packet reception) and MAC layer (corresponding to
packet transmission) point of views, respectively. At the physical layer, a
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sophisticated packet reception algorithm is required to improve the accuracy of
collision modeling. At the MAC layer, efficient collision avoidance mechanisms
are required to improve the performance of WSNs. This section further elaborates
these problems.

1.3.1 First Research Problem: Collision Modeling with High
Accuracy and Efficiency

As WSNs are highly collision-prone, a packet reception algorithm is
required at the physical layer of the nodes to evaluate the incoming signals
and decide about the delivery of the incoming packets to the MAC layer.
Unfortunately, the existing packet reception algorithms do not represent accurate
collision modeling in terms of decision making about packet reception in the
presence of collisions. Specifically, these algorithms do not accurately model
the capture effect, and do not provide partial packet reception and collision
detection. On the other hand, physical-level packet reception modeling has not
been used because of its high complexity and overhead. To overcome these
problems the following research question should be addressed:

Research Question 1.1. How to design and develop a physical-level
packet reception algorithm with the following properties: (i) it provides high
accuracy in modeling the influence of collisions with respect to the capture effect
and signal synchronization; (ii) it is an efficient solution (i.e., number of nodes
and packet size do not compromise its accuracy and speed); (iii) it supports
partial packet reception and collision detection; (iv) it is independent of the
implementation of the higher-layer protocols.

The implementation, evaluation and use of the above-mentioned
packet reception algorithm on a simulation platform requires an implementation
architecture. Furthermore, accurate collision modeling at the physical layer
would be meaningless without establishing precise collision relationship between
nodes. Unfortunately, the existing implementation architectures do not support
the implementation and evaluation of the above-mentioned packet reception
algorithm, and these architectures do not include most of the essential models
that affect collision relationship between nodes. Therefore, the following question
arises:

Research Question 1.2. How to design and develop an implementation
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architecture through which the aforementioned packet reception algorithm and
the existing models that affect collision relationship between nodes can be
implemented on a simulation platform?

1.3.2 Second Research Problem: Adaptive and Efficient Collision
Avoidance during the Initialization Phases

Contention-based channel access is the only mechanism that can be
employed for channel arbitration during the initialization phases of WSNs.
However, as contention-based channel access mechanisms do not provide collision
avoidance for broadcast transmissions, the accuracy and efficiency of the
initialization phases are highly affected by collisions. Therefore, with respect to
the considerable influence of the initialization phases on network performance,
efficient collision avoidance mechanisms are required. Since the traffic pattern of
NDLE and CTC phases are slightly different, the above problem leads to two
questions:

Research Question 2.1. How to adaptively and efficiently improve
broadcast reliability through contention-based channel access mechanism during
the NDLE phase?

Research Question 2.2. How to adaptively and efficiently improve
broadcast reliability through contention-based channel access mechanism during
the CTC phase?

1.3.3 Third Research Problem: Fast and Distributed Link Scheduling
for Collision Avoidance during the Data-Gathering Phase

With respect to the convergecast traffic pattern, many scheduling
algorithms have been developed for collision avoidance during the data-gathering
phase. However, compared with node scheduling, although link scheduling provides
higher collision avoidance efficiency for the convergecast traffic pattern, existing
link-scheduling algorithms rely on specific assumptions that cannot be satisfied
in real-world applications. To overcome this problem the following research
question should be addressed:

Research Question 3.1. How to design and develop a distributed, fast
and applicable link-scheduling algorithm for the data-gathering phase?
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1.4 Objectives

The main aim of this research is improving collision modeling through a
packet reception algorithm, as well as improving network performance through
collision avoidance mechanisms. To achieve these aims, the following objectives
are defined:

(i) To analyze collisions and collision modeling algorithms through empirical
and simulated experiments.

(ii) To design and develop a physical-level packet reception algorithm to
achieve collision modeling and decision making about packet reception
with high accuracy and efficiency.

(iii) To validate the high accuracy and efficiency of the packet reception
algorithm proposed in (ii) through comparing the results of simulated and
empirical experiments.

(iv) To design and develop channel access mechanisms for providing adaptive
and efficient collision avoidance during the initialization phases.

