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Abstract

Intelligent robotic agents that help us in our day-to-day chores have been an
aspiration of robotics researchers for decades. More than fifty years since the
creation of the first intelligent mobile robotic agent, robots are still struggling
to perform seemingly simple tasks, such as setting or cleaning a table. One
of the reasons for this is that the unstructured environments these robots are
expected to work in impose demanding requirements on a robot’s perception
system. Depending on the manipulation task the robot is required to execute,
different parts of the environment need to be examined, the objects in it found
and functional parts of these identified. This is a challenging task, since the visual
appearance of the objects and the variety of scenes they are found in are large.

This thesis proposes to treat robotic visual perception for everyday manipula-
tion tasks as an open question-answering problem. To this end RoboSherlock,
a framework for creating task-adaptable, pervasive perception systems is presented.
Using the framework, robot perception is addressed from a system’s perspective
and contributions to the state-of-the-art are proposed that introduce several
enhancements which scale robot perception toward the needs of human-level
manipulation. The contributions of the thesis center around task-adaptability and
pervasiveness of perception systems. A perception task-language and a language
interpreter that generates task-relevant perception plans is proposed. The task-
language and task-interpreter leverage the power of knowledge representation and
knowledge-based reasoning in order to enhance the question-answering capabilities
of the system. Pervasiveness, a seamless integration of past, present and future
percepts, is achieved through three main contributions: a novel way for recording,
replaying and inspecting perceptual episodic memories, a new perception compo-
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nent that enables pervasive operation and maintains an object belief state and a
novel prospection component that enables robots to relive their past experiences
and anticipate possible future scenarios. The contributions are validated through
several real world robotic experiments that demonstrate how the proposed system
enhances robot perception.
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Zusammenfassung

Seit Jahrzenten streben Robotikforscher die Entwicklung intelligenter Roboter an,
die uns bei unserer täglichen Arbeit helfen können. Mehr als fünfzig Jahre nach
der Entwicklung des ersten intelligenten mobilen Roboters haben diese immer noch
Schwierigkeiten scheinbar einfache Aufgaben, wie zum Beispiel das Decken oder
Reinigen eines Tisches, auszuführen. Einer der Gründe dafür ist, dass die unstruk-
turierten Umgebungen in denen diese Roboter arbeiten sollen, hohe Anforderungen
an das Wahrnehmungssystem eines Roboters darstellen. Abhängig von der von
dem Roboter auszuführenden Manipulationsaufgabe, müssen verschiedene Teile
der Umgebung untersucht, die darin enthaltenen Objekte gefunden und deren
Funktionsteile identifiziert werden. Dies ist eine herausfordernde Aufgabe, da
die visuelle Erscheinung der Objekte und die Szenen, in denen sie vorkommen,
vielfältig sind.

In dieser Dissertation wird vorgeschlagen, die robotisch-visuelle Wahrnehmung
für alltägliche Manipulationsaufgaben als offenes Frage-Antwort-System zu behan-
deln. Zu diesem Zweck wird RoboSherlock, ein Framework für die Erstellung
von anpassungsfähigen und durchdringenden Wahrnehmungssystemen, vorgestellt.
In diesem Framework wird die Wahrnehmung von Robotern aus der Perspek-
tive eines Systems angegaben. Es werden Beiträge zum Stand der Technik
vorgeschlagen, die verschiedene Verbesserungen einführen, die die Wahrnehmung
von Robotern an die Bedürfnisse menschlicher Manipulation anpassen. Die
Beiträge der Dissertation beschäftigen sich mit der Anpassungsfähigkeit und
Durchdringung von Wahrnehmungssystemen. Eine Aufgabensprache und ein
Sprachinterpreter, der aufgabenrelevante Wahrnehmungspläne erstellt, werden
vorgeschlagen. Die Aufgabensprache und der Sprachinterpreter nutzen Wis-
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sensrepräsentation und wissensbasiertes Schlussfolgern, um die Fähigkeit des
Systems zur Beantwortung von Fragen zu verbessern. Die Durchdringung, eine
nahtlose Integration vergangener, gegenwärtiger und zukünftiger Wahrnehmungen,
wird durch drei Hauptbeiträge erreicht. Eine neuartige Methode zur Aufzeichnung,
Wiedergabe und Untersuchung der episodischen Wahrnehmungserinnerungen, eine
neue Wahrnehmungskomponente, die einen Objektglaubenszustand beibehält, und
eine neuartige Prospektionskomponente, welche es den Robotern ermöglicht, ihre
vergangenen Erfahrungen erneut zu erleben. Die Beiträge werden durch mehrere
reale Roboterexperimente validiert, die zeigen, wie die vorgeschlagenen Systeme
die visuelle Wahrnehmung von Robotern verbessern.
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CHAPTER 1

Introduction

In the last decades robots have gradually migrated from operating in well-control-
led, structured environments, such as factory floors, to more unstructured, human
environments, and are slowly becoming everyday companions in the day-to-
day lives of people. Whether it is an autonomous vehicle passing you on the
highway (Waymo, 2017), a semi-humanoid greeting you at a restaurant (Ulanoff,
2017) or a custom-built robot flipping burgers in a restaurant (Kolondy, 2017),
the diversity of tasks robots can undertake is increasing every day. Commercially
available mobile robots are serving you in your hotel room when you order
room service, are inspecting supermarket shelves while you are shopping for your
everyday groceries, are vacuuming your living room or mowing your lawn while
you are away from home. As the title of a recent article in Forbes magazine put
it, “the autonomous mobile robot market is taking off like a rocket ship“ (Banker,
2019). While this is true for a lot of robots whose main tasks are navigation
and simple interaction with their users, only very few perform manipulation
tasks. The ones that do, tackle very specific tasks on very specific objects in very
specific conditions (Coldewey, 2018). Most mobile robots that interact with their
environment through manipulating the objects around them are still confined to
operating in research laboratories. In these environments, specifically arranged for
robots, a wide variety of manipulation tasks can be performed. These range from
mundane tasks, such as folding clothes (Maitin-Shepard et al., 2010), preparing
meals (Beetz et al., 2011) or cleaning a window (Leidner et al., 2014) to specialized
ones, such as performing chemical experiments (Lisca et al., 2015) or assembling
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furniture (Dogar et al., 2015). Even though each of these tasks is an impressive
achievement, mobile manipulation robots are not yet ready to perform these in
real world settings. The complexity of the unstructured, constantly changing
environment and the huge diversity of objects that need to be perceived and
interacted with are limiting the manipulation tasks that robots can perform.

In order to cope with these limiting factors, robots need to be able to perceive
the world around them, disambiguate and translate it into machine-understandable
terms. In the case of autonomous robots performing everyday manipulation tasks,
the role of perception is to extract information from the observations it has of the
world, needed for accomplishing the respective task. The observations of the world
are gathered using various sensors of a robotic agent, a very popular category
of which are ones that enable visually perceiving the environment. While other
sensing modalities are without a doubt an important part of an integrated robotic
system and offer valuable and often indispensable information, when it comes to
building artificial cognitive systems the potential inherent in visual perception is
by far the largest (Kragic and Vincze, 2009). The strong need for sophisticated
visual perception systems is emphasized by many in the community. In a recent
essay, Brooks (2018) identified object recognition capabilities of two-year-old
children as one of four important future goals of robotics. It is easy to see why.
Small children already have a sophisticated understanding of object classes that
enables them to transform functional knowledge of one object to another and
their ability to learn about new objects from single or very few examples are truly
amazing. When asked about the perception systems of robots, Brooks replied1:

“ If we were only able to provide the visual capabilities of a 2-year old
child, robots would quickly get a lot better ”

Rodney Brooks

Indeed, the potential of visual perception is by far the largest, which stems
from the fact that a great proportion of the necessary perception tasks can be
accomplished through the use of vision alone. To exemplify this, let us consider a
robot that has been operating in a kitchen for a while now, tasked with setting the

1therobotreport.com/amazon-challenges-robotics-hot-topic-perception/, Ac-
cessed: 24th of September, 2019

2
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Figure 1.1: Typical scenes in a kitchen that a robotic agent needs to be able to perceive in order to
set a table for breakfast. The goal of the robot would be to end up with an arrangement of objects

similar to that on the right side.

table, preparing breakfast and cleaning up afterwards and exemplify the kinds of
vision tasks this robot has to perform. The first part of this process is exemplified
in Figure 1.1. As a first step, the objects need to be fetched from their current
location and brought to a table. For example, the container with the milk needs
to be found. The robot might recall that there was a milk on the counter, but it
should also know that it was soy milk and that we prefer whole milk. So it has
to find a milk container in the cluttered fridge. Once in front of the fridge, the
door is closed, so it has to be opened. To do so, the handle of the fridge needs to
be identified and grasp points calculated. If there are multiple milk containers
inside the fridge, the intended one has to be picked. To fetch the cereal, spoon, a
plate or a bowl, containers, such as drawers and cupboards, need to be searched.
A cereal box with a specific flavor or the one that is already open needs to be
identified. When fetching the bowl, the one that is big enough to hold just the
right amount of milk and cereal needs to be chosen. Once all objects are on the
table, it is time to prepare the meal, hence, the cereal needs to be mixed with the
milk. For this it is necessary to identify functional parts of the container, such as
the handle or the mouth of the container. The robot has to check whether the
box of cereal and milk carton are open or closed, and in order to pour the milk
into the bowl, the opening of the milk carton should be positioned right above the
center of the bowl. While pouring, the robot should track the amount of liquid
in the container such that it does not spill it. When putting the spoon in the
bowl, it has to make sure that the handle of the spoon is sticking out and not the
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other way around. When it is time to clean up the table, the objects need to be
re-identified. In order for the robot to safely remove the plate, the bowl on top
of it would have to be detected and removed first. To optimize the sequence of
objects to be picked, those that are similar and need to be placed in the same
cupboard or drawer should be detected and grouped (i.e. the cutlery goes into the
drawer, dirty items go in the dishwasher, etc.). The robot should also remember
where objects were taken from and put them back where they belong: the milk in
the refrigerator, the cereal in the cupboard, and so on. It could be that there is
still some cereal left over in the bowl, so that needs to be detected in order to not
spill it and to put it in the sink or a dishwasher.

Most of these perception tasks are driven by visual sensing, highlighting the
need for a robust vision system. Even for a seemingly simple task, such as setting
a table, there is a great amount of variations in the types of perception tasks that
need to be considered. In order to further examine these I propose to formulate
them as questions that a robotic perception system needs to answer. Based on
the described scenario I identify a collection of general questions that I consider
robot vision systems should be able to answer:

Past Present Future
Where have I seen this
object before?
Has the object always
been like this?
What was that object
[...]?
...

Is there an object X in
my environment?
Is there an object of type
Y or property Z?
Does this object have a
part that [...]?
Where should I grasp that
object?
...

How would the scene look
like if I [...]?
How would the object
look if it were to[...]?
...

Table 1.1: Set of questions that should be answerable by a robotic perception system

The questions are split into three categories based on the availability of information
needed in order to answer them. Questions in the first column can be answered
based on what the robot has seen before, the ones in the second column are related
to what the robot perceives right now while the third category of questions address
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possible future scenarios. The list of questions is not meant to be exhaustive,
rather it covers the most common categories of requests that I considered to be
important for a cognitive robotic system to answer when looking for objects in its
environment.

Answering all of these queries is a challenging task for a robot. First, the
variation of visual characteristics of objects is high: they can be either textured
or textureless, shiny or opaque, can be occluded or can have functional parts
that might be important in order to manipulate them. When they need to be
manipulated, recognizing the type of the object is not sufficient. It is important to
know the geometry of an object, its function, how and where to grasp it, etc. The
objects often have to be perceived in scenarios where it is difficult to recognize
them, such as in extremely cluttered drawers or fridge interiors that make it
difficult to separate individual objects from each other. It can also happen that
objects simply look different depending on where they are located, i.e. stacked
bowls look different when found on a table then in a cupboard. When performing
a task, objects are moved around and can temporarily be out of sight. When
manipulation actions are performed, it is possible that an object’s characteristics
drastically change: plates, bowls become dirty, or cups seen from above change
color after some liquid is poured into them. Geometry of an object can also easily
change: just consider removing the lid of a pot. Besides the challenges posed
by the large variety of object properties, another source of difficulty arises from
the imperfect sensors that robots are equipped with. The images of objects can
often be noisy, blurred, over- or under-exposed, induced by the movement of the
robot or the changes in lightning conditions. I collectively refer to these challenges
as the problem of robotic visual perception for everyday manipulation
tasks.

Addressing this problem typically happens on the level of individual perceptual
challenges, investigated by computer vision approaches. Specialized solutions
exist for most of them, but there is no single algorithm that can cope with all the
complexities at the same time. Thus, in order to enable a robot to competently
perceive everything, it is necessary to combine the results of multiple algorithms.
As we could only reasonably expect robots to deal with the complexities of these
perception tasks through the combined strengths of multiple algorithms, we need
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to address the ways in which these algorithms are chosen and combined. In order
to do this competently, a belief state containing all relevant information about
state of the current world, the task that a robot should perform, the perception
tools it has at hand, as well as past and possible future states of the world
needs to be accessible. Most of the time, though, perceiving everything is not
necessary and a subset of algorithms suffices. In the majority of situations all
perceivable properties of all objects are not needed. As an example, consider
the last scene from Figure 1.1. When a robot is to remove the plate from under
the bowl, the brand of the cereal box next to it is of no interest. It follows
then that obtaining each of the needed information pieces can be considered a
separate perception task that specifies what needs to be perceived. As Kragic and
Vincze (2009) also observe, computer vision creates the necessary foundation for
visually perceiving the environment, by investigating specialized techniques for
understanding individual scenes, but robot vision needs to go further and take
the task a robot is performing into consideration.

Based on these observations, I consider the problem of robotic visual per-
ception for everyday manipulation tasks to be dependent on the following three
components:

• the observations that a robot has of the world, which, in the case of robot
vision, is the collection of images it has to process,

• a perception task or query that needs to be performed or answered by
the robotic agent,

• a belief state of the world the robot is operating in that contains all
relevant information related to robot and world state.

1.1 Motivation and Proposition

Several recent surveys about robot vision (Loncomilla et al., 2016; Ruiz-del-Solar
et al., 2018; Cadena et al., 2016) demonstrate that today’s robot perception
systems typically only provide a subset of the functionalities required by a robot
performing everyday manipulation tasks. At the same time most robot perception
systems provide their functionality in an overly general manner. They try to
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accomplish the perception task by running predefined detection, categorization,
identification and interpretation algorithms mostly on images as their sole input.
This means that the perception routines cannot exploit prior knowledge, the
structure of manipulation tasks and the environment, and that the robot cannot
prepare for future perception tasks. There is a mismatch between the general
methods applied to interpret the raw data and the semantic structure of the
underlying information. For example, an overly generalized system cannot exploit
that in a cupboard plates are stacked and therefore appear as horizontal lines in
the images at their known location. If plates have a texture, most systems do
not know that the pattern cannot be used for re-detection after a meal, because
the plates might have become dirty. The environment and its structure are
also not exploited to their fullest, i.e. in slowly changing environments many
perception tasks or sub-tasks can be performed earlier in order to be prepared
when the actual task is issued. These observations are reminiscent of what Drew
McDermott formulated about the problems faced by automatic generation of an
action sequence in robot planning:

“ As stated, the problem turned out to be too hard and too easy. It
was too hard because it was intractable. [...] It was too easy because
action sequences are not adequate as a representation of a real robot’s
program. As often happens in AI, we are now trying to redefine the
problem or do away with it. ”

Robot Planning by Drew McDermott

Similarly to this statement, in light of the existing solutions, we can say
that perception tasks currently used are both too easy and too hard. They
are too easy because they only cover a subset of the needed functionalities
under context conditions. These conditions though, often cannot be met by
applications. Therefore, the current perception tasks cannot enable open and
competent manipulation in realistic environments. They are, thus, too hard
because they are intractable once context conditions are not met and regularities
that prior knowledge has to offer, in order to simplify perception tasks, are
not exploited. As a simple example of this seemingly contradictory nature of
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perception tasks consider the previous example of detecting plates in a cupboard:
it is easy to create a specific detector that finds lines in the images, but the
lines will only correspond to edges of plates under the specific condition that the
robot is looking into a cupboard where plates are stacked. In this case, detecting
plates can be considered easy. Without considering and exploiting the knowledge
about the environment, creating a general detector for plates that will work in all
possible conditions for all possible plates is a much more difficult task, hence in
this situation detecting plates is hard. As a consequence of these observations, in
order to address this duality of perception tasks, I believe that it is necessary to
treat robotic vision on a system’s level and a framework is needed that enables
the creation of perception systems that fulfill the following requirements:

R1: are task adaptable. The robot control program can request the perception
system to detect objects, ask it to examine aspects of the detected objects
such as their 3D form, pose, state, etc. Perception can, thus, be viewed
as a question-answering system that answers the queries of the robot’s
control system based on perceived scenes. The query language needs to
be expressive enough to cover all possible tasks that a robot might have
to execute and flexible enough to be extended when new tasks need to be
added.

R2: enhance perception with knowledge and reasoning. The framework
should support reasoning about the objects to be detected and the task
and environment context that objects are found in, in order to make the
perceptual processes faster, more efficient and robust. Through the use of
knowledge processing the systems created using the framework can interpret
the results returned by the perception algorithms and thereby increases
the set of perceptual tasks that they can accomplish. Knowledge-based
reasoning also enables the specialization of perception tasks in order to
resolve ambiguities in the data.

R3: are equipped with ensembles of expert perception algorithms. In-
stead of relying on one particular perception algorithm, integrating algo-
rithms with complementary, similar or overlapping functionality needs to
be supported. Control mechanisms and data structures should be provided
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to direct the algorithms to synergistically cooperate, to communicate rele-
vant information, fuse their results and hence to combine the strengths of
individual methods.

R4: can incorporate beliefs maintained about the world to improve
future perception tasks. Maintaining an internal belief state and memo-
ries of percepts that led to forming these beliefs are the basis for adapting
and improving perception components through various learning techniques
and as such it needs to be an integral part of any perception system that is
built for robots performing everyday manipulation tasks.

R5: is modular and extensible. Robot vision is in fact embodied vision.
This means that several strategies for interpreting the environment are
possible, especially for long term operations, where a robot moves around in
its environment. Since there is no single algorithm to solve every perception
problem, it is essential that a perception framework is easily extensible with
new modules and modalities.

With these requirements of a perception system in mind, in this thesis I
propose a promising way for addressing the problem of robotic visual percep-
tion for everyday manipulation tasks, by creating a task-adaptable, pervasive
perception system for autonomous robots performing human-level manipula-
tion actions. The proposed system is capable of accomplishing a large variety
of perception tasks through incorporating background knowledge about
the environment and the objects in it. Pervasive operation is achieved by
spreading perception throughout the lifetime of a robot, seamlessly integrating
past, present and possible future percepts.

1.2 Contributions

To address all of the outlined challenges, in this thesis I present a perception
framework, called RoboSherlock. RoboSherlock was introduced by Blodow
(2014) as a framework for maintaining dynamic object belief states for robot per-
ception through treating perception as an Unstructured Information Management
(UIM) problem. I extend the framework in order to facilitate the realization of
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task-adaptable, pervasive perception systems that combine results from multiple
expert algorithms with the use of knowledge-based reasoning techniques, fulfilling
the requirements specified in Section 1.1. Specifically the contributions of the
thesis with respect to the state-of-the-art and the prior work of Blodow, grouped
around task-adaptability and pervasiveness can be summed up as follows:

In order to achieve a perception system that is task-adaptable:

• I propose a perception query language that can be interpreted
and reasoned about in order to generate and optimize task-
specific perception plans. The query language allows the formu-
lation of robot vision tasks for everyday manipulation as a query-
answering problem. It acts as an interface between the high-level
control system of a robotic agent and the perception system. The
task interpreter is able to reason about the elements of the query in
order to find the correct perception algorithms that are best suited to
solve it. The reasoning capabilities are used in a planning algorithm
that automatically builds a complete perception processing pipeline.
I demonstrate the expressive power and applicability of the language
using several application scenarios showing that the proposed syntax
is general enough to cover a large variety of perception problems;

• I realize and investigate a perception system that leverages
knowledge representation and reasoning in order to boost
query-answering, task adaptability, robustness and efficiency.
I propose to represent and store perception experts using a common
symbolic knowledge base. Given a perception task, the system reasons
about how to solve it, leveraging available background knowledge
about objects, the environment and the perception experts, in order
to boost query-answering capabilities of the robotic agent. I will
demonstrate how the proposed knowledge-based approach improves
the query-answering capabilities of robots performing everyday tasks
to extents that go far beyond what current state-of-the-art systems
can handle.
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Building on task-adaptability, in order to realize a pervasively operating
perception system:

• I propose to equip robots with the capability of recording
perceptual episodic memories and demonstrate how these are
used to improve the recognition of objects. To do this, I present
a novel logging mechanism that is able to offer detailed records about
everything that RoboSherlock has processed, and propose a Do-
main Specific Language (DSL) for describing past percepts that allows
accessing the episodic memories using the perception query language.
Using the query language and the episodic memories I demonstrates
how object recognition modules of a robotic agent can be improved.

• I investigate and realize a preparatory, amortized perception
system that spreads the act of perceiving through the life-
time of the robotic agent. This is achieved by maintaining an
object belief state through the combination of a preparatory percep-
tion component that continuously analyzes the environment and an
amortized perception component that opportunistically refines the be-
lief state. I demonstrate through robotic experiments how these two
components contribute to a pervasively operating perception system
and improve the query-answering capabilities of a robotic agent;

• I propose equipping robots with the ability to relive varia-
tions of past experiences in order to adapt their object detec-
tion and recognition capabilities. The goal of the proposed ability
is to enable prospection and is realized through the implementation
of an internal simulation component in RoboSherlock that enables
the generation of mental images, depicting possible future scenes. The
prospection component consists of: (1) a knowledge-based approach for
generating scene variations based on episodic memories; (2) the simu-
lation of these variations in a virtual environment and the recording of
off screen rendered images of these; and (3) algorithmic approaches for
adapting object detection and recognition modules using the resulting
images. I demonstrate the reliability of the adapted modules through
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a series of experiments comparing the results of several state-of-the-art
object recognition and detection approaches tested on both real and
rendered images.

The contributions of this thesis have been published at international conferences
and in journal articles in the field of robotics and artificial intelligence. The most
relevant of these are listed below in chronological order of their appearance. A
complete list of publications can be found in Appendix A.

Journals and Book Chapters:

Michael Beetz, Ferenc Bálint-Benczédi, Nico Blodow, Christian Kerl, Zoltán-
Csaba Márton, Daniel Nyga, Florian Seidel, Thiemo Wiedemeyer, Jan-
Hendrik Worch, “RoboSherlock: Unstructured Information Processing
Framework for Robotic Perception”, In Handling Uncertainty and Networked
Structure in Robot Control, Springer International Publishing, Cham, pp.
181-208, 2015.

Ferenc Bálint-Benczédi, Jan-Hendrik Worch, Daniel Nyga, Nico Blodow,
Patrick Mania, Zoltán-Csaba Márton and Michael Beetz, “RoboSherlock:
Cognition-enabled Robot Perception for Everyday Manipulation Tasks”,
Preprint In Arxiv.org, revision under review for the International Journal
of Robotics Research, 2019

Conference Papers:

Ferenc Bálint-Benczédi, Michael Beetz, “Variations on a theme:’it’s a poor
sort of memory that only works backwards’”, In International Conference
on Intelligent Robots and Systems, IEEE, Madird, Spain, 2018

Ferenc Bálint-Benczédi, Michael Beetz, “Amortized Object and Scene Per-
ception for Long-term Robot Manipulation”, Preprint In Arxiv.org, 2019.

Ferenc Bálint-Benczédi, Patrick Mania and Michael Beetz, “Scaling per-
ception towards autonomous object manipulation — in knowledge lies the
power”, In International Conference on Robotics and Automation (ICRA),
Stockholm, Sweden, 2016
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Ferenc Bálint-Benczédi, Zoltán-Csaba Márton, Maximilian Durner and Mi-
chael Beetz, “Storing and retrieving perceptual episodic memories for long-
term manipulation tasks”, In Proceedings of the 2017 IEEE International
Conference on Advanced Robotics (ICAR), Hong-Kong, China, 2017 finalist
for Best Paper Award.

Michael Beetz, Ferenc Bálint-Benczédi, Nico Blodow, Daniel Nyga, Thiemo
Wiedemeyer and Zoltán-Csaba Márton, “RoboSherlock: Unstructured Infor-
mation Processing for Robot Perception”, In IEEE International Conference
on Robotics and Automation (ICRA), Seattle,Washington, USA, 2015 best
Service Robotics Paper Award.

Daniel Nyga, Ferenc Bálint-Benczédi and Michael Beetz, “PR2 Looking at
Things: Ensemble Learning for Unstructured Information Processing with
Markov Logic Networks”, In IEEE International Conference on Robotics
and Automation (ICRA), Hong Kong, China, 2014

Open-source Contributions In addition to the scientific contributions, im-
plementations of the presented systems have been made publicly available as a
collection of open-source packages under BSD or the Apache, Version 2.0 licenses.
The implementations are part of the RoboSherlock perception framework
and they are located in the main repository of the project2. A project website3

provides interested readers with installation instructions and tutorials on how to
use the framework. Parts of the datasets used in this thesis (described in detail
in Appendix B) are made publicly available through the project website.

1.3 Validation Scenarios

I validate the proposed task-adaptable and pervasive system through robotic
experiments performed in several application scenarios. I consider the case of
mobile manipulation robots that are expected to perform everyday long-term
manipulation tasks. The tasks I examine take a considerable amount of time to
execute, are repetitive in their nature and require interaction with the environment.

2http://www.github.com/robosherlock
3http://www.robosherlock.org
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(a) Scanning shelves (b) Preparing a meal (c) Performing a chemistry
experiment

Figure 1.2: Example scenes from the demonstrator scenarios that will be used in the thesis.

Specifically, throughout the thesis, three examples of such scenarios will be used:
an assisted living scenario, a robot performing chemical experiments and a robot
monitoring the stock levels of products in a supermarket (Figure 1.2). All of these
scenarios have the following characteristics in common:

• the high-level tasks performed by the robot take a considerable amount of
time

• if no other agents intervene, the scenes tend to change at a slower pace

• most manipulation tasks involve some form of pick-and-place task

• and the respective perception task can be simplified by using common sense
reasoning and background knowledge.

Furthermore, in all three scenarios it is considered that the robot is performing
a high level task that entails the need for object perception. I will demonstrate
that, with the help of the concepts and systems presented in the thesis, a wide
variety of perception problems can be successfully tackled.

Let us briefly look at the assisted living scenario as it is the one where
most of the experiments take place. I believe it to be one of the most exciting
areas of mobile service robotics research, where robots are expected to perform
everyday household chores, such as setting or cleaning a table or preparing various
dishes. Such robots are still only developed in research laboratories, but it is
anticipated that they will be essential in helping out in areas such as elderly care
or hospitals (EU-MAR, 2016). In this thesis, the example scenario consists of
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a Personal Robot 2 (PR2) and a custom-built mobile robot, Boxy, performing
fetch-and-place and meal preparation tasks, such as preparing a pizza or a pancake
in a kitchen environment (Figure 1.2b). The kitchen is an excellent demonstrator
domain, since most people have a very good understanding of the tasks that
need to be performed and the objects that are needed for these tasks. Even
if a weak-closed-world assumption is considered the challenges and diversity of
perceptual tasks makes such an environment ideal for finding new and improved
ways for object perception. A weak-closed-world assumption means to assume
that all objects and object classes that can be encountered, are known beforehand,
but there is a possibility of still encountering unseen objects, object categories.
The assisted living scenario serves as a test bed for new functionality of the
perception framework. The objects that need to be recognized are commonly
referred to as objects of daily use, ranging from small shiny objects, such as
knives, to large opaque ones, such as an electric pancake maker. The challenge
in finding these objects is the diversity of constellations they can be found in (in
drawers, refrigerators, stacked and occluded) and the fact that they can easily
change visual characteristics depending on the executed task, i.e. the pizza dough
changes color after tomato sauce is spread all over it.

1.4 Outline

The thesis is structured based on the contributions outlined in Section 1.2. It is
recommended to read the chapters in the order they are presented in. Some of
the chapters are self-contained, investigating the goals set out in this thesis, while
others depend on concepts introduced in preceding chapters. The short summary
of each clarifies these dependencies, highlights the contributions described in each
and specifies the peer-reviewed publications that the chapters are based on and
where the contributions were originally presented. Furthermore, each chapter
presents a survey of the state-of-the art that is related to the topic covered in it.
The rest of the thesis is structured as follows.

Chapters 2 and 3 present the contributions related to the realization of a
task-adaptable perception system. In Chapters 2 I present the approach for
treating robot vision for everyday manipulation actions as a query-answering
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problem. A formal definition of the framework is given and main components
are introduced. I present the concepts that the framework makes use of. I
propose a language for defining perception tasks, and show how it is used to guide
the process of perception. The chapter explains the basics of RoboSherlock,
what a processing pipeline is, how data is read in, stored, passed around, how
query-answering is implemented and as such it constitutes the basis for all other
chapters. The chapter is based on previous work presented in Beetz et al. (2015a)
and Bálint-Benczédi et al. (2019).

In Chapter 3 I investigate ways for combining knowledge-based reasoning and
perception techniques in order to improve robustness and extend the domain of
answerable queries by a robotic agent. I detail how symbolic knowledge bases
and knowledge-based reasoning are used during the query-answering process
to enhance perception with background knowledge and how knowledge about
the environment simplifies perception problems. Through the introduction of
a symbolic representation for perception algorithms, a means for generating
perception plans is proposed. I present how knowledge is stored, what the current
reasoning capabilities are, how these can be extended and the advantages of
such an approach. The benefits of the proposed fusion of knowledge processing
and perception are highlighted through investigating the types of queries that
need to be answered in the three scenarios briefly mentioned in Section 1.3. The
chapter is based on previous work presented in Bálint-Benczédi et al. (2016)
and Bálint-Benczédi et al. (2019).

The remainder of the chapters presents individual components of the system
that contribute to the realization of a pervasively operating perception system. In
Chapter 4 I propose to store perceptual episodic memories in the form of semantic
image logs. The chapter gives an overview of how these memories are gathered
and used to improve in a lifelong learning manner the performance of a perception
system. I extend the perception query language presented in Chapter 2 to allow
querying for past precepts and accessing low-level numerical perceptual data. The
logging mechanisms presented in this chapter are used in Chapters 5 and 6. The
chapter is an extended version of the concepts presented in Bálint-Benczédi et al.
(2017).

In Chapter 5 I propose an amortized preparatory subsystem for the framework.
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I present how the gathered episodic memories are used during runtime to prepare
the system for new perception tasks. I will show that using such an integrated
approach the query-answering accuracy of the system can be greatly improved.
The chapter is partly based on joint work with Thiemo Wiedemeyer (Wiedemeyer
et al., 2015) and on previous work presented in Bálint-Benczédi and Beetz (2019).

In Chapter 6 I discuss the topic of prospection and how it can be beneficial for
robotic systems. A subsystem is proposed that allows a robotic agent to anticipate
and adapt to new scenarios and environments. The key role of knowledge integra-
tion is highlighted in generating plausible alternative realities that semantically
resemble the original scenarios. Recent advances in virtual reality allow a robot
to perform perception tasks in this environment and off-screen render its results.
The resulting images then serve as input data for supervised learning problems.
The contents of this chapter have previously been published in Bálint-Benczédi
and Beetz (2018).

In Chapter 7 I conclude the thesis with a summary of the proposed con-
tributions, discuss how they were achieved and how they relate to different
question-answering subproblems. The chapter offers a short overview of the
robotic demonstrations the framework was used in and discusses future opportu-
nities and challenges.
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CHAPTER 2

RoboSherlock: Task-adaptable Perception
for Open Question-answering

The primary role of perception in autonomous robots performing everyday manip-
ulation is to extract the information needed to accomplish a specific task. Robotic
perception systems must provide relevant information about the environment and
the objects in it to various modules of a complete robotic system, such as the
high-level planning or the lower-level motion controllers. Robot vision plays a key
role in supplying these information. As I have argued in Chapter 1, if we are to
scale towards human-like manipulation capabilities, a promising way is to address
the problem on a system’s level and create a general perception framework that,
among other criteria, forms a tight collaboration with other cognitive processes of
a robotic system. To this end I present RoboSherlock, a software framework
designed for robots performing manipulation tasks. The framework facilitates the
realization of task-adaptable and pervasively operating perception systems with
the needed functionality to specialize and leverage existing structure and knowl-
edge. It enables the combination of perception, representation, and reasoning
methods in order to scale robot perception towards the needs implied by general
manipulation tasks.

In RoboSherlock, interpretation of realistic scenes is formulated as an Un-
structured Information Management (UIM) problem. The application of the UIM
principle enables the design and implementation of perception systems that satisfy
the requirements outlined in Section 1.1:
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. . . adaptability to perception tasks through a query language and as such the
capability to answer task-relevant queries about objects and scenes,

. . . tight integration of knowledge-based reasoning techniques, support for knowledge-
enabled reasoning about objects and automatic, knowledge-driven generation
of processing pipelines,

. . . incorporation of beliefs maintained about the world to improve future percep-
tion tasks,

. . . support for the implementation of multiple complementary algorithms and
boosting of object recognition performance through the combination of these
and

. . . extensibility, allowing the implementation of various indispensable perception
subsystems (belief state management, semantic logging etc.).

In this chapter I focus on formally introducing the general problem of perception
for everyday manipulation, phrased as a question-answering problem. I present
the RoboSherlock framework in detail and propose the perception query
language for formulating perception tasks. Using the framework I propose a
perception system, highlighting individual contributions of the thesis, how these
relate to the RoboSherlock framework and how they interact with each other.
I conclude with a survey of the related work. Experimental analysis of perception
as a question-answering problem will be given at the end of Chapter 3, after
presenting how exploiting regularities, prior knowledge and knowledge-based
reasoning can simplify perception tasks. The chapter is based on work from
previous publication (Beetz et al., 2015a; Bálint-Benczédi et al., 2019), offering
additional detail on how the system is implemented. The formal description of
a processing cycle in RoboSherlock is the result of joint efforts with Daniel
Nyga.

2.1 Perception for Everyday Manipulation Tasks

Throughout the thesis I use the term everyday robotic manipulation task to refer
to a sequence of actions that are performed by an autonomous manipulation robot
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and are aimed at accomplishing a well defined goal. The sequence of actions takes
a considerable amount of time to execute, is repetitive and requires interaction
with the environment. Examples of such tasks are setting and cleaning a table,
performing chemical experiments or monitoring the stock levels of products in
a supermarket. Depending on the current context and the action performed,
different perceptional cues and functional parts of objects become important. For
instance, in the case of a robot that is to put a cooking pot on the stove, the
handles of the pot need to be detected, in order for the robot to grasp it. If,
however, it is to pour water into it, the handles are less relevant, but the center of
its top opening matters more. As it is infeasible to exhaustively process a robot’s
sensor readings for all possible aspects of the world at all times, its perception
system must be able to answer targeted questions about the environment on
demand. In order to proficiently accomplish these tasks in human environments,
perception needs to be adaptable to the current action being executed. In addition,
for the world being only partially observable in nearly all real-world scenarios, it
is necessary for a robot to maintain an internal representation of which state it
believes the environment to be in. This representation is referred to as the belief
state of the robot.

