37 research outputs found

    Combining Perception and Knowledge for Service Robotics

    Get PDF
    As the deployment of robots is shifting away from the industrial settings towards public and private sectors, the robots will have to get equipped with enough knowl- edge that will let them perceive, comprehend and act skillfully in their new work- ing environments. Unlike having a large degree of controlled environment variables characteristic for e.g. assembly lines, the robots active in shopping stores, museums or households will have to perform open-ended tasks and thus react to unforeseen events, self-monitor their activities, detect failures, recover from them and also learn and continuously update their knowledge. In this thesis we present a set of tools and algorithms for acquisition, interpreta- tion and reasoning about the environment models which enable the robots to act flexibly and skillfully in the afore mentioned environments. In particular our contri- butions beyond the state-of-the-art cover following four topics: a) semantic object maps which are the symbolic representations of indoor environments that robot can query for information, b) two algorithms for interactive segmentation of objects of daily use which enable the robots to recognise and grasp objects more robustly, c) an image point feature-based system for large scale object recognition, and finally, d) a system that combines statistical and logical knowledge for household domains and is able to answer queries such as Which objects are currently missing on a breakfast table? . Common to all contributions is that they are all knowledge-enabled in that they either use robot knowledge bases or ground knowledge structures into the robot s internal structures such as perception streams. Further, in all four cases we exploit the tight interplay between the robot s perceptual, reasoning and action skills which we believe is the key enabler for robots to act in unstructured environments. Most of the theoretical contributions of this thesis have also been implemented on TUM-James and TUM-Rosie robots and demonstrated to the spectators by having them perform various household chores. With those demonstrations we thoroughly validated the properties of the developed systems and showed the impossibility of having such tasks implemented without a knowledge-enabled backbone

    Evaluating Computer Vision Methods for Detection and Pose Estimation of Textureless Objects

    Get PDF
    Master's thesis in Automation and signal processingRobotics, AI and automation; search for these words and two things become apparent. An era of automation is upon us, but even so there are still some simple tasks that grinds it to a halt, e.g. picking and placing objects. These simple tasks require coordination from a robot, and object detection from a computer vision system. That’s not to say that robots are incapable of picking up objects, as the simple and organised cases have been solved some time ago. The problems occur in cases where there are no order, in other words chaos. In these cases it is beneficial to detect and find the pose of the object, so that it can be picked up and packed while having full control over the position the object was placed in. This thesis is written at the behest of Pickr.ai, a company looking to automate the picking and packing for retail businesses. The objective of this thesis is to evaluate available pose estimating methods, and if possible single out one that is best suited for the retail environment. Current state of the art methods that are capable of estimating the pose of objects utilise convolutional neural networks for both detection and estimation. The leading methods can achieve accuracy upwards of the high 90% on pretrained objects. The case with retail is that the volume of available wares may be so large that training on each item is prohibitive. Therefore the testing done has mostly been aimed at the method’s generalisability, whether they can detect objects without prior training specific for the object. A few different methods with varying solutions were examined, from the simpler pure object detectors to two stage 6D pose estimators. Unfortunately none of the methods can be deemed appropriate for the task as it currently stands. The methods do not recognise new objects, and the improvement from limited training does not improve the scores significantly. However, by applying the approaches that are incorporated in the other methods, it may be possible to develop an appropriate new pose estimator capable of handling a retail environment