(v) To evaluate the performance of the collision avoidance mechanisms
proposed in (iv) through extensive simulation studies.

(vi) To design and develop a distributed, fast and applicable link-scheduling
algorithm for efficient collision avoidance during the data-gathering phase.

(vii) To evaluate the performance of the link-scheduling algorithm proposed in
(vi) through extensive simulation studies.

1.5 Contributions

In order to achieve the aforementioned objectives, the following
contributions are presented by this work:

(i) This research presents the following contributions with respect to collision
modeling and analysis:

(a) A physical-level packet reception algorithm, called CApture Modeling
Algorithm (CAMA), with high accuracy and efficiency. CAMA
is designed based on the real characteristics of low-power RF
transceivers and it also employs mechanisms for reducing the
overhead of high accuracy collision modeling. In addition to accuracy,
CAMA also provides partial packet reception and collision detection,
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which are useful for cross-layer optimization of higher layers.

(b) An implementation architecture through which CAMA can be
implemented on a simulation platform. This architecture also allows
the implementation of the existing models that impact collision
relationship between nodes.

(c) Empirical analysis of collisions with low-power RF transceivers.
These studies reveal how collisions affect packet reception, partial
packet reception, and collision detection performance. While
comparison with empirical results confirms the credibility of CAMA,
these evaluations also show the higher accuracy of CAMA against
existing packet reception algorithms.

(d) Sensitivity analysis of collisions, and in particular the capture
effect, against various environmental and network parameters. This
study exhibits the importance of collision modeling, and shows how
environmental and network parameters affect the efficiency of packet
reception and collision detection.

(ii) This research presents the following contributions for achieving collision
avoidance and improving the reliability of packet broadcasting during the
initialization phases:

(a) Contention window adjustment mechanisms for collision avoidance
during the NDLE phase. These mechanisms benefit from the collision
detection capability of CAMA, and they can provide adaptive
collision avoidance with respect to local collision intensity. These
mechanisms considerably improve the accuracy of NDLE without
violating the energy efficiency requirement of WSNs. Furthermore,
since CAMA is the underlying physical layer, the NDLE protocol is
enabled to benefit from partially received packets.

(b) A mathematical model through which the contention window size
can be adjusted to achieve a desired collision avoidance probability
during broadcast transmissions. This model can be used for collision
analysis and pre-deployment configuration of MAC protocols.

(c) The Geometric-distribution-based contention window adjustment
(Geowindow) algorithm, which reduces collisions during the CTC
phase through contention window size management and transmission
prioritization. This algorithm results in significant improvement of
CTC accuracy without increasing duration or energy consumption.
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(iii) This research presents the following contribution for collision avoidance
during the data-gathering phase:

(a) A distributed and concurrent link-scheduling algorithm, called
DICSA. DICSA does not require any assumption regarding the
underlying network, and achieves fast and flexible time slot
assignment. These features translate to the higher performance of
data-gathering applications, as well as lower schedule recovery cost
in the presence of network dynamics.

1.6 Significance of the Research

Literature review and the experiments presented in this thesis confirm
that WSNs are highly collision-prone, and this issue significantly affects the
performance of these networks. Therefore, both collision modeling and collision
avoidance are essential for protocol development and improving the performance
of WSNs. This research addresses collision modeling at the physical layer, because
it is responsible for modeling the effects of collisions on packet reception. Collision
avoidance is addressed at the MAC layer, because it controls channel access. With
respect to the presented contributions, this section highlights the significance of
this research:

(i) The comprehensive empirical measurements presented in this thesis
highlight packet reception performance in the presence of collisions.
Through comparison with the results of simulated experiments, these
studies inform the researchers about the unacceptable accuracy of the
existing collision modeling approaches on which all the higher-layer
protocol developments are relied.

(ii) The comprehensive simulation-based sensitivity analyses allow the
researchers to consider the effects of environmental and network
parameters on collision intensity, collision detection and packet reception
performance.