(formal description of the perception-action loop by courtesy of Daniel Nyga)
In Chapter 1 I introduced the perception problem for everyday manipulation
tasks as being dependent on the observations, the task queries and a belief state
about the current world. To formally define this problem, we consider a robot
model that is inspired by the concept of rational agents originally introduced by
Russell and Norvig (2010). The main concepts are depicted in Figure 2.1. A robot
is a physically embodied agent located in an environment (which we also call a
world). It perceives the world through its sensors and it is able to manipulate the
world by its actuators. Let us denote the set of possible states of the world by X .
Typically, the state of the world is not directly accessible to the robot, but its
sensors yield a filtered, noisy representation of a certain part of it. The so-called
perceptual filter function determines how a world state is transformed into signals
of the robot’s sensors, fp : X → O, where O denotes the set of possible sensor
readings, which we also refer to as observations. Given an observation, the robot’s
control program has to decide on the next action to conduct, which is executed
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Figure 2.1: The classical perception-action loop, with RoboSherlock’s role highlighted in red

by the robot’s actuators. Let AC denote the set of possible actions, then the
transition function fe : AC × X → X specifies the effects that an action has on
the environment, when being executed in a particular world state. The repeated
execution of

1. perceiving the state of the world,

2. selecting an action to conduct,

3. manipulating the world according to the action

is called the perception-action loop. Let T = {1, . . .} denote a set of iterations
(time steps) denoting executions of the perception-action loop. Then, the robot’s
actions produce a sequence of world states XT : T → X , which are perceived by
the robot as a sequence of observations OT : T → O, where OT (t) = fp(XT (t)).
The robot maintains an internal representation of the world, which is called the
robot’s belief state. Let B denote the space of all possible belief states1. In

1In literature (Lee et al., 2014a; Platt et al., 2010) the belief state is considered to be a
probability distribution over all possible beliefs about the world. I use the term to refer to the
most probable state of the world. Section 2.3.1 details how the belief state is represented in this
thesis.
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every iteration of the perception-action loop, the belief state gets updated by the
perception system, such that a trajectory BT : T → B of belief states is generated
over time. The belief state is used by the robot’s control program to select the
next action to conduct, and in turn serves as a basis for formulating a query Q

that is issued to the perception system. The query Q and the observation O

are used to to update the belief state with task-relevant knowledge about the
environment. Let Q denote the set of possible queries, and QT : T → Q the
sequence of queries that the control program asks over time. Similarly let A
denote the set of all possible answers that is a subset of the belief state (A ⊂ B),
and AT : T → A the sequence of answers generated by the perception system.
Using these components, perception for everyday robot manipulation, phrased as
a question-answering problem, can now be formulated as the pair of functions:

perceive :B ×Q×OT → B, (2.1)

answer :B ×Q → B (2.2)

such that the following conditions hold:

1. BT (0) = ∅

2. perceive(BT (t− 1), QT (t), Ot) = BT (t), ∀t ∈ T ,

3. answer(QT (t), BT (t)) = AT (t), ∀t ∈ T

where Ot denotes the sequence of past observations up to time t. This allows
reasoning about world states taking into account sensor readings from multiple
time steps, which may lead to more accurate estimates than considering only
one-shot observations. Examples of such approaches are Bayesian filtering models,
such as the Kalman filter, SLAM (Thrun et al., 2005), or Kinect Fusion (Izadi
et al., 2011). Note, that BT (0) is initialized as the empty set only in the most
general case, where there is no previous information available and the robot is
expected to explore the world. In this thesis BT (0) = P , where P ⊂ B represents
pre-existing knowledge about the environment, the known objects in it and the
robot state, used to initialized the belief state with.
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2.2 RoboSherlock Overview

RoboSherlock is a perception framework that leverages implementations of the
perceive ans answer functions from Equations (2.1) and (2.2). RoboSherlock
considers perception as Content Analytics (CA) in unstructured data. CA denotes
the discipline of applying methods from the field of statistical data analysis to
large amounts of data in order to extract semantically meaningful knowledge from
those. The data are considered unstructured since the structure does not reflect
its semantics as it for instance does in relational databases or spreadsheets. The
paradigm of Unstructured Information Management (UIM) offers an implementa-
tional framework for realizing high-performance CA systems. The most prominent
example of a UIM system is Watson (Ferrucci et al., 2010), a question-answering
system that won the US quiz show Jeopardy!, competing against the champions
of the show and demonstrating an unprecedented breadth of knowledge. The
paradigm of UIM can be summed up by three computational processes: hypoth-
esizing about data, annotating the hypotheses and testing-ranking of results.
In UIM, pieces of unstructured data, such as web pages, text documents, audio
files or images are processed by a collection of specialized information extraction
algorithms, and each algorithm contributes pieces of knowledge with respect to
its expertise. Results of different algorithms are allowed to be complementary,
overlapping or even contradictory. Subsequently the collected annotations are
rated and consolidated to come to a consistent final decision.

Images are perfect examples of unstructured data. They depict hierarchical
structures of object constellations, objects, object parts and relationships between
these, but they are simply stored as an array of pixels. Thus, the UIM paradigm
of hypothesize, annotate and test-rank can be, with minor modifications, applied
to streaming sensor data. RoboSherlock operates based on this principle. It
creates object hypotheses for pieces of sensor data that it believes to represent
objects or object groups. Subsequent perception algorithms analyze these hy-
potheses and annotate them with semantic metadata. Further algorithms then
test and rank these based on the combination of sensor and metadata. To this
end, the framework supports the application of multiple algorithms, also referred
to as experts, and the combination of their results. This is achieved by:
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◦ providing means for the communication among expert methods;

◦ providing infrastructure that supports reasoning about how results of differ-
ent experts should be combined;

◦ enabling the system to reason about its perceptual capabilities and decide
which methods are the best for a certain perceptual sub-task.

In addition to the UIM paradigm of hypothesize, annotate and test-rank,
RoboSherlock takes as input a perception query that describes the information
needed by the robot in order to accomplish its manipulation tasks. RoboSher-
lock is designed to accomplish these perception tasks in complex scenarios that
include objects with different perceptual characteristics. To do so, objects are
perceived taking the scene and task context into account and knowledge-based
algorithms are employed in order to decide which methods to apply to which
objects. Using background knowledge simplifies perception tasks, e.g. through
the use of salient distinctive characteristic of objects that simplify perceiving
them. Knowledge-based reasoning techniques are also used when combining the
results of different perception methods. Because of the ubiquitous presence of
knowledge-based reasoning, RoboSherlock is also referred to as a knowledge-
based perception framework.

2.2.1 Origins of RoboSherlock

RoboSherlock was first introduced by Blodow (2014) as a perception system
for service robots in order to manage dynamic object belief states. In his work,
Blodow pioneered the use of Unstructured Information Management (UIM) for
robot perception, adapting the framework of Unstructured Information Manage-
ment Architecture (UIMA) to handle streams of image data, implementing all the
necessary data structures and processing mechanisms to achieve this. The focus
of his work was mainly on how UIM can be used to induce a paradigm shift in ap-
proaching perception systems, advocating for the use of multiple expert algorithms.
The UIM based framework of Blodow addresses the building of a dynamic object
belief state for service robots, drawing parallels to the human memory system in
the way it does this. Contributions of his work were the demonstration of the
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applicability of UIM in the field of robotic perception and the introduction of a
general type system that allows the semantic description of perception results. His
work strongly emphasizes individual algorithmic contributions that are part of the
overall framework, such as semantic real-time segmentation methods, interfaces
to web services or point cloud processing algorithms.

The topics of this thesis build on Blodow’s system, extending and broadening
the framework’s general goals, such that the implementation of task-adaptable,
pervasively operating perception systems is possible. The most relevant changes
have to do with the way adaptability to different tasks performed by a robot
is addressed by proposing to treat perception as a query-answering system and
by extending the framework with a knowledge representation and reasoning
component. While Blodow highlighted in his experiments the richness of object
descriptions that can be achieved using the RoboSherlock framework, in
this thesis I take this idea further and look at how these descriptions can be
generated on demand as part of a complete robotic system, formally describing
the components of the framework and the roles that they can have. In addition,
several perception subsystems are proposed, which investigate different modalities
of robotic perception: preparatory perception, amortization effects or prospection.
The changes introduced to the RoboSherlock framework allow for investigating
these novel implementations of robotic perception systems. In conclusion, whereas
RoboSherlock is considered to be the main outcome of Blodow’s work, in this
thesis the continued development of the framework serves as a means to achieving
the implementation of the pervasive task-adaptable perception system.

2.3 Conceptual Overview

RoboSherlock has been designed with two major implementational aspects in
mind:

1. it does not replace any existing perception system or algorithm but rather
enables easy integration of previous work in a unifying framework that
allows these systems to synergistically work together

2. new methods can be easily wrapped into RoboSherlock processing mod-
ules to extend and improve existing functionality and performance.
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Conceptually there are two main parts of the framework. One for query inter-
pretation and perception plan generation and one for processing the observations,
a collection-processing component. The former is a contribution to the problem
of Content Analytics (CA) while the latter is based on key concepts of UIM
that were adapted to fit the needs of robot perception. These key concepts that
RoboSherlock builds on are:

• the Common Analysis Structure (CAS) containing the data to be analyzed
and temporary results; it is the common data structure and acts as a
short-term memory of the RoboSherlock system;

• a type system, a hierarchical collection of data structures, defined by the
user, that acts as a common language, allowing communication between
components;

• the Analysis Engines (AEs) which are the core processing components of the
framework, implementing single perception algorithms (Primitive Analysis
Engine (PAE)) or complete perception pipelines (Aggregate Analysis Engine
(AAE)). AEs share and operate on the CAS by generating, interpreting and
refining hypotheses;

• Collection Readers that interface with the sensors of a robotic system and
initialize the CAS;

• CAS Consumers that solve inconsistencies, merge results and update the
world model;

• a query language and query interpreter that enable the description of per-
ception tasks and generation of task-specific perception plans

• a belief state representation that represents our current understanding of
what the world looks like and allows for processing mechanisms that the
AEs can use as resources for reasoning about the objects and scenes they
interpret.

With the exception of the query language and the belief state representation
these concepts all originate from UIM. Each of these concepts has its own imple-
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mentation and through combining them novel perception systems can be created.
A detailed description of each concepts will now follow.

2.3.1 Belief State Representation

The robot’s belief state is a formal representation of the state that the robot
believes the world to be in. It is therefore crucial that the representational
formalism is expressive enough to capture the essence of the world at a sufficiently
high level of detail. At the same time, one should be able to reason about aspects
of the model in order to derive new knowledge about the world that is only
implicitly entailed.

In RoboSherlock, Description Logic (DL) was chosen as the representation
language, for two reasons: (1) DL provides an intuitive, standardized and clean
way for constructing models of the real world and (2) DL has well-established
implementations used in both the knowledge representation and the AI-based
robotics communities. In this thesis KnowRob (Tenorth and Beetz, 2013), a
framework for representing worlds and reasoning about them using DL is used.

Description logics is a subset of first-order logic that facilitates ontological
engineering of world representations. An ontology in DL consists of two main
components: a TBox and an ABox. The TBox defines the terminological building
blocks a belief state may be composed of. It contains a set of type symbols >
and universal rules on how they relate to each other. Examples of type symbols
are Container, Cup, Milk or Number. One of the most prominent relations is
the subsumption, which hierarchically arranges the types in a taxonomy, i.e.
v ⊆ >×>. Propositions like

Knife v Cutlery

Fork v Cutlery

Cutlery v PhysicalThing

Milk v Liquid,

for instance, state that the types Knife and Fork are both specializations of the
type Cutlery, which in turn is a specialization of the type PhysicalThing, and that
Milk is a specialization of the Liquid type. Additional relations can be used to
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introduce more detailed type definitions, such as

Knife .= Cutlery u ∃ has.Blade u ∃ has.Handle.

This defines the concept of a knife as the intersection of the concept of cutlery
that has a handle and has a blade. A specific instance of a world modeled in
DL is stored in the ABox, which contains symbols referring to individuals in the
world. Concept assertions and relations can be used to assign certain individuals
to one or more types from the TBox, like

Cup(c) and Milk(t),

if an entity c is an instance of the concept Cup and a different entity t is an
instance of the concept Milk. If the relation relation(·, ·) holds for the pair 〈c, t〉,
then the assertion

relation(c, t)

must hold. Further detailing of description logic would be out of scope. For an
excellent introduction refer to Rudolph (2011).

It is important to note that all data structures and algorithms integrated in
RoboSherlock are required to be modeled in the belief state. The TBox of
the belief state thus, includes the RoboSherlock type system and the Primitive
Analysis Engines (PAEs) that wrap perception algorithms. This guarantees the
interchangeability of data in a common language between components with unique,
well-defined semantics, and in turn allows explicit reasoning about the perceptual
capabilities of the robot. For example,

ClassificationAnnotation v SemanticAnnotation

u ∃ classLabel.>

u ∃ classConfidence.R

u ∃ classifierName.String
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defines a type that holds results of classification algorithms in the type system as
SemanticAnnotation with attributes classLabel, classConfidence, classifierName.
The type system further specifies that the classConfidence must be filled with
exactly one floating point value and classLabel itself is a type. By storing this in a
centralized knowledge base, a list of analysis engines that generate a specific type
of annotation as output can easily be retrieved. The pre- and post-conditions in
the TBox of perception algorithms implemented in the framework specify under
which circumstances algorithms may be applied and the results they produce.
This enables automatic generation of perception plans which will be detailed
in Section 3.2.

The RoboSherlock type system defines types for each annotation and
object hypothesis. Besides the types that serve as blueprints for objects that
hold interpretations of the raw data, types for low-level vision data structures
(point clouds, images, regions of interest, rigid transforms) are also defined. A
description of the current type system is given in Section 2.4.2.

To summarize, the belief state in this thesis is represented using DL and is
considered to have two parts. One that holds the static knowledge about the
environment, the objects in it and the robot with all of its capabilities (including
the perceptual capabilities of RoboSherlock). We referred to this as the TBox

in this section but in the remainder of the thesis I will often refer to it as a
knowledge base, to denote that KnowRob is used as the framework for storing
this information. The other part, referred to as the ABox, is dynamic and is a
specific instance of the world model from the TBox, populated and maintained
during the operation of the robot.

2.3.2 A Query Language for Formulating Perception Tasks

Having the belief state represented in a formal, logic-based language allows
answering queries about different aspects of the world. A query is a statement in
a formal declarative language that describes conditions that entities in the belief
state need to satisfy in order to be among the query results. The result of a query
is thus a set of tuples that match that description. For a robot, such reasoning
capabilities are extremely important, as it needs to be able to retrieve information
on demand, such as “a free location on the table to put down an object”, “an
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empty container object that is able to hold at least two liters of water” or “the
turning knob on the oven”. For the belief state in DL, tuple calculus known from
relational algebra Codd (1970) can be used. A generic query in relational calculus
has the form {v |Ψ(v)}, where v denotes a variable representing a candidate tuple
and Ψ(v) is a statement that formulates the requirements that v needs to satisfy
in order to qualify as a result. A query for “an empty container that is able to
hold at least 2 liters of water” can be formulated as follows:

{c | c ∈ Container ∧ c.capacity ≥ 2

∧ ¬∃s ∈ holds(c.id, s.id)}, (2.3)

and a query for “the pose of the turning knob on the oven” can be formulated as

{[n.pose] |n ∈ Knob ∧ ∃o ∈ Oven ∧ o.id = ‘oven-01’

∧ o ∈ has(o.id, n.id)}. (2.4)

Queries to the belief state of the robot can also be thought of as queries to the
perception system. The queries encode the perception task expected to be carried
out by the robot, thus, they enable the task adaptability of the perception
system. For example, query (2.3) requests all tuples of the type Container that
have a capacity of at least two liters and are not in a holds relation with anything
else (so are empty). This naturally corresponds to a detect perception task.
Query (2.4), on the other hand, asks for an object of type Knob, which is in a has
relation with a specific object of type Oven, and the pose attribute of that object
is returned. Query (2.4), thus, corresponds to an inspect query.

Using relational algebra the generation of an answer, based on the updated
belief state, can be formulated as a combination of selection and project operations.
With the help of the formal description introduced in Section 2.1, a generalized
selection performed on the belief state can be defined as σϕ(BT (t)) = A

′T (t), where
ϕ is a propositional formula describing the query and A

′T (t) is an intermediary
answer. The results of the selection are then filtered using the projection operator
Πk1,k2,...(A

′T (t)) = AT (t), where k1, k2, . . . are attribute names that we queried
for and AT (t) is the final answer.
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These queries are difficult to parse by a machine, so in the following I propose
a machine-interpretable query language in which perception queries for robots
performing manipulation tasks can be stated. The semantics of these queries is
defined in terms of queries in relational tuple calculus, as described above. The
perception task language enables a better understanding of the capabilities of
perception algorithms and systems. The language is used to state the tasks that
perception algorithms are expected to accomplish. I propose to state perception
tasks in a symbolic language that consists of terms and perception tasks.

The terms of the language are object descriptions, object hypotheses and task
descriptions. Using such descriptions, a red spoon can be described as (an object
(category spoon) (color red)).

Perception tasks are then formulated as one of the following operations on
object descriptions and hypotheses:

1. (detect obj-descr) asks RoboSherlock to detect objects in the sensor
data that satisfy the description obj-descr and return the detected matching
object hypotheses,

2. (inspect obj-hyp attributes) asks the perception system to examine
a given hypothesis obj-hyp in order to extract additional information as
requested by attributes and add the information to obj-hyp,

3. (track/scan task-descr) runs continuous perception for a description
defined in task-descr ; these are perception tasks that typically require a
stream of images, i.e. track an object while performing a manipulation task.

In more detail an object detection task has the form:

(detect (〈det〉 〈type〉
(〈attr1〉 〈val1〉)
. . .
(〈attrn〉 〈valn〉)))

where 〈det〉 is the determiner of the description, which can be one of the key
words a(n) or the. If the key word is a(n) than any hypothesis is accepted. If
the determiner is the, there is assumed that exactly one hypothesis is generated.
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The determiner the is needed to express a perception task such as find my cup.
〈type〉 can be object, object-part and scene. object asks for objects and object
groups that cannot be further segmented by the perception system. For example,
simple segmentation algorithms typically cannot segment a set into the cup and
the saucer underneath. object-part specifies parts such as the handle of a spatula,
and scene is used for constellations of objects. The determiner of the description
is followed by optional attribute value pairs. Some attributes can be abstract
characteristics such as affordances (graspable, can-hold), while others can refer to
visual characteristics (color, shape). In addition, the locations where the objects
can be found, such as in a container, on a surface, or relative to a reference object,
such as in front of the cup, can be expressed.

The second category of perception tasks are inspection tasks that allow the
robot to perceive additional information about detected objects. Formally, an
inspection query has the form:

(inspect 〈 #uid 〉
〈:attr1〉 〈:attr2〉 . . . 〈:attrn〉)

where #uid is a unique identifier of an object hypothesis and 〈:attr1〉 〈:attr2〉
. . . 〈:attrn〉 is the list of attributes we want to examine. Object attributes that
can be inferred from perception algorithms are for example pose, 2D/3D model,
object state, or grasp points.

A special category of perception tasks are compound queries. These queries
use the detection task as a base query in order to achieve a more complex behavior.
Such tasks are, for example, ones that require the perception system to behave in
a continuous manner. The description can contain information such as a command
for starting and stopping a task, description of an object, or a given hypothesis:

(track/scan/... 〈det〉 〈type〉 (
detect (〈det〉 〈type〉

(〈attr1〉 〈val1〉)
. . .
(〈attrn〉 〈valn〉))))
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These tasks include, for example, the tracking of an object while performing a
manipulation task, or the scanning of a region for fusing results from multiple
images.

Attribute Description
shape semantic shape label
color semantic color label
type type of an object e.g. super-class

in taxonomy, or object affordance
location semantic location of an object (e.g.

on table top, in a drawer)
class result of a classification, be it clas-

sification of object instances or
class

pose specify a pose
cad-model specify a CAD model to fit
obj-part specify the part of an object to

detect (e.g. handle, opening etc.)
... ...

Table 2.1: List of query-language attributes currently implemented in RoboSherlock

Table 2.1 contains a subset of the valid keywords that are considered most
relevant for object detection and perception in autonomous robot manipulation.
Depending on the environment in which a robot is deployed, the query language
can be extended to handle attributes that are specific to the tasks that need
solving.

To better understand how queries are formulated let us look at a few examples.
Using the introduced query language the task of finding a flat object that has the
color black and is located in a specific drawer can be stated in the following way:

(detect (an object
(shape flat) (color black)
(location in (an object

((type container) (category drawer#3))))))

Once detected, examining it for its pose and grasp points can be done using an
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inspection query:

(inspect (an object
(obj-id #id))

:pose :grasp-points)

As another example, we can state the perception task for tracking an object of a
certain type with:

(track (an object (type ‘Spatula‘)))

Another example task that uses task-specific attributes is to look for a container
that holds 200 milliliters of hydrochloric acid:

(detect (an object
(category container)
(capacity (≥ 0.2)) (contains ’HCl’)))

Especially in the case of using task-specific attributes we need mechanisms to
decide whether or not certain computational components should be run or not. To
this end terms of the query language are interpreted and reasoned upon by a task
interpreter component (Figure 2.2) in order to generate context-specific perception
plans that invoke specialized perception algorithms (experts) as plan steps. Since
reasoning about results of a query and task interpretation are closely related
to the use of knowledge-based reasoning they are further detailed in Chapter 3,
Section 3.2.

2.3.3 The Collection Processing Engine

The intermediary result of a query is a context-specific perception plan that will
produce the results asked for in the upcoming processing cycle. The conceptual
overview of a single processing cycle in RoboSherlock is shown in Figure 2.2.
The figure is a detailed view of the role of RoboSherlock in the perception-
action loop from Figure 2.1 and depicts two of the main components: the task
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Figure 2.2: High-level conceptual overview of an execution cycle in RoboSherlock

interpreter and the Collection Processing Engine (CPE). The latter is addressed
in this section, while parts of the former were already introduced and the rest will
be the topic of Section 3.2. The Collection Processing Engine (CPE) consists of
multiple processing components: Collection Readers that read in the observations,
an Aggregate Analysis Engine (AAE) executor that takes as input the generated
perception plan and executes its steps and a CAS Consumer that takes the result
of the AAE executor and generates an answer. Results of these computational
processes are returned in a data structure called the CAS. In order to understand
the full cycle, the individual components shown in the figure and their behavior
need to be introduced.

The central data structure that is common to all components of RoboSh-
erlock-based perception systems is the Common Analysis Structure (CAS). A
CAS consists of:

• Subjects of Analysis (SofAs), the raw sensor data that is to be inter-
preted (e.g. RGB or depth images), which in our model is equivalent to the
observations OT (SofAs are also commonly referred to as views);

• and the hypotheses that are generated during a processing cycle, repre-
senting pieces of the raw data that are considered by the algorithms run in
the cycle to be relevant to the task.
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A hypothesis represents a certain region in our observations and a set of annotations
attached to this region. A region in an observation is a set of indices of the vector
of observations, e.g. pixels or 3D points. An annotation is an ABox representing
a fragment of the belief state. Let P(N+) be the power set of pixels of an image
or point indices of a point cloud. The space of all hypotheses H is defined as

H := P(N+)× ABox.

An example for a hypothesis of a box-like red object which has a pose and a
3D feature descriptor, expressed through the use of description logic introduced
earlier, has the form:

Thing(h1) ∧ shape(h1, box) ∧ color(h1, red)

∧ pose(h1, [x, y, z, r, p, y]) ∧ vfh(h1, [...])

With this we can not formally define what a CAS is. Let P(H) denote the
power set of all hypotheses and O the set of all possible observations (SofAs).
The space of all CASs is then defined as:

CAS := O ×P(H)

CASs are both inputs and outputs of several computational components. An
initial CAS is generated by processing modules called Collection Readers (CRs),
special purpose modules that are designed to read in the observation from the
sensors. A Collection Reader is defined as:

CR : OT −→ CAS s.t. CR(Ot) = 〈Ot(t), ∅〉, ∀t ∈ T

creating a CAS with the most recent observation and an empty set of hypotheses.
The initial CAS servers as an input to processing components that generate

enriched copies of it. The core processing elements of RoboSherlock are
Analysis Engines (AEs). Their input is a CAS and they generate enriched copies
of this by finding, annotating and refining object hypotheses. Analysis Engines
can be divided into two categories: Primitive AEs (PAE) and Aggregate AEs
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(AAE). Primitive AEs can be split based on their functionality into two categories:
the first kind, called hypothesis generators analyze the observations and generate
regions of interests. The second one, called annotators annotates the generated
regions of interest. Some primitive AEs do not fit into one or the other category
but combine traits of both. An example for such a primitive AE is a CAD model
fitter which generates a hypothesis and, if successful, annotates the hypothesis
with a label. Formally, both hypothesis generators and annotators are the same,
both taking the CAS as an input and outputting a new CAS that is an enriched
copy of the input:

PAE : CAS −→ CAS (2.5)

Aggregate AEs solve more complex tasks. An AAE consists of an ordered list of
primitive AEs. The primitive AEs can be run sequentially, in parallel, or flexibly,
e.g. on-demand or event-driven. The planning of a perception pipeline for a query
produces an ordered sequence of primitive AEs, denoted by AAEI :

AAEI : I −→ PAE (2.6)

where I = {1, . . . } is the set of indices corresponding to the ordering of the
primitive AEs and PAE is the power set of all primitive AEs. An AAE executor,
also called a flow controller, takes the initial CAS with the observations and runs
the sequence defined by AAEI on it, resulting in a trajectory of CASs:

CASI : I −→ CAS (2.7)

where CAS is the space of all possible CASs. The final CAS holds a partial
semantic description of the world at time t. With the use of Equations (2.5)(2.6)
and (2.7) the following formula holds:

CASI(i + 1) = AAEI(i)(CASI(i))

meaning that in order to obtain the next CAS in a sequence, the current primitive
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AE has to be executed on the current CAS. This means that for every new
observation OT (t) a unique trajectory of CASs, as defined in Equation (2.7),
is generated. While formally this is equal to a new CAS being generated by
each processing component, in practice the CAS is implemented as a whiteboard
data structure (Boitet and Seligman, 1994) that gets enriched by each processing
component and is cleaned at the end of the processing cycle.

In order to update the world, the resulting description need to be incorporated
into the belief state B. Since annotators might employ heuristic interpretation
methods or are more or less reliable and accurate, the set of annotations is allowed
to be inconsistent or contradictory. Inconsistencies and erroneous annotations
are handled by subsequent reasoning and hypothesis testing and ranking, using
components called CAS Consumers (CC). CAS Consumers do not have a unique
signature since they implement different kinds of post processing methods on
the annotated data. For example, one important role of a CAS Consumer is the
generation of the answer AT (t) to a query QT (t) based on the updated belief state.
A CAS Consumer that implements Equation (2.2) and generates an answer is
defined as:

CCA : CAS ×Q× B −→ A

Another example of a CAS Consumer that updates the belief state is defined as:

CCB : CAS × B −→ B

With these definition an iteration of a CPE, that implements both Equa-
tion (2.1) and (2.2) in RoboSherlock is defined as:

(CCA ◦ CCB ◦B ◦ AAEI(i) ◦ · · · ◦ AAEI(0) ◦ CR)(Ot, Q) = 〈AT (t), BT (t)〉

that is, the composition of a collection reader, the sequence of PAEs, the belief
state and the CAS Consumers for a sequence of observations and a query Q.
Figure 2.3 exemplifies the above explained process on a kitchen table scene,
showing the trajectory of CASs as it is produced and updated by one iteration
of the CPE. The cycle starts by executing a Collection Reader and populating
the initial CAS with the raw data (depth and color images). The CAS is then
passed on to the AAE executor that runs the planned sequence of PAEs (AAEI).
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Figure 2.3: The Common Analysis Structure as it gets enriched by computational processes
(highlighted in red) during a single iteration of a CPE, containing the interpretation of a kitchen

breakfast scene

First hypothesis generators are run that find regions on the table that belong
to objects. A second set of PAEs then annotate these hypotheses. Bottom left
side of the figure highlights an object hypothesis that depicts a cereal box and
examples of its annotations. Finally the CAS is passed to the CAS Consumers,
that can incorporate results into the belief state, log them and generate answers.

2.4 Implementing a Perception System

Using the conceptual description of the RoboSherlock framework, in this thesis
I propose a task-adaptable, pervasively operating perception system consisting
of several computational components that enable a robot to perform everyday
manipulation tasks. Figure 2.4 shows the high-level organization of the system,
emphasizing the contributions of the thesis. At the center of the system is the
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Collection Processing Engine (CPE) that is responsible for orchestrating the flow
of information, reading in observations, executing a planned pipeline (AAEI) and
running several CAS Consumers for interpreting, further processing or storing the
data.

Task adaptability is realized through the use of perception tasks formulated
using the query language described in Section 2.3.2 and passed to the system’s
task interpreter. Generating all possible sequences of primitive AEs, as shown
in Figure 2.2 is not feasible, instead, based on the query, the system plans a
new sequence of PAEs specific to the query, using the proposed knowledge-based
reasoning mechanisms.

In a typical execution cycle, after the initial CAS containing the raw data
is passed to the AAE executor, the planned sequence of primitive AEs is run.
PAEs mainly wrap perception algorithms performing various operations on the
raw data. In the scenarios considered in this thesis, this sequence typically
starts with the execution of object hypothesis generators. These analyze the
images and detect regions that correspond to objects and object groups in the
environment. Subsequent perception algorithms (referred to as annotators) analyze
these hypotheses and annotate them with symbolic or numeric information. The
results are inserted into the CAS as annotations of hypotheses. This process was
already exemplified in Figure 2.3, where the object hypothesis generators have
detected the objects on the table (indicated by the overlaid color boxes) and object
annotators analyzed these generating descriptions of objects. The annotations of
a hypothesis that depicts a breakfast cereal box are highlighted in the figure.

PAEs can also be categorized based on their applicability: general-purpose ones
that run for any object hypothesis and task-specific ones that need a predefined
condition fulfilled in order to be applicable. This distinction is easiest illustrated
considering the scene depicted in Figure 2.3. A general purpose PAE would be a
visual keypoint extractor, or a color histogram estimator for the objects in the
scene. These algorithms can be run irrespective of the hypothesis and return
annotations that can be useful for further PAEs that are executed later in the
processing cycle. A task-specific annotator would be one that can only run and
return positive results when task conditions are met. For example, an algorithm
for drawer handle detection that identifies handles as 3D lines in the depth image.
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Figure 2.4: High level overview of the RoboSherlock framework showing the system
components and the most important interactions

This annotator can only work and can only be used if the drawer handles in our
world model meet the requirements. As another example, typically, the volume of
an object is of no interest, unless a query specifically asks for it, so an annotator
that estimates volumes of objects would only be run if needed. Planning the
sequence of PAEs with the task-specific annotators is done through the application
of knowledge processing and reasoning techniques, detailed in Chapter 3.

At the end of every processing cycle the CAS is transmitted to the consumers
where further algorithms can analyze the generated hypotheses, filter them, merge
them, etc. One such consumer is responsible for the generation of a final answer
AT (t), by filtering results and applying knowledge-based reasoning. The belief
state takes a central role when it comes to reasoning about tasks, storing static
as well as dynamic knowledge about the objects, the environment, the robot and
the available perceptual capabilities.

The components presented so far enable task-adaptability of the system. Per-
vasive operation is achieved through another set of computational modules that
build on top of the task adaptable system. An extended version of the AAE
executor proposed in Chapter 5 enables the preparatory, amortized perception
to pervasively gather information about the environment and manage an object
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belief state in an asynchronous manner. Several approaches for CAS consumers,
for storing and retrieving perceptual episodic memories (Chapter 4), solving in-
consistencies in hypothesis annotations through probabilistic first-order reasoning
(Section 3.4) or enabling prospection (Chapter 6), complete the system. Figure 2.4
shows how and where these components are integrated in the proposed system.

All of these components will be presented in detail in the chapters to come.
The remainder of this chapter gives an overview of the current state of RoboSh-
erlock, offering implementation details.

2.4.1 Collection Readers

RoboSherlock is implemented using the Apache UIMACPP framework2 and the
Robot Operating System (ROS) middleware3. Interfacing with other components
of the robotic system is done through standard ROS interfaces (topics, services
and actions). In RoboSherlock an observation OT (t) corresponds to a set of
images taken by the robot at timestamp t. Collection Readers are modules that
read the images together with their metadata and store them in the CAS. In
UIMA raw data to be processed are referred to as SofAs or views.

RoboSherlock interfaces to sensors of a robotic system through the means
of a standard ROS server-client communication schema. While an observation
OT (t) can come from any sensor, since the focus is on robot vision in particular,
RoboSherlock is mainly designed to read sensory input from camera systems.
This is realized through a general CameraInterface implementation that can be
extended to handle various types of cameras, commonly used by autonomous
manipulation robots. The main sensors used in this thesis are low-cost RGB-D
sensors, such as the Microsoft Kinect v1 and v24, as well as Intel RealSense5

or Asus Xtion6 cameras. All of these sensors are well supported by the ROS
middleware. Besides the sensors, Collection Readers can read data from other
sources such as files or a database.

2https://uima.apache.org/doc-uimacpp-huh.html
3http://www.ros.org
4https://en.wikipedia.org/wiki/Kinect
5https://www.intelrealsense.com/
6https://www.asus.com/3D-Sensor/Xtion_PRO/
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There are three main types of Collection Readers currently implemented:

1. camera interfaces:

• ROSCameraBridge: interface for monocular cameras,

• ROSKinectBridge: used for reading data from active RGB-D cameras,

• ROSRealSenseBridge: similar to the KinectBridge, but developed for
reading data from active stereo cameras such as the Intel RealSense
camera series

All of these interfaces include storing the camera intrinsic and extrinsic
calibration information. In addition, filters such as blur or motion filtering
are implemented in each.

2. offline storage: DataLoaderBridge, MongoDBBridge, for reading image
data from a database or the file system.

3. virtual cameras: UnrealVisionBridge that acts like a normal camera but
the data streaming are off-screen rendered depth and rgb images, with
ground truth associated with them.

The images read by the camera interfaces are stored in the CAS with specific
view names. Let us take an RGB-D Kinect sensor as an example. Typically, for
such a sensor there are at least two image streams that are important (depth
and color) and the camera parameters. The color image from the camera is
stored with the name VIEW COLOR and the depth image with the name
VIEW DEPTH IMAGE. Additionally, if a point cloud is created, it is stored in
a view with the name VIEW CLOUD. This way any PAE that requires a color
or a depth image or a point cloud simply needs to look in the CAS for a SofA
with this name. Since most robotic systems can have several sensors of the same
type, the Collection Reader can handle multiple cameras. This is achieved by
generating a unique ID for each camera and pre-pending the name of the view
with it. During the execution of the AAE a default camera ID can be set such
that individual PAEs process the data from that specific sensor by default.
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2.4.2 The Type System

The RoboSherlock type system is a taxonomy of data structures, where the
name of a type also carries the semantic description of the information stored
in it. For this reason the type system is considered to be a part of the TBox

and the structures defined can be expressed using description logic, as I have
shown previously. The UIMA framework supports the storage of basic data types
(int, float, string, Boolean etc.) and arrays of these. The built-in type TOP
acts as a parent type for all other types that will be defined. The type system is
programming language agnostic, and is defined in a set ot XML files.