    Deep learning for object detection in robotic grasping contexts

    Get PDF
    Dans la dernière décennie, les approches basées sur les réseaux de neurones convolutionnels sont devenus les standards pour la plupart des tâches en vision numérique. Alors qu'une grande partie des méthodes classiques de vision étaient basées sur des règles et algorithmes, les réseaux de neurones sont optimisés directement à partir de données d'entraînement qui sont étiquetées pour la tâche voulue. En pratique, il peut être difficile d'obtenir une quantité su sante de données d'entraînement ou d'interpréter les prédictions faites par les réseaux. Également, le processus d'entraînement doit être recommencé pour chaque nouvelle tâche ou ensemble d'objets. Au final, bien que très performantes, les solutions basées sur des réseaux de neurones peuvent être difficiles à mettre en place. Dans cette thèse, nous proposons des stratégies visant à contourner ou solutionner en partie ces limitations en contexte de détection d'instances d'objets. Premièrement, nous proposons d'utiliser une approche en cascade consistant à utiliser un réseau de neurone comme pré-filtrage d'une méthode standard de "template matching". Cette façon de faire nous permet d'améliorer les performances de la méthode de "template matching" tout en gardant son interprétabilité. Deuxièmement, nous proposons une autre approche en cascade. Dans ce cas, nous proposons d'utiliser un réseau faiblement supervisé pour générer des images de probabilité afin d'inférer la position de chaque objet. Cela permet de simplifier le processus d'entraînement et diminuer le nombre d'images d'entraînement nécessaires pour obtenir de bonnes performances. Finalement, nous proposons une architecture de réseau de neurones ainsi qu'une procédure d'entraînement permettant de généraliser un détecteur d'objets à des objets qui ne sont pas vus par le réseau lors de l'entraînement. Notre approche supprime donc la nécessité de réentraîner le réseau de neurones pour chaque nouvel objet.In the last decade, deep convolutional neural networks became a standard for computer vision applications. As opposed to classical methods which are based on rules and hand-designed features, neural networks are optimized and learned directly from a set of labeled training data specific for a given task. In practice, both obtaining sufficient labeled training data and interpreting network outputs can be problematic. Additionnally, a neural network has to be retrained for new tasks or new sets of objects. Overall, while they perform really well, deployment of deep neural network approaches can be challenging. In this thesis, we propose strategies aiming at solving or getting around these limitations for object detection. First, we propose a cascade approach in which a neural network is used as a prefilter to a template matching approach, allowing an increased performance while keeping the interpretability of the matching method. Secondly, we propose another cascade approach in which a weakly-supervised network generates object-specific heatmaps that can be used to infer their position in an image. This approach simplifies the training process and decreases the number of required training images to get state-of-the-art performances. Finally, we propose a neural network architecture and a training procedure allowing detection of objects that were not seen during training, thus removing the need to retrain networks for new objects

    Task-adaptable, Pervasive Perception for Robots Performing Everyday Manipulation

    Get PDF
    Intelligent robotic agents that help us in our day-to-day chores have been an aspiration of robotics researchers for decades. More than fifty years since the creation of the first intelligent mobile robotic agent, robots are still struggling to perform seemingly simple tasks, such as setting or cleaning a table. One of the reasons for this is that the unstructured environments these robots are expected to work in impose demanding requirements on a robota s perception system. Depending on the manipulation task the robot is required to execute, different parts of the environment need to be examined, the objects in it found and functional parts of these identified. This is a challenging task, since the visual appearance of the objects and the variety of scenes they are found in are large. This thesis proposes to treat robotic visual perception for everyday manipulation tasks as an open question-asnswering problem. To this end RoboSherlock, a framework for creating task-adaptable, pervasive perception systems is presented. Using the framework, robot perception is addressed from a systema s perspective and contributions to the state-of-the-art are proposed that introduce several enhancements which scale robot perception toward the needs of human-level manipulation. The contributions of the thesis center around task-adaptability and pervasiveness of perception systems. A perception task-language and a language interpreter that generates task-relevant perception plans is proposed. The task-language and task-interpreter leverage the power of knowledge representation and knowledge-based reasoning in order to enhance the question-answering capabilities of the system. Pervasiveness, a seamless integration of past, present and future percepts, is achieved through three main contributions: a novel way for recording, replaying and inspecting perceptual episodic memories, a new perception component that enables pervasive operation and maintains an object belief state and a novel prospection component that enables robots to relive their past experiences and anticipate possible future scenarios. The contributions are validated through several real world robotic experiments that demonstrate how the proposed system enhances robot perception