(iii) As WSNs are highly collision-prone, the proposed packet reception
algorithm (i.e., CAMA) is particularly important for protocol development
and performance prediction. In addition, this algorithm presents new
opportunities to the researchers to employ partial packet reception and
collision detection for cross-layer improvement of higher-layer protocols.

(iv) The proposed implementation architecture can be used to implement
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CAMA and the essential models of low-power wireless communications on
simulation platforms. This enables the research community to regenerate
the real characteristics of low-power wireless communications.

(v) Collision avoidance during the initialization phases affects the performance
of network protocols such as routing and MAC. For example, improving
NDLE and CTC accuracy results in higher energy efficiency, higher
delivery ratio, and lower delay.

(vi) The proposed mechanisms for providing broadcast reliability during the
initialization phases achieve collision avoidance based on local collision
intensity. Therefore, they are very useful for applications that include a
large-scale network with random topology.

(vii) Collision avoidance during the data-gathering phase directly affects
network performance. For example, collision avoidance during this phase
results in higher energy efficiency, higher network throughput, and lower
delay.

(viii) The proposed link-scheduling algorithm provides fast, distributed and
applicable collision avoidance during the data-gathering phase. As most
of the WSN applications involve data reporting to a single base station,
many applications can be envisaged for this algorithm.

1.7 Scope

The followings clarify the scope of this research:

(i) This work addresses the collision avoidance problem at the MAC layer,
because it controls transceiver operation. However, collision avoidance can
also be addressed by network-layer mechanisms (e.g., packet forwarding
through less congested paths), physical-layer mechanisms (e.g., rate
control), and so forth.

(ii) This work considers the effects of white Gaussian noise. However, the
influence of external interference on collisions has not been considered.

(iii) This work assumes all the nodes employ a single channel for
communications.

(iv) This work addresses collision avoidance through mechanisms that manage
access to a common channel. Therefore, mechanisms such as Frequency
Division Multiple Access (FDMA) or Code Division Multiple Access
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(CDMA) are out of the scope of this work.

(v) The empirical validations presented in this thesis employ the two most
commonly used low-power RF transceivers, i.e., CC1000 and CC2420.
These transceivers are used in sensor nodes such as Mica2, TelosB and
MicaZ, which have been widely utilized by the research community. This
thesis does not present any validation against other low-power transceivers
(such as CC2500 [96] and CC2520 [97]) or the transceivers employed in
IEEE 802.11 [75] and 802.15.6 [98] networks.

(vi) This work does not perform performance evaluation in mobile WSNs,
nevertheless,

(a) The packet reception algorithm and the architecture proposed in
Chapter 4 support node mobility given that the received transmission
power during a packet reception is unaffected by mobility.

(b) The mechanisms proposed in Chapter 5 can also be employed for
collision avoidance in mobile WSNs. However, it should be noted
that, depending on the mobility level, mobile WSNs might employ
methods such as opportunistic routing instead of packet forwarding
through collection tree.

(c) The scheduling algorithm proposed in Chapter 6 can support limited
mobility. Specifically, it is assumed that node movement, node
addition and node removal (or death) are very unlikely. However, this
algorithm can be adapted to sporadic changes in network topology.

1.8 Thesis Organization

The remaining of this thesis is organized as follows. Chapter 2 provides the
background of this research through studying the collision modeling and collision
avoidance approaches. Chapter 3 presents the overall research plan and the
performance evaluation platforms of this research. Chapter 4 proposes CAMA
and an implementation architecture. In addition, this chapter presents extensive
empirical and simulated experiments for analyzing collisions in WSNs. Chapter
5 deals with collision avoidance during the initialization phases of WSNs. First,
this chapter proposes mechanisms for improving broadcast reliability during the
NDLE phase. Then, it focuses on improving the accuracy of CTC phase through
collision avoidance. Through proposing a link-scheduling algorithm, Chapter
6 overcomes the negative effects of collisions during the data-gathering phase.
Chapter 7 concludes this research and provides directions for future work.
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121. Köpke, A., Swigulski, M. and Wessel, K. Simulating wireless and
mobile networks in OMNeT++ the MiXiM vision. Proceedings of
the 1st international conference on Simulation tools and techniques for
communications, networks and systems & workshops, Simutools ’08.
Brussels, Belgium. 2008. 71.