The types defined in the RoboSherlock type system can be categorized
based on characteristics of the information they are supposed to store into three
categories:

1. low-level data types: these types are data structures that are necessary in
order to store results of computational processes performed on the input
data. These are structures derived from the libraries that are often used in
robot vision tasks. Converting from the native library data structure to the
UIMA type is handled automatically. Specifically, the most prominent type
categories are:

• cv types: types that store OpenCV (Bradski, 2000) specific data
structures. Most notably the rs.cv.Mat type allows the storing of image
data as OpenCV matrices. Other types are, for example, rs.cv.Rect
for regions of interest or rs.cv.Point for storing a pixel location

• pcl types: types to store PCL (Rusu and Cousins, 2011) specific in-
formation, such as point clouds (rs.pcl.PointCloud) or point indices
(rs.pcl.PointIndices)

• ros types: ROS and robot-specific types. These types mostly cover
commonly used ROS messages, such as camera parameters, poses, or
3D transformations.
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2. annotation types: types for storing results of PAEs that analyze object
hypotheses. These types contain either numeric information (keypoints,
feature descriptors) or symbolic information about the hypotheses (color,
shape, class, etc.)

3. types for storing hypotheses, objects and scenes; since only data structures
defined in the type system can be stored in the CAS, the type system defines
higher level structures:

• object hypothesis: type for representing regions in the image data that
are believed to be objects. It is composed of an array of reference
points in 3D, regions of interest in the image coordinates and an array
of annotation types,

• objects: a sub-type of object hypothesis with an additional array field
for hypotheses ids. The type enables the storing of objects from the
belief state inside RoboSherlock. Each object stores the series of
hypotheses that were associated to it.

• scene: the scene type allows the storage of what the robot believes to
be true about the current observation, based on the readings from a
specific sensor. It consists of an array of object hypotheses, the current
location of the robot in the world, an array of scene-specific annotations
(annotations that hold for all hypotheses in the current observation)
and the time stamp.

The type system implemented in RoboSherlock serves only as a guideline
for organizing the numeric and symbolic values extractable from image data.
Depending on the application scenario, new types can be defined and integrated.
The type system is a central element of the framework, since it acts like a common
language between PAEs. For an analysis on how it compares to communication
schema offered by other middleware, specifically how would a similar implemen-
tation be realized using standard ROS protocols, I kindly refer readers to the
previous work of Blodow (2014).
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2.4.3 Hypothesis Generation

In RoboSherlock, perception algorithms and existing perception systems are
wrapped as primitive analysis engines (PAEs). The majority of these PAEs
wrap perception algorithms implemented in PCL (Rusu and Cousins, 2011),
OpenCV (Bradski, 2000) or ROS packages that are commonly used in robotics.
Most of these algorithms can be assigned to one of the two categories of PAEs:
hypothesis generators or hypothesis annotators.

Hypothesis generators are specialized segmentation algorithms that find regions
in the data that depict objects and deal with objects that exhibit different
perceptual characteristics, such as ordinary objects of daily use, flat objects, small
shiny objects. These methods generate different kinds of representations:

• pixel coordinates generated by attention mechanisms that detect points of
interest in order to create regions of interest (points and extents) in the
camera frame,

• masks or region maps, referencing the respective part of the image generated
by image segmentation algorithms (e.g. color-based),

• index vectors generated by point cloud segmentation relying on supporting
planar structures.

These representations can be converted from one to the other, e.g. by projecting
a point cluster from a point cloud into a camera image, or transforming an image
region to a grasping pose in robot-local coordinates. This allows the retrieval of
the camera image region of interest corresponding to a 3D point cluster, enabling
the combination of image processing techniques and point cloud processing. I will
now present the most commonly used PAEs in RoboSherlock for hypothesis
generation.

RegionFilter Based on an existing semantic map of the environment (Pangercic
et al., 2012) 3D regions relative to a fixed coordinate system in the environment
are defined that are considered to be important in finding objects. The regions
are typically 3D boxes, consisting of dimensions (height, width, depth) a rigid
transformation and a semantic label. Based on these values, the RegionFilter
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prunes the image and 3D data such that only measurements inside a given interest
area are considered, given that the robot is localized in this map.

PlaneDetector Implements a RANSAC (Fischler and Bolles, 1981) based 3D
plane estimation algorithm. This hypothesis generator detects supporting surfaces,
which can subsequently be used to find objects on them. The output of the PAE
is the plane equation and the array of inlier points.

PointCloudClusterExtractor This PAE implements a region growing algo-
rithm, based on Euclidean distance in 3D space, to find objects on supporting
surfaces. It requires a point cloud SofA and a detected supporting plane. The
results of this hypothesis generator are clusters of 3D points representing clearly
separable regions in the point cloud.

BinaryImageSegmenter Wraps a color-based segmentation useful especially
in cases where objects are missed by the 3D clustering (e.g. flat cutlery in a table
setting). It uses the color distributions of the supporting plane as background
information and performs binary thresholding and blob detection.

SymmetrySegmentation Implementation of the 3D, model-free segmentation
algorithm, presented by Ecins et al. (2016). Based on symmetry alone the
algorithm can separate objects from cluttered, occluded scenes. The implemented
PAE requires a point cloud SofA and optionally the supporting surface. This
latter can simplify computations, and decrease processing time.

TransparentSegmentation Hypothesis generator that segments transparent
objects. Transparency is one of the most challenging object properties for current
computer vision algorithms. This PAE implements the approach introduced
by Lysenkov et al. (2012), that takes a limitation of active depth sensors, such as
the Microsoft Kinect (absence of measurement when objects are translucent), and
turns it into a feature for detecting objects.
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2.4.4 Object Annotators

Object annotators are the subclass of PAEs that enrich the CAS through the
generation of annotations that are then attached to hypotheses. In general,
annotators implement existing perception algorithms and result in numeric or
symbolic values. From the large variety of PAEs that are implemented, I present
only a subset of these that I consider to be important for everyday manipulation
tasks and are used in the chapters to follow.

Some annotators make use of a 3D semantic map of an environment (Pangercic
et al., 2012) in which the robot is localized to annotate an object cluster with
a semantically meaningful location (e.g. “on top of counter top#1”). Others,
such as PCLDescriptorExtractor, process 3D point clusters and extract 3D feature
descriptors implemented in the point cloud library PCL (VFH (Rusu et al., 2010),
RIFT (Skelly and Sclaroff, 2007), SHOT (Salti et al., 2014), etc). Similarly to this,
the KeypointExtractor finds image keypoints and calculates keypoint descriptors
(ORB (Rublee et al., 2011), SIFT (Lowe, 1999), etc.) using their implementation
from OpenCV.

Another set of annotators extract general properties of objects, such as color,
size or shape, computing symbolic values for the hypotheses they are processing
or numeric descriptions, such as an estimated 3D bounding box, with volume and
estimated pose. There are annotators that wrap web services, such as Google
Goggles, allowing the online analysis of an image. Google Goggles generates
a highly structured list of matches, including product descriptions, barcodes,
logo/brand recognition, OCR text recognition or a list of similar images (Blodow,
2014).

Some annotators wrap existing perception frameworks, like BLORT (Mörwald
et al., 2010), Moped (Collet et al., 2011), Line-mod (Hinterstoisser et al., 2013)
or SimTrack (Pauwels and Kragic, 2015). These are object recognition or cat-
egorization engines and are worth executing when the task involves an object
that has a model. They also constitute an interesting category, since due to
their bottom-down approach they produce and annotate hypotheses at the same
time. Table 2.2 presents a more detailed view of PAEs that are implemented in
RoboSherlock.
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AE Type Description
ClusterColorHi-
togramAnnotator

Annotator Returns semantic color annotation based on
color distribution in HSV color space. Also
annotates the hypotheses with a numeric color
histogram

PCLDescriptorEx-
tractor

Annotator Extracts 3D features implemented in PCL
(VFH, SHOT etc.)

KeyPointExtractor Annotator Extracts keypoints and calculates
keypoint-descriptors using OpenCV (FREAK,
FAST, SIFT, SURF, etc.)

RSSVM, RSRF,
RSKNN, . . .

Annotator Support Vector Machine , Random Forrest,
k-NN classifier wrappers for classification from
OpenCV

CaffeAnnotator Annotator Extracts deep learning features using
pre-trained models using the Caffe (Jia et al.,
2014) framework

3DGeometry Annotator Estimates a pose based on a 3D oriented
bounding box. Also classifies objects into
small, medium or big depending on 3D volume

Goggles Annotator Sends the image of a region of interest of a
hypothesis to the Google Goggles servers and
parses the answer to extract text, logo, and
texture information (Blodow, 2014)

PrimitiveShape Annotator Fits lines and circles to 3D point clusters
projected onto the supporting plane using
RANSAC (Goron et al., 2012). Values
returned: box, round, flat

LineMod Annotator &
Hypothesis
generator

Matches each object hypothesis to a set of
object models that the robot should actively
look for using the Line-Mod
algorithm (Hinterstoisser et al., 2011).

SimTrack Annotator &
Hypothesis
generator &
Tracking.

Fits a CAD-model from a query to the current
scene and tracks it (only works for textured
objects) Pauwels and Kragic (2015).

TemplateAlign-
ment

Annotator Fits a CAD-model from a query to a
hypothesis that was classified as the CAD
label (Tombari and Stefano, 2010)

SACmodel Annotator Fits parametric models to objects if the query
demands

Table 2.2: List of hypothesis annotators implemented in RoboSherlock
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2.4.5 Implementing New Analysis Engines

Defining the Primitive and Aggregate Analysis Engines in RoboSherlock is
done through a set of configurations files. Originally, in the UIM framework, this
was done through the use of XML files. In RoboSherlock the less verbose
YAML format was chosen. These configuration files are commonly referred to as
descriptors, as their role is to describe what the analysis engine’s role is.

Primitive Analysis Engines

Primitive Analysis Engines in RoboSherlock are the components that imple-
ment perception algorithms. There are several different PAEs already implemented
and the framework supports easy addition of new ones. When creating a new
PAE, developers are required to wrap the algorithm as a dynamic library using a
predefined C++ interface and most importantly, each PAE needs to have a meta
definition in the form of a YAML configuration file. The descriptor of a PAE that
wraps a k-NN classifier is given below as an example:
annotator :

implementation : rs_knnAnnotator
name: KnnAnnotator
description : wrapper for FLANN bassed Knn from OpenCV

parameters :
class_label_mapping : extracted_feats / BVLC_REF_ClassLabel_pnp_5_obj .txt
default_k : 5
model_data : extracted_feats / BVLC_REF_5_obj .yaml

capabilities :
inputs :

- ’rs.scene . ObjectHypothesis ’,
- ’rs. annotation . FeatureDescriptor ’: [ BVLC_FC7 ]

outputs :
- rs. annotation . Classification : [ CupEcoOrange , EdekaRedBowl ,

KoellnMuesliKnusperHonigNuss , BluePlasticSpoon , WeideMilchSmall ]

The descriptor has three main parts: implementation data, capability defini-
tions and parameter definitions. The first part (annotator) describes the PAE,
defining the name with which it can be referred to and the implementation file
name (library name). In the parameters section input parameters of the PAE can
be defined. The parameters supported by the configuration file can be one of the
standard data types or arrays thereof. The last part is perhaps the most important
of them all. The capabilities of the PAE in terms of the RoboSherlock type
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system and the TBox are defined. In the example above, the k-NN annotator
takes as input data structures of type rs.scene.ObjectHypothesis and annotations
of type rs.scene.FeatureDescriptor. Furthermore the FeatureDescriptor annota-
tion needs to be a descriptor extracted from a deep learning module (BVLC
refers to the reference implementation of AlexNet (Krizhevsky et al., 2012) in the
Caffe deep learning framework (Jia et al., 2014)). The KnnAnnotator produces
rs.annotation.Classification results, with a specified domain of objects. Based on
these capability definitions the order of PAEs in an Aggregate Analysis Engine is
deduced, as I will show in Chapter 3.

Aggregate Analysis Engines

Aggregate Analysis Engines are computational modules that are composed of a
list of PAEs. We have seen that the sequence of primitive AEs in the aggregate are
planned automatically based on the query that is asked. In the implementation
of the system the list of PAEs that are used in the planning process need to be
predefined. This way the planner has to only consider PAEs that are deemed
necessary for that task a robot is solving. In practice this is done through the use
of YAML configuration files. Such a configuration file is exemplified below:
---
ae:

name: demo_aae
---
delegates :

- ImagePreprocessor
- RegionFilter
- NormalEstimator
- PlaneAnnotator
- PointCloudClusterExtractor
- Cluster3DGeometryAnnotator
- CaffeAnnotator
- ClusterColorHistogramCalculator
- PrimitiveShapeAnnotator
- KnnAnnotator

---
fixedflow :

- ImagePreProcessor
- RegionFilter
- RegionFilter
- NormalEstimator
- PointCloudClusterExtractor
- Cluster3DGeometryAnnotator

---
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RegionFilter :
semantic_map_definition : " semantic_map_iai_kitchen_ease .yaml"
defaultRegions :[’ kitchen_sink_block_counter_top ’,
’kitchen_island_counter_top ’,’ kitchen_meal_table_counter_top ’]
border : 0.01

PointCloudClusterExtractor :
polygon_min_height : 0.02
cluster_min_size : 500

---

The configuration file is split into three sections: general information, list
of delegate PAEs and definition of a fixed flow. Additionally to these three,
parameters of individual PAEs can be overwritten. The delegates is used to define
the list of PAEs that are used during the application. The fixedflow section defines
an ordered subset of PAEs from the list of delegates, that constitutes a default
ordering for continuous processing of input data. The end of the configuration file
can be used to overwrite default parameters of PAEs from the delegate list, for
example: in the configuration file above, the minimum size (number of 3D points)
of a hypothesis, originally defined in the PointCloudClusterExtractor through the
cluster min size parameter, is overwritten. Multiple AAE configuration files can
be defined and loaded during runtime.

These components, namely Collection Readers, Primitive and Aggregate Analysis
Engines are at the center of the framework, implementing various perceptual
functionalities. References to these components will be made throughout the
thesis when using them to realize task adaptability and pervasiveness.

2.5 Related Work

The scope of RoboSherlock goes beyond what currently constitutes the state-
of-the-art perception systems. The goal is not to replace or reproduce any existing
system, but to offer a framework where we can take advantage of the combination
of these approaches. As such, the focus of the literature review offered in this
section is to survey existing and previous perception frameworks or libraries and
to highlight the current trends in algorithmic research in robot vision.
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2.5.1 Frameworks and Libraries

There are a lot of works oriented at creating perception libraries which are
a collections of task-specific algorithms, e.g. PCL (Rusu and Cousins, 2011),
OpenCV (Bradski, 2000) or the V4R library 7. The perception tasks demanded by
the scenarios described in Section 1.3 go substantially beyond what is supported
by current perception libraries and frameworks. These frameworks, while excellent
from the perspective of algorithmic performance, do not encode the knowledge to
automatically address higher level perception tasks, that is to offer solutions for
the combination of the implemented algorithms that ease the development of a
complete solution.

Frameworks, mostly based on middle-ware like ROS, such as SMACH (Bohren
et al., 2011)) or REIN (Muja et al., 2011) have targeted the ease of program
development but the problems of boosting perception performance through more
powerful method combination has received little attention. An early example
of a robotic perception system was described by Okada et al. (2007), where a
particle filter based integration of multiple detectors and views was achieved. The
probabilistic fusion of different results corresponds to a simple rule ensemble,
i.e. one that is not trainable. Similar methods have been employed for semantic
mapping approaches (Pronobis et al., 2010; Mozos et al., 2011). More recent
works on general frameworks for robotic agents (Wyatt et al., 2010; Scheutz, 2006)
approach the problem in a much broader sense, thus, do not address the specific
needs of robot perception.

A recent highly integrated robotic learning system is presented by Skočaj
et al. (2016), focused on interactive learning to associate linguistic and visual
percepts by acquiring abstract knowledge of generic categories like object color,
shape and type. The authors start with a comprehensive presentation of the
field’s development, and present a statistical approach for identifying missing
information. To fill this knowledge gap, a human operator can be queried and
perceptual tasks be performed automatically, or at the direction of the human.
The presented system is highly complementary to RoboSherlock, as it focuses
on building up a model database, learning what different shape, color and object

7https://www.acin.tuwien.ac.at/vision-for-robotics/software-tools/v4r-library/
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type categories mean, and how to continuously update these beliefs using sensory
data and interactions with humans. For these tasks RoboSherlock currently
relies on an existing representation of the world and in this thesis the focus is on
querying such common sense knowledge, instead of continuously learning it.

A related approach for actively generating pipelines to solve perceptual tasks
was described by Sridharan et al. (2010), based on an efficient hierarchical partially
observable Markov decision process formulation. The authors also focus on color,
shape and type categories similar to Skočaj et al. (2016), and answer queries on
object location, existence and identity, i.e. they also consider clutter segmentation
by including a region of interest (ROI) splitting operator (which would be a
hierarchical hypothesis generator in RS). The ROI splitting is a specific challenge
for the POMDP, but overall the operators are simple, static and few. In contrast,
RoboSherlock generates pipelines that are considerably more complex, and
utilize background knowledge, but currently lack the probabilistic sequential
decision-making during executions.

2.5.2 Algorithmic Developments

A lot of existing perception systems usually consider the case where a database of
trained objects is used to match it with sensor data. Even more, many systems
focus on individual algorithms that work on objects with specific characteristics,
e.g. point features for 3D opaque objects (Aldoma et al., 2012a), visual keypoint
descriptor based systems like MOPED (Collet et al., 2011) for textured or the
work of Lysenkov et al. (2012) for translucent objects. RoboSherlock is
capable of incorporating all of these different frameworks and combine their
results meaningfully to build on the strengths and mitigate the weaknesses of the
individual methods.

In recent years the research in the vision community has been dominated by
deep learning. Initially only focusing on recognizing specific object instances and
classes, recently the focus has shifted to recognizing and detecting objects (Huang
et al., 2016) and estimating their pose (Li et al., 2018). One of the first well-
performing algorithms that tackled object detection as a neural network regression
problem is called YOLO (You Only Look Once) presented by Redmon and
Farhadi (2016). Earlier algorithms usually used two separate steps for detection
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and classification, e.g. (Girshick et al., 2014). The main advantages over those
methods are the much faster processing speeds and the simple end-to-end training
of the algorithm.

Liu et al. (2016) proposed a method called SSD to extend any existing image
classification neural network to support the prediction of bounding boxes around
objects. To that end, the existing network is truncated before the classification
layers and an auxiliary structure, consisting of several convolutional layers, is added.
Lin et al. (2017) recently introduced RetinaNet, with a proposed improvement to
the loss function of object detectors, and obtained an upper envelope on existing
methods when tuned for different inference time versus accuracy. While results are
impressive and in some cases recognition rates are comparable with that of human
performance, these approaches are rather complementary to the RoboSherlock
framework, and can act as experts that hypothesize or annotate data.

Using commercial systems like the one offered by Cognex 8 or VIDI9, all you
need to do is provide a sufficiently large training set and you have a perception
expert that can solve the specific task. The idea behind RoboSherlock is
to build perception pipelines from the individual experts, not having to retrain
networks for every single perception task that needs solving.

One of the exciting areas of research in deep learning, that relates well to the
work presented in this thesis is that of visual query answering and description
generation based on images. According to a survey on the image to caption field
conducted by Bernardi et al. (2017), our work could be categorized as a direct
generation model, whereby detections are made and then used by a following
description generation step. However, the detection is guided by the task and
by the a priori cues it receives from the high-level planning system. Caption
generation can be performed using RNNs, for example by mapping sentences and
images to a latent representation where they are related (Socher et al., 2014),
and by applying LSTM or other architectures for further improvement (Donahue
et al., 2017). However, most of them need image-sentence pairs for training, and
the substantial time for retraining a network every time makes them so far not
applicable.

8https://www.cognex.com/products/leading-technology/deep-learning-based-image-
analysis

9http://imaging.market/vidi-green-object-scene-classification-10000337
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2.5. Related Work

Summarizing the most commonly used algorithms and toolboxes for object
perception in robotics, Table 2.3 details a selection of these, highlighting their
applicability and offering a short description for each. It is immediately visible
from the table that, although there are a lot of overlapping and complementary
approaches available, there are, as to date, no solutions that can cover all of the
requirements imposed by the real world where we expect robots to work in. Hence,
the investigation of how to reasonably combine these approaches is of the utmost
importance.
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BLORT
(Mörwald
et al., 2010)

X X X X X interest point based object
recognition, particle filter
tracking, CAD model is
needed for learning of mod-
els

RTM-
Toolbox
(Prankl
et al., 2015)

X X X X X recognize and track objects
based on interest points,
RGBD-data is needed to
create object models

SIMTRACK
(Pauwels
and Kragic,
2015)

X X X X X uses interest points for
recognition and a CAD
model is needed for learn-
ing of models

Line-Mod10

(Hinterstoisser
et al., 2013)

X X X detect and recognize non
textured objects based on
models trained from multi-
ple views

10as implemented in OpenCV
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MOPED
Collet et al.
(2011)

X X X X detect and recognize tex-
tured objects and their
poses, trained on multiple
views

Tenorth
et al. (2013)

X X X X detect parts of objects
based on their CAD-model

Marton
et al. (2014)

X X X X X segments and recognizes
objects in clutter, trained
on partial 3D views of ob-
jects

Lai et al.
(2011)

X X X X 3D bag of words descrip-
tors and kernel SVM for
recognition; segmentation
of bounding boxes around
objects, CAD model
needed for learning object
models.

Lysenkov
et al. (2012)

X X X CAD based transparent ob-
ject detection and pose es-
timation

Ecins et al.
(2016)

X X X X 3D symmetry based seg-
mentation of cluttered
tabletop scenes

Tombari
and Stefano
(2010)

X X X X X Hough-voting based 3D
CAD matching

Aldoma
et al.
(2012a)

X X X X X X table top segmentation us-
ing 3D point clouds and
object recognition using a
global or local matching
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Redmon
and Farhadi
(2016) and
Liu et al.
(2016)

X X X X X deep learning based seman-
tic segmentation in im-
age space returning object
labels and 2D bounding
boxes

He et al.
(2017)

X X X X X deep learning based pixel-
wise semantic segmenta-
tion returning object labels
and object-masks (in im-
age space)

Table 2.3: State of the art open-source software commonly used in robotic perception, the
perception-tasks

2.6 Summary

This chapter presented RoboSherlock, a cognitive perception framework that
enables the creation of pervasively operating task-adaptable perception systems.
The contributions to the framework are meant to deliver the necessary capabilities
for implementing perception systems that provide the functionalities needed for
everyday manipulation tasks, outlined in the introduction (Section 1.1):

. . . can be tasked: a query language was proposed that allows the description of a
perception task. The framework adapts processing cycles to the descriptions
of the task.

. . . can be equipped with ensembles of expert perception algorithms: RoboSh-
erlock is based on UIM, as such, using ensembles of expert approaches is
one of the core features of the framework.

. . . is modular and extensible: since RoboSherlock follows the processing
logic of unstructured information management, it is highly modular. New
Collection Readers, Collection Processing Engines and CAS Consumers can
easily be added, extending current functionality through supporting new
sensors, processing libraries.
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. . . can incorporate beliefs that it maintains about the world to improve future
perception tasks: we have already seen that the type system of RoboSh-
erlock and the conceptual description all take into consideration past
percepts. This capability of the framework will be the topic of chapters that
follow.

. . . can enhance perception with knowledge and reasoning: a cornerstone of the
framework, this will be the topic of the next chapter.

We have seen how perception for everyday manipulation tasks can be for-
mulated as a query-answering problem that is dependent on the estimation of
the current state of the world. Using the introduced formal description most
perception processes can be defined. The concepts introduced in this section form
the basis for the remainder of thesis, where I will detail parts of the system that
contribute towards achieving a pervasive open question-answering perception for
robots.
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CHAPTER 3

Knowledge-based Perception

Mobile robots, operating in a human environment, face the challenge of recognizing
objects found in visually challenging scenes and that posses a multitude of different
characteristics. To address this challenge, perceptual capabilities of such robots
need to go beyond detection or categorization of objects and be able to answer
queries not only about where certain objects are located based on their class label,
but also about properties of these. These properties are not always visual in
nature. A lot of times achieving a task means identifying objects with functional
properties (i.e. the cereal box that is open), or other characteristics (i.e. the one
with no sugar). To achieve an optimal performance, perception systems need to
be adaptable to the task that the robot is performing and the robots need to be
aware not just of their environment and the task that they are to execute, but
also of their perceptual capabilities that can help accomplish the task.

In the previous chapter we have seen that, in order to achieve task adaptability,
perception for everyday manipulation tasks is treated by RoboSherlock as a
question-answering problem and I have briefly discussed how knowledge-based
reasoning plays a key role in this. RoboSherlock operates on captured images,
in order to provide the robotic agent with the information and data necessary to
successfully accomplish the intended actions. Consider, for example, a robotic
agent setting the table. In this task context the robot needs to fetch plates and
place them on the table. To enable this action the perception system has to
provide information, including where to reach, where to grasp, how to avoid
collisions when reaching for a plate, and so on. A precondition for answering these
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queries is that the robot has recognized the plate to be grasped in all possible
settings. This is not an easy task. Lying on the table, the plates can be detected
by looking for ovals of the right size, or if the plates have a known texture, by
detecting the respective texture. But, if the plates are stacked in a cupboard with
poor lighting conditions then all the robot can see are the horizontal lines that
individual plates form in the stack. The situation gets even more complicated
when there might be a cup or a soup bowl placed on top of the plate or the plate
is covered with food. The methods for detecting and categorizing the same objects
in different contexts require very different perception strategies. Automatically
choosing the right strategy depends on the knowledge that is available about the
task and the objects.

Figure 3.1: PR2 handling a query(top left) and detecting the
corresponding objects using a planned pipeline (bottom right)

A number of percep-
tion methods partly deal
with some of these issues of
determining which objects
stand where and how to act
on them. The set of algo-
rithms developed and in-
vestigated for this problem
category is huge. Some
algorithms assume objects
to be known beforehand
and textured so that they
can be detected by their vi-
sual appearance (Pauwels
and Kragic, 2015). Oth-
ers assume the shape of ob-
jects to be characteristic and they can detect objects such as plates, bowls,
boxes (Mörwald et al., 2010). Many algorithms phrase the categorization of
detected objects by learned classification systems that can be trained with huge
numbers of images (Karpathy and Fei-Fei, 2014). Deep learning approaches for
object categorization enable the capability of learning different representations for
plates for different situations. Other approaches do not try to interpret the image
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data to find out which objects are depicted, but rather approximate the shapes
of objects sufficiently for grasping the object. Sporadic approaches investigated
how to perceive more delicate characteristics of objects, (e.g. the actions they
afford (Aldoma et al., 2012b)) and richer languages for object recognition based
on perceptual attributes (Sun et al., 2013) and object parts (Felzenszwalb et al.,
2010).

These methods have substantially advanced the state-of-the-art in robotic
object and scene perception, but a central question still needs to be addressed:
how should a robotic agent decide which approach to use in which situation. To
formulate an answer to this question, I propose to consider robot perception
as a hybrid system that combines knowledge processing and image
interpretation in order to answer the queries that the robot control
system asks. In this context knowledge processing can take on two important
roles: first, it can be used to select problem-specific methods that can achieve
higher recognition rates on restricted sets of objects and scenes and second, it can
be used to interpret, disambiguate and correct the results of perception processes.
This is similar to the manner in which expert systems work. In other research
fields it has been demonstrated that the amount and quality of knowledge that a
system has about the process is equally important as the reasoning mechanisms it
uses. Feigenbaum, considered to be the father of expert systems, in his seminal
work (Feigenbaum, 1992), formulated the following :

“ .. knowledge of the specific task domain in which the program is to
do its problem solving was more important as a source of power for
competent problem solving than the reasoning method employed ”

Edward A. Feigenbaum

This same idea can directly be applied to robotic perception when pursuing
the creation of a system that scales towards perception tasks. By symbolically
representing the task a robot should solve and the robot’s perceptual capabilities,
we can enable reasoning about the choice of methods for a given task and about
the interpretation of the results of these methods. Perceptual capabilities in
this sense refer to knowledge about a robot’s sensing capabilities as well as its
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computational ones, i.e. the algorithms that are able to process the data from the
sensors.

In this chapter I further detail how the task adaptability of the proposed system
is achieved and as such I will present how RoboSherlock uses knowledge-based
reasoning techniques to answer the perception queries it receives. Specifically I
am proposing:

• a representation of perception experts that specify their preconditions and
the output information,
• a representation of complex specialized perception processes as perception

plans,
• logical rules that automatically generate perception plans, a sequence of

Primitive Analysis Engines (PAEs) tailored to given perception tasks,
• logical rules that extract the information requested by a given perception

task from the perceptual evidence combined with the background knowledge
of the robotic agent,

• a probabilistic approach for handling inconsistencies and uncertainty of
results generated by PAEs.

The chapter concludes with an analysis of how query answering, together
with knowledge-based reasoning operates in the application scenarios presented
in Section 1.3. Contents of the chapter are mostly based on previous work
described in Bálint-Benczédi et al. (2016) and Bálint-Benczédi et al. (2019) offering
additional information about the reasoning mechanisms used for generating a
task-dependent perception plan.

3.1 Knowledge Representation

In RoboSherlock I chose description logic (DL) as the representation language
for two reasons: (1) DL provides an intuitive, standardized and clean way of
constructing models of the real world and (2) DL has well-established implemen-
tations used in both the knowledge representation and the AI-based robotics
communities. For implementing these representations KnowRob (Tenorth and
Beetz, 2013) was chosen as the knowledge processing and inference framework.
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KnowRob is designed to be used on robots, can load knowledge, stored in the
Web Ontology Language (OWL) (Bechhofer et al., 2004) and can reason about the
facts stored using first-order logic, implemented in the logic-based programming
language Prolog.

3.1.1 Description Logic in KnowRob

KnowRob stores information in OWL ontologies. Ontologies in general are a
form of representing pieces of knowledge and the interdependent properties and
relations between these, while the Web Ontology Language (OWL) is a family of
languages for representing, storing and exchanging the stored knowledge. The
OWL family of languages support a wide variety of syntaxes. In KnowRob
the Relational Data Format (RDF) XML syntax is used to store the OWL files.
KnowRob has its own upper ontology, based on OpenCyc (2009), extending this
with concepts that are relevant to the application domain of robots performing
everyday manipulation tasks.

When representing knowledge in KnowRob we have the choice of defining
three types of knowledge:

... classes: in description logics also referred to as the concepts, represent
static knowledge about the world;

... properties: object or data properties that can describe relations between
classes and individuals; in description logic terms are referred to as roles;

... individuals: instances of classes that can take additional properties, and
are specific to the current execution.

The most common tasks performed by description logic reasoners deal with
class subsumption and classification (e.g. is this individual of type A?). Tenorth
and Beetz (2009) argue that classical reasoners in description logic are not suited
for robotic tasks due to several causes:

1. a classified world is stored in memory: this is not ideal, since the world
changes during robot operation. It is computationally inefficient to reclassify
the whole world every time new information is available;
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2. knowledge is not static: when the robot is started, not all knowledge is
immediately available, hence inference methods need to be modified to take
into account both preexisting and runtime-inserted knowledge.

To address these issues, KnowRob introduces Prolog-based reasoning. In
Prolog, the knowledge is represented in terms of Prolog predicates to which the
common Prolog inference methods can be applied. The knowledge stored in the
OWL files can easily be loaded using the Prolog Semantic Web Library (Wiele-
maker et al., 2003) and an OWL parsing library (Vassiliadis et al., 2009).

3.1.2 Representing RoboSherlock-specific Knowledge

To facilitate reasoning about objects of daily use, their visual appearance and the
algorithms implemented in RoboSherlock, I have extended the base ontology
of KnowRob with concepts that represent these. Figure 3.2 shows parts of
the extended ontology, where different types of classes are color-coded, based on
what they describe. Extending an already existing ontology has several benefits.
Classes can be reused making implementational efforts simpler. Most importantly
though, integrating with other software components of the robotic system that
use the same base-ontology insures a common representation, enabling a smoother
integration. For example, the class RoboSherlockComponent is defined as the
child of the already existing Algorithm class, allowing all components of the robot
system to reason about these if needed. VisualAppearance is introduced as a new
class for representing the appearance of objects. A new class for the type system,
RSType is introduced and classes for several objects of daily use are added. New
properties are defined (e.g. perceptualInputRequired or perceptutalOutput)
that are meant to connect subclasses of RoboSherlockComponents with subclasses
of RSType, expressing pre- and post-conditions of RoboSherlock annotators
in terms of the type system. Table 3.1 presents the most important classes that
were manually added to the ontology.

While the main categories in the ontology are designed by hand, subclasses
of the RoboSherlockComponent and RSType, as well as relations between these
classes are automatically generated based on definitions in RoboSherlock. This
is possible due to the fact that in RoboSherlock each implemented Primitive
Analysis Engine (PAE) has a descriptor stored as a YAML file. The descriptor
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Figure 3.2: The extended ontology that is used to reason about perceptual capabilities and
generate task- and object-dependent perception pipelines

contains information about the type of the expert, its input requirements and its
output produced in terms of the type system as I have detailed this in Section 2.4.5.
Based on these descriptors an OWL ontology containing the implemented PAEs
is generated. The terms of the query language presented in Section 2.3.2 are also
mapped to entities in the ontology, defining which types from the type system
correspond to which terms of the language.

The currently implemented PAEs range from image or point cloud segmen-
tation algorithms used for hypothesis generation to more complex model-based
detectors, deep learning approaches or web-based annotators. I refer to the
symbolic representation of these functionalities collectively as the perceptual
capabilities of the framework, represented in the ontology as subclasses of the
RoboSherlockComponent class. The specific algorithms implemented in Ro-
boSherlock and used in experiments were detailed in Section 2.4. Based on
the functionalities of algorithms, in addition to the two main categories of PAEs,
outlined in Chapter 2 (hypothesis generators and annotators), another three
categories are defined:

• ProcessingComponents: experts that are tasked with transforming sen-
sory input and performing pre-processing (e.g. smoothing of 3D data, normal
estimation, point cloud creation etc.),

• DetectionComponents: experts that wrap other perception frameworks,
mostly model-based detection methods (e.g. BLORT (Mörwald et al., 2010),
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Concept Property Description
RoboSherlock-
Component

super type for all RoboSher-
lock components

RSType parent class for all types, equiva-
lent to the uima.TOP type from
the UIMA type system

outputsType describes the output types pro-
duced by a PAE

inputTypeRequired specify the input types required
by a primitive analysis engine

ouputTypeDomain set the value domain of the type
that is returned

inputTypeRestriction set restrictions on the input val-
ues a type should accept

Table 3.1: Manually introduced concepts in the ontology that are used to express capabilities of
the RoboSherlock framework

Simtrack (Pauwels and Kragic, 2015) or Line-Mod (Hinterstoisser et al.,
2011)); These methods form a separate category since they can act as both
annotation and hypothesis generation components,

• ContinuousComponents: perception experts that require a stream of
images in order to solve a task (e.g. object tracking or multi-view perception).