    Computational Modeling of Human Dorsal Pathway for Motion Processing

    Get PDF
    Reliable motion estimation in videos is of crucial importance for background iden- tification, object tracking, action recognition, event analysis, self-navigation, etc. Re- constructing the motion field in the 2D image plane is very challenging, due to variations in image quality, scene geometry, lighting condition, and most importantly, camera jit- tering. Traditional optical flow models assume consistent image brightness and smooth motion field, which are violated by unstable illumination and motion discontinuities that are common in real world videos. To recognize observer (or camera) motion robustly in complex, realistic scenarios, we propose a biologically-inspired motion estimation system to overcome issues posed by real world videos. The bottom-up model is inspired from the infrastructure as well as functionalities of human dorsal pathway, and the hierarchical processing stream can be divided into three stages: 1) spatio-temporal processing for local motion, 2) recogni- tion for global motion patterns (camera motion), and 3) preemptive estimation of object motion. To extract effective and meaningful motion features, we apply a series of steer- able, spatio-temporal filters to detect local motion at different speeds and directions, in a way that\u27s selective of motion velocity. The intermediate response maps are cal- ibrated and combined to estimate dense motion fields in local regions, and then, local motions along two orthogonal axes are aggregated for recognizing planar, radial and circular patterns of global motion. We evaluate the model with an extensive, realistic video database that collected by hand with a mobile device (iPad) and the video content varies in scene geometry, lighting condition, view perspective and depth. We achieved high quality result and demonstrated that this bottom-up model is capable of extracting high-level semantic knowledge regarding self motion in realistic scenes. Once the global motion is known, we segment objects from moving backgrounds by compensating for camera motion. For videos captured with non-stationary cam- eras, we consider global motion as a combination of camera motion (background) and object motion (foreground). To estimate foreground motion, we exploit corollary dis- charge mechanism of biological systems and estimate motion preemptively. Since back- ground motions for each pixel are collectively introduced by camera movements, we apply spatial-temporal averaging to estimate the background motion at pixel level, and the initial estimation of foreground motion is derived by comparing global motion and background motion at multiple spatial levels. The real frame signals are compared with those derived by forward predictions, refining estimations for object motion. This mo- tion detection system is applied to detect objects with cluttered, moving backgrounds and is proved to be efficient in locating independently moving, non-rigid regions. The core contribution of this thesis is the invention of a robust motion estimation system for complicated real world videos, with challenges by real sensor noise, complex natural scenes, variations in illumination and depth, and motion discontinuities. The overall system demonstrates biological plausibility and holds great potential for other applications, such as camera motion removal, heading estimation, obstacle avoidance, route planning, and vision-based navigational assistance, etc