122. MiXiM, T. Simulating Wireless and Mobile Networks in OMNeT++.
http://mixim.sourceforge.net/, 2014.

123. Levis, P., Lee, N., Welsh, M. and Culler, D. TOSSIM: accurate
and scalable simulation of entire TinyOS applications. Proceedings of
the 1st international conference on Embedded networked sensor systems
(SenSys’03). Los Angeles, California, USA: ACM. 2003. 126–137.

124. TOSSIM. TinyOS Simulator. http://docs.tinyos.net/tinywiki/
index.php/ TOSSIM, 2014.

125. Davis, D. H. and Gronemeyer, S. A. Performance of Slotted ALOHA
Random Access with Delay Capture and Randomized Time of Arrival.
IEEE Transactions on Communications, 1980. 28(5): 703–710.



214

126. Arnbak, J. C. and Van Blitterswijk, W. Capacity of Slotted ALOHA
in Rayleigh-Fading Channels. IEEE Journal on Selected Areas in
Communications, 1987. 5(2): 261–269.

127. Cheun, K. and Kim, S. Joint delay-power capture in spread-spectrum
packet radio networks. IEEE Transactions on Communications, 1998.
46(4): 450–453.

128. Ware, C., Chicharo, J. and Wysocki, T. Simulation of capture behaviour
in IEEE 802.11 radio modems. proceedings of the IEEE 54th Vehicular
Technology Conference - VTC Fall ’01. Atlantic City, NJ, USA: IEEE.
2001, vol. 3. 1393–1397.

129. Hadzi-Velkov, Z. and Spasenovski, B. On the capacity of IEEE 802.11
DCF with capture in multipath-faded channels. International Journal
of Wireless Information Networks, 2002. 9(3): 191–199.

130. Reijers, N., Halkes, G. and Langendoen, K. Link layer measurements in
sensor networks. IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (MASS ’04). IEEE. 2004. 224–234.

131. Kotz, D., Newport, C., Gray, R. S., Liu, J., Yuan, Y. and Elliott, C.
Experimental evaluation of wireless simulation assumptions. Proceedings
of the 7th ACM international symposium on Modeling, analysis and
simulation of wireless and mobile systems - MSWiM ’04. Venice, Italy:
ACM Press. 2004. 78–82.

132. Nikookar, H. and Hashemi, H. Statistical modeling of signal amplitude
fading of indoor radio propagation channels. Proceedings of 2nd
IEEE International Conference on Universal Personal Communications.
Ottawa, Ont, Canada: IEEE. 1993, vol. 1. 84–88.

133. Chen, Y. and Terzis, A. On the implications of the log-normal path loss
model. Proceedings of the 9th ACM Conference on Embedded Networked
Sensor Systems - SenSys ’11. Seattle, Washington, USA: ACM Press.
2011. 26.

134. Son, D., Krishnamachari, B. and Heidemann, J. Evaluating the
Importance of Concurrent Packet Communication in Wireless Networks.
Technical Report April. USC/ISI Technical Report ISI-TR-639. 2007.

135. Evans, D., Krasinski, R., Batra, A., Dawkins, M., Hosur, S. and
Wang, D. IEEE P802.15 Wireless Personal Area Networks: Coexistence
Assurance Document. Technical report. IEEE. 2012.

136. Shin, S. Y., Choi, S., Park, H. S. and Kwon, W. H. Packet Error



215

Rate Analysis of IEEE 802.15.4 Under IEEE 802.11b Interference. In:
Wired/Wireless Internet Communications. Springer Berlin Heidelberg.
279–288. 2005.

137. IEEE Computer Society. IEEE 802.15: Wireless Personal Area Networks
(PANs). Part 15.2: Coexistence of Wireless Personal Area Networks with
Other Wireless Devices Operating in Unlicensed Frequency Band, 2003.

138. Zhou, G., He, T., Stankovic, J. A. and Abdelzaher, T. RID: radio
interference detection in wireless sensor networks. Proceedings IEEE 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies, INFOCOM ’05. IEEE. 2005, vol. 2. 891–901.