For the purpose of this thesis I consider that each of the PAEs defined in
RoboSherlock belongs to one of these five categories, although, if needed, new
ones can easily be added (e.g. for further specializing the existing classes). As
an example of a generated OWL class, I present the PrimitiveShapeAnnotator
class. While knowledge in KnowRob is stored as OWL files using the XML RDF
schema, in the following examples the more readable and less verbose Manchester
syntax is used:
Class : Pr imit iveShapeAnnotator

SubClassOf : AnnotationComponent
dependsOnCapabil ity some Perc3DDepthCapabil ity
inputTypeRequired some RsPclNormalsCloud
inputTypeRequired some RsAnnotationPlane
inputTypeRequired some RsSceneCluster
outputsType some ShapeAnnotation
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This specifies that the annotator requires the surface normals of the input
point cloud, a supporting plane and an existing 3D cluster, and it produces a
ShapeAnnotation defined through the perceptualOutput object property. The
fact that the robotic agent needs to be able to perceive depth information in order
to use this module is encoded by the dependsOnCapability property.

The children of the VisualAppearance class can be used to describe objects
through their visual properties. Using these descriptions, an object is described
as:
Class : MondaminPancakeMix

SubClassOf : FoodOrDrinkOrIngredient
hasVisua lProperty some MediumSize
hasVisua lProperty some MondaminLogo
hasVisua lProperty some YellowColor

Since visual properties of objects in the ontology are expressed using the
same symbolic values as the output domains of expert algorithms (in Figure 3.2
exemplified using the dashed arrows), reasoning about which perception expert
to run for different descriptions of objects is possible. At the moment visual
properties of the objects found in the knowledge base are manually inserted, but
parts of these can also be learned, as we have shown in previous work (Nyga et al.,
2014) and will detail in Section 3.4.

The notions presented so far are part of the TBox, representing knowledge
that is independent of a specific instance of a perception system created using
RoboSherlock. While some properties of a Primitive Analysis Engine (PAE),
such as the type of input data required, are static and depend on the imple-
mentation of the analysis engine, others can depend on the values of certain
parameters. Because of this, during runtime instances of the delegate PAEs
are created and reasoning about which is the appropriate PAE to execute is
decided based on these. Knowledge that is specific to a certain system created
using RoboSherlock, such as certain parameters of a PAE, or the list of del-
egate PAEs that are instantiated are asserted during runtime. Such assertions
are done through a set of Prolog predicates that are defined for this purpose.
For instance, creating an individual of a class happens through the use of the
owl instance from class predicate defined in KnowRob. The rule takes a
class name from the ontology and creates a unique instance of it that has all
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the properties the class has, with the benefit that additional relations can be
defined. A typical situation where reasoning based on instances instead of classes
is desired is when a specific parameter changes the output the PAE produces. A
good example of this are primitive analysis engines that wrap supervised learning
algorithms, such as classifiers. In the case of classifiers the dataset that they were
trained on is important, as is the feature descriptor type used for training. To
represent this knowledge, restrictions are added to the input and output types of
PAEs, using rules defined in Prolog. Output domains for certain types can be set
using the set annotator output type domain rule:
?- set_annotator_output_type_domain (Instance , Domain , Type ):-

owl_individual_of (Instance ,’RoboSherlockComponent ’),
owl_individual_of (Instance , Annotator ),!,
compute_annotator_outputs (Annotator , Type),
owl_restriction_assert ( restriction (Type ,

all_values_from ( union_of ( Domain )))
,R),

rdf_assert (Individual , outputTypeDomain ,R).

The rule begins with sanity checks: is the specified instance a RoboSherlock-
Component and if so, is the type we want to set a domain for among the out-
put types of the annotator. If these conditions are met, a restriction R is
created. Finally, the restriction created is connected to the individual using
the outputTypeDomain relation. For example, setting that the KNNAnnotator’s
output is one of the symbolic labels “Cup”, “Bowl” or “Plate” is asserted as:
?- set_annotator_output_type_domain (

rs_components :’KNNAnnotator_ASDRA ’,
[’Cup ’, ’Bowl ’, ’Plate ’],
rs_components :’ClassificationAnnotation ’

).

Similarly, the rule set annotator input type constraint, for adding
restrictions on input types, is defined as:
?- set_annotator_input_type_constraint (Individual , Constraint , Type ):-

owl_individual_of ( Individual ,’RoboSherlockComponent ’),
owl_individual_of ( Individual , Annotator ),!,
compute_annotator_inputs (Annotator , Type),
owl_restriction_assert ( restriction (Type ,

all_values_from ( union_of ( Constraint ))) ,
R),

rdf_assert (Individual , inputTypeRestriction ,R).
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This rule also begins with a sanity check, the only difference is that instead of
the outputTypeDomain property the inputTypeRestriction property is set to
store the new relation. For example, given that the KNNAnnotator was trained
using VFH 3D descriptors (Rusu et al., 2010), this type of feature needs to be
present in order to run this primitive AE:
?- set_annotator_input_type_constraint (

rs_components :’KNNAnnotator_ASDRA ’,
[’VFH ’],
rs_components :’FeatureDescriptor ’

).

Based on the presented ontology of objects and the perceptual capabilities of
RoboSherlock I define Prolog rules to reason over the relation of these. While
a subset of the rules are designed to be generic, such as reasoning about which
PAEs result in certain annotations, others are more specific and tailored to a task
or an object.

3.2 Generating a Perception Plan

A perception plan in RoboSherlock is an ordered list of Primitive Analysis
Engines (PAEs) that hypothesize and annotate the raw data. The sequence of
PAEs forms an Aggregate Analysis Engine, formally defined as AAEI (see equa-
tion 2.6) that I commonly also refer to as a perception pipeline. In Unstructured
Information Management (UIM) the AAE is controllable through a flow-controller.
A flow controller gets its name from the fact that it is responsible for the flow of
the data through the PAEs. Although flow controllers are basic building blocks of
the UIM paradigm, in RoboSherlock they are re-implemented1 and as such in
the proposed system are referred to as AAE executors (Figure 2.2) to denote this
difference.

The sequence of PAEs in RoboSherlock can either be predefined or gener-
ated based on the task description. When a query is received it is first parsed.
Depending on the type of query (detect, inspect, etc.) different reasoning mech-
anisms are used. In the case of a detect query, the description of the object to

1the uimacpp library that RoboSherlock is built on top of does not support the imple-
mentation of custom flow controllers
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be detected is parsed, key-value-pairs extracted and asserted into the knowledge
base using the following Prolog rule:
?- parse_descriptions ( Descripion , KvPs),

assert_requested_key_value_pairs (KvPs ).

The first set of rules infer which PAEs need to be run in order to answer a
given perception task. This set of rules allow the reconfiguration of the processing
pipeline, inferring missing experts and planning their execution sequence. They
can take as an input either the name of an object defined in the knowledge base
or a list of visual characteristics in the form of predicates. The logical rule that
takes as input the object name is:
?- build_pipeline_for_object (Obj , Pipeline ):-

attributes_for_object (Obj , ListOfAttribs ),
enum_annotator_sets_for_pred ( ListOfAttribs , Annotators ),
build_pipeline ( Annotators , Pipeline ).

This rule starts with the retrieval of the perceptual description of the queried
object as a list of attributes, then searches for the set of annotators that have
the desired outputs based on their perceptualOutput object property from the
ontology. Finally, the order of the pipeline using the build pipeline rule is deduced.
Simplifying the rule by substituting the object with the list of attributes, the
retrieval of these can be skipped and the PAEs can be searched for directly. For
both cases the build pipeline rule is the same and is detailed in Algorithm 1.

The algorithm takes as its input the query QT (t) and the belief state con-
taining the robot capabilities. Recall from Section 2.4.5 that each AAE defines
a default ordering of PAEs for continuous processing, called the fixed flow. The
algorithm first checks if the requested query terms are satisfied by the continuous
processing component of the Aggregate Analysis Engine. If it does not, the
missing annotators are retrieved, added to the list of PAEs to be executed and
brought in the correct execution order based on their defined input and output
conditions. The robotMissesCap rule used in the algorithm illustrates how the
reasoning capabilities about robot hardware and the perceptual capabilities of
RoboSherlock are integrated. The capability reasoning uses a model of the
robot described using the Semantic Robot Description Language (SRDL), which
includes information about the sensors. In the case of a PR2 robot, the perceptual
capabilities that the robot possesses can be asked as:
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Algorithm 1: Generation of the sequence of PAEs for a query
Data: BT (t), QT (t)
Result: AAEI - ordered set of PAEs
AAEI ← getExpertsFromContinuousExec();
if not fulfills(AAEI , Q) then

AAEI ← extendExpertsForQuery(QT (t), BT (t));
//initialize AAEI with PAEs for the given query and robot capabilities;
for i ∈ I do

prec-experts ← preconditionsOfExpert(AAEI(i));
if ∃ prec-experts ∧ robotMissesCap(prec-experts) then

return An Error
end
if ∃ prec-experts then

prec-experts ← prec-experts ∪AAEI

end
end
while not completePipeline(AAEI) do

AAEI ← AAEI ∪ getMissingExperts(AAEI);
end
AAEI ← sortByDependencies(AAEI);

?- perceptual_capabilities_on_robot (Cap ,pr2:’PR2Robot1 ’).
Cap = rs_comp :’Perceive3DDepthCapability ’ ;
Cap = rs_comp :’PerceiveColorCapability ’ ;

Verifying if a certain RoboSherlock analysis engine can be run on the robot
can be done using the following rule:
?- action_feasible_on_robot ( rs_comp :’Cluster3DGeometryAnnotator ’,

pr2:’PR2Robot1 ’).
true.

When planning a new perception pipeline the above rule is used to determine
whether an expert can run or not on the current hardware. A complete example
of a pipeline planning is presented in the experiments section of this chapter.

3.3 Reasoning About Scenes and Task Context

The use of KnowRob concepts and predicates ensures that we can make use
of a large body of knowledge about objects, their properties and also robot
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descriptions. All of the RoboSherlock component classes in the ontology
have the object property dependsOnCapability, which creates a link between
perception capabilities of the robotic agent and those of the perception framework.
Using existing rules, we can check if a robotic agent has the necessary sensory
capabilities to run a specific PAE:
?- expert_feasible_on_robot (Expert , Robot ) :-

missing_cap_for_action (Expert , Robot , _),
missing_comp_for_action (Expert , Robot , _).

I further extend the pipeline planning rules to enable queries for a broader
range of terms, using background knowledge about the objects. Each object
defined in the knowledge base can have several parent classes. For example, a
ketchup bottle is a child of the Bottle class as well as the FoodOrDrinkOrIngre-
dient class. The first extension facilitates the recognition of all objects in a scene
that are of a certain type. This allows the system to retrieve objects in a scene
that are of type food, drink, ingredient or that are bottles or perishable items. An
example for such a rule is:
?- build_pipeline_for_subclass (Obj , Pipeline , ChildObj ) :-

owl_subclass_of (ChildObj , Obj),
build_single_pipeline_for_object (ChildObj , Pipeline ).

Using this rule we can plan a perception pipeline for each of the subclasses of Obj,
resulting in a list of ChildObj, P ipeline pairs. The rule can be further extended
by replacing the search for subclasses with the lookup of object properties of
a class. In latter stages these properties that can either be visual ones (color,
texture etc.) or affordances (has a lid, is graspable, etc.), are used to generate
perception pipelines for the objects that posses them. Through the combination
of the object representations and the extensions to the pipeline generation rules,
RoboSherlock is able to answer queries based on descriptions that are not
necessarily related to visual appearances.

Since the results are used to update the belief state, it is possible to examine
them and formulate even more complex queries that require further reasoning
about the object’s properties. In most cases these fall in the category of inspection
queries from the definition of the query language. From the name of a detected
object we can infer certain properties that can inform the system to run a different
set of PAEs to further analyze it. For example, if the detected object is a container
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and its detected shape was cylindrical, the inspection pipeline might contain a
cylinder model fitter to estimate its volume.
?- detect_volume (Obj ,P):-

owl_subclass_of (Obj , knowrob :’Container ’),
obj_has_predicate ( cylindrical_shape , Obj),
examine_pipeline_for_object (Obj ,P).

Another example would be to search for objects that are most of the time
found in combination with other objects but are harder to separate visually (e.g.
cutlery can be found near plates, a pancake is on the pancake maker, etc.). Once
we have the already perceived objects asserted we define the following rule to
build special pipelines that take into consideration the interdependence between
objects.
?- detect_if_individual_present (Obj , DependentObjectClass ,P):-

owl_individual_of (_, DependentObjectClass ),
build_pipeline_for_object (Obj ,P).

Combining these logical rules enables interpreting scenes with the help of
knowledge-based reasoning. Through reasoning we can, for example, infer that
plates can be stacked or cups can be found on plates, which in turn informs the
perception framework to take special care of these situations.

3.4 Handling Uncertainty

When planning a perception plan, it is possible that multiple PAEs that return
the same type of information are inserted into the pipeline. An interesting issue
is how can the system handle uncertainty, especially in the case where we have
multiple PAEs of the same nature (e.g. model fitting or shape classifiers) returning
contradictory results. To address this problem I present a component that is meant
to handle the inconsistent, uncertain results of individual annotators. This compo-
nent is implemented as a CAS Consumer. The main purpose of CAS Consumers is
to analyze the hypotheses generated during a processing cycle and perform various
post-processing steps on them, such as identity resolution, answer generation
or handling contradictory data. A particularly powerful method for resolving
inconsistencies in RoboSherlock is the application of first-order probabilistic
reasoning, as described in our previous work (Nyga et al., 2014). We propose
using Markov Logic Networks (MLNs) to leverage the power of the probabilistic
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reasoning, learning models of which PAE performs best for different situations
and use these as priors for choosing the PAEs that are most probable to detect
the queried items. This work was conducted together with Daniel Nyga, where he
contributed by providing the probabilistic framework (Nyga, 2017), designed the
model and conducted the experiments, whereas I supplied the perceptual data for
the experiments and integrated the results with RoboSherlock.

3.4.1 Overview

The key idea of the proposed method is as follows. The robot asks queries, such as:
“is the category of the object hypothesis h1 a cereal, given that the color of h1 is yel-
low and the shape of h1 is a box?”, or in the query language: (detect (an object
(type cereal) (color yellow) (shape box)). The query is transformed into
relational conditional probability P(category(h1, cereal), color(h1,yellow), shape(h1,
box) | E) that takes the observed scene as its evidence. Treating uncertainty han-
dling as a relational probabilistic reasoning problem has several advantages over
alternative approaches. First, using perception algorithms wrapped in PAEs for
collecting perceptual evidence rather than making decisions, makes the use of
multiple specialized algorithms straightforward: they simply add their findings
as annotations. Second, as inferences are drawn probabilistically on the basis of
collected evidence, the system models inconsistent annotations. Third, the system
can answer queries concerning all aspects contained in the probabilistic model
under the given evidence. Fourth, the perception system can also exploit the
regularities of the domain with respect to objects and their appearance and the
occurrence/co-occurrence of objects in scenes. The approach is validated showing
how the combination of elementary perception mechanisms significantly boosts
recognition rates, while also demonstrating how our approach can be thought of
as more than just a recognition framework.

Figure 3.3 gives a detailed overview of the components of our approach. It
consists of three main components: (1) RoboSherlock as an image annotation
component that generates object hypotheses and annotates these (2) a statistical
relational learning system that learns joint probability distributions over annotated
scenes, and (3) the probabilistic reasoning system that is wrapped as a CAS
Consumer into RoboSherlock.
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Figure 3.3: Architecture of the system: (1) generation of annotated hypotheses, (2) the statistical
relational learning and (3) reasoning system as a CAS consumer. (Adapted from previous work, by

courtesy of Daniel Nyga)

For the purpose of illustrating the method, a subset of the PAEs is used to
generate and annotate hypotheses, details of which are presented in Section 3.5.5.
Object hypotheses are annotated with shape and color information and compared
to known object models using the Line-Mod algorithm (Hinterstoisser et al., 2011).
Additionally, text and logo annotations are generated using the Google Goggles
web service.

Given the annotations of objects AS, the probabilistic reasoning component
of the perception system can be used to answer queries about any aspect of
the respective probabilistic model. The probabilistic model is given by the joint
probability distribution over the combination of the categories of objects and all
possible annotations. The answer to the query Q is then argmaxQP(Q | AS).

The learning process of the joint probability distribution over annotated scenes
is depicted in the lower part of Figure 3.3.
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3.4.2 Information Fusion

(adapted from previous work by courtesy of Daniel Nyga)
Since most of the PAEs producing object hypotheses are applied independently of
each other, their outputs are not guaranteed to be globally consistent and they
typically do not take into account object interactions in the current scene. In
fact, their annotations might even be incorrect or contradictory. Therefore, in
order to come up with a final ensemble decision, a strategy for combining all the
annotations is needed.

To this end, we apply state-of-the-art methods from the field of Statistical
relational learning (SRL), a subfield of the machine learning discipline that has
emerged and gained a lot of attraction in the recent couple of years. In SRL
models, we can capture complex object interactions, represent and reason about
object properties, their attributes and the relations that hold between them. Most
notably, the ultimate strength of SRL models is their capability of allowing for
reasoning about all observations simultaneously, taking into account interactions
between objects and thus achieving a posterior belief that is guaranteed to be
probabilistically sound and globally consistent.

In particular, we employ MLNs (Richardson and Domingos, 2006), a powerful
knowledge representation formalism combining the expressive power of first-order
logic (FOL) and the ability to deal with uncertainty of probabilistic graphical
models. As opposed to most traditional machine learning approaches, learning
and reasoning in MLNs is not restricted to a feature vector of fixed length, but is
rather performed on whole databases of entities and relations. Since the chosen
representation for our belief state, description logic, in general is a subset of FOL,
going from one representation to the other is straightforward.

Maintaining a joint probability distribution over observations, their class labels
and the robot’s current task context and belief state, has several advantages over
classical approaches and makes the system’s reasoning capabilities go far beyond
traditional classifier systems:

• collective classification MLNs are able to simultaneously take into ac-
count any arbitrary but finite number of objects for classification. This is an
important feature for a perception system, since it captures interactions be-
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tween objects in a scene. If a classification system is aware of the probability
of jointly encountering two objects of particular types, this can tremendously
boost the classification accuracy in real-world scenes. Encountering milk
and cornflakes together on a table, for instance, is much more likely than
finding cornflakes and ketchup.

• confidence-rated output Since the MLN for compiling annotations to a
final decision is stacked upon the independent application of PAEs, such a
probabilistic model is able to compensate for inconsistent annotations or
uninformative features. If, for example, an annotator systematically confuses
the shapes of clusters, the MLN will learn these erroneous hypotheses and
treat them in a meaningful way.

• generative models An MLN representing a joint probability distribution
can be used to infer answers to arbitrary queries about any aspect represented
in the model. As our experiments will show, the MLN can also be used
to reason about the most informative visual features when looking for a
particular type of object in a scene.

• ease of extension integration of additional task-specific context informa-
tion, or new specialized perception routines is straightforward. They just
need to add their annotations to each of the object hypotheses and can be
declaratively incorporated in the MLN.

More formally, an MLN consists of a set of formulas F in first-order logic and
a real-valued weight wi attached to each of those formulas Fi. The probability
distribution over the set of possible worlds X represented by the MLN is defined
as follows:

P (X = x) = 1
Z

exp


i

wini(x)


, (3.1)

where x is a complete truth assignment to all predicate groundings X (i.e. one
possible world), ni(x) is the number of true groundings of formula Fi in x, and Z

is a normalization constant.
From a logical point of view, the outputs of the feature annotators can be

regarded as tables in a relational database and, thus, naturally correspond to
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predicates in FOL, and the object hypotheses represent the domain of discourse
of entities we wish apply probabilistic, logical reasoning to. Furthermore, we can
think of the final class label, i.e. the object category we wish to predict, as an
additional predicate. As an example, consider a scene of two objects c1 and c2,
where the PAEs have identified c1 being a yellowish box with a “Kellogg’s” brand
logo on it, and c2 being a round, blue thing. We can capture such a scene in a
relational database as follows:

shape(c1, Box)

color(c1, Yellow)

logo(c1, “Kellogg’s”)

color(c2, Blue)

shape(c2, Round)

category(c1, Cereal)

category(c2, Bowl),

where we have manually added information about object classes in the “cate-
gory” predicate. In MLNs, it is straightforward to create a model putting object
attributes into relation with their class labels, since they provide a simple, declar-
ative template language for generating probabilistic models. If we assume, for
instance, that we can infer an object’s category given its shape, a set of weighted
formulas such as

w1 = log(0.66) shape(?x, Round) ∧ category(?x, Bowl)

w2 = log(0.33) shape(?x, Box) ∧ category(?x, Bowl)

can be added to the model, which naturally represent the rules “everything is
a round bowl” and “everything is a box-shaped bowl” (by default, all variables
are universally quantified in MLNs). Of course, the above rules do not hold
for most of the entities we encounter in the real world and, in fact, they can
be considered mutually exclusive. However, according to Equation (3.1), the
probability distribution defined by this MLN indicates that any world in which we

80



3.5. Experimental Analysis

encounter a round bowl is twice as likely as a world in which we find a box-shaped
bowl (assuming all other aspects being identical). Following this, we add such
abstract, coarse “rules of thumb” to the MLN, modeling connections between the
PAEs and the final ensemble decision. The weight parameters of the resulting
MLN can be learned in a supervised learning manner.

3.5 Experimental Analysis

Since the contributions presented in the last two chapters are neither individual
algorithms nor a monolithic system, but a framework, and since they cover a
considerably wider scope than previous work, it is hard to quantitatively assess
the performance of the proposed approach. A quantitative evaluation of task
adaptability (i.e. number of correct answers to different queries) would only be
representative of the strength or weakness of the individual algorithms wrapped
in RoboSherlock and not of the system’s capabilities presented so far. It is
also difficult to compare RoboSherlock to existing perception systems used in
robotics, since it builds on top of these and offers developers the possibility to
wrap them as Primitive Analysis Engines.

I therefore showcase the query-answering capabilities of RoboSherlock on
three tasks where a robotic agent performs different experiments: (1) picking and
placing of objects for a table setting (2) a robot performing pipetting in a chemical
laboratory and (3) a robot operating in a supermarket. I evaluate the proposed
system by formulating perception queries for each scenario, showing the variety
of formulations and their descriptiveness. I exemplify the use of knowledge-based
reasoning, demonstrating the broad range of queries the system can handle. I
conclude the experiments with a quantitative analysis of the proposed uncertainty
handling component.

3.5.1 Query Analysis

Before analyzing the scenarios, let us start by considering a simple query in the
proposed query language and inspect the process of planning a new sequence of
Primitive Analysis Engines step by step:
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(detect (an object
(type ’Container’)
(color ’White’)))

The query specifies a detection task, where a white object that is a container
should be found. As a first step the query is parsed and the key-value-pairs are
asserted into the belief state:
?- assertValueForKey (color , ’White ’),

assertValueForKey (type , ’Container ’).

Assuming that the default pipeline of the Aggregate Analysis Engine cannot ac-
complish this task entirely and could only return color information, the knowledge
base searches for RoboSherlock components that output information related
to the type of an object. This is accomplished through a sequence of reasoning
steps. Relations between classes in the knowledge base that make these steps
possible are shown in Figure 3.4 in a simplified manner 2. The mai reasoning
steps that lead to a valid perception plan are as follows:

1. the classes representing the RoboSherlock type system are identified that
correspond to the type keyword of the query language:
?- rs_type_for_predicate (type , T).

T= rs_components :’ClassificationAnnotation ’
T= rs_components :’DetectionAnnotation ’

2. Once theses classes that represents the RoboSherlock type system are
identified, annotators whose outputs are of these types are searched for
(Figure 3.4a):
?- annotator_outputs (A, rs_components :’ClassificationAnnotation ’).

A = rs_components :’KnnClassifier ’,
A = rs_components :’RandomForrestClassifier ’.

3. After finding the annotators, the one that can produce the desired value
is identified. This is accomplished through checking whether the output
restrictions of the annotator contain the queried value or a parent class of it:

2although reasoning happens on the level of individuals, for simplicity the figure only shows
classes
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?- compute_annotator_output_type_domain (
rs_components :’KnnClassifier ’,
rs_components :’ClassificationAnnotation ’,
DList ).

DList = [’WhiteBowl ’,’NesquikCereal ’]
?- member (D, Dlist ), owl_subclass_of (D, ’Container ’).

D = ’WhiteBowl ’

In the example ontology from Figure 3.4b the KnnClassifier can recognize
a WhiteBowl, which is a subclass of the Container class, hence it meets the
requirements.

4. After finding a suitable annotator to detect the requested type of object,
the AAE needs to be planned. For this, the required inputs of the found
annotator and possible restrictions of it are requested (3.4c):
?- compute_annotator_inputs ( rs_omponents :’KnnClassifier ’,T),

compute_annotator_input_type_restrictions
( rs_components :’KnnClassifier ’, T, R).

T = ’rs_components :’RSObjectHypothesis ’
R = [],
T = ’rs_components :’RSAnnotationFeature ’
R = [’BVLC_FC7 ’]

The KnnClassifier has two preconditions requirements: object hypotheses
need to exist that have a specific feature descriptor already extracted
(BVLC FC7 Krizhevsky et al. (2012)). This latter constraint is a direct
result of the parameterization of the KnnClassifier in its descriptor file.

5. We now have identified the immediate requirements of the KnnClassifier
and need to find PAEs that return RSAnnotationFeature annotation and
RSObjectHypothesis (Figure 3.4d). This is the exact same reasoning step
that was performed at the beginning but this time with different values, so
we apply the reasoning rules from the first step. This process continues,
until all annotators in the planned AAE have their input conditions satisfied
by the PAEs in the pipeline.

After the input conditions of all primitive AEs are met the PAEs are ordered
based on their pre- and post-conditions resulting in the following AAE:
?- pipeline_from_predicates ([type , shape ,], AAE ).
AAE = [
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(a) Step 1: Available Primitive AEs returning
type information

(b) Step 2: PAE meeting query requirements

(c) Step 3: Input requirements of the found PAE
(KnnClassifier)

(d) PAE producing the input required by
KNnnClassifier

Figure 3.4: Visual representation of the relations about entities in the ontology when picking the
correct classifier that can return a container. Results of the reasoning step are highlighted with a

white background.

rs_components :’PlaneAnnotator ’,
rs_components :’PointCloudClusterExtractor ’,
rs_components :’NormalEstimator ’,
rs_components :’PrimitiveShapeAnnotator ’,
rs_components :’CNNFeatureExtractor ’,
rs_components :’KNNClassifier ’,
rs_comp :’’
].

Once this pipeline is executed the result interpreter will find the object hy-
potheses that correspond to the description from the query, generate an answer
and assert them in the belief state.

This example highlights how the query is interpreted and reasoned about in
order to plan a perception pipeline based on object descriptions. This is just
one way a perception plan can be generated. We can also model objects in the
knowledge base, which allows us to query the system about the known properties
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Figure 3.5: Results from of the same scene with different pipelines planned. Left: detecting
handles. Right: searching for a pancake.

of an object:
?- predicates_for_object (’PancakeMaker ’,P)

P = [color ,shape ,’LinemodModel ’].

The outputs of this query can be used to plan a perception pipeline that
detects a pancake maker. When modeling an object in KnowRob, besides the
visual characteristics, we can also state that we have an object model of it required
by a specific expert (e.g. a CAD model or a model for Line-Mod, as in the previous
query). Since there is no unique representation that can be handled by all the
model fitting algorithms (e.g. BLORT uses a CAD model and the extracted
key-points but Line-Mod and Moped use their own format for storing learned
objects), separate classes in the ontology for each model fitting component are
defined. Once an object has been recognized and is asserted into the belief state it
is possible to infer other perception experts that further examine it. An example
of this would be to check whether there is a pancake on the previously detected
pancake maker:
?- detect_if_individual_present (’Pancake ’,’PancakeMaker ’,P)

yes
P =[ rs_comp :’CollectionReader ’]

.

.
rs_comp :’PancakeAnnotator ’]

In the same scene we can also query for the handles of the drawers. The
generated pipeline, instead of hypothesizing about objects lying on a supporting
plane, will apply a special expert designed for detecting the furniture parts.
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Results of these queries are shown in Figure 3.5. From an algorithmic perspective
these queries are handled by custom, task-specific PAEs that are only executed
once task-conditions are met. Figure 3.7 shows more results of queries where
previously asserted objects in the knowledge base are examined. Using background
knowledge about these objects, the system is able to generate further hypotheses
representing newly found objects or parts of objects. An example of this is having
a spoon in a cup that is on a plate. Initially the system only found one hypothesis,
and by labeling it as a cup it triggered specialized experts for hypothesizing about
objects in its surrounding 3.

An additional advantage of modeling the objects in a common knowledge base
is that the background knowledge available can be used to increase the domain of
answerable queries. We can formulate queries where pipelines are generated only
for objects that possess a certain property. Example of such a case would be to
detect all objects that are defined as having a lid:

?- owl_subclass_of (Obj ,’HumanScaleObject ’),
class_properties (Obj ,’hasVisualProperty ’,’ObjectPartLid ’),
build_pipeline_for_object (Obj ,P).

In the above query the property ’ObjectPartLid’ can be replaced by any kind
of object property that is defined in the knowledge base. Another interesting type
of query that results out of having background knowledge is to find objects that
are of a certain type, e.g. FoodDrinkorIngredient or a Utensil.

?- build_pipeline_for_subcl (’FoodOrDrinkOrIngredient ’,P,C).
P = [....] C = ’KetchupBottle ’;
P = [....] C = ’MondaminPancakeMix ’;
P = [....] C = ’Pancake ’;

This makes it possible to query for objects through properties that are not directly
visible. The queries presented exemplify how the background knowledge about
objects and perceptual capabilities can generate processing pipelines that detect
these. Let us now look at the three different scenarios and the particular percep-
tion tasks that can be solved using the knowledge-based reasoning techniques,
illustrating the task adaptability of the framework.

3e.g. by running different types over-segmentation algorithms depending on the asserted
object types
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Figure 3.6: Results of various hypothesis generation algorithms, using the visualization from
RoboSherlock. Top-left: 3D region growing, Top-right: binary segmentation, Bottom-left:

transparent segmentation, Bottom-right: specific semantic region

3.5.2 Task 1: Setting a Table in a Kitchen

The first task I present is that of a household robot setting and cleaning a table,
performing pick and place tasks. Perception tasks will be exemplified on the scene
from Figure 3.6.

Objects of daily use are not the only ones of interest in this scene. If we want
the robot to put away the clean objects, it needs to open drawers and look into
them. The control system can direct RoboSherlock to do find the handles of
a piece of furniture by issuing the query:
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(detect ( an object (
(type ’Handle’)
(part-of (an object

( type ’IAI-Drawer’))
))))

The system deduces that it needs to switch to a set of PAEs that were specially
tailored to find the handles in our kitchen and execute those. This is done by
joint reasoning about the attributes the query is asking for (type, part-of ) and
the values of these attributes (“Handle”, “IAI-Drawer”).

The default hypothesis generation only finds a subset of the objects. By
querying for specific objects we can task the framework to look for the transparent
glass or the knife. Similarly, by specifying which semantic location we want the
robot to look at we can find the objects in the drawer. Results of the hypothesis
generation are shown in Figure 3.6. As it can be observed, transparent or very
flat objects would not be found with the default table top segmentation, but
having additional experts that analyze the observations all objects in the scene
are identifiable.

Before grasping any of the objects, the robot might want to take a closer look
at them. There can be multiple reasons for doing so. Either we want to check
the state of the object being manipulated (is the plate dirty, is there something
in the bowl) or get a better pose estimate using, for example, an additional
camera mounted on the wrist of the robot. These cases can be handled by issuing
inspection queries for objects.

(inspect (an object (obj-id #uid))
:pose,:obj-part)

Because the objects perceived using the detection queries are asserted into
the belief state, these inspection queries are highly dependent on the background
knowledge we have stored about them. If, for instance, a hypothesis was detected as
being an object of container type, the system can run over-segmentation algorithms
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on the hypothesis in order to examine them. Results of queries where previously
asserted objects in the belief state are inspected are shown in Figures 3.7a to 3.7f.
In these examples, when inspecting the plate and cup the system finds additional
objects through over segmenting them, since the knowledge base specifies these
types of objects as ones that possibly hold other objects. When looking at the
pitcher, the system checks if it is open or not by searching for a flat surface on top
of the object (assuming it stands up-right) belonging to the lid, since the object
is marked as a child of the container class in the ontology.

We should also be able to detect all similar objects based on some common
property. For instance, all cutlery or all perishable items. This helps optimize the
sequence of steps a robot has to take in order to clean the table. Using the query
language several similar queries that would yield the same result are formulated
as:

(detect ( an object(
(shape box) (color green)))

(detect ( an object(
(class ’KnusperHonig’))))

(detect ( an object(
(type ’Food’)))

These queries also illustrate how the query language can be used to express the
same thing in several different ways.

3.5.3 Task 2: Chemical Experiment

For this scenario, consider a mobile robot that has to help out human workers
in a chemistry laboratory in their day-to-day jobs. Since performing some parts
of chemical experiments is a time-consuming and mostly repetitive task, robot
automation lends itself naturally. Solutions like Adam the chemist robot (King,
2009) obtained promising results, but it requires special deployment and setting
up. One such task, part of a DNA extraction process, was demonstrated in our
previous work by Lisca et al. (2015), where we showed that mobile robots are
usable in these scenarios (Figure 1.2c). The robot’s task is to pick up the pipette,
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(a) (b) (c)

(d) (e) (f)

Inspection tasks in a breakfast scene: original image (a), segmentation results (b), hypotheses
about: a cup on a plane (c), spoon in a cup (d), cutlery on plate (e), the lid of the pitcher (f).

(g) (h) (i)

(j) (k) (l)

Inspection tasks performed in a chemistry lab scenario(top down, left to right): raw point cloud data
of the tubes rack (g), hypotheses representing tube caps (h), opening of a tube (i), hypotheses

about the opening of the pipette tips container (j), lid of a bottle (k) and opening of a bottle (l)

Figure 3.7: Result of inspection tasks using background knowledge about the asserted objects in a
breakfast scene and in a chemical lab scene.
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Figure 3.8: Pipetting scene as seen by the robot. Left: RGB, Right: PointCloud

mount a tip on it, extract some solution from the bottle and release it into one of
the tubes found in the rack. Finally, the robot has to release the contaminated
pipette tip into the trash box.

From the point of view of object perception, the challenges of chem-lab scenario
are: (1) not all objects can be perceived using RGB-D sensors (see Fig. 3.8), hence
a combination of color and point cloud segmentation is used and (2) some of the
needed perception tasks are based on commonsense knowledge: the opening of a
container is the top part of an object, tubes can be found in a tube-rack, may
be open or closed, etc. As an example, test tubes are small transparent objects
that are usually found in tube racks and can be open or can have a small lid
on top, can be empty or can hold some amount of substance in them. To add
a small amount of substance to this test tube all of these need to be detected
first. Although in this task a closed world assumption holds, i.e. all objects
are known beforehand, the objects used and the variety of relationships between
these makes the application highly challenging (transparent objects, objects with
(re)movable parts, with buttons, etc.). It serves as a great example of how the
high-level control program can steer perception in the right direction through
semantic querying.

Queries like detect the bottle with acid in it, or detect the Erlenmeyer flask on
the heater that can hold 500ml of liquid are possible due to the representation
of objects in the knowledge base and the flexible re-planning capabilities of the
system.

There is no unique solution to perceive all of the objects and their parts, but
having several expert algorithms combined with knowledge processing significantly
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increases the success rate of finding the relevant items on the table. We need to
precisely identify where the pipette tip needs to enter the bottle, or find the tubes
in the rack. Accomplishing this task is possible through formulating rules like:
fitCircle (Obj , Radius ) :-

category (Obj ,’container ’), object -part(Obj , Opening ),
geom - primitive (Obj ,’circular ’),
radius (Opening , Radius ),

which deduces the radius of the circle to be found in order to identify the opening
on top of a container, or the holes in the rack where tubes can be found.

The reasoning mechanisms can enable the detection of objects where there is
little to no, or very noisy sensory input. For instance, the floating small segment
(highlighted in red in the first picture of the third row from Figure 3.7) signals
the system to search for hypotheses in image space, hence we find the tube rack.
Asserting this, informs the system that it should search for tubes in it, leading to
a final detection of the tubes, by applying a specialized expert. Since tubes can
be open or closed the system uses two task-specific annotators: one for finding
tubes that are closed (looking for the colored caps) and one for searching for open
tubes, using the previously showcased logical rule and a more general geometric
primitive fitting to find the circular opening. Several other examples similar to
this are shown in Figures 3.7g to 3.7l.

3.5.4 Task 3: Object Counting in a Supermarket

One of the most promising fields to profit from robotic automation is that of
logistics (EU-MAR, 2016). Competitions like the Amazon picking challenge (Epp-
ner et al., 2017) are meant to push the state of the art in this field the same
way the DARPA Grand Challenge (Thrun et al., 2006) did for autonomous cars.
Mobile robots operating in supermarkets and performing inventory checking are
receiving increasing attention from both industry and research. Compared to the
kitchen and the chem-lab scenario, the world is much more structured, allowing
for simplifications of perception tasks through the encoding of these known struc-
turing elements. It is, thus, ideal to investigate how generic knowledge about the
environment and object arrangement aids the process of perception.

The last task I present is that of building and maintaining a semantic object
map in a retail environment. Figure 3.9 shows an example scene from a store
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replica. The perception tasks that are needed in order to successfully manage a
semantic map vary greatly. This scenario also highlights the need for adaptability
to a task during run time, especially the need for changing between continuous
and on-demand modalities of the framework.

A store consists of several modular elements that can often change positions.
Shelf systems are considered to be static objects, but shelf floors, barcodes on
the shelf facings, product separators and obviously the products themselves can
change location often. The robot is tasked with scanning the shop every night
and rebuilding a semantic object store. The perception system of such a robot is
responsible for detecting all of the movable parts of the shop. It is evident that
the detection of these parts can only be addressed with very different algorithmic
solutions and that if we want a truly autonomous system, adaptability to a task is
a key concept. Detecting shelf floors, for instance,is handled by fitting lines using
RANSAC or Hough transform, if the necessary conditions are met (camera and
robot position, viewing angles, etc.). On the other hand a volumetric counting
algorithm using background knowledge about the objects is used to estimate the
number of objects of a certain type in a facing. Running any of these algorithms
in the wrong context would yield erroneous or no results at all.

Some of the perception tasks in this scenario are what I referred to in Sec-

 (an obj-part (type 'ShelfFloor')
              (pose (x y z qx qy qz qw)
              (part-of (an object 
                            (type "ShelfSystem"))

 (an object 
           (type 'Barcode')
           (pose (x y z qx qy qz qw)
           (part-of (an object 
                         (type "ShelfFloor#1")
           (label "ANXXXXXX"))

 (an object 
           (type 'Separator')
           (pose (x y z qx qy qz qw)
           (part-of (an object 
                         (type "ShelfFloor#1"))

( count [(an object (type "ANXXXX"),
              ......
             (an object (type "ANXXXX"),]

 (an object 
           (type 'DenkmitGeschirrReiniger')
           (pose (x y z qx qy qz qw)
           (shape box)
           (color blue))

Figure 3.9: Semantically rich description of a scene from the retail store
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tion 2.3.2 as continuous tasks, and need a stream of observations in order for
the robot to correctly hypothesize about object locations. The compound query-
ing capabilities of RoboSherlock are used to state such tasks. For instance,
scanning for the shelf floors is formulated as:

(scan (for object
(detect ( an object (

(type ’Shelf’)
)))))

This command will have as direct effect the exchange of the continuous
component with a perception pipeline that contains the expert for shelf scanning.
Using the encapsulated detection query we can specify what kind of object we
want the system to scan for. A similar compound query is used to count objects
of a certain type:

(count (object
(detect ( an object (

(type ’ANXXXX’)
(pose (x y z qx qy qz qw))
(width 0.05)

)))))

The retail scenario is highly knowledge intensive. Stores usually have large
databases where information about objects useful to the perception system is kept.
This knowledge can help in greatly simplifying the requirements of the perception
system. Information such as a product images can help verify if the objects we
are perceiving are placed at the correct location or information about the size of
an object can help filter the raw data as well as facilitate volumetric counting.
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3.5.5 Result Merging

Although perception plans are adapted to the perception task the robot is sup-
posed to execute, the individual components that form the plan can often have
erroneous results. The main goal of integrating an MLNs based reasoning system
into RoboSherlock as a CAS Consumer is for handling uncertainty after the
execution of the AAE, which can manifest itself through contradictory annotations
of object hypotheses. To demonstrate how this works, we conducted experiments
that I will present in the following, with the purpose of showing that:

1. the proposed method is robust towards inconsistent annotations, which can
be treated in a meaningful way,

2. the system’s capabilities go far beyond traditional classifier systems, which
are mainly given by discriminant functions with dedicated in- and output
variables.

(adapted from previous work by courtesy of Daniel Nyga)
We arranged and recorded 50 realistic scenes, each comprising of 5-10 instances
of 21 different object categories, which can generally be found in typical kitchen
scenarios. We discern four different kinds of scenarios: a breakfast table, a cooking
scenario, a view into a refrigerator and a view into a kitchen drawer. The types of
scenarios have been incorporated into each data set and can be regarded as task-
specific knowledge about the current context of an activity. This is a reasonable
presumption, since the location the robot is currently looking at can be assumed
to be known from e.g. a map of the environment, and co-occurrences of objects
are highly correlated in real-world scenarios. The object categories for each object
have been labeled manually.

For training the MLN and obtaining a final ensemble decision of experts, we
used the logical predicates described in Table 3.2, which naturally correspond
to the annotator outputs in the system. Two additional predicates are used for
specifying knowledge about the current context (i.e. the type of scenario) the
perceptual task is performed in and for assigning a class label to each of the
clusters in the scene at hand:
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Primitive AE Condition MLN Predicate
ColorAnnotator Always color(cluster, color)
Cluster3DGeometry Always size(cluster, size)
Goggles If Google Goggles re-

turns text or logos
logo(cluster, logo)
text(cluster, text)
texture(cluster, t)

PrimShapeAnnotator Always shape(cluster, shape)
LineMod Confidence that c is one

of the objects looked for
exceeds threshold

linemod(cluster, cate-
gory)

Table 3.2: PAEs used for training and the conditions under which they work and the predicate
declarations in the MLN.

• scene(scene): represents knowledge about the current context in which the
perceptual task is being performed. possible contexts are dom(scene) =
{breakfast, cooking, drawer, fridge}

• category(hypothesis, object!): assigns a class label to each hypothesis in the
scene. In our experiments, we distinguished 21 different object categories.

In the MLN syntax, the “!” operator in a predicate declaration specifies that
this predicate is to be treated as a functional constraint for the respective domain,
meaning that each hypothesis requires exactly one object category association.
Since a particular hypothesis or entity cannot be of two different categories at a
time, we argue that this model constraint is a reasonable assumption.

The following MLN has been designed in order to model correlations between
annotator outputs and the object classes:

w1 size(?c, +?sz) ∧ shape(?c, +?sp)

∧color(?c, +?cl) ∧ category(?c, +?obj)

w2 linemod(?c, +?ld) ∧ category(?c, +?obj)

w3 logo(?c, +?logo) ∧ category(?c, +?obj)

w4 text(?c, +?text) ∧ category(?c, +?obj)

w5 scene(+?s) ∧ category(?c, +?obj)

w6 category(?c1, +?t1) ∧ category(?c2, +?t2)∧?c1 6=?c2,
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Ground Atom Cereal Chips Cup Pot
color(c,yellow) 0.4264 0.3484 0.4422 0.2936
text(c,VITALIS A) 0.6230 0.0000 0.0000 0.0004
logo(c,Kellogg’s) 0.3734 0.0000 0.0000 0.0008
linemod(c,Popcorn) 0.7392 0.0006 0.0000 0.0010
linemod(c,Pot) 0.0008 0.0004 0.0004 0.9994
linemod(c,PringlesSalt) 0.0002 0.4986 0.0010 0.0006
shape(c,box) 0.4806 0.3870 0.2810 0.3556
shape(c,cylinder) 0.3722 0.4540 0.4010 0.4266
shape(c,round) 0.3176 0.4092 0.5182 0.4068
size(c,big) 0.3680 0.3442 0.3768 0.3292

Figure 3.10: (Partial) probabilities for different queries about visual features conditioned on the
object class. Excerpt from previous work Nyga et al. (2014)

where the “+” operator specifies that the respective formula will be expanded to
one individual formula for every value in the respective domain.

To determine the weights, we used pseudo-log-likelihood learning with a
Gaussian zero-mean prior of σ = 10, which serves regularization purposes.

The system was first evaluated as a classifier, where it achieved F1-scores
significantly above 70% for all objects except for the cutlery in 10-fold-cross-
validation. For a detailed description of the classification results readers are kindly
referred to the original publication (Nyga et al., 2014). We will now turn our
attention to some of the advantages of having a joint probability distribution over
objects and their annotations.

Inferring the most probable categories given the observed properties of each
object is only one possible kind of query the system can answer. Indeed, the learned
joint probability distribution on objects and their attributes allows reasoning
about arbitrary queries with respect to any variable that is contained in the model.
This approach can also be used to reason about the perceptual features to be
expected when looking for a particular object in a scene. If the robot is supposed
to find a box of cereals on a breakfast table, for instance, the following query can
be formulated in order to retrieve the most informative features for distinguishing
the cereal box from other objects:

P

 shape(c, ?sh), color(c, ?c),
size(c, ?s), logo(c, l?), text(c, ?t)

 scene(breakfast),
category(c, Cereal)

 .
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Figure 3.10 shows an excerpt of the probability distribution computed for
the above query, where the most probable solution is printed bold. According
to the most probable solution, we can deduce symbolic descriptions of expected
visual properties of different kinds of objects: e.g. the cereals are expected to be
a big, yellow and red box, on which we can read the text “VITALIS A”, and the
Line-Mod annotator would consider it popcorn. This latter example is a good
example of how the MLN compensates for the errors of individual experts: it has
learned that the Line-Mod algorithm systematically generates false positive results
for this object. The same happens with systematic errors of other annotators as
well. Based on the deduced symbolic values, we can use the trained MLN during
the perception plan generation step as an additional step for filtering the results.
This leads to being able to answer queries only about attributes and objects
used during the training phase. A possible solution is to retrain the network for
new attributes and objects. While the approach is very powerful, it does need a
considerable amount of data which is hard to acquire since all expert algorithms
need to be run on the same raw data and manual labeling is necessary. Further
experiments using MLNs for merging results will be shown in Chapter 6, also
describing a proof of concept approach for automatically acquiring training data.

3.6 Related Work

Many knowledge-based vision systems have been proposed that are mainly focused
on interpreting the raw sensor data with knowledge at different levels of abstraction.
Formal representations of image semantics and low-level image processing features
have started emerging in the early days of content-based image retrieval systems,
when researchers started focusing on addressing the well-known semantic gap
problem (Smeulders et al., 2000) in image annotations. Content-based image
retrieval systems address a problem that is very similar to the computational
problem this thesis addresses, i.e. given a description of something find all
images that satisfy this. In order to relate the description to the extractable
information from images, formal representations of the semantics are needed.
Bannour and Hudelot (2011) present an excellent roadmap for using ontologies in
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image retrieval and annotation, presenting a survey of recent works towards using
semantic hierarchies and ontologies for the purpose of image annotations. The
most common use-case is that of using some hierarchical representation which
allows easy retrieval of similar concepts. This would be the case for the well known
ImageNet (Deng et al., 2009) data set, built on top of WordNet (Fellbaum, 1998).
Bannour and Hudelot (2011) identify four important fields where ontologies are
most commonly used as representations: low-level features, visual description
ontology, knowledge description and semantic mapping. They conclude with
highlighting the importance of reasoning and knowledge in the process of image
understanding.

In a work preceding this analysis Hudelot (2005) created an ontology with
signal features used in image processing and included knowledge about processing
algorithms that produces this data. However, the work lacks a unified knowledge
representation, different sources of information being stored and processed in
separate knowledge bases. This makes reasoning over the whole of the represented
knowledge tedious. A lot of work has also been done on developing different
visual primitives (Town, 2006; Hudelot, 2005), which are domain-independent
descriptions of visual data.

In robotics one of the earlier perception frameworks that aimed at runtime
reconfigurability is RECIPE (Arbuckle and Beetz, 1998). RECIPE was built
on several of the criteria that RoboSherlock also embraces: extensibility,
resource management, reuse of image processing tools, standard library support
and runtime reconfigurability, to name a few. Although it proposes no central
language to interact with it, or a common way of representing knowledge, the
RECIPE framework recognizes the task dependent nature of robotic perception
and offers an early prototype for addressing this.

COP-MAN (Beetz et al., 2009) is another interesting approach for bringing
knowledge processing and robotic perceptual capabilities closer together. In some
aspects, i.e. integration of knowledge processing, COP-MAN can be considered a
predecessor to RoboSherlock. While it was specifically designed to perceive
the environment and objects in it during typical kitchen pick-and-place task,
RoboSherlock is easily usable in different domains. There has also been a
lot of work towards knowledge representation in robotics (Tenorth and Beetz,
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2013) and combination of knowledge processing and perception (Pangercic et al.,
2010). All of these previous works address only parts of the problem. Perhaps
the most relevant statement from recent literature that addresses knowledge-
based perception is formulated by Fiorini and Abel (2010). In their review about
knowledge-based computer vision the authors argue that the greatest challenge
lies in the appropriate representation of visual knowledge needed for perception
tasks, emphasizing the need for standardization. Although I do not claim that
the representations presented in this work should be considered as a standard I
offer a unique solution for having perceptual capabilities and visual knowledge
tightly coupled together serving as a basis for standardization efforts. Hager
(2014) identifies two main future challenges of sensing for robots. The design of
modular sensing, organized around ontologies and information structure rather
than the data itself and the realization of context-relevant question-answering
systems through “information API”, challenges that are embraced and addressed
by the task adaptable perception realized with the help of the RoboSherlock
framework.

3.7 Summary and Discussions

In this chapter I have presented how knowledge processing is integrated into the
RoboSherlock framework, how it is used to generate context-specific perception
plans that invoke specialized perception experts as plan steps and how it allows for
richer description of perception tasks. The benefits of using background knowledge
were highlighted through several examples, where having additional information
encoded about an object or a task can greatly simplify detecting it.

Even though parts of the knowledge base can automatically be generated (e.g.
RoboSherlock implementation specific knowledge), most of it is still based
on manual entries. This happens either through directly editing the OWL files
that store the knowledge or as meta information stored in the descriptor files of
RoboSherlock annotators that get later converted into OWL files. This requires
users of the framework to be familiar with the inner workings of the pipeline
planning and query answering process as well as to adopt a different mindset
when developing the perception components for a new task, environment or set of
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objects. By giving knowledge processing and knowledge-based reasoning a central
role in the process of perception, the framework forces developers to formally
describe the expert knowledge that they possess. It also requires developers to
implement annotators whose input and output constraints can be expressed using
the existing type system or if this is not possible to come up with extensions to
the type system that allow this. I believe that it is only through this process of
formally describing what is being implemented that we can achieve a system that
truly understands its capabilities, and can automatically adapt to new situations.

The formal description of perceptual capabilities also opens the door for further
automated testing and learning. Given several similar perception algorithms,
automated tests can be created to model the performance of these and results
used to choose the best possible algorithms when trying to perform a task. As a
simple example, consider choosing between image features for detecting a specific
object. A feature descriptor that works well for one objects might not perform
as good for a different one. The formal description of these feature descriptors,
the objects and the environment allow for easy deduction of processing pipelines
for testing. Automating these tests is ever more possible thanks to the recent
advances in game engine technology and realistic real-time off-screen rendering
technology.

Now that the basic inner mechanics of perception pipelines and query answering
in RoboSherlock were introduced, recall the three categories of questions that I
have identified as important for robots performing everyday manipulation tasks to
answer (Table 1.1). The query language introduced so far and the interpretation of
these queries and generation of answers using knowledge-based reasoning enables a
robot to answer the questions about the present, i.e. what is currently visible, and
in a limited way about the past, through the inspection queries. In the remainder
of the thesis I will present parts of the proposed system that realize a pervasively
operating question-answering system possible, enabling answering questions about
past and future states of the world.
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CHAPTER 4

Generating and Using
Perceptual Episodic Memories

With recent technological advances, robotic agents are increasingly capable of
performing ever more sophisticated manipulation tasks. These robots need to
be able to adapt their perception systems to the wide variety of tasks they are
required to perform. Remembering what a robot has seen, what the rationale was
behind the decisions it took or how it ended up understanding the world as it
did are important questions if perception systems are to scale towards real-world
manipulation tasks. Most of the perception problems a robot encounters during its
operation have several solutions, but the choice of which approach to use when is
usually based on expert knowledge explicitly encoded by a developer. Furthermore,
especially during the development phase, erroneous results often occur without
noticing, either due to the lack of supervision or simply because results do not
get propagated to the robot control program and are not noticed during runtime.
Achieving a pervasively operating perception system that enables robotic agents
to fluently perform everyday manipulation tasks requires robots to have access
to past percepts and use these to optimize their processing components. To
address this I propose to enable robots with the capability of recording
perceptual episodic memories and the ability to actively access these.

Using RoboSherlock I achieve this through the implementation of a new
CAS Consumer that generates, stores and retrieves perceptual episodic memories.
To allow easy retrieval of these memories, I introduce a Domain Specific Language
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Figure 4.1: PR2 picking up a plate and visualization of a frame from the associated perceptual
memory using the web-inspection tool proposed in this chapter

(DSL) for object and scene description that serves as a layer of abstraction between
the structure of the perception logs and the semantic interpretation of these. I
demonstrate how the description language is used programmatically to retrieve
specific parts of the generated episodic memory and adapt the object recognition
modules of a robotic agent. Besides this, the proposed system offers a web-interface
through the use of which the memories can be queried for and inspected during
or after task execution. There are multiple reasons for the proposed solution: to
enable online retrospection, to enable users of the RoboSherlock framework to
interactively explore results and to specialize perception routines through the use
of supervised learning techniques. The chapter is mostly based on previous work
covered in Bálint-Benczédi et al. (2017), extending this with further experiments
demonstrating the benefit of using the perceptual episodic memories for adapting
object recognition modules.

4.1 Literature Review

When studying the role of memory in robotic systems, one inadvertently comes
across the topic of building artificial cognitive systems. Vernon (2014) states, that
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in a cognitive architecture:

“ ”memory should be thought of not as a storage location [. . . but a ]
pervasive facet of the complete cognitive system, fully integrated into
all aspects of the cognitive architecture.” ”

David Vernon

The capability of recording and accessing episodic memories proposes achieving
this through a query interface that enables pervasive integration of memory in
the perception processing pipeline.

The way human memory works has eluded scientists to this day. Nevertheless,
most researchers commonly agree on a differentiation between long-term and
short-term (often referred to as working) memory. The long-term memory can
further be categorized as being declarative or procedural. Declarative memories
can be further split into semantic (encyclopedic) and episodic memories. Episodic
memories have an especially important role in robotics (Vernon et al., 2015;
Winkler et al., 2014), since they enable robots to ”relive” past events and learn
from them. Perceptual memory is a long-term memory for visual, auditory
and other perceptual information. In this chapter we will look at the storage
and retrieval of perceptual episodic memories, that is, of visual data generated
throughout the execution of a manipulation task.

Blodow (2014) presented the first concepts of memory storage in RoboSh-
erlock. In his work, he identifies the Common Analysis Structure (CAS) as
the short-term memory of a running process, and a storage component, called
the “robot object store” as the long-term memory. In a preliminary analysis he
presented what the system could do using the logged memories, identifying three
major use-cases for them:

• for later evaluation of results,

• knowledge source for later processing and,

• a developer tool for inspecting results.

His implementation offered a proof-of-concept for the memory system but it lacked
the necessary query-answering capabilities for easy and efficient retrieval and
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the challenges and possible benefits of long-term logging were not addressed and
evaluated. In addition to the three use-cases I will also focus on optimizing the
storage of long-term memories through the use of background knowledge.

With recent advances in mobile robotics that allow for research of integrated
robotic systems, the storage of perceptual memories (and not just) has been
the focus of wide-ranging research. Surprisingly though, very little effort has
been invested in the retrieval of these and the creation of a Domain Specific
Language for describing perception tasks or objects of daily use. Nordmann et al.
(2014) provide a comprehensive survey of DSLs in the field of robotics. Browsing
through the on-line collection1, it is striking how perception and sensing are
under-represented. In one of the few works addressing this, Hochgeschwender et al.
(2014) introduce RPSL (Robot Perception Specification Language) for specifying
the integral parts of perception architectures using explicit models. The focus is
mainly on modeling the implicit design decisions which make most of the current
perception architectures inflexible. This is achieved through the introduction of
meta-models and the language to describe these. A perception graph meta-model
enables the composition of elements and the custom generation of perception
pipelines. While the method resembles the task adaptability proposed in this
thesis, offering a high-level DSL for specifying perception tasks, answering queries
about past percepts is not addressed.

Storing and learning from perceptual memories is most prominently addressed
by Niemueller et al. (2013a,b). Lifelong learning of training data and perception
method parametrization is the main focus of their work, with emphasis on the
storage of perceptual data and (re-)detection of objects based on this. In another
interesting work Oliveira et al. (2014) is concerned with grounding the object
category symbols into the perception of known instances of categories. They do
this by using two separate memory locations, one for semantic memory and one
for perceptual memory. While both of the previously mentioned approaches resort
to storing perceptual memories, semantically querying these is not addressed.

1http://corlab.github.io/dslzoo/
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Figure 4.2: Components of the proposed sub-system.

4.2 System Architecture

The generation of perceptual episodic memories is implemented as a CAS Consumer
in RoboSherlock. As we have previously seen, built upon the principles
of Unstructured Information Management (UIM) (Ferrucci and Lally, 2004),
RoboSherlock enables the realization of scalable perception systems for robotic
agents. Among other properties, it allows for implementing perception systems
that (i) can be equipped with ensembles of expert perception algorithms, (ii) can
be tasked, and (iii) can enhance perception with knowledge and reasoning.

The defined RoboSherlock type system serves as a blueprint for the internal
data structures and allows communication between components of the framework
through the CAS. The CAS is the central data structure in RoboSherlock,
acting as a whiteboard architecture (Boitet and Seligman, 1994), allowing compo-
nents to post and retrieve data solely based on the defined type. At any given
time, components need to know only about the data types they are supposed to
receive and send to the CAS. Raw data and other modalities of this (gradient-
or normal-images) are referred to as views, or Subjects of Analysis (SofAs). The
name view is preferred because of its more descriptive nature, since views depict
the same reality, but from a different point of view. One essential view of the
data is the scene. A scene in the type system is a high-level representation of the
underlying semantic structure of the raw data, made up of object hypotheses and
annotations of these, believed to be true at a given timestamp. During execution
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the CAS gets reset every time a new processing loop is started. This is why it
can be considered analog to a short-term memory of the system. Before resetting,
a storage component maps the CAS to a data base. This is achieved through
a low-level, internal data structure to database document serialization, which
allows bi-directional conversion. This means that the CAS can also be read out
from the database and specialized Primitive Analysis Engines (PAEs) can inspect
the results in it. The description language and the query interface proposed in
this chapter act as a semantic bridge between the execution engine and the data
structures in the database, offering a common interface to inspect results in a
programmatic manner and through a web-interface. Figure 4.2 presents these
major components of the proposed system and the interaction between them, with
the query interface acting as a semantic interface between the execution engine
and the storage place for episodic memories.

4.3 Storing Memories

In RoboSherlock we opt to use MongoDB (Chodorow, 2013) a schemaless
database for storing the perceptual episodic memories. The basic unit in a
MongoDB is called a document. Unlike in relational databases (e.g. SQL) the
structure of a document is not enforced, thus, documents can have a varying
number of fields and data types stored in them. Documents are stored in the
BSON format, the name coming from the combination of the words Binary and
JSON (JavaScript Object Notation). A database is made up of several collections,
where a collection is simply a grouping of several documents, again, without any
preexisting schema. The fact that no underlying common structure is enforced fits
perfectly the paradigms of UIM, since there is no guarantee that all hypotheses
will be annotated in the same way, or that every execution loop generates the same
views. The choice of MongoDB is further strengthened by the benefits of using
schemaless databases in robotic applications shown by many before (Blodow, 2014;
Niemueller et al., 2012; Winkler et al., 2014; Oliveira et al., 2014). Furthermore,
as of recent versions (3.0+), MongoDB introduces default compression of BSON
data, which makes it more efficient for storing big data.

The first version of storing memories for RoboSherlock was presented
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ObjectsScenes

OID
Scenes

color_img color_img camera_infocamera_infodepth_img depth_img 

ObjectsCASCAS
OID OID

OIDOID

hypotheses._id

Figure 4.3: Top level structure of the storage schema in MongoDB. Relation between collections

by Blodow (2014), focusing on dynamic object stores for robots performing
everyday activities. In his implementation only a part of the data resulting from
processing components was stored in a single collection. In order to give the
data more structure and allow bi-directional compatibility with the internal data
structure of RoboSherlock, this has been changed such that each view is stored
as a separate collection in the database and a central collection contains pointers
to these views (Figure 4.3). For example, a document in this central collection,
conveniently named the CAS collection, has the following structure:
{

"_id" : ObjectId ("5874 f179be3f7a7ad0ed5d99 "),
" _timestamp " : NumberLong (1482229380595892427) ,
"scene " : ObjectId ("5874 f179be3f7a7ad0ed5b6b "),
" color_image_hd " : ObjectId ("5874 f179be3f7a7ad0ed5fa3 "),
" camera_info_hd " : ObjectId ("5874 f179be3f7a7ad0ed5fa4 "),
" camera_info " : ObjectId ("5874 f179be3f7a7ad0ed5fa7 "),
" depth_image_hd " : ObjectId ("5874 f179be3f7a7ad0ed5faa ")

}

This means that, if we have a new view of our data, say a new sensor on the robot,
integrating the data from it in the memory system is straightforward. All of this
happens through automatic serializations of RoboSherlock types from the type
system to entries in the database. The structure of the database, depicted in
Figure 4.3, contains a collection called ”Objects”. The ”Objects” collection stores
part of the belief state representing the objects that are thought to be present
in the environment after entity resolution. These entries are connected to the

109



Chapter 4. Perceptual episodic memories

individual hypotheses through the IDs of the object hypotheses that are located
in the Scenes collection. The collections are indexed using the timestamps of the
incoming data and the aforementioned unique IDs are automatically generated by
MongoDB. The process of solving entities and building a perceptual belief state
of objects will be detailed in Chapter 5.

As I have already mentioned, the Scenes collection contains the data about
how the system has perceived the world at a given timestamp. A stripped down
version of a document from this collection has the following structure:
{

"_id" : ObjectId ("56058051 d609ea15c7128ea5 "),
" _parent " : ObjectId ("5841 f694812388cb317a6e8c "),
"_type" : "rs.core.Scene",
" timestamp " : NumberLong (1443201105410070624) ,
" viewPoint " : {

"_id" : ObjectId ("5841 f694812388cb317a6e8d "),
" _parent " : ObjectId ("56058051 d609ea15c7128ea5 "),
"_type " : "rs.tf. StampedTransform ",
" rotation " : [ ... ],
" translation " : [ ...] ,
"frame " : "map",
" timestamp " : NumberLong (1443201105442234497) ,
" childFrame " : " head_mount_kinect_rgb_optical_frame "

},
" hypotheses " : [ ],
" annotation " :[ ]

}

Since this entry is automatically generated it is a mere replica of the scenes type
from the RoboSherlock type system. Most notably, a document from this
collection contains:

◦ a text field containing the type name from the type system; this allows easy
conversion between database entries and RoboSherlock data structures
( type),

◦ a viewPoint, which is a timestamped transformation from the robot’s
camera frame to a predefined location (e.g. this is a map frame if the robot
is localized),

◦ MongoDB ObjectID of the parent document in the CAS collection ( id),

◦ a list of scene specific annotations (annotations that are common to all
hypotheses, such as a supporting plane)
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◦ a list of the hypotheses that were found in the current views.

The list of hypotheses contains regions of the raw data and their respective
annotations that are the result of hypothesis generation and merging. The symbols
used are part of the RoboSherlock TBox and as such are represented in the
central knowledge base (as described in Chapter 3). A common entry for every
sub-part of a document (e.g. list elements, arrays, etc.) is the “ type” field,
which contains the name of the type from the RoboSherlock type system. A
hypothesis entry from the database has the following structure:
" hypotheses " : [

{
"_id" : ObjectId ("5841 f68a812388cb317a6a2f "),
" _parent " : ObjectId ("56058051 d609ea15c7128ea5 "),
"_type " : "rs.scene. Cluster ",
" annotations " : [

{
"_id" : ObjectId ("5841 f68c812388cb317a6a47 "),
" _parent " : ObjectId ("5841 f68a812388cb317a6a2f "),
"_type" : "rs. annotation . Detection ",
" source " : "MLN",
"name" : " spatula ",
" confidence " : 1.0000000000000000

},
{...}

]
}

]

To optimize storage space, instead of storing a complete object hypothesis, the
meta data about it is stored, i.e. instead of storing the image or the point cloud
of an object hypothesis, regions of interests or vectors of indices are stored. This
reduces storage space considerably, while still enabling later reconstruction of
results. Another important mechanism for reducing the amount of data that needs
to be stored is through the use of filters that use task and background knowledge.
The presented modifications to the storage component of RoboSherlock were
joint work with Thiemo Wiedemeyer.

4.3.1 Filtering Based on Background and Task-knowledge

(by courtesy of Thiemo Wiedemeyer)
Background and task-knowledge are valuable sources of information. With a
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Figure 4.4: Filtered images, left to right blurred images, change detection and region filtering

semantic map of the environment (Pangercic et al., 2012) and a localized robot, it
is trivial to filter out any part of the observations that are not in scope of the current
task, e.g. if during a pick-and-place task only the source and destination regions
are of interest. This reduces the chance of false detections and computational
effort.

Besides this, other filtering techniques are available that improve performance
and reduce the amount of redundant data. In many robotic tasks the scenes are
mostly static, successive frames are often similar and lead to no information gain,
therefore, skipping them offers more processing time for other tasks and storing
them is handled by pointing to a previous observation.

Another source for false detections are motion blurred images. Depending on
the task being executed, this can happen if the camera or something in view is
moving fast. We can opt to not store these images, depending on how we want
to use the stored data or store only the raw data but not process them. The
latter can be useful if we want to have a preparatory perception that hypothesizes
about regions while the robot is moving towards its goal position. Examples of
the effects of the filters are shown in Figure 4.4.

4.4 Perception-log Query Language

The goal of storing the perceptual episodic memories is to enable robots to relive
experiences, to learn from them, and to enable debugging and retrospection for
advanced robotic systems. To do this, efficient and expressive ways of recovering
memories or parts of these are needed. MongoDB offers a powerful JavaScript-
based query language, but it requires in-depth knowledge of the underlying
data structure. Also, through the query language offered by MongoDB we can
access only the explicit knowledge stored in the perception logs. By creating
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〈description-list〉 ::= 〈bl〉〈key-value-pair〉[〈separator〉]+ 〈el〉

〈separator〉 ::= ‘,’|‘;’

〈bl〉 ::= ‘[’ 〈el〉 ::= ‘]’

〈key-value-pair〉 ::= 〈kvp〉 | 〈comparison-kvp〉 |
〈key〉〈assignment〉〈description-list〉

〈kvp〉 ::= 〈key〉〈assignment〉〈value〉

〈comparison-kvp〉 ::= 〈key〉〈comparator〉〈value〉

〈assignment〉 ::= ‘:’

〈comparator〉 ::= ‘<’ | ‘>’ |’=’

〈key〉 ::= ‘shape’| ‘color’ |‘size’|‘type’| etc.

〈value〉 ::= 〈word〉 | 〈number〉

Figure 4.5: Extended Backus-Naur Form of the proposed description language for filtering the
episodic memories generated by RoboSherlock

a higher level query language that acts as an abstraction layer between the
low-level data structure and a symbolic knowledge base, existing knowledge and
logging infrastructures can be leveraged that enhance the general query-answering
capability of a robotic agent.

Conceptually the perception-log query language that I introduce, is similar
to the perception task language from Section 2.3.2. The major difference is that
when accessing image logs, it is necessary to express relations between low-level
data structures that are specific to the implementation of the framework. In
contrast, the query language for perception tasks is not meant to describe low-level
data structures, and its purpose is the semantic description of the entities to be
perceived.

The grammar of the proposed perception-log query language, expressed in the
extended Backus-Naur Form (BNF), is shown in Figure 4.5. Using this syntax,
scenes, objects or object hypotheses can be described through easy-to-write nested
key-value pairs. If the assignment operator is used, values in the description are
considered to be literals or a list of key-value pairs. If on the other hand one of the
comparator operators is used they are considered to be numerical. The description
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Rule Description
Base predicates

scenes(S, D) return all scenes (S) that fit the description
(D)

hypotheses(H, D) return all hypotheses (H) that match descrip-
tion (D)

object(O, D) return all objects (O) that match the descrip-
tion (D)

Relational predicates
objectsInScene(O, S) return all objects (O) that were found in the

scenes (S).
hypothesesInScene(H, S) return all hypotheses (H) that were found in

scenes (S).
hypothesesForObject(H, O) return the hypotheses (H), corresponding to

the objects (O)
scenesWithHypotheses(S, H) find all scenes (S) that contain the list of

specified hypotheses (H)
scenesWithObjects(S, O) find all scenes (S) that contain the list of

specified objects (O)
Useful SWI-Prolog predicates

intersect(L1, L2, L3) L3 is the intersection of L2 and L1
union(L1, L2, L3) L3 is the union of L2 and L1

Table 4.1: Predicates for querying the logs using the description language as a parameter

language can than be used, through a set of predefined Prolog predicates, to query
the perceptual episodic memories. These predicates are presented in Table 4.1.
They can be categorized based on the type of data we want to retrieve. We can
either ask for scenes, hypotheses, objects from the belief state or a combination of
these. For instance, the following query will yield all object hypotheses that have
a property shape with the value flat and a property color with the value black
attached:

hypotheses(Hyp, ’[shape:flat, color:black]’).

Timestamps are the global index of episodic memories (not just the perceptual
ones), therefore it is important that scenes can be retrieved based on them:
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scene(Scene, ’[ ts < 1482401877855847376,
ts > 1482401675823958606]’).

Using existing predicates from Prolog as well as the relational ones from
Table 4.1, the previous two rules can be concatenated as:

hypotheses(Hyp1, ’[ shape:flat, color:black]’),
scene(Sc, ’[ ts < 1482401877855847376,

ts > 1482401675823958606]’),
hypothesesInScene(Hyp2, Sc),
intersection(Hyp1,Hyp2,Res).

First the hypotheses that match a given description and scenes that were created
in between the two timestamps are asked for. This is followed by asking for the
list of hypotheses in the resulting scenes, and an intersection gives the final result.

Annotations can also be described in more detail, specifying for instance the
confidence value or the source of an annotation:

object(Obj, ’[shape:[value:flat, confidence<0.7]
type:[’ElectricalDevice’],
class-label:[value:PancakeMaker,confidence>0.8,

source:KNNClassifier],
distance < 1.5 ]’).

There are two interesting keywords that are worth taking a closer look at: type
and distance. Both of these keywords go beyond what is stored in the perceptual
episodic memory, and entail computations. In the case of type, knowledge-based
reasoning is performed by accessing the ontology to see if any of the class labels
attached to the resulting objects is a match. For distance, a data processing
sub-module is triggered, which in this case calculates the distance of each resulting
object from the robot camera.
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4.5 Experimental Analysis

A quantitative analysis of logging using MongoBD in robotics and specifically
logging perceptual events has been performed by many before in the litera-
ture (Niemueller et al., 2012, 2013a). MongoDB has proven itself to be a fast
and reliable non-relational database when it comes to accessing speeds and it is
capable of scaling to large amounts of data. Instead, the focus of this analysis
will be on the use-cases of the proposed DSL: as a retrospection tool and how it
enables learning and adaptation of perception skills based on episodic memories.

4.5.1 Retrospection and Debugging

To show the retrospection capabilities, the perceptual memories during a pick-
and-place task, executed by a PR2 robot, were logged. The robot was tasked with
setting the table, and for simplifying execution it had to bring only a plate and
cutlery from one counter top to another (Figure 4.7).

[A]
db. getCollection (’scene ’). aggregate (

{ $project :{ _id :0, identifiables :1}} ,
{ $unwind :’$identifiables ’},
{ $match :{ $and: [{ ’identifiables . annotations ’:{ $elemMatch :{ shape :" round "}}} ,

{’identifiables . annotations ’:
{ $elemMatch : { confidence : {$gt :0.8} ,

source : " DeCafClassifier "}}}
]}})

[B]
db. getCollection (’scene ’). aggregate (

{ $match :{ $and: [{ timestamp : {$gt :1482401800959899335}} ,
{ timestamp : {$lt :1482401886643145862}}]}} ,

{ $project :{ _id :0, identifiables :1}} ,
{ $unwind :’$identifiables ’},
{ $match :{ $and: [{ ’identifiables . annotations ’:{ $elemMatch : { shape : " round "}}} ,

{’identifiables . annotations ’:
{ $elemMatch : { confidence : {$gt :0.50} ,

{ source :" DeCafClassifier "}}}
]}})

[A]
hypotheses (Hyp , ’[ shape :round ,

detection :[ confidence >0.8 , source : DeCafClassifier ]] ’).

[B]
hypotheses (Hyp1 ,’[ shape :round ,

detection :[ confidence >0.8 , source : DeCafClassifier ]] ’),
scenes (Sc , ’[ts <148240188664314586 ,

ts >1482401800959899335] ’),
hypothesesInScenes (Hyp2 ,Sc),
intersect (Hyp1 ,Hyp2 ).

Figure 4.6: Queries (denoted A and B) in the native MongoDB JavaScript style query language
and their counterparts in the proposed perception-log query language.
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Figure 4.7: PR2 setting the table. Upper left corner of each image shows what the robot believes
to be true about the environment

We have already seen in the previous section how using the query language we
can ask for more than just what is stored in the memories, by attaching processes
or knowledge-based reasoning queries to certain keywords. To show the usefulness
of a custom query language I will focus on demonstrating through example queries
how complexities of the native query interface can be hidden and a debugging,
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introspection tool for advanced robotic systems is realized. Figure 4.6 shows
two queries. The top part is in the MongoDB native query language while on
the bottom their counterparts expressed in the query language proposed in this
chapter. Beside being less verbose and easier to read, a clear benefit is that users
do not need to know about the exact internal structure of the MongoDB, and
can thus bypass the use of special MongoDB operators that search in arrays or
perform other data manipulation tasks (e.g. aggregation, projection, etc.).

Depending on what was asked for (hypotheses, objects or scenes) the results
of the queries will be multiple documents or parts of documents, containing the
full description of the matching entities. The results of queries can be visualized
using the web-interface shown at the beginning of the chapter (Figure 4.1), which
shows all the low-level percepts that the system has calculated and offers a way
for attaching ground truth labels to the data.

4.5.2 Learning From Episodic Memories

The main benefit of generating the perceptual episodic memories is that they allow
retrospection and adaptation of components to the tasks that a robot executes. To
demonstrate this, I present a proof of concept of how asking semantic queries can
generate data for new supervised learning problems that improve the performance
of the initial algorithm without human intervention.

For this experiment I take as baseline an instance-recognizer, trained on
a dataset that was recorded identically to that of the popular RGB-D Object
dataset (Lai et al., 2011). The newly recorded dataset consists of partial views of
objects, CAD models of these objects, as well as sequences of images recorded from
a robotic agent that is performing table setting or simple pick and place tasks.
The details of this dataset are presented in Appendix B, as subsets of it will also be
used in further experiments. A baseline classifier, a linear Support Vector Machine
(SVM) (Cortes and Vapnik, 1995)), is trained to recognize instances of objects
using the data recorded from the turntable. It is trained using the nowadays
popular DeCAF method (Donahue et al., 2014), where the outputs from a layer
of a convolutional neural network are used as feature descriptors. Specifically, the
output of the 7th, fully convolutional, layer of a modified AlexNet (Krizhevsky
et al., 2012) implementation is used that comes with the Caffe deep learning
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framework (Jia et al., 2014) and is trained on the ImageNet dataset (Deng et al.,
2009). The base classifier is trained on 21 object instances and achieves a 99.5%
accuracy on ten-fold cross validation when using random two-to-one splittings of
the turntable data into training and testing sets.

Turntable Adaptation set(E4) E1 E2 E3
nr. of obj. types 21 21 7 12 17

nr of views. 4526 699 117 302 647

Table 4.2: Details of the data used for experimentation, showing number of object instance types
in the episode and the number of partial views of objects

To demonstrate how querying of memories using the proposed language can be
achieved, four episodic memories were recorded during a pick-and-place scenario
performed by a PR2 robot, containing subsets of the 21 objects the baseline SVM
was trained on. A Primitive Analysis Engine that implements the baseline SVM,
SVMAnnotator, was used during the robot execution for classifying the objects
into one of 21 instance classes. One of the episodes that contains all 21 objects, is
referred to as the adaptation set, whereas the rest of the episodes that contain a
subsets of these objects, are referred to as E1, E2, E3.

The scenes in the four episodes are similar to the ones shown in Figure 4.7,
where objects are clearly separable and are found on supporting surfaces. The per-
ceptual episodic memories were recorded using the storage components presented
in this chapter, using the knowledge-based filters from Section 4.3.1. For the pur-
pose of this experiment the Aggregate Analysis Engine in RoboSherlock was
set manually, such that every object hypothesis that is generated gets annotated
with the results from the base SVM and the confidence in the result. Details
of the dataset used are presented in Table 4.2. The hypotheses in the episodes
were annotated with ground truth using the proposed web-tool, ground truth in
this case being one of the 21 object instance labels. Once the ground truth was
available, the base SVM was evaluated on the episode data. The confusion matrix
of this is shown in Figure 4.8.

It is immediately evident from the confusion matrix that classification results
are substantially worse than those that resulted from the ten-fold cross-validation
on the turntable dataset. Accuracy, recall and f1-score are all around 80% while
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Figure 4.8: Confusion Matrix of the baseline SVM tested on the data from the four episodes

precision is slightly better at 86%. In conditions where the exact same objects and
identical camera system were used during both the experiment with the robot and
the recording from the turntable this drop in performance is significant. These
results are not surprising though, since during execution of a pick-and-place task
images of objects can be out of focus, lighting conditions can change, objects can
be cut-off in the images, etc. Examples of such images are shown in Figure 4.9,
next to images of the same object from the turntable as a comparison.

The goal of the conducted experiment is to demonstrate that the data from
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Figure 4.9: Examples of object instances from the turntable data and the same objects from the
episodic memories

the perceptual episodic memories are useful for training an instance recognizer
for the objects that are encountered by the robot, such that we get more accurate
results without the additional need for manual labeling. The query language is
used to gather additional training data in a programmatic manner, by taking for
each classified instance the results that are considered to be confident enough.
The notion of confident enough is determined by a confidence threshold. If this
threshold is too high, the instances chosen from the episodes are too similar
to the ones in the turntable data. On the other hand, as the chosen threshold
is decreasing, the chance of adapting the classifier with wrongly labeled data
increases. In order to find the best possible value, the confidence of the baseline
SVM is analyzed on the adaptation set. The process of choosing the best confidence
threshold is described in Algorithm 2.

In a first step, all instances of objects from the episode are classified using the
baseline SVM. Based on the resulting confidence values and the available ground
truth data the distribution of confidence values along correctly and incorrectly
classified object instances is analyzed. Histograms of the confidence level are
shown in Figure 4.10. Since it is not desired to have any human intervention
during the adaptation of the classifier, a confidence threshold needs to be chosen
that minimizes the amount of falsely classified instances considered for retraining.
We can see from the histograms that this value is somewhere between 0.2 and 0.4,
where the number of false detection peaks and starts decreasing but the number
of correctly labeled instances is still high.

To find the exact value the classified instances are split into two groups, based
on a confidence threshold. Those instances whose confidence is higher than the
threshold are added to the turntable dataset and a new, adapted, SVM is trained.
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Algorithm 2: Accuracy analysis of episode data with the help of the
proposed query language

Data: episodeData, turnTableData, baselineSVM, confidenceValues =
[0.05...0.95]

Result: adaptedSVM
accuracies = {};
for conf ∈ confidenceValues do

confHypMap={};
nonConfHypMap = {};
for i ∈ baslineSVM.Labels do

conf-hyps = (hypotheses(Hyp,
[class-label:[value:i,confidence>conf,source:BaslineSVM]]));

confHypMap[i] = conf-hyps;
non-conf-hyps = (hypotheses(Hyp,

[class-label:[value:i,confidence<conf,source:BaslineSVM]]));
nonConfHypMap[i] = non-conf-hyps;

end
testingSVM = trainLinearSVM(turnTableData+confHypMap);
acc = testLinearSVM(testingSVM, nonConfHypMap);
accuracies[conf] = acc;

end
[newData] = splitEpisodes(max(accuracies, episodeData));
adaptedSVM = trainLinearSVM(newData)

(a) Histogram of confidences for wrongly and
correctly labeled instances

(b) Histogram of confidence values for all
instances

Figure 4.10: Confidence histograms

The rest of the data, where the confidence was lower than the selected threshold,
is used to test the newly trained, adapted SVM. The process is repeated for a
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predefined set of threshold values, ranging from 0.05 to 0.95. The query interface
is used to retrieve the data from the episodic memories, asking for all hypotheses
that were classified as a certain object instance and where the classifier confidence
was lower than the given threshold value. Results of the analysis in the form
of threshold versus average accuracy and threshold versus average precision are
plotted in Figure 4.11.

(a) Precision vs. confidence threshold (b) Accuracy vs. confidence threshold

Figure 4.11: Confidence analysis of the base classifier performed on data from the adaptation set

The figure shows the results from three different cases: the base SVM tested
on the instances from the adaptation set that were confident, the base SVM
tested on instances from the adaptation set that are considered non-confident and
the adapted SVM also tested on the non-confident instances. The non-confident
test data is the relevant one, since it contains previously unseen instances of the
objects. We can notice that both accuracy and precision of the adapted SVM
have an inflection point around the confidence value of 0.3, and converge to the
results of the baseline SVM towards higher values of the confidence. This is the
expected behavior as we have just argued earlier. The more confident the data
that we use to adapt our classifier, the more similar it is to the original images
and bears no extra discriminative information.

Once the threshold value is chosen the performance of an adapted SVM is
analyzed on the remainder of the episodes. This is done by choosing the confident
results from three of the episodes to adapt the baseline SVM and testing this on
the fourth episode. Specifically, there are three distinct cases: adapting using
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(a) Baseline SVM tested on Episode 3 (b) Adapted SVM tested on Episode 3

(c) Baseline SVM tested on Episode 2 (d) Adapted SVM tested on Episode 2

(e) Baseline SVM tested on Episode 1 (f) Adapted SVM tested on Episode 1

Figure 4.12: Performance analysis of adapted classifiers: confusion matrices of baseline and
adapted classifiers for the three episodes
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Figure 4.13: Classification metrics when adapting the baseline SVM, trained on data from a
turntable, with data from the episodic memories

results deemed confident enough from E1, E2, E4 and testing on E3, adapting
using E1, E3, E4 and testing on E2 and adapting using E2, E3, E4 and testing
using E1. For each of these three cases the resulting confusion matrix is presented
in Figure 4.12. Episode 4 is not tested this way, since it was used for finding the
confidence threshold.

The performance metrics of the adapted SVM compared to the baseline tested
on the object instances from the same episode are shown in Figure 4.13. From the
bar chart we can conclude that using the adapted classifier a significantly better
result on all metrics is achieved. On average there is a 14% increase in accuracy,
recall and f1-score, and an 8% increase in precision. The example shown here
serves only as a demonstrator for the possibility of using the query language as
a means for retrieving data for supervised learning problems. Obviously, if the
goal is to enable a lifelong learning approach using the described mechanisms,
a more thorough analysis is required. Nonetheless, the experiments shown in
this section shed light on one of the typical problems of object recognition in
robotic application, that is the mismatch between available image datasets and
the requirements of real robotic applications. A possible solution is proposed
through the use of episodic memories. An in-depth analysis of the problem
of transfer learning, and adapting object classifiers was presented in a related
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publication by Durner et al. (2017), which is complementary to the previous
work (Bálint-Benczédi et al., 2017) this chapter is based on.

4.6 Conclusions

This chapter presented a system for generating perceptual episodic memories and
a query interface that allows retrieval of subsets of these. In the context of this
thesis, the work presented in this chapter relates to enabling robots to answer
general questions about their environment, specifically about past percepts, and
towards an effort of enabling robotic lifelong learning through transfer learning.

By offering a way to retrospect perception results both programmatically and
through user interaction, a significant step is taken towards enabling robots with
awareness about their environment. This is especially the case, when we take into
account that the proposed query language is compatible with the more general
query interface of the openEASE (Beetz et al., 2015c) framework. Using the
openEASE infrastructure, queries can be conditioned not just on information
generated by the perception system, but also on actions performed by the robot
allowing the execution of queries that ask for all images where the robot was
performing a manipulation task. Such queries can allow the specialization of
perception algorithms even more.

The experiments in this chapter demonstrate that supervised learning can be
used to improve the performance of object recognition. If we are able to generate
images that are very specific to a particular manipulation task (e.g. slicing a
bread or pouring water), then even more specialized object recognition modules
could be trained that would yield better results than their general counterparts
in situations where their context requirements are fulfilled. The case for such
a system is even more evident when we look at current deep learning trends,
where highly accurate object detectors and recognizers can be trained for precisely
defined problems.

Another aspect of the work presented in this chapter is that of enabling
retrospection during runtime. Enabling robots to access the knowledge about what
perception routines they ran, how confident these were in their decisions, opens new
possibilities in developing lifelong perception approaches, where self-adjustment
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based on previous precepts is important. Although the results of the experiments
conducted are promising, as we have already seen, further investigation would be
necessary to create a truly lifelong learning architecture. One of the issues that
needs to be addressed is how much the newly adapted classifiers over fit the data
from the experiments and what strategies are the best at circumventing this.

The perceptual episodic memories recorded by RoboSherlock do not only
serve as sources for answering questions about what the robot has seen in the
past, but also enable the refinement of answering queries about what the robot
sees in the current scene and allow the anticipation of scenes that a robot might
see in the future. These two topics are the subject of the chapters to follow.
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CHAPTER 5

Amortized, Preparatory Perception
for Long-term Manipulation

Robotic agents that are to perform long-term manipulation tasks in realistic
environments have to be equipped with sophisticated, robust and accurate object
and scene perception capabilities that go beyond the analysis of individual obser-
vations. Consider, for example, a robotic agent that is to perform house chores,
such as prepare meals and serve them. To do this, it needs to set or clean the table,
load and unload the dishwasher, place objects in cupboards, etc. The perception
system of such a robot, should be able to quickly answer queries like ’where did
I see an object out-of place’ or ’is there anything left on the table’ without the
extra effort of navigating to an object’s location and applying direct perception.
To competently answer such queries having an active memory system, such as
the one presented in the previous chapter is necessary but it is often not enough
to recall past perception tasks independently. Robots need to be equipped with
means for tracking and maintaining these results over time and ways for using
them to simplify or solve possible future perception tasks. To address this, in this
chapter I investigate and realize a preparatory, amortized perception
component that spreads the act of perceiving through the life-time of
the robotic agent and improves the query-answering efficiency of systems built
using RoboSherlock. The two components contribute towards the pervasive
operation of the perception system proposed in this thesis.

In the context of long-term manipulation tasks, a pervasively operating per-
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Figure 5.1: PR2 looking at a table scene, and visualization of its internal representation of the
sub-symbolic belief state

ception system is aware of the perception tasks that are expected to be issued by
the high-level robot plans and continuously and opportunistically collects informa-
tion whenever possible making the execution of perception queries easier. The
observations of the world, besides being used for knowledge discovery and decision
making, become part of a collection of feedback loops that update and refine the
object belief state, while interacting with the other software components of the
robotic system. For example, the robot considers the objects on a table to be
objects in use and therefore candidates for later fetch and place tasks. Therefore,
it maintains a belief state containing the objects in use. Whenever possible, the
robot automatically performs a perception task to validate, refine and maintain
the respective part of the belief. In a query-driven perception system I propose to
achieve this through two components:

1. a preparatory perception component that continuously analyzes the environ-
ment, preparing the perception system for future tasks to come, gradually
building a low-level internal representation of the environment (Figure 5.1)

2. and an amortized perception component that opportunistically refines the
internal representation using results of past perception tasks.

The term amortized is most often used in the domain of probabilistic reasoning,
as in amortized inference, which stands for learning from past inferences, such
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that future ones run faster (Gershman and Goodman, 2014). A robotic agent’s
perception system needs to behave in a similar fashion. Amortization also refers to
spreading an asset’s cost over its useful lifetime. In this sense the perception tasks
need to be spread over the entire operational lifetime of the robotic agent to learn
from the past inferences. This means that perceptual processes should be active
even when perception is not directly needed by the robot control system such
that the utility of past percepts is maximized. For accessing the past percepts
the proposed approach relies on the use of semantic logs introduced in Chapter 4.
The central question in realizing the amortization effect is how to maximize
the information gain from the logged images such that the amount of correctly
answerable queries is increased.

The preparatory perception component corresponds to a continuously executed
perception pipeline that analyzes observations and generates object candidates.
The perception components that make up the continuous execution pipeline are
dependent on the task a robot is performing and prepare the system to answer
future queries more efficiently by gradually building and maintaining an object
belief state. Part of this process involves solving object identities and maintaining
a time series of observations that belong to a single object.

The chapter is based on previous work described in Bálint-Benczédi and
Beetz (2019). The entity resolution component was joint work together with
Thiemo Wiedemeyer, his contribution being the similarity measure based identity
resolution as described in our previous work (Wiedemeyer et al., 2015).

5.1 Motivation and Related Work

The proposed amortization effects, as well as the preparatory perception can only
be achieved through the management of a belief state about the objects a robot
encounters. There are several reasons why computing and maintaining an object
belief state in an amortized manner is feasible. First, many environments (such
as an apartment, a factory or a surveillance area) change slowly compared to
the frequency in which robots capture images of parts of them. Second, during
operation, robots typically capture multiple images from different views of the same
scenes and therefore can exploit the images from different views to improve results.
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Third, when the robot acts in the environment it often has spare computational
resources, in particular when it navigates from one place to another. In these cases
it can perform perception tasks on previously captured images without delaying
robot activity. Fourth, if the robot has already a good model of a scene, it can
drastically simplify perception tasks. For example, instead of answering a query
by computing the information from the image, it can test whether the captured
scene matches its previously estimated model and answer the query based on the
model. Often detecting the difference between an expected and captured image is
much easier than computing the respective information from scratch.

A large proportion of the most commonly used object detection and recognition
systems in robotics, as the likes of LineMod (Hinterstoisser et al., 2013) or more
recently deep learning based approaches like YOLO (Redmon and Farhadi, 2016),
process images in a one-shot manner. Other popular perception systems enable
visual servoing, tracking low-level features in an image (e.g. SimTrack (Pauwels
and Kragic, 2015)). However, they are oriented towards the short-term tracking
of objects during individual manipulation tasks. Tracking objects over prolonged
periods of time and remembering their location in the world is similar to the
problem of Simultaneous Localization and Mapping (SLAM). Most of the SLAM
approaches however are concerned with capturing the world around the robot as
accurately as possible and localizing the robot in it, less focus being put on the
semantic interpretation of the data. In a thorough survey of SLAM approaches,
Cadena et al. (2016) identify several open problems among which the need for
high-level, rich representations. Gemignani et al. (2016) also argue for a deep
understanding of a robot’s environment and propose a semi-autnomous approach
for acquiring the semantic maps with the help of human interaction. In another
recent work Deeken et al. (2018) propose SEMAP, a framework for semantic
map representation that enables qualitative spatial reasoning about objects in a
robots surrounding, but they also mostly consider larger-scale objects, such as
furniture pieces. The object belief states built using the approaches presented in
this chapter are complementary to these semantic object maps.

A comprehensive work on object belief states, for robots performing everyday
manipulation tasks, was done by Blodow (2014), laying the ground work for what
is necessary to create and manage such representations. In an earlier work, Blodow
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et al. (2010) present a Markov Logic Network (MLN) based framework for dy-
namically resolving the entities of objects. The idea of entity resolution is further
developed by Wiedemeyer et al. (2015), where a pervasive ‘calm‘ perception
component for RoboSherlock is built, which acts as a preparatory perception
routine.

Another interesting approach is taken by Lee et al. (2014b). They argue
for the importance of a correct belief management and highlight connections to
biological systems. Milliez et al. (2014) and Warnier et al. (2012) present SPARK,
a framework for belief management, similar to the work presented here, but with
a focus more on spatial reasoning and the knowledge component. Parts of SPARK
consist of managing an object belief state, but since emphasis is put on spatial
reasoning, the scenes and objects used in the experiments are idealized.

The argument for building belief states in an amortized preparatory manner,
is excellently phrased by Gershman and Goodman (2014), where authors state
that the:

“ brain operates in the setting of amortized inference, where numerous
related queries must be answered [..] in this setting, memoryless
algorithms can be computationally wasteful. ”

S.J. Gershman and N.D. Goodman

5.2 System Overview

The extension to RoboSherlock proposed in this chapter manages and updates
beliefs about objects in the environment during the entire execution of a long-term
manipulation activity, such as pick and place tasks. Preparatory and amortized
perception are implemented using a custom Aggregate Analysis Engine (AAE)
executor, generating sub-symbolic and symbolic data by separate computational
blocks, but maintaining a common belief state. Symbolic and sub-symbolic data
are treated separately since parts of the information that constitutes the belief
state (e.g. labeling objects with symbols) are derived on demand through the
query answering mechanism of RoboSherlock, but other parts (e.g. resolution
of object entities) are handled by using sub-symbolic information that can be
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generated at a higher frequency. Another reason for differentiating between these
two types of data is that most of the state-of-the-art algorithms used in object
recognition and scene understanding are not able to handle the real-time (or
close-to real-time) requirements imposed by the needs of service robotics. If they
do (e.g. SimTrack (Pauwels and Kragic, 2015)), they can only handle a subset of
the objects one might encounter. The problem with not processing observations
fast enough is that we risk loosing valuable information and that we are delaying
execution on the robot by waiting for computationally expensive algorithms. By
maintaining an object belief state based only on sub-symbolic information we can
have low-level percepts at higher frequencies about the objects in the environment,
while maintaining the option of having semantic information where needed.

In order to build the proposed system there are two main components that
need to be detailed. First, how symbolic and sub-symbolic information about the
objects in the world are stored in a unified manner. Second, how the computational
processes that generate these interact with each other and the robot’s high-level
control system.

The main data structure in RoboSherlock is the CAS, which is based on a
whiteboard architecture, allowing the independent annotation of arbitrary regions
in the raw data from different information sources. This enables a coherent
integration of symbolic and numeric (sub-symbolic) data and universal access
for all computational components. Let’s recall from Chapter 2 the definition
of the CAS. Let P(H) be the power set of all hypotheses and O the set of all
observations. The space of all CASs is defined as:

CAS := O ×P(H)

A hypothesis represents a certain region in our observations and a set of annotations
attached to this region. A region in an observation is a set of indices of the vector of
observations, e.g. pixels in an image or 3D points in a point cloud. An annotation
is an ABox representing a fragment of the belief state. Let P(N+) be the power
set of pixels of an image or points of a cloud. The space of all hypotheses H is
then defined as

H := P(N+)× ABox.
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Using description logic, an exemplary hypothesis of a box-like red object which
has a pose and a 3D feature descriptor would have the form:

Thing(h1) ∧ shape(h1, box) ∧ color(h1, red)

∧ pose(h1, [x, y, z, r, p, y]) ∧ vfh(h1, [...])

As we can observe, the properties of the hypothesis are either numerical values
or a symbol, depending on the type of relation. During the long-term execution
of a robot experiment a trajectory of CASs is is generated:

CAST : T −→ CAS

where T = {0, . . . } is a set of globally unique timestamps.
Objects that a robot encounters during the execution of a task bear various

visual characteristics that can only be recognized using different algorithmic
approaches. For this reason, processing the raw data in an ensemble-of-experts
approach is beneficial. This means that processing is split into several special
purpose modules that generate object hypotheses in the RGB-D image captured
by the robot or annotate these hypotheses.

Figure 5.2 depicts an overview of the proposed execution cycle. Recall
from Chapter 2 that the definition of an Aggregate Analysis Engine (AAE)
contains the list of expert algorithms (PAEs) that should be run during a task,
also referred to as the list of delegates (Section 2.4.5). This is the pool of PAEs
that is used for pipeline planning. Besides these, a fixed flow (referred to also
as the low-level perception pipeline) is given, which is a sequence of PAEs that
defines the continuous execution block. The AAE executor is extended such
that the PAEs from the fixed flow are continuously run and are responsible for
generating object hypotheses and the sub-symbolic annotations of these, preparing
the system for future perception tasks. At the end of each processing cycle a
CASt is generated that contains the interpretation of the observations and a
CAS Consumer resolves the identities of the hypotheses to existing beliefs that
make up the sub-symbolic belief state (see Section 5.3.1). The continuous exe-
cution analyzes input images at a high frequency (5-10Hz) and raw data that
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Figure 5.2: System overview with the interaction of all major components.

gets processed is logged for later processing. During the execution of a task, the
robot control program sends queries (QT (t)) formulated using the query language
introduced in Section 2.3.2. These queries get interpreted and a tasked pipeline is
planned (AAEI) and executed, resulting in a set of annotated hypotheses. The
resulting hypotheses are then matched to the objects in the sub-symbolic belief
state refining these using the symbolic information that result from the query.

At this stage, symbolic results get generated only for the objects that are in
the scene at the time of the query. This is equal to answering a query through
performing one-shot perception. To achieve the desired amortization effect and
spread the cost of perception throughout the execution of a task, perception
plans generated are queued and executed on the previously logged images. This
is done in parallel and in the background at times when the robot is idling or
moving from one place to another. This way, the belief state gets updated with
symbolic data that results from object hypotheses found in previous scenes and
the representation of objects in it becomes richer. Perception plans from the queue
are processed in a first in, first out manner, executed on the most recent images.
The image filters described in Section 4.3.1 assure that there is a good degree of
data throttling so that we do not waste resources on processing redundant images
that would yield little or no information gain.
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5.3 Implementation

The preparatory, amortized perception components are implemented using Ro-
boSherlock and a custom AAE executor. The executor implements the logic
of switching between low-level and tasked sequences of PAEs. The storage com-
ponent described in Chapter 4 is used to log the stream of images and results.
The low-level, continuous pipeline detects objects in each frame obtained by the
sensors. Each frame is only a snapshot of the current scene. By default, the
objects detected in one frame are independent from the ones detected in previous
or future frames. To connect each of these observations, object identity resolution
based on the low-level percepts is run.

5.3.1 Generating Sub-symbolic Representations

(adapted from previous work, by courtesy of Thiemo Wiedemeyer)
The sub-symbolic representation of objects consists of numerical annotations
acquired by the continuous execution component. Initially, the system is aware
only of hypotheses of objects that have visual descriptors and low-level geometric
information: e.g. estimated pose in the world and oriented 3D bounding box.
These low-level percepts, the position in the world and the timestamps help disam-
biguate between objects of similar characteristics. Each object hypothesis contains
a number of annotations, computed by the continuous pipeline. Annotations
needed by the entity resolution framework are directly returned by PAEs of the
low-level pipeline. For the similarity measurement, a set of low-level annotations
are used: geometry, color histograms and image features. To compute the similar-
ity between annotations of the same type, a distance function dist(a, b)→ [0 . . . 1]
is defined for each of them. When solving the identity of objects, the distance
function takes two annotations of the same type as parameter and computes a
normalized distance d. Each distance d is weighted by the factor w, which is
heuristically defined for each type. If we consider τ = {τ0, τ1, . . . } to be the set of
low-level annotations used, then the overall distance for an object a to an object
b is the sum of all weighted distances normalized to [0 . . . 1], defined as:
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Features used for sub-symbolic matching
Visual Feature Description
Color features HSV color histogram
3D features VFH, C-VFH or OUR-VFH
Generic descriptors DeCAF7 trained on ImageNet2012 (Donahue

et al., 2014)
2D-Keypoints/Descriptors BRISK/FREAK
6DOF Pose 3D estimate from centroids or 2D estimate from

Hu-moments
Symbolic annotations

color symbolic color based on HSV color distribution
shape primitive shape, inspired by Goron et al. (2012)
class label k-NN classifier trained on DeCAF7 descriptors of

partial views of objects from a turntable

Table 5.1: Examples of symbolic and sub-symbolic perceptual features and annotators

dist(a, b) =

|τ |
i=0

wi ∗ disti(ai, bi)
|τ |
i=0

wi

The weighting is applied to prioritize certain annotations that are more reliable
and discriminating than others. For example, shape histograms are similar for
many objects while color histograms and image features differ more. The weight
for each annotation is chosen based on empirical results with respect to their
reliability and discrimination.

The visual features extracted in the continuous execution during the conducted
experiments are presented in the upper half of Table 5.1. For the geometry
annotation, which contains a minimal bounding box, the distance is the normalized
sum of the distances in each dimension (width, depth, height) of the bounding
box:

distgeo(a, b) = distd(wa, wb) + distd(da, db) + distd(ha, hb)
3

The distance distd for each dimension is the absolute difference divided by the
minimal length, limited to one. Every difference that is greater than or equal to
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the doubled minimal distance is mapped to 1, everything lower is linearly mapped
from 0 to 1:

distd(a, b) = min(1,
|a− b|

min(a, b))

The distance between two color histograms, which are normalized, is the sum
of absolute differences per bin divided by two:

distcolor(a, b) =
len(colorhist)

i=0 |ai − bi|
2

All image features and descriptors from one object are matched against the
ones from the other object using a brute force matching algorithm, which gives
back a minimal distance di for each descriptor. These distances are summed
up and divided by the product of the number of descriptors n and a constant
maxDist which defines the maximal distance between descriptors that is taken
into account. The result is limited to 1, if higher:

distfeature(a, b) = min(1,

len(descriptor)
i=0 di

n ∗maxDist
)

The maximal distance maxDist can be defined lower than the real maximal
distance between descriptors. Image descriptors can be considered as dissimilar
even if they are not near the maximal distance. This increases the resolution
for the similarity measurement for near descriptors and reduces the limit of
dissimilarity that is inspected.

During object identity resolution, for each hypothesis found in the scene the
similarity to each known object from the belief state is computed and together
with their pose passed to the entity resolution framework, which returns for each
cluster the probability of belonging to a certain object. Based on the results, the
hypotheses are either assigned to the best object candidate or get added as new
objects. Objects from the belief state that do not have a hypothesis associated
from the current scene are marked as out of view.

The resolution of identities is done by comparing descriptions of object hy-
potheses in the current scene with the description of objects from the belief state.
A fast-matching between objects that had been seen in the last frame and should
still be in view is performed with the object hypotheses from the scene. The
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fast-match quickly finds candidate pairs, based on the distance between the known
and perceived object pose and the time that had passed since it was last seen.
For each pair the similarity is computed and if it exceeds a predefined threshold,
the two get merged.

5.3.2 Symbolic Belief Management and Amortization

In order to be competent at answering complicated queries, robots need to have
semantic information about the objects in the environment. Most of the state-
of-the-art algorithms used in object recognition and scene understanding are not
able to handle the (close-to) real-time requirements of mobile robots, or if they
do, they only handle a subset of the objects in the environment. For example
SimTrack (Pauwels and Kragic, 2015) can detect and track several objects in
real time simultaneously but only if they have enough texture. Because of this,
symbolic data in the system is introduced through asynchronous query answering.
Queries are formed using the query language described in Section 2.3.2, which
offers the necessary flexibility and descriptiveness. A very simple query that asks
for a flat shaped object that is black is shown below:

(detect (an object
(shape flat)
(color black)))

The symbolic information maintained in the belief state depends on the queries
that are issued by the high-level control system of the robot. The right side of
Figure 5.3 depicts the link between the symbolic and sub-symbolic beliefs. In
addition to the low-level percepts stored in the sub-symbolic belief state, symbolic
information, as the likes of color, shape, class label or pose of a CAD-model, are
linked to these beliefs.

The sources of symbols are presented in Table 5.1. In this chapter only one
source of information for each type of symbol is considered (shape, color, type),
and the focus is on how the correctness of these effects query answering and to
what extent does amortization improve results. For each object in the belief state
a histogram of the resulting symbolic values is maintained, where each bin of
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Figure 5.3: Example of symbolic and sub-symbolic beliefs about objects in the belief state

the histogram corresponds to one of the symbols. These histograms get updated
through the amortization effect, namely the execution of the buffered perception
plans on the logged data. When answering a query the symbolic value that has
the most votes in the histogram is considered to be the correct answer.

5.4 Experimental Analysis

Amortized operation improves the query-answering capabilities of a robotic agent
by integrating symbolic results from past images into the decision-making process,
while the preparatory perception allows for a slow tracking of objects in the
environment. In order to demonstrate this, I analyze the correctness of the sub-
symbolic belief state and the effects of using the background- and task-knowledge
enabled filters, evaluating the preparatory perception system. This is followed by
a qualitative and quantitative analysis of amortization effects.

5.4.1 Sub-symbolic Management of the Belief State

To evaluate the low-level pipeline and the identity resolution of the objects, the
experimental set-up we described in Wiedemeyer et al. (2015) is followed. In
comparison to previous work the complexity of scenes used in this evaluation is
increased by having more objects and object locations, and by performing pick
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Figure 5.4: Initial state of the two tabletop scenes in episode 2.

and place tasks. The experiment consists of four different episodes with increasing
difficulty, where the task of the robot is to move objects from one supporting
surface to another. The episodes are the same as the ones used in the previous
chapter and were additionally hand labeled to contain ground truth about the
symbolic information of the objects (shape, color and class).

In all cases the experiments were conducted using a localized1 PR2 robot
that was performing pick-and-place tasks in a kitchen environment2. The objects
chosen for the experiment are typical household items that possess varied visual
characteristics. Some are flat and textureless, while others are textured and
well visible (see Figure 5.4 for example). The objects are clearly separated
with few occlusions, since we are only interested in analyzing the effects of the
preparatory, amortized perception on the annotations. The hypotheses throughout
the experiments are generated using the combination of 3D Euclidean clustering
with a threshold based binary color segmentation, useful for small flat objects
that otherwise would not be found. For classifying the objects k-NN, detailed in
Table 5.1, trained on the 21 object instances was used.

Details of the four runs, such as duration, number of pick and place tasks
performed (Nr. of p.p. tasks), number of objects at the end of execution in the
belief state and number of total object hypotheses in the episode (# of Hyp)
are presented in Table 5.2. Although this is the same data as in Chapter 4, the

1we use adaptive Monte-Carlo localization (wiki.ros.org/amcl)
2Actual picking and placing of the objects was handled by a human, in order to reduce the

complexity
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Ep.1 Ep.2 Ep.3 Ep.4
Nr. of objects 9 15 20 25
Duration 277(s) 328(s) 510(s) 520(s)
Nr. of Hyp. 130 353 694 759
Nr. of p.p. tasks 3 4 6 10
Filters Off On Off On Off On Off On
Nr. of objects in b.s. 15 9 26 20 49 28 54 31

Table 5.2: Summary of episodes of the conducted experiments

number of objects in the second row of the table is higher than the ones from the
previous chapter reported in Table 4.2. This is because some object types appear
multiple times in the episodes (e.g. there are two identical cups) and for entity
resolution each individual object matters as opposed to the object classification
tasks investigated in Section 4.5.

The weights of sub-symbolic annotations that are taken into account in the
entity resolution part were set to be equal, so wk = 1 for all percepts. Doing
so introduces no bias towards any type of annotation. The threshold for fast
matching that only compares poses of objects from last frame and the hypotheses
in the current frame was empirically set to 2.5cm, allowing for small errors in
robot localization and compensating for noise of the RGB-D sensor. The number
of actual objects in the environment compared with the number of objects in
the belief state at the end of a pick and place task gives an insight into how
well the system is able to track objects over time. The last row of Table 5.2
highlights the difference in results when using the knowledge-based filters described
in Section 4.3.1. It would be difficult to build the desired amortization effect on top
od the identity resolution without these filters (blur, motion, change detection),
since the identity resolution performs significantly worse without them. Since the
main contribution of the chapter is the realization of the amortization effect it
would be out of scope to further investigate the implemented entity resolution.
The heuristic rule-based entity resolution together with the knowledge-based filters
is deemed satisfactory for analyzing the amortization effects. For a probabilistic
approach on solving object entities, I kindly refer interested readers to the previous
work of Blodow (2014).
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(detect (an object 
                  ( shape box )))
 

(detect (an object 
                  ( shape flat )
                  ( color blue )))
 

(detect (an object 
                  ( shape flat )
                  ( color blue )
                  ( type 'Plate')))

QUERY

ti ti+1 ti+2 ti+3

Figure 5.5: Updating the symbolic beliefs about objects in a static scene. First row: the rendered
belief state. Second row: Highlighted results of the queries in the original image. Third row: query

asked

5.4.2 Symbolic Updates of the Belief State

To showcase the interaction between the sub-symbolic and symbolic belief states,
a detailed description of the updating process for a static scene and for one of the
pick and place episodes from the previous subsection is presented.

Let us look at how the beliefs about a static scene get updated over time as new
symbolic information is computed. Figure 5.5 depicts a typical breakfast scenario
as it gets added to the belief state. At the very beginning (ti) the environment
is populated with the objects from the sub-symbolic beliefs generated by the
continuous component, consisting of the pose and the estimated 3D bounding
box. After querying for the shape of an object at ti+1, the belief about the shape
of all visible objects gets updated. At ti+2 symbolic color information is added
(we choose the top color of each object for visualization), while at ti+3 due to a
query asking for the types of objects, each belief gets replaced by a CAD model
of the object instance it gets classified as (if a CAD model exists).

Figure 5.6 shows another example where the the evolution of the belief state
happens while a robot is performing a pick and place task. In this episode the
robot was moving between the table and the counter top, and setting a table was
simulated. The symbolic beliefs only get updated as queries are being answered
and are attached to the sub-symbolic beliefs, so when objects change locations,
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Figure 5.6: Evolution of the belief state, as queries get answered during a pick-and-place operation
for episode 1. (1) low-level percepts and color analysis of left table, (2) low-level percepts of right

table, (3) shape analysis for objects on right table, (4) red object moved to right table, (5)
classification of the red object, (6) classification of the objects on the left table, (7) cup moved to
right table, (8) classification of the other objects on the right table, (9) new object on left table,

(10) color analysis for new object, (11) classification of new object, (12) blue plate has been moved
to left table.
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id Object # obj.hyp #classifications % correct
3 blue knife 127 81 30.8 [%]
5 red plate 83 81 97.5 [%]
8 sigg bottle 83 7 100 [%]
10 yogurt 62 25 100 [%]
11 cup 75 60 86.6 [%]
12 ice tea 176 51 100 [%]
13 soy milk 176 176 57.9 [%]
15 salt 176 30 100 [%]
16 blue fork 90 85 83.5 [%]

Table 5.3: Analysis of object hypotheses per object in the belief state. Gray rows: few successful
classifications; Cyan rows: low precision

we do not loose the existing beliefs, e.g. between frames 6 and 7 where the cup
gets picked up from the counter top and placed on the table. The symbolic beliefs
persist even when we are not looking at a certain scene.

5.4.3 Benefits of Amortization

Through amortization the results from past queries executed on previously seen
images are integrated into the belief state of the robot. Answering a query
correctly means having the correct symbolic data deduced from the current scene.
In the remainder of this chapter I refer to this as one-shot perception. With
amortization, the deduction of these symbols happens through integrating the
results from the past instances of the same object. Quantifying the correctness of
query-answering is equivalent to measuring the correctness of symbolic labels for
each of the objects at each occurrence during a task.

Let us first look at this problem from a qualitative perspective on objects
selected from Episode 2. A query that asks for a specific object at a moment
when this is falsely classified or the classification result is not confident enough
would not yield a correct answer. The type of an object in RoboSherlock
is typically deduced using a classifier trained on a set of predefined objects in
advance. In this experiment KnnAnnotator, trained on turntable data, is used
for the baseline performance with a confidence threshold of the k-NN classifier
set to 0.6. Confidence in the case of k-NN is simply one minus the distance of
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the normalized feature descriptors. The colored rows in Table 5.3 highlight two
distinct cases where a query for a specific type of object would not be answered
correctly based only on the evidences from the current scene. First, the “blue
knife“ and the “soy milk“ are falsely classified in a lot of the scenes. In all of
those cases, a query about those objects would not yield a correct results. Second,
the case of the “sigg bottle”, “salt” and “ice tea” are worth taking a closer look
at. Based only on the results from the continuous execution, all three objects are
successfully tracked by the entity resolution, having a high number of hypotheses
attached to them. On the other hand all three have a low number of classification
results, all of which are correct. This means that for the scenes in which the
hypotheses do not get classified we would not be able to answer queries about
these objects.

In these cases, in order to benefit from the amortization effect, two things
need to happen: there needs to be a perception plan in the buffer that returns the
symbolic value we are interested in (type in the case of our example) and enough
time needs to pass such that the buffered plan can execute on a logged image
where the object’s type can be detected. I look at these two conditions for the
“sigg-bottle” and “salt” in Figure 5.7. The X-axes of the figure represents indices
of hypotheses generated over time for the objects. The blue bars represent the
duration between two consecutive hypotheses in seconds. The red bars mark when
the hypothesis was correctly classified. In the case of these two objects there were
no false detections. Whenever there is a large time gap, the robot is either moving
or one of the filters is active, allowing for the buffered perception plans to execute.

Figure 5.7: Results of classification for the hypotheses of the sigg bottle and salt. Blue bars
represent the time elapsed between hypothesis generation, red bars mark the hypotheses that are

correctly classified. Amplitude of red bars is only for ease of viewing.
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Ep.1 Ep.2 Ep.3
A P R A P R A P R

Shape One-shot 0.68 0.82 0.69 0.65 0.67 0.65 0.66 0.67 0.66
Amort. 0.76 0.83 0.76 0.68 0.71 0.69 0.73 0.75 0.73

Color One-shot 0.87 1.0 0.87 0.91 0.95 0.92 0.82 0.9 0.83
Amort. 0.89 1.0 0.89 0.98 0.99 0.99 0.86 0.93 0.87

Class One-shot 0.93 0.95 0.93 0.98 0.98 0.98 0.95 0.96 0.95
Amort. 0.99 0.99 0.99 0.96 0.96 0.96 0.92 0.94 0.92

Ep.4 Average
A P R A P R

Shape One-shot 0.63 0.64 0.64 0.65 0.7 0.66
Amort. 0.68 0.68 0.68 0.71 0.74 0.71

Color One-shot 0.84 0.92 0.84 0.86 0.94 0.86 Cov. one-shot
Amort. 0.85 0.91 0.85 0.89 0.95 0.9 82.2 %

Class One-shot 0.96 0.97 0.96 0.96 0.96 0.96 Cov. amortized
Amort. 0.89 0.90 0.90 0.92 0.92 0.93 94.3 %

Table 5.4: Accuracy (A), Precision(P) and Recall(R) for shape, color and class annotations of
object hypotheses with and without the amortization (Amort.) effects.

For the “sigg bottle”, between the two hypotheses that match the object at index
26 and 27 there is a time gap of more than 60 seconds. If in this time the system
manages to process enough frames to reach the logged image where hypothesis
number 4 was found (where the red bar marks a successful classification), the
result can be propagated to all future hypotheses that get added to this object.
As a second example, in the case of the salt one would need to wait until the
second big time gap to find past results where the hypotheses can be correctly
annotated. Once a result is found, queries would get answered correctly for the
scenes containing the rest of the instances.

These observations empirically demonstrate that amortization can be beneficial
during the life-cycle of a robotic agent. Let us now quantify the effects of
amortization. To do this I look at the extreme case of the robot asking a query
about an object’s type, shape and color at every frame, independently of each other.
Results of this analysis are shown in Table 5.4. There are two measures to consider
when analyzing the results: the performance metrics of correctly annotating a
hypotheses and the number of hypotheses that are annotated (referred to as
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Figure 5.8: Trade-offs between hypothesis coverage and accuracy when varying confidence
thresholds and the amortization coefficient

coverage) with and without amortization.
The last entries of the table report the average performance measures over

all four episodes with two additional metrics: coverage of data with and without
amortization. When considering scenes in isolation, even though the accuracy and
precision of the classification is high, only 82.2% of all hypotheses are annotated.
In the rest of the cases the confidence of the k-NN classifier does not meet the
classification threshold. This is due to the idealized nature of the turntable data
used for training the KnnAnnotator, in which objects are always centered and
clearly visible. It is these two measures (accuracy and coverage of hypotheses)
that need to be jointly maximized through amortization in order to increase the
number of queries that are correctly answered.

The amortization process depends on two parameters:

• an amortization coefficient (ac): defining how far into the past to go when
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Figure 5.9: Relationship of coverage, accuracy of class annotation, confidence threshold and
amortization coefficients

processing hypotheses,

• and a confidence threshold (cf): defining how confident the result from the
past has to be, to be taken into consideration.

A larger amortization coefficient allows the integration of more results from
the past at the cost of classification performance. On the other hand, a higher
confidence threshold yields a better performance but it also requires more images to
be processed from the past. This trend is visible in Figure 5.8 which illustrates the
inverse proportional relation of the accuracy and coverage with cf = 0.6, 0.66, 0.78
and ac = 1 : 20.

In order to find the best combination of the parameters, grid search is per-
formed. This is visualized as a scatter plot in Figure 5.9. The best choice of
parameters is along the line of intersection of the two resulting manifolds, given
by max(ac + cf) and is found to be at a slightly higher confidence threshold than
the one-shot classification (0.62) and at an amortization factor of 13. In practice
any similar value would yield satisfactory results, the differences being only minor.

Table 5.4 presents the performance measures on the four episodes. Overall,
in the case of shape and color a general increase in all measures can be noticed,
while in the case of classification there is a slight decrease, but with the added
benefit of a 10% increase in coverage. Since the changes in accuracy, precision or
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recall for the k-NN are small, from the perspective of maximizing the number of
answerable queries it is a better choice to select parameters where these measures
are slightly worse, but the coverage increases as much as possible.

Considering that queries contain more than one key at a time, the increase
of the number of queries that can be correctly answered using amortization is
considerably larger.

5.5 Discussion

In this chapter I presented a system that spreads the perception task throughout
the lifetime of a robotic agent and maintains a joint symbolic and sub-symbolic
belief state for a mobile robot performing pick and place tasks in a human
environment. This system allows robot perception to operate in a pervasive
manner. Available task and background knowledge play a key role in the successful
application of the system. The dynamic belief state can be correctly managed in
a timely manner, without hindering robot action, thanks to the knowledge-based
filters. The benefits of the approach lie in the way the semantic query capabilities
of the robot are extended so that questions not only about what it currently
perceives in the current scene are answerable, but also about past percepts.

In the current implementation, the system uses its filters to decide when to
run pervasive querying on the logged images (e.g. when several consecutive frames
are not processed). Furthermore, there is no ranking of the perception plans
added to the queue. As future prospect, the episodic memories could be used to
analyze the performed tasks in order to estimate how much time certain robot
operations might take, in order to better manage resources and to schedule tasks
in a less invasive manner. Queries could also be ranked depending on how much
information there is to gain from executing them, allowing for sorting and merging
of pending perception tasks.

An interesting part of the proposed system, which we will look at more closely
in the next chapter, is the spawning and maintenance of the belief state in the
Gazebo physics simulator (Koenig and Howard, 2004). Although in the current
chapter it is used purely as a visualization platform for the global belief state
(images in the figures were generated from Gazebo), it served as an entry point for
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future research on the possibilities that arise from having a constant connection
between how a scene looks like and how a robot “imagines” it to look like. Recent
advances in 3D engines that aim at creating more realistic renderings (Weichao
et al., 2017) allow for off-screen renderings of the belief state to be used for
adapting perception components of robotic agents.
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CHAPTER 6

Variations of Episodic Memories for Prospecting

Roadmaps for the future development of robotics (US Roadmap, 2016; Bischoff
and Guhl, 2009) present a variety of different application tasks, in a variety of
different environments and with a variety of different robots. One of the big
challenges raised by these technology roadmaps is the question of how the necessary
programming for all different combinations of robots, tasks and environment can
be accomplished. Being inspired by human learning, a promising approach is
to enable robots to transfer knowledge between tasks. Humans are impressively
capable at doing this, that is, we identify relevant knowledge from previous tasks,
transfer this knowledge to new tasks and do adaptations, if necessary.

Adapting the object recognition and detection modules of mobile robots to new
objects or new environments can be a time consuming task. In order to alleviate
this process, in this chapter I propose enabling robots with the ability
to relive variation of past experiences and automatically adapt their
object detection and recognition capabilities through this process. The
proposed ability can be seen as a way towards achieving prospection. Prospection
is described by Vernon (2014) as one of four forms of internal simulation that
are directly related to key roles of memory in cognition and he defines it as:

“ the brain’s ability to experience the future by simulating what it might
be like. ”

Artificial Cognitive Systems, David Vernon
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Figure 6.1: Real scene and variations of it
rendered using a game engine

This means that achieving prospec-
tion entails the realization of an in-
ternal simulation process, which re-
quires mechanisms for perceptual im-
agery (Vernon et al., 2015). Further-
more, Vernon describes a strong link be-
tween episodic memories and prospec-
tion, that is, when re-living past expe-
riences, cognitive agents apply slight
variations to these. It is this latter ob-
servation that forms the basis of this
chapter. By enabling a robotic agent

to relive the past experiences and simulate possible future variations of these its
object recognition and detection modules are adapted such that queries about
unseen objects and constellations thereof are answerable.

Generating the perceptual imagery that depicts how future scenes might look
like is realized with the use of state-of-the-art simulators that are capable of
generating high-quality image data. The constellation of scenes that serve as the
source for generating these images are taken from episodic memories of a robotic
agent, gathered during the execution of a task. Variations of the task and the
scenes perceived are generated based on background knowledge about the objects,
and data is gathered with the purpose of learning new models for detection and
recognition. For practical purposes we can also manually define how a scene
should look like. In this case the object constellations are given by the application
developer. In both cases the images generated represent possible future states of
a world the robot is operating in. Example images that are variations of what the
robot currently sees are exemplified in Figure 6.1.

In this chapter I will detail how the episodic memories are used to render
new scenes and use these to improve its object recognition and detection mod-
ules. Specifically, memories of a PR2 robot performing pick-and-place tasks in a
kitchen are used to automatically generate task-specific training data with ground
truth annotation for new environments and new objects. The approach can be
summarized as follows: robotic agents recreate scenes from the robot memory as
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photo-realistic environments in a game engine. This representation allows for vary-
ing the scenes by removing objects, adding others, repositioning and substituting
them. In order to generate scenes that are more realistic, background knowledge is
used to substitute objects by semantically similar ones. The gathered images are
used to train new supervised learning algorithms that are then applicable in the
real world. The chapter is based on work originally presented in Bálint-Benczédi
and Beetz (2018).

6.1 Motivation

Consider a household service robot that has learned to perform a task in a specific
environment and has mastered it to the level that it is ready to be deployed in
application-specific scenarios. The task could be anything from the assembly of
furniture pieces (Knepper et al., 2013) to table setting in a home (Beetz et al., 2011).
The question immediately arises: how do we ensure that the robot copes with the
wide variety of objects it will encounter? In most cases, even for small changes
in an object’s visual appearance or in that of the environment, the perception
routines have to be adapted in order to compensate for these. This is not desired
since, depending on the perception component, such a process can take a prolonged
period of time. One possible way of addressing the complexity introduced by a
high number of classes is through recognizing object affordances (Varadarajan
and Vincze, 2012) based on various geometric features and functional parts of
objects. We can go as far as learning how to substitute these objects with similar
ones (Abelha et al., 2016), based on a task we want to execute.

Recent advances in computational power have enabled researchers to use
simulation and 3D rendering more prominently to teach robots about objects
and their appearance. Two related approaches are presented by Mozos et al.
(2011) and Wohlkinger et al. (2012). In both of these the authors use CAD
models from the world wide web and 3D renderings of these in order to learn to
distinguish between geometric classes of objects. Another interesting approach
is taken by Abelha and Guerin (2017), where they use the Gazebo simulator in
order to find substitute objects for certain manipulation tasks.

Another way to address the issue of transferring perception from one task to
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another is through collecting massive databases of images and applying learning
algorithms to disambiguate between a large number of object classes (Deng et al.,
2009). Although these latter approaches are promising and have made huge strides
towards human-level recognition rates, they obviously do not address the full
spectrum of problems that robot perception is facing. Unfortunately, there is
a discrepancy between the data that is used to train these classifiers and the
images that robots see. We have seen in previous chapters and recent studies
have also shown (Durner et al., 2017; Reza Loghmani et al., 2018) that there is a
considerable drop in the performance of learning algorithms when deployed on
mobile robotic platforms. The problem lies in the fact that a lot of the available
datasets are biased towards how we as humans take photographs (in focus, object
of interest centered, clearly visible, etc.), whereas in case of a mobile robotic
platform the visual data is often out of focus, objects are seldom positioned in
the center of view, can be cut off at the edges, etc.

In this chapter I aim at combining the two latter approaches. Recent advances
in game engine technologies have made it possible to render photo-realistic images
of an environment, and this realism of the game environments is becoming
better and better. Weichao et al. (2017) introduced UnrealCV, a plugin for the
Unreal game engine that allows easy collection of ground truth data and realistic
renderings of the world. The plugin returns off-screen renders of the RGB, depth
and object mask images, such that it is straightforward to find objects in the raw
data. In addition, as part of the RobCoG project (Haidu et al., 2018) the necessary
software tools for grabbing images and interfacing with ROS are continuously
developed. Through the combination of these technologies, the perceptual episodic
memories gathered through the mechanisms presented in Chapter 4 are offloaded
to a game engine and scenes that are similar to how robots see the world are
generated and used to adapt the internal models of the agent to recognize novel
objects that it has never encountered in the real world before.

6.2 System Overview

An overview of the steps the proposed approach consists of is depicted in Figure 6.2.
First, perceptual episodic memories are collected using a mobile robotic agent while
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Figure 6.2: Overview of the system architecture generating variations of episodic memories,
showing main components and the flow of data between them

it is performing a task. This is achieved using RoboSherlock and the storage
component detailed in Chapter 4. The perceptual episodic memories consist of
the images, the objects found in these images and the metadata associated with
these. It is important that during task execution a perception pipeline that asserts
symbolic knowledge about the world is run. Using a visualization tool, as the
likes of openEASE (Beetz et al., 2015c) or the one presented in Chapter 4, these
results are inspected and erroneous results corrected. Generally speaking this
correction can happen in multiple ways. Durner et al. (2017) for instance present a
system which can perform semi-automatic labeling of robot data, where the system
prompts the user for validating its beliefs after execution. Mechanisms like this
can easily be integrated into a robotic system’s control framework. Once the logs
are corrected, the system looks at the objects that the specific task involved, finds
alternative replacements for them and generates a set of variation configurations.
Based on these configurations, images are off-screen rendered in order to generate
variations of the original episodic memory. These variations are logged using the
same methodology as with the real robot, but this time the ground truth is “for
free”, the labels coming from the models that were loaded in the game engine.
Once the data has been generated, supervised learning techniques are applied
in order to improve or adapt the robotic agent’s perception algorithms. Each of
these components will be presented now in detail.

157



Chapter 6. Variations of Episodic Memories for Prospecting

6.2.1 Logging and Correcting Logs

Recording the perceptual episodic memories of mobile robots during the execution
of various tasks has been presented in Chapter 4. Let us briefly recapitulate what
was introduced. The RoboSherlock framework offers a web based inspection
interface with a semantic query language that allows easy retrieval and inspection
of perception results. The perceptual episodic memories contain all the information
that is necessary to replay perception events that occurred while performing a task,
and are indexed based on a global timestamp. This information includes robot
positions, raw images, features that were extracted, objects that were classified,
regions of interest where objects were found, etc. The metadata about each image
is stored in a collection called scenes. A scene consists of an array of object
hypotheses, a list of believed objects in the raw data at a particular timestamp.
Each object hypothesis has a list of annotations storing symbolic and numeric
information.

The web-based inspection interface allows the addition of ground truth data
to the list of annotations and the possibility to correct this ground truth in the
case of automatic labeling. In this case, under ground truth data, unique labels
for each individual instance of an object that was found during task execution are
understood. As we will see later it is important that these labels are grounded in
a symbolic representation or at least can be easily mapped to a symbol from the
knowledge base.

The episodes are stored in a schema-less database (MongoDB), in a way that it
is easy to serialize and de-serialize from native RoboSherlock data structures
to these.

6.2.2 Generating New Variations

In order to generate new variations of a task the set of objects that were used
during the task have to be retrieved. If the robot was maintaining a belief state
about the objects, this is straight forwards. Otherwise, the corrected ground truth
labels are used and the list of objects is created manually.

The first step in generating the variations is to find a set of similar objects that
can be used to replace the ones in the recorded memory. Representing objects
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Figure 6.3: Part of the object ontology used in our experiments

in a taxonomy is beneficial in this case. Since in RoboSherlock objects are
represented in the ontologies defined in KnowRob (Tenorth and Beetz, 2013), as
it was presented in Chapter 3, similar objects are found by searching these. An
example of some of the objects from the ontology is presented in Figure 6.3.
Generating replacement objects based on the ontology ensures that the variations
are more realistic, since they are selected based on a semantic similarity measure.
The semantic similarity is calculated using the Wu-Palmer Similarity (Wu and
Palmer, 1994), more commonly referred to as the wup similarity, defined by:

wup(a, b) = 2 ∗ depth(lcs(a, b))
depth(a) + depth(b)

where lcs stands for the lowest common subsumer of a and b. Based on this
similarity, a pool of objects is retrieved that are good candidates for replacing the
ones from the episodic memory. Choosing wup similarity instead of alternative
semantic similarity measures, such as shortest path, ensures that objects that
are deeper in the ontology (under the same lcs) are more similar to each other.
Table 6.1 shows the wup distances for the objects from the part of the ontology
shown in Figure 6.3. Depending on the similarity threshold chosen, greater or
lower variety of scenes can be allowed. For instance, ‘DairyMilk‘ products can
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Object pair Distance
wup(JaMilch, WeideMilchSmall) 0.873
wup(SojaMilch, WeideMilchSmall) 0.823
wup(AlbiHimbeerJuice, PfannerGruneIcetea) 0.875
wup(JaMilch, PfannerGruneIcetea) 0.75
wup(SojaMilch, PfannerGruneIcetea) 0.75
wup(JaMilch, LionCerealBox) 0.636
wup(LionCerealBox,SpitzenRice) 0.75

Table 6.1: wup distance examples from the knowledge based

be replaceable by soy milk, but not by juices. In the experiments conducted,
the threshold has been chosen such that only the closest object alternatives are
considered.

Algorithm 3: Generating a set of variation configurations
Data: SeedEpisodes, Ontology, nrOfVars
Result: variation = []
for episode ∈ SeedEpisodes do

obj-list ← getListOfObjectsFromEpisode();
obj-alternatives = ;
for obj ∈ obj-list do

obj-alt = getObjectAlternatives(Ontology);
obj-alternatives[obj] = obj-alt

end
idx = 0;
while nrOfvars > idx do

current-config = ;
for obj ∈ obj-alts do

current-config[obj] = randomSamp(obj-alts[obj]);
end
Variations[idx++] = current-alternatives

end
end

When generating a new episode configuration, new objects are randomly
sampled out of the possible alternatives, with the additional possibility that
objects can also be removed. This is shown in Algorithm 3.

160



6.2. System Overview

6.2.3 Generating New Episodes

The actual generation of the new episodes based on the variation configurations
happens using the game engine utilized by the RobCoG (Haidu et al., 2018)
project and RoboSherlock. The objective of RobCoG is to equip robots with
commonsense and naive physics knowledge using games with a purpose. In the
games, users are asked to execute various mundane tasks in different scenarios.
One of these scenarios is a realistic kitchen environment with objects of daily use,
which makes it a perfect fit for the tasks investigated in this chapter. RobCoG
offers extensions to communicate through ROS1 and also offers a wrapper for
UnrealCV2, in order to stream images over the network. These two extensions
are essential for the generation of the variations using RoboSherlock.

The episode generation is partly implemented in RoboSherlock and partly
as a plugin for the RobCoG system. Modules in RoboSherlock are responsible
for generating the variation configurations described in the previous subsection,
for reading the data from episodic memories and communicating these to the
generator module. The data consist of positions of objects, and position of the
camera. In order to increase the diversity of the variations, a small amount of
noise is added to the poses of objects. Additionally, random positions of the
camera are also generated. Based on the location of the robot’s camera from the
logs, a set of possible locations on the surface of a sphere that is defined by the
center of supporting plane and camera location are generated. Each time the
camera position is sent to the simulator, a location is randomly sampled from this
sphere.

The plugin developed for the RobCoG system, offers basic interfaces for
spawning and moving objects and the virtual camera. These interfaces are
implemented as standard ROS communication protocols. The images from the
virtual camera are streamed back to the RoboSherlock framework, and are
written to the CAS using a Collection Reader specifically created for this purpose.
Logging these variations happens exactly the same way as it does with real data,
except that in this case the ground truth encoded in a mask image is additionally
stored.

1https://github.com/robcog-iai/UROSBridge
2https://github.com/robcog-iai/URoboVIsion
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Once it is consider that enough variations of a scene were generated, the
newly logged rendered images can be retrieved and supervised learning techniques
applied to them in order to adapt the robotic agent’s object recognition and
detection methods.

6.3 Experimental Analysis

To analyze the benefits of prospection, I examine two distinct cases. First, I
look at how the episodic memories enable the adaptation of perception skills to
new objects. Second, I will present how the proposed extensions can be used to
generate images of manually defined scenes and learn probabilistic models from
them.

6.3.1 Learning from Episodic Memories

In order to evaluate the proposed approach, two (E1, E3) plus two (E2, E4)
episodic memories of a PR2 robot picking and placing objects from one tabletop
to another were collected. The episodes contain 18 different instances of objects
with class labels and segmentation masks as ground truth. Data was acquired
using the Kinect Xbox v1 sensor that is the standard sensing device on the PR2.
Episodes E3 and E4 are real world variations of E1 and E2, respectively. On
average there are 35 scenes per episode containing around four objects per scene
(during the task itself, objects disappear and reappear in consecutive scenes). To
simplify the collection of data, picking and placing of objects was performed by a
human. The robot was localized using adaptive Monte-Carlo localization3 in a
previously acquired 2D map of the environment. Taking the original two episodes
as source, the recognition models of the robot are adapted to detect and recognize
the objects in the real-world variations. Specifically two perception techniques
that are popular in robotics are detailed:

• recognition of objects on tabletop scenes, using classifiers trained from
turntable data,

• semantic segmentation of the scenes using convolutional neural networks.

3wiki.ros.org/amcl
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(a) Episode 1 (b) Episode 2

Figure 6.4: Pool of objects generated from the source episodes

Figure 6.5: Pick-and-place task performed by the robot: view from camera mounted on the robot
(1st row), variation of the task rendered from the belief state in Unreal (2nd row)

For both of these experiments variations of the seed episodes need to be
generated. E1 and E2 contain in total nine objects of various shapes and visual
characteristics. These objects are all represented in the KnowRob ontology.
Performing a similarity search based on the wup distances, conditioned on the
existence of CAD models, yields a list of 31 candidate objects (this includes the
original nine from E1 and E2). A list of the alternative objects is shown in
Table 6.2 and their respective CAD models rendered using Unreal are visible in
Figure 6.4.

A variation consists of randomly picking an alternative for each object from
the episode with the option that objects can also be missing from the scene. A
total number of 100 variations (50 for each episode) were generated based on
E1 and E2, keeping E3 and E4 for testing purposes. This results in a total of
3887 scenes containing 8970 views of the objects. One such variation is shown
in Figure 6.5.
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Object in E[1-2] Alternatives

EdekaRedBowl WhiteCeramikIkeaBowl
RedMetalBowlWhiteSpeckles

VollMilch
WeideMilchSmall

JaMilch
SojaMilch

BluePlasticSpoon RedPlasticSpoon
LargeGreySpoon

LionCerealBox

NesquikCereal
KelloggsToppasMini
KoellnKnusperHonig
KnusperSchokoNuss
KelloggsCornFlakes

AlbiHimbeerJuice PfannerGruneIcetea
PfannerPfirsichIcetea

BlueMetalicPlateWhiteSpeckles YellowCeramicPlate
RedMetalPlateWhiteSpeckles

RedPlasticKnife BluePlasticKnife

CupEcoOrange
BlueIkeaMug

LinuxCup
RedMetalCupWhiteSpeckles

MeerSalz JodSalz
MarkenSalz

Table 6.2: Objects from E1 one and E2 and their alternatives

Object Classification

One of the most common approaches for recognizing objects in robot perception is
a bottom-up approach where first candidate objects are generated using segmen-
tation algorithms, feature descriptors are extracted for these object candidates
and finally based on these descriptors class labels are attached to the candidate
objects (Rusu and Cousins, 2011). For this experiment the second step of this
process is of interest (hence the non-cluttered scenes), more precisely, how does the
same classifier behave if we train it with data obtained solely from the variations
compared to data obtained with the help of an RGB-D sensor and a turntable.

To be able to compare results, partial views of the objects from Episodes [1-4]
used in the experiments have been collected using a similar setup to that of the
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(a) Trained on data from variations (b) Trained on turntable data

Figure 6.6: Confusion matrices of k-NN trained on different datasets, tested on data from episodes

Universityof Washington RGB-D dataset Lai et al. (2011). Data was recorded
using an Asus Xtion RGB-D sensor positioned at around one meter distance from
a turntable at three different angles. The angular step of the turntable was set to
5 degrees. Description of the data and its acquisition are detailed in Appendix B.

For comparison, two k-NN classifiers were used with DeCAF7 features trained
on ImageNet2012 (Donahue et al., 2014). One, using the data from the turntable,
and another one, using the 8970 views of objects rendered from unreal. Testing in
both cases was done on the partial views of the 18 objects from the four episodes
collected from the robot. Performance metrics of the classifiers are reported
in Table 6.3 and the confusion matrices shown in Figure 6.6. While results
using only the data from the variations are not as good as the ones achieved on
the real data, they are within a reasonable margin. These results could further
be improved by using different features, better classification schemes or adding
noise to the artificial data, compensating for the difference in color space. The
results demonstrate that training robotic agents with the data resulting from
the variations alone is feasible and by fine-tuning parameters better performance
could be achieved. Note that the metrics and confusion matrices are calculated for
16 object instances, since for two of the objects (‘LionCerealBox‘ and ‘JodSalz‘)
due to the bad quality of the CAD models none of their instances in the episodes
got recognized, which highlights the necessity of high quality CAD models for
this approach to be applicable.
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Data Precision Recall Accuracy F-Score
Turntable 0.96% 0.94% 0.94% 0.94%

Unreal Variations 0.90% 0.83% 0.83% 0.84%

Table 6.3: Performance metrics of the k-NN classifier using data collected from an Asus Xtion
RGB-D camera and a turntable and the data from the variations in Unreal

Semantic Segmentation

In a second experiment I investigate how end-to-end learning on the rendered
images can be applied to real world robot data. In recent years deep learning has
been dominating the trends in computer vision research. One approach favored by
many is called YOLO (Redmon and Farhadi, 2016), because of its simplicity, good
results on standard datasets and most prominently, for its fast inferencing. This
latter makes it applicable in the close to real-time demands of mobile robotics.
YOLO is a semantic segmentation algorithm, so it infers both bounding boxes
and semantic labels at the same time.

To retrain the network, the initial weights were took from a model that was
trained on ImageNet (Deng et al., 2009) and is supplied with the framework. The
data generated through the variations was split in two: 80 variations are used for
training, while 20 are used for testing. In addition to these, several experiments
in varied configurations of the training and testing data using the four episodes
from the robot were conducted.

The results of these different configurations in terms of IoU (intersection
of union) and recall are reported in Table 6.4. Since this study server as a
proof of concept, the amount of training data was kept low. For this reason the
same metrics are reported at different epochs, in order to illustrate that after
a certain number of iterations the network simply over fits the model to the
data. The general trend is that both IoU and recall decrease as the number of
epochs decreases. We observe that adding the two episodes used as seeds for the
variations to the training data, increased the performance of the system. This
is expected since the average mean of the images, calculated during the training
process, will take into consideration the color space of the real images as well.

The mean average precision per object in the test data is reported in Table 6.5.
In the case of the first test the model was trained with 80 unreal variations and
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Training Data Testing Data Epochs IoU Recall

80 Var

20 Var

45k 89.17 % 98.86 %
20k 86.11 % 99.26 %
10k 85.39 % 99.13 %
1k 71.30 % 91.32 %

4 Robot Episodes

45k 80.83 % 99.42 %
20k 80.41 % 97.98 %
10k 78.16 % 97.69 %
1k 67.88 % 88.76 %

80 Var + 2 RE

20 Var

45k 89.68 % 98.82%
20k 88.39 % 99.13 %
10k 85.82 % 98.99 %
1k 79.11 % 97.18 %

2 Robot Episodes

45k 84.47 % 99.37 %
20k 83.85 % 100 %
10k 81.44 % 100 %
1k 74.6 % 98.1 %

Table 6.4: IoU and Recall of YOLO trained with different data sets: Variations of the original two
scenes (Var), and variations combined with Robot Episodes (RE)

tested with the four robot variations. During the second test, the model was
trained with 80 unreal variation plus episodes one and two and tested on E3 and
E4. In both cases the same behavior is observable. Although the good mAP
scores (mean average precision) using only the training data from unreal are
not negligible, performance metrics improve when using real images during the
training process.

These two experiments clearly show that it is not only possible to use the
photo-realistic renderings from modern game engines to (re-)train perceptual
models of robotic agents, but that it is possible to achieve results that compete
with real-world datasets.

6.3.2 Probabilistic Scene Understanding

As a last experiment I investigate how an ensembles of expert system can be trained
to recognize objects using a manually defined set of scenes and rendered images
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Object Test1 ap [%] Test2 ap [%]
BlueCeramikIkeaMug 98.27 % 100 %
BluePlasticKnife 100 % 100 %
JodSalz 69.7 % 100 %
NesquikCereal 100 % 100 %
PfannerPfirsichIcetea 99.57 % 100 %
RedMetalicPlateWhiteSpeckles 100 % 100 %
RedPlasticSpoon 77.92 % 98.93%
WeideMilchSmall 100% 100%
WhiteCeramikIkeaBowl 98.4 % 100%
mAP 93.76% 99.88%

Table 6.5: Average precision of objects after 10k epochs for two test cases.

thereof. We have seen how probabilistic understanding of scenes is of particular
interest when presenting the knowledge-based query answering component in
Chapter 3, since Primitive Analysis Engines can return often contradictory results.
A proposed solution is a CAS Consumer that uses Markov Logic Networks (MLNs),
to handle uncertainty and merge results from multiple sources (Section 3.4). As
with most supervised learning algorithms, one of the challenges in training an
MLN is the availability of good quality data. This is especially the case for the
proposed probabilistic approach here. Since it is an ensemble based learning
problem, it requires data that has been annotated by the same algorithms that
are going to be used during run time, in order for it to capture the behavior
of each expert. If an MLN trained on data obtained from expert algorithms
that run on synthetic images is transferable to real images, the training (and
therefore applicability) of the probabilistic models becomes significantly easier to
accomplish.

The experiments presented here were conducted jointly with Dominik Dieck-
mann (Dieckmann, 2018) as part of his bachelor thesis under my guidance. I start
by detailing how the data was generated, followed by an experimental analysis of
the MLNs trained using this data. Contrary to the previous two experiments, the
MLN is trained to detect object classes instead of object instances. In order to
analyze the plausibility of using off-screen rendered images to train the classifiers
the performance of the trained model using several combinations of synthetic and
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Figure 6.7: Three images of the same scene rendered from different viewpoints

real training and testing data will be analyzed.

Data Generation

Two similar sets of images, depicting typical kitchen scenes were recorded, one
using a custom plugin for generating synthetic images from the Unreal game
engine and one using the PR2 robot for gathering real images.

Unreal Images Synthetic images were recorded similarly to the experiments
before, using custom plugins developed for the Unreal game engine. The same
methodology was used as for the variations of episodes, except that the object
constellations in the scenes were manually arranged. Using this setup 114 scenes
were created, each containing two to five objects and for each scene images were
rendered from five different viewpoints. Example of a single scene from different
viewpoints is shown in Figure 6.7. Additionally each scene is labeled as one of
three types: breakfast, cooking or fridge, following the example from Section 3.4.
Scene type is a valuable additional source of information for identifying objects,
since objects tend to be grouped together based on the scene they are found in.
For example one would not expect to find a toaster in a refrigerator and finding a
plate in a scene can signal that there might be cups and cutlery in it, as well.

Real Images In order to test the approach, images of real scenes were also
recorded using a PR2 robot operating in a kitchen environment. The objects are
the same as the ones used for generating the synthetic scenes. We have arranged
114 distinct scenes and recorder images from three different viewpoints for each.
One of the scenes is shown in Figure 6.8. The images of the scenes were manually
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Figure 6.8: Example of a real scene

annotated with ground truth using the web tool from Chapter 4.

Training a Markov Logic Network

Annotator MLN-predicate Domain
Cluster3DGeometry-
Annotator

size(cluster, size) small, medium, large

PrimitiveShape-
Annotator

shape(cluster, shape) box, round, flat

ClusterColor-
HistogramCalculator

color(cluster, color) red, yellow, green, cyan,
blue, magenta, white,
black, gray

GogglesAnnotator goggles Logo(cluster,
logo)
goggles Text(cluster,
text)
goggles Product(cluster,
product)

variable

RfAnnotator shape(cluster, shape) box, cylindrical, disk, flat,
sphere, other

SVMAnnotator instance(cluster, i) Instance classification
UnrealGTAnnotator object(cluster, object) Class name

Table 6.6: Overview of annotators and their respective generated predicate

First the synthetic scenes are used to train and test an MLN. This is done
by running a custom perception pipeline on the generated synthetic data. The
logical predicates generated by Primitive Analysis Engines (PAEs) are presented
in Table 6.6. Most of the annotators used for generating the predicates are the
same as the ones presented in Section 3.4 Table 3.2, the only difference being that
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LineMod has been replaced by the SVMAnnoator for labeling object instances
and an additional classifier (RFAnnotator) is used to detect the shape of an
object (trained on a subset of the RGB-D dataset (Lai et al., 2011) using VFH
features (Rusu, 2009)).

Additionally to the predicates in the table, the scene predicate is defined,
specifying one of the three types of scenes we have defined: dom(scene) =
{breakfast, cooking, fridge}. Ground truth is automatically added with the help
of the UnrealGTAnnotator, using the object predicate. The object predicate is
defined as follows: object(cluster, object!) and specifies the true type of an objects.
The ! operator specifies a functional constraint, specifically that there can always
be only one atom that is true for the object predicate. This makes sense, since an
object should not belong to two classes at the same time.

The following formulas define the relations between the predicates and object
classes:

w1 shape(?c, +?sha) ∧ object(?c, +?obj)

w2 color(?c, +?col) ∧ object(?c, +?obj)

w3 size(?c, +?size) ∧ object(?c, +?obj)

w4 instance(?c, +?inst) ∧ object(?c, +?obj)

w5 goggles Logo(?c, +?comp) ∧ object(?c, +?obj)

w6 goggles Text(?c, +?text) ∧ object(?c, +?obj)

w7 goggles Product(?c, +?prod) ∧ object(?c, +?obj)

w8 scene(+?s) ∧ object(?c, +?obj)

w9 object(?c1, +?t1) ∧ object(?c2, +?t2)∧?c1 = / =?c2

Training of the MLN is done using the pracmln framework4. The procedure
follows the same setup as in Section 3.4. The MLN is trained using Discriminative
Pseudo-likelihood Learning with Custom Grounding. The discriminative variant
of the learning algorithm is chosen because of its faster learning times. As a
requirement, when asking the MLN for results, predicates must either be part

4www.pracmln.org
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of the evidence or the query. Since classifying the objects is the main goal,
the queries contain only the object predicate. Thus, for testing, the conditional
probability P (object | E) needs to be calculated. The evidence E is generated
from the scene using the same sequence of primitive AEs, as it was done for
training. Inferencing is done using the WCSP algorithm. WCSP calculates the
Most Probable Explanation (MPE), so it will not calculate the full conditional
probability, but it will estimate the most probable solutions, given the evidences.
WCSP transforms the instantiated MLN into a weighted Constraint Satisfaction
Problem.

Figure 6.9: Confusion matrix of the ten-fold cross-validation using the synthetic data

To evaluate the trained model ten-fold cross-validation is performed. Results
of the cross-validation are shown in Figure 6.9 and Table 6.7. Overall a high
accuracy is achieved, but also values of over 90% for precision, recall and f1-score.
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Oject accuracy precision recall f1score
Bowl 0.99 0.95 0.98 0.97
BreakfastCereal 1.0 1.0 0.98 0.99
Buttermilk 1.0 1.0 1.0 1.0
Coffee 1.0 1.0 1.0 1.0
Cup 1.0 1.0 1.0 1.0
DinnerPlate 0.99 0.95 0.95 0.95
DrinkingBottle 1.0 0.89 0.91 0.9
DrinkingMug 0.99 0.97 0.9 0.94
Fork 0.99 0.89 0.89 0.89
Juice 1.0 1.0 0.98 0.99
Knife 0.99 0.86 0.87 0.86
Milk 0.99 0.97 0.98 0.98
PancakeMaker 0.99 0.83 1.0 0.91
PancakeMix 1.0 0.91 0.93 0.92
Rice 0.99 0.87 0.91 0.89
Spatula 1.0 0.91 0.91 0.91
Spoon 0.99 0.94 0.89 0.92
TableSalt 0.99 0.94 0.9 0.92
Tea-Iced 0.99 0.98 0.95 0.96
TomatoSauce 0.99 0.91 0.92 0.91
Total 0.95 0.95 0.95 0.95

Table 6.7: Classification results per object class for the ten-fold cross-validation trained and tested
on synthetic data

To better illustrate the way the combination of results from multiple expert
algorithms improve performance the same ten-fold cross-validation is performed
with individual predicates in isolation. Results of these are shown in Figure 6.10.
These results were generated by training and testing, using only one of the
predicates in addition to the scene predicate.

We can notice that for the predicates color, shape and size certain object
classes are preferred. The number of preferred classes strongly correlates with
the size of the domain for each predicate. For example, there are nine values the
predicate color can take, and we can notice from the confusion matrix that most
objects are classified as one of nine to ten classes. For shape and size the same
can be noticed. Overall these results show how the annotators are complementary
and that only through combining their results can we achieve a better output.
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(a) Color (b) Shape

(c) Size (d) Instance

Figure 6.10: Confusion matrices of the ten-fold cross-validation performed on rendered images
with each predicate considered in isolation
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Experiment accuracy precision recall f1score
Random Forest 0.94 0.67 0.6 0.57
MLN ten-fold cross-validation 0.95 0.95 0.95 0.95
MLN tested with real images 0.98 0.78 0.76 0.76
Mixed training of MLN 0.98 0.91 0.9 0.9

Table 6.8: Summary of the resulting performance metrics from each experiment

Testing with Real Images The goal of the experiments is to study how per-
ception modules adapted or re-trained using images gathered through prospection
behave when put to test on the real robot. As a next step the MLN trained using
only the synthetic data is tested using the images of the real scenes. Results
of the classification are shown in the confusion matrix from Figure 6.11. The
accuracy for all classes is over 90% and the values of precision, recall and f1-score
are also mostly above 70%. Results are slightly worse than in the case of ten-fold
cross-validation performed on the synthetic data, the classifier confusing some of
the object classes. This is to be expected since there is a noticeable difference
between the rendered and real images and some of the CAD models of objects
used for rendering are either of poor quality or do not resemble the real objects.
Nevertheless the results are promising and are comparable to the ones reported in
previous work (Nyga et al., 2014) where the experiment was conducted using only
real images.

As a last experiment, in order to improve the performance, a part of the real
images is used during the training of the MLN. Specifically, one third of the
images recorded using the robot were randomly chosen, totaling a number of 684
images in the training set, with a remainder of 228 images for testing.

The results of this last test, as well as all others before are shown in Table 6.8.
Accuracy is slightly improved, but more importantly we can notice a significant
improvement in all of the other metrics. Most sources of confusion are eliminated
through the mixed training set, for example for objects where the 3D model was
significantly different from the real object.
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Figure 6.11: Confusion matrix of object classification using an MLN trained on data from
generated images and tested on the real images

6.4 Conclusion

In this chapter I have presented a system that enables robotic agents with the
capability of imagining future possible scenes in order to adapt their object recog-
nition and object detection capabilities. This is achieved by taking the perceptual
episodic memories of a robotic agent and off-screen rendering photo-realistic,
plausible variations of these. Experiments conducted demonstrate that the data
generated through these variations is usable for learning new object detection
models that achieve good results on real-world data. The work does not only open
new possibilities for training robots how to recognize objects in new scenarios,
but can also be considered a first step towards learning common sense knowledge
about the objects. Generating vast amounts of data for challenging perceptual
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problems where new objects appear or drastically change visual appearance during
task execution are a real possibility, being limited only by what is readily available
in the game scenarios. Introducing game engines in the way we teach robots about
our environment will radically change the way robotic applications are developed.

The prospection capabilities discussed in this chapter are still limited to simple
object recognition tasks. There are several improvements that one can identify.
Neither were the capabilities of the unreal engine used to its fullest potential, nor
were the consequences of different approaches for variations thoroughly investi-
gated. Renderings of the images can be made better, object models made more
realistic, different methodologies of how to introduce variations investigated. For
instance, how would semantic segmentation perform if instead of the objects we
start varying the environment. Common-sense knowledge could be automatically
learned by introducing the actions of the robot in the loop, for example, learning
the perceptual consequences of actions performed on certain objects (e.g. pouring,
opening a container, stacking, unstacking objects, etc.). The contributions of
this chapter open up a vast possibility for future research in robotic perception
systems.

From a query-answering perspective the generated images are usable as direct
input for a perception system created using RoboSherlock. This enables
answering any kind of query about the imagined scenes. By running the variation
generation live during the operation of the robot question formulated in the
proposed query language are answerable. The query language was also extended
to give control over the synthetic scenes to the outside users. Example of this will
be presented in the concluding chapter.
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CHAPTER 7

Conclusion and Future Work

In this thesis I proposed to treat visual perception for robots performing everyday
manipulation tasks as an open question-answering problem. In this context
visual perception problems that robots encounter during their operation, are
formulated as questions that need to be answered and are a function of three
major components: the observations, the query and the current beliefs about the
world the robot is operating in (Equation 2.1). In order to formulate perception for
everyday manipulation tasks as a question-answering problem, a task adaptable,
pervasive perception framework was proposed that relies on relevant knowledge
about the tasks and the environment to be explicitly represented. To analyze the
solutions proposed in the thesis, in this chapter I examine the contributions along
two lines of thought: first, how the requirements of perception systems identified
in Chapter 1 were met and, second, how these serve the purpose of realizing an
open question-answering system.

7.1 Retrospect

In the introductory chapter of the thesis I identified several requirements that
robot perception systems should fulfill, if we are to have robots that scale towards
complex human-level manipulation tasks. We have already looked at how subsets
of these conditions are met in the individual chapters, so let us now summarize
these. Perception systems created using the RoboSherlock framework, when
used for service robots performing everyday manipulation tasks, are:
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R1: task adaptable; Adaptability of the system to the current perception task
is achieved through the combination of multiple modules. First and foremost,
during operation, the query interface introduced in Chapter 2 serves as a
means for conveying what the high-level control system of the robot expects
to perceive. Questions are formulated using the proposed query language
that covers a large variety of perception tasks, such as detection, inspection
or tracking and is meant to be extensible if needed. The query interface is a
key part in creating a task-adaptable system, but it is not the only one. The
ensemble of experts approach (R3) is also an integral part, since it allows
for the development of specialized perception routines. So is the fact that
these experts are represented in a symbolic knowledge base, and as such
the system is able to reason about when to execute which expert algorithm
(R2).

R2: enhance perception with knowledge and reasoning; Chapter 3 pre-
sented in detail how knowledge representation and reasoning are an integral
part of the framework. Description logic is proposed as the means for formal
representation of knowledge about the objects, the environment and most
importantly the perceptual capabilities of RoboSherlock. Since this
representation is not standalone but part of a bigger framework, namely
KnowRob, it allows for reasoning not just about objects and algorithms
that detect these but also about robot capabilities, semantic locations
or object class properties. The mandatory configuration files in the Ro-
boSherlock framework ensure that all perception algorithms that get
implemented are represented in the knowledge base and can be reasoned
about.

R3: equipped with ensembles of experts; As we have seen throughout the
examples in this thesis, when perceiving the environment in which the robot
operates multiple algorithmic solutions, referred to as experts, are needed to
perceive different visual characteristics. Since RoboSherlock is based on
Unstructured Information Management (UIM), using ensembles of expert
approaches is one of the core features of the framework. The proposed
probabilistic fusion of results using Markov Logic Networks (Sections 3.4
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and 6.3.2) offers a powerful method for combining the results of these expert
algorithms. With the recent advances in deep convolutional neural networks
more and more specialized object detectors can be trained. The expert
based framework presented in this thesis offers a general way for integrating
these into robotic perception systems.

R4: incorporate beliefs maintained about the world; The preparatory
amortized perception system, described in Chapter 5, proposes a promising
way for incorporating past percepts into the decision making process. The
belief state, together with the recording of perceptual episodic memories from
Chapter 4 are both meant to ease the development of novel methods that take
into account the past percepts of a robot. I have shown three examples of
how beliefs are used to enhance perceptual capabilities: the aforementioned
preparatory amortized perception, the use of logged memories to adapt
perception experts and the use of recorded beliefs to enable prospection by
generating possible future scenes and learning from them. These subsystems
exemplify the importance of belief states in general and demonstrate their
central role in RoboSherlock.

R5: modular and extensible; Since RoboSherlock follows the processing
logic of UIM, it is highly modular. New sensors can be introduced by
defining new Collection Readers, any existing algorithm can be wrapped as
an Analysis Engine and CAS Consumers can easily be added, extending
current functionality. Since the focus of the research presented in the thesis
was mostly concerned with the development of components that use results
from existing state-of-the-art algorithms the framework was designed such
that extending it with new capabilities is straight-forward. The fact that
RoboSherlock is implemented as part of the ROS ecosystem makes it
easy to interface to and to split into several software modules.

The contributions of the thesis that address these requirements demonstrate the
potential that lies in treating robot perception for everyday manipulation tasks on
a system’s level. As we will see in the discussion about future work (Section 7.3),
a lot of the proposed modules in this thesis are enablers for further research in
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an integrated manner. Before we look at future prospects though, let us see how
the open question-answering capabilities of the RoboSherlock framework are
realized.

To examine the question-answering capability of RoboSherlock, recall the
scenario from Chapter 1 and the minimum set of questions a robot performing
everyday manipulation tasks needs to be able to answer, identified in Table 1.1.
The questions there are split in three categories: answering questions about the
past, the present and the future. In order to take a closer look at these types of
questions and see how they can be formulated using the query language introduced
in this thesis let us look at the breakfast scenario described in the first paragraphs
of Chapter 1.

Queries about the Past Thanks to the logging infrastructure and the exten-
sions of the query language described in Chapter 4, questions about what the
robot has seen can be issued to the perception system before actively searching
for an object. When fetching objects in a breakfast scenario this means that
the robot has to search less and can rely on what it has seen before to find the
objects to be placed on the table. Two features of the log-based query answering
extend the types of questions that can be handled: the custom keywords that
trigger computations and the knowledge integration. The latter allows for asking
the knowledge base for properties of objects (e.g. is the milk that I saw on the
table the right type, i.e. whole milk instead of soy). The computation-triggering
keywords allow for performing extra checks on the objects that were not computed
when the robot has seen them (e.g. is the object the right size, color etc.)

Queries about the Future Perhaps the most interesting aspect of the three
types of queries are the ones where a robot is supposed to answer questions about
the future. A truly cognitive system can only be achieved if it is capable of
anticipating the future states of the world. The prospection capabilities of the
framework, presented in Chapter 6, have the purpose of enabling this. The main
contributions are focused around rendering scenes off-line and adapting object
recognition and detection modules through simulation. Nevertheless the same
components are used to enable the spawning of the object belief state in the game
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engine environment and render images on demand by issuing queries using an
extended query language. For example the query:

( render ( a scene
( replace #objID1)
( cam-pose (stamped-pose (...)))))

tells the system to render a new image of a scene where one of the objects gets
randomly replaced and the virtual camera position is given. This example also
illustrates how the query language is extensible in order to afford new use cases.
As we will later discuss extending the query language for catering for prospection
tasks enables promising future possibilities.

Queries about the Present When it comes to robotic applications, queries
to the perception framework about what the robot currently sees are by far the
most frequent. These questions describe what the robotic agent is currently
expected to perceive and the answers enable the robot to manipulate the objects
and environment in which it is operating. The proposed query language from
Section 2.3.2 allows for a wide range of queries to be formulated, from detecting
functional parts of objects (e.g. lid of a contained) to tracking an object while
a manipulation action is performed (e.g. track the pouring of a liquid). The
descriptiveness of the language lets the high-level control system specify the
results that it wants to receive, reducing the number of false positives in the
process. The proposed query-answering interface is not without its downside.
Descriptiveness and flexibility come at the price of being more complex than
simple static interfaces, such as ROS services or actions. Many of the perception
queries used during current robot manipulation task are simple descriptions of
the object that needs to be manipulated and as such they could easily be replaced
by static interface definition. However, some of the objects, object parts or scenes
are more challenging and this is where having a more complex query interface
is a clear benefit since describing what the perception system should look for
introduces valuable background knowledge that simplifies the perception task.
Since the perception tasks are of various difficulties and the goal is to create
a perception system that can be deployed in diverse environments, declaring
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new static interfaces for each use case would quickly become difficult to manage.
Instead, extending the language with new terms or simply using the existing terms
to describe the problem keeps the interface unified.

7.2 Discussion

The presented capabilities of RoboSherlock have been tested in several ap-
plication scenarios where robot demonstrations took place, mostly within the
context of research projects. RoboSherlock was one out of many other robotics
software components (navigation, manipulation, planning, etc.), as part of an
integrated cognitive robotic system. These demonstration scenarios were very
diverse, and as such, developing the perception component offered a unique op-
portunity to test the different parts of the framework. The development processes
contributed greatly towards the current state of RoboSherlock, helping to
identify weaknesses, missing features or software bugs. They were also a great
opportunity to present the framework and get valuable feedback. Since a lot of
the lessons learned while developing these applications shaped the contents of this
thesis, I will now give a brief overview of the most significant projects and how
RoboSherlock was used in them.

(a) Raphael bringing
the spoon for Boxy.

(b) Boxy pouring
tomato sauce.

(c) Boxy bringing
cheese to the tray.

(d) Raphael bringing
the tray to the oven.

Figure 7.1: RoboHow demonstrator scenario:
parts of the pizza preparation experiment as

described by Beetz et al. (2016)

RoboHow The RoboHow project
(Beetz et al., 2016) investigated ways
of enabling robots to competently per-
form everyday human-scale activities in
human living and working conditions.
During the project, everyday cooking
scenarios were investigated (such as
pancake making or pizza preparation)
as well as a general-purpose fetch-and-
place tasks that are necessary for such
activities. The use-case in the Robo-
How project served as the main test
scenario for developing the query in-
terface and the first iterations of the
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framework. Task adaptability and the need for special purpose algorithms was
highlighted during meal preparation tasks, and first versions of object belief state
management and pervasive, preparatory perception systems were proposed for the
fetch and place tasks. The ideas of the RoboHow project are currently investigated
as part of a larger effort for understanding everyday activities inside the EASE 1

collaborative research center. At the time of writing, RoboSherlock is the main
perception framework used in the project for the demonstrator scenario (setting
and cleaning a breakfast table). The use of RoboSherlock in RoboHow and
EASE greatly influenced the current query-answering capabilities of the system,
since most perception algorithms were developed for objects and the kitchen
environment. The RoboHow project also offered a great opportunity for deploying
the framework on different robotic platforms, namely the PR2 and a custom built
service robot, called Boxy (Figure 7.1).

Figure 7.2: Demonstrator scneario of the
SAPHARI project (Beetz et al., 2015b)

SAPHARI The SAPHARI project
(Beetz et al., 2015b) was about safe hu-
man robot collaboration. In SAPHARI
a robot is operating in a hospital sce-
nario and manipulating surgical tools.
RoboSherlock was used to detect
the surgical utensils that needed to be
picked as well as the human operators,
signaling the robot’s plan if a human
is too close to the robot (Figure 7.2).
The scenario drove the development of
aggregate analysis executors, and high-
lighted the need for parallel execution
of perception pipelines and support for

multiple camera systems.
During SAPHARI RoboSherlock was also used for investigating ways

of integrating human and object perception into a single perception pipeline,
experimenting with parallel executions of aggregate analysis engines. The results,

1www.ease-crc.org
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presenting the detection of human intentions and actions, was described in previous
work (Worch et al., 2015).

Description of 
objects through 
their properties

name(rack)
shape(box)
color(green)

contains(emtpy tube)

name(pipette)
shape(cylindrical & flat)

color(white)
attribute(has button)

name(bottle)
shape(cylindrical)
color(transparent)

contains(liquid)

name(tips box)
shape(box)

color(blue&white)
location(on the table)
contains(small tubes)

name(trash)
shape(box)
color(red)

contains(objects)
has(cavity)

Figure 7.3: PR2 pipetting as part of a DNA
extraction sequence

ACAT In the ACAT project Ro-
boSherlock enabled a PR2 robot to
perform complex manipulation tasks
in a chemical laboratory (Lisca et al.,
2015). The task of the robot was to per-
form parts of a DNA extraction process
(Figure 7.3). The knowledge-enabled
reasoning mechanisms that allowed the
detection of various object parts, as
well as the core idea of task specific perception experts were essential in the
success of this demonstration. The detection of transparent objects such as bottles
or test tubes highlighted the need for several specialized perception experts that
work together in an ensemble. We have seen several examples of perception
tasks from this scenario in Section 3.5. The ensembles of expert approach that
RoboSherlock builds on and the knowledge-based reasoning mechanisms of
the framework greatly eased the development process. A good example of this
was the detection of openings of different sized containers, through a special
purpose primitive analysis engine that, depending on the inspected object type,
parameterized its detectors accordingly.

Figure 7.4: Result of a query executed during
the SHERPA demonstrator scenario

SHERPA During the final presen-
tation of the SHERPA project a
simulation-based rescue scenario was
proposed (Yazdani et al., 2018). As
part of this scenario the first proto-
type for processing images generated
in real time by a game engine was de-
veloped and integrated into RoboSh-
erlock. This prototype served as a
starting point for enabling the system
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to interface with game engines and learn from photo realistic renderings of these.
As part of the demonstration scenario RoboSherlock was used as the perception
engine, using the query interface to detect man made objects in a mountainous
are. The detection of a crashed hang-glider is shown in Figure 7.4. By further
developing the ideas from this scenario and populating the object belief state in
the game engine, answering queries about future states of the world was made
possible.

Lessons Learned Through the development of the necessary perception capa-
bilities of the robots in these scenarios valuable feedback was gained as to how
the interfacing to other components should be realized. One of the interesting
realizations was that a flexible query interface is not always wanted or welcome.
This was specifically the case at the beginning, when the query language was still
under constant development. This is of course something that hinders integration
efforts. To address this a static interface was defined for the most common
questions that the robotic applications need (e.g. detect the pose of an object).
This static interface is then internally converted into a query in the proposed
language. This offers a better, more stable way for the development process, with
the added benefit that the query-language-based interface is still there for more
complex tasks.

Developing using RoboSherlock comes with the overhead of specifying
metadata about the algorithms in configuration files. When developing the
perception system for a new application a fair amount of knowledge engineering is
necessary. Expert knowledge about the existing algorithms and type definitions is
essential so that the correct perception plans are planned for the queries. Currently
it is also necessary to have insights about the inner working of the query answering
process, since it eases the process of debugging faulty queries. In the future it is
envisaged that these complexities are hidden from users of the framework.

Another observation is the importance of reusable algorithms. The Primitive
Analysis Engines (PAEs) of RoboSherlock are meant to wrap existing percep-
tion algorithms and develop new ones if needed. When developing a PAE it is
important to take into consideration which parts of it might be useful for other
applications as well and consider splitting implementation into two PAEs. On
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the other hand, having too many PAEs can introduce different problems, such
as slow pipeline times. One way of reducing the number of PAEs is by exposing
parameters of the algorithm that affect its behavior. To illustrate with an example,
consider the case of a 3D plane detection algorithm. Setting a parameter to look
for horizontal planes allows finding supporting surfaces, but changing this to
vertical planes can help find doors or walls. Similarly, when finding the opening
of a container we try fitting a circle to the upper part of the container, where the
radius of the circle depends on the size of the object we are inspecting and can be
retrieved from the knowledge base.

Perhaps the most important observation is the one that is most obvious: when
developing a robotic application, to date, even when we consider the constrained
domain of operating in the kitchen, every perception task that the robot has to
perform needs to be investigated in depth and separately. Robust algorithms that
solve these perception tasks depend on a number of conditions that if not met
make the application of the specific algorithm unfeasible. Explicitly encoding some
of these conditions not only improves the robustness of the perception systems
created using RoboSherlock, but also helps non-experts to better understand
strengths and weaknesses of the algorithms.

7.3 Future Prospects

The example scenarios show that the ideas presented in this thesis are applicable
in a wide variety of tasks. The contributions of the thesis enable some interesting
research opportunities that are worth an in-depth investigation. To conclude
the thesis I will now outline some of the next steps that I believe would further
contribute towards achieving the ultimate goal of having a robotic perception
system comparable to that of humans.

In recent years convolutional neural networks have become the standard in
some of the problems computer vision addresses. Specifically object classification,
semantic segmentation and image captioning systems are nowadays unimaginable
without some deep learning parts. Combining the discriminative power of these
approaches by using the mechanisms proposed in this thesis and enabling robotic
systems to exploit the strengths of the deep learning approaches can greatly boost
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the perceptual capabilities of robots. While deep learning is excellent at solving
very specific problems, the knowledge-based expert system of RoboSherlock is
a perfect fit for meaningfully combining these.

The RoboSherlock perception task language enables researchers to investi-
gate how the perception algorithms of a robotic system behave when instructed
to perform different tasks. Combining this with the logging of perceptual mem-
ories serves as a starting point for learning generalized perceptual capabilities.
Specifically the logged memories allow for replaying of what the robot has seen
while it was performing a task and what questions did the high level ask of it.
This allows for offline analysis of the methods and ranking of expert algorithms
that ran. One of the difficulties when developing a new perception system for a
robotic application is the choice of algorithms to use in the case of multiple similar
approaches. The same difficulty arises when planning a perception pipeline. Given
multiple options, which one should the planner choose, or which result should be
trusted. These difficulties are handled with the proposed Markov Logic Network
based probabilistic reasoning component, offering a solution for contradictory
symbolic values. When it comes to pose estimations, for example, currently it is
left at the discretion of the application developer to choose the best approach. The
re-execution of perception routines on logged episodic memories and evaluation of
these would allow for the modeling of algorithmic behavior and the ranking of
expert algorithms based on experience data. The querying of perceptual episodic
memories, when taken together with the execution logs enables the retrieval of
image data that is specific to a certain type of action. This opens the possibility
to train specialized detectors, that work well only when task assumptions are met.

A common way for evaluating a system’s or algorithm’s performance is done
through the use of standard datasets. While this is a good way for finding the
best algorithmic solution for a specific perception problem, as of now there are
no standard datasets for robotic query answering. Most datasets consist of a
collection of images (RGB and depth) or point clouds created with the purpose of
evaluating a standard robotic perception approaches: segmentation in cluttered
scenes, classification problems, SLAM, pose estimation, etc. As this list also
demonstrates, these data were recorded with a specific purpose in mind and
as such, they don’t contain information about what task the robot is supposed
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to execute, what is it supposed to do with the objects. Most of the time the
datasets are also biased towards the way we, as humans, see the environment.
The experiments from Chapter 4 demonstrate that once deployed on a robotic
agent the performance of general object recognition algorithms trained on these
datasets drops significantly. With the use of RoboSherlock gathering of large
scale realistic perception datasets is possible and would be a worthwhile endeavor.

Perhaps the most interesting of all future prospects is that of enabling the robot
system to dream and conjure up new scenarios with the purpose of learning from
them. We have seen that models trained in virtual realities are transferable to real
world scenarios. Thus, it is reasonable to believe that off-screen rendered images
of the belief state can reliably be used to create a truly cognitive architecture
where past, present and future beliefs about the environment are all combined
together in order for the robot to better understand the world.
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“Ensembles of Strong Learners for Multi-cue Classification”, In Pattern Recog-
nition Letters (PRL), Special Issue on Scene Understandings and Behaviours
Analysis, 2012.

Conference Papers
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Ferenc Bálint-Benczédi, Zoltán-Csaba Márton, Maximilian Durner, Michael
Beetz, “Storing and Retrieving Perceptual Episodic Memories for Long-term
Manipulation Tasks”, In Proceedings of the 2017 IEEE International Con-
ference on Advanced Robotics (ICAR), Hong-Kong, China, 2017. Finalist
for Best Paper Award
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Daniel Nyga, Ferenc Bálint-Benczédi, Michael Beetz, “PR2 Looking at
Things: Ensemble Learning for Unstructured Information Processing with
Markov Logic Networks”, In IEEE International Conference on Robotics
and Automation (ICRA), Hong Kong, China, 2014

Moritz Tenorth, Stefan Profanter, Ferenc Bálint-Benczédi, Michael Beetz,
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APPENDIX B

RGB-D dataset

This appendix offers a description of image data consisting of color (RGB) and
depth images, collected using RGB-D sensors mounted on a mobile robotic
platform that was used in some of the experiments described in this thesis. The
data, also made public on the RoboSherlock project website1, is made up of
multi-view images collected using a turntable and kitchen scenes collected with the
use of a PR2 robot. The data can be of particular interest for robotics researchers
interested in solving perception tasks in the household domain and interested in
multi modal learning.

It consists of RGB-D (color and depth) images of objects of daily use, CAD
models of these objects, tabletop scenes in a kitchen and a taxonomy of these
objects that builds on top of the KnowRob ontology. The dataset is split into
four parts, one for each modality. In the following I will describe each of these
modalities separately.

Partial views The first part of the data consists of partial views of objects
in the form of color and depth images and the respective segmentation masks.
Figure B.1 shows examples of these for two of the objects. The partial views consist
of 105 object instances, with an average of 200 views per object. The naming
convention of these files is as follows: <object name> <view angle> <idx>-

<specifier.ext>. Viewing angle is one of three predefined positions of the

1www.robosherlock.org
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(a) RGB (b) Depth (c) Mask (d) RGB (e) Depth (f) Mask

Figure B.1: Example images recorded using a turn table for two typical objects

camera (see the Section about acquisition) and specifier.ext is one of the
following:

• depthcrop.png → the cropped depth image

• crop.png → the cropped color image

• mask.