    Food Recognition and Volume Estimation in a Dietary Assessment System

    Full text link
    Recently obesity has become an epidemic and one of the most serious worldwide public health concerns of the 21st century. Obesity diminishes the average life expectancy and there is now convincing evidence that poor diet, in combination with physical inactivity are key determinants of an individual s risk of developing chronic diseases such as cancer, cardiovascular disease or diabetes. Assessing what people eat is fundamental to establishing the link between diet and disease. Food records are considered the best approach for assessing energy intake. However, this method requires literate and highly motivated subjects. This is a particular problem for adolescents and young adults who are the least likely to undertake food records. The ready access of the majority of the population to mobile phones (with integrated camera, improved memory capacity, network connectivity and faster processing capability) has opened up new opportunities for dietary assessment. The dietary information extracted from dietary assessment provide valuable insights into the cause of diseases that greatly helps practicing dietitians and researchers to develop subsequent approaches for mounting intervention programs for prevention. In such systems, the camera in the mobile phone is used for capturing images of food consumed and these images are then processed to automatically estimate the nutritional content of the food. However, food objects are deformable objects that exhibit variations in appearance, shape, texture and color so the food classification and volume estimation in these systems suffer from lower accuracy. The improvement of the food recognition accuracy and volume estimation accuracy are challenging tasks. This thesis presents new techniques for food classification and food volume estimation. For food recognition, emphasis was given to texture features. The existing food recognition techniques assume that the food images will be viewed at similar scales and from the same viewpoints. However, this assumption fails in practical applications, because it is difficult to ensure that a user in a dietary assessment system will put his/her camera at the same scale and orientation to capture food images as that of the target food images in the database. A new scale and rotation invariant feature generation approach that applies Gabor filter banks is proposed. To obtain scale and rotation invariance, the proposed approach identifies the dominant orientation of the filtered coefficient and applies a circular shifting operation to place this value at the first scale of dominant direction. The advantages of this technique are it does not require the scale factor to be known in advance and it is scale/and rotation invariant separately and concurrently. This approach is modified to achieve improved accuracy by applying a Gaussian window along the scale dimension which reduces the impact of high and low frequencies of the filter outputs enabling better matching between the same classes. Besides automatic classification, semi automatic classification and group classification are also considered to have an idea about the improvement. To estimate the volume of a food item, a stereo pair is used to recover the structure as a 3D point cloud. A slice based volume estimation approach is proposed that converts the 3D point cloud to a series of 2D slices. The proposed approach eliminates the problem of knowing the distance between two cameras with the help of disparities and depth information from a fiducial marker. The experimental results show that the proposed approach can provide an accurate estimate of food volume

    Robotic Manipulation under Transparency and Translucency from Light-field Sensing

    Full text link
    From frosted windows to plastic containers to refractive fluids, transparency and translucency are prevalent in human environments. The material properties of translucent objects challenge many of our assumptions in robotic perception. For example, the most common RGB-D sensors require the sensing of an infrared structured pattern from a Lambertian reflectance of surfaces. As such, transparent and translucent objects often remain invisible to robot perception. Thus, introducing methods that would enable robots to correctly perceive and then interact with the environment would be highly beneficial. Light-field (or plenoptic) cameras, for instance, which carry light direction and intensity, make it possible to perceive visual clues on transparent and translucent objects. In this dissertation, we explore the inference of transparent and translucent objects from plenoptic observations for robotic perception and manipulation. We propose a novel plenoptic descriptor, Depth Likelihood Volume (DLV), that incorporates plenoptic observations to represent depth of a pixel as a distribution rather than a single value. Building on the DLV, we present the Plenoptic Monte Carlo Localization algorithm, PMCL, as a generative method to infer 6-DoF poses of objects in settings with translucency. PMCL is able to localize both isolated transparent objects and opaque objects behind translucent objects using a DLV computed from a single view plenoptic observation. The uncertainty induced by transparency and translucency for pose estimation increases greatly as scenes become more cluttered. Under this scenario, we propose GlassLoc to localize feasible grasp poses directly from local DLV features. In GlassLoc, a convolutional neural network is introduced to learn DLV features for classifying grasp poses with grasping confidence. GlassLoc also suppresses the reflectance over multi-view plenoptic observations, which leads to more stable DLV representation. We evaluate GlassLoc in the context of a pick-and-place task for transparent tableware in a cluttered tabletop environment. We further observe that the transparent and translucent objects will generate distinguishable features in the light-field epipolar image plane. With this insight, we propose Light-field Inference of Transparency, LIT, as a two-stage generative-discriminative refractive object localization approach. In the discriminative stage, LIT uses convolutional neural networks to learn reflection and distortion features from photorealistic-rendered light-field images. The learned features guide generative object location inference through local depth estimation and particle optimization. We compare LIT with four state-of-the-art pose estimators to show our efficacy in the transparent object localization task. We perform a robot demonstration by building a champagne tower using the LIT pipeline.PHDRoboticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169707/1/zhezhou_1.pd
    corecore