139. Lee, P. W. Q., Seah, W. K. G., Tan, H.-P. and Yao, Z. Wireless sensing
without sensors-An experimental study of motion/intrusion detection
using RF irregularity. Measurement Science and Technology, 2010.
21(12): 124007.

140. Biaz, S. Realistic radio range irregularity model and its impact on
localization for wireless sensor networks. Proceedings of International
Conference on Wireless Communications, Networking and Mobile
Computing. IEEE. 2005, vol. 2. 669–673.

141. He, T., Huang, C., Blum, B. M., Stankovic, J. a. and Abdelzaher,
T. Range-Free Localization Schemes for Large Scale Sensor Networks.
Proceedings of the 9th annual international conference on Mobile
computing and networking - MobiCom ’03. San Diego, CA, USA: ACM
Press. 2003. 81.

142. Cerpa, A., Wong, J. L., Potkonjak, M. and Estrin, D. Temporal
properties of low power wireless links. Proceedings of the 6th ACM
international symposium on Mobile ad hoc networking and computing -
MobiHoc ’05. Urbana-Champaign, IL, USA: ACM Press. 2005, January.
414.

143. Downard, I. T. Simulating Sensor Networks in NS-2. Technical report.
Information Technology Division, Naval Research Laboratory. 2004.

144. Fall, K. and Varadhan, K. The NS Manual. 3. UC Berkeley, LBL,
USC/ISI, and Xerox PARC. 2011.

145. Gomez, C., Boix, A. and Paradells, J. Impact of LQI-Based Routing
Metrics on the Performance of a One-to-One Routing Protocol for
IEEE 802.15.4 Multihop Networks. EURASIP Journal on Wireless
Communications and Networking, 2010. 2010(1): 205.



216

146. Seada, K., Zuniga, M., Helmy, A. and Krishnamachari, B. Energy-
efficient forwarding strategies for geographic routing in lossy wireless
sensor networks. Proceedings of the 2nd international conference on
Embedded networked sensor systems - SenSys ’04. Baltimore, MD, USA:
ACM Press. 2004. 108.

147. Upadhyayula, S. and Gupta, S. Spanning tree based algorithms for
low latency and energy efficient data aggregation enhanced convergecast
(DAC) in wireless sensor networks. Ad Hoc Networks, 2007. 5(5): 626–
648.

148. Souza, E. D. and Nikolaidis, I. An exploration of aggregation
convergecast scheduling. Ad Hoc Networks, 2013.

149. Xu, X., Li, X. Y., Mao, X., Tang, S. and Wang, S. A Delay-Efficient
Algorithm for Data Aggregation in Multihop Wireless Sensor Networks.
IEEE Transactions on Parallel and Distributed Systems, 2011. 22(1):
163–175.

150. Bianchi, G. Performance Analysis of the IEEE 802.11 Distributed
Coordination Function. IEEE Journal on Selected Areas in
Communications, 2000. 18(3): 535–547.

151. TinyOS 1.x. http://www.tinyos.net/tinyos-1.x/, 2013.

152. TinyOS 2.x. http://www.tinyos.net/tinyos-2.x/, 2013.

153. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo,
A., Gay, D., Hill, J., Welsh, M., Brewer, E. and Culler, D. Tinyos: An
operating system for sensor networks. In: Ambient intelligence. Springer
Verlag, vol. 35. 115–148. 2005.

154. Wang, Y., Vuran, M. C. and Goddard, S. Cross-Layer Analysis
of the End-to-End Delay Distribution in Wireless Sensor Networks.
IEEE/ACM Transactions on Networking, 2012. 20(1): 305–318.

155. Polastre, J. R. A unifying link abstraction for wireless sensor networks.
Ph.D. Thesis. University of California, Berkeley, San Diego, California,
USA. 2005.

156. Borbash, S. A., Ephremides, A. and McGlynn, M. J. An asynchronous
neighbor discovery algorithm for wireless sensor networks. Ad Hoc
Networks, 2007. 5(7): 998–1016.

157. Kohvakka, M., Suhonen, J., Kuorilehto, M., Kaseva, V., Hännikäinen,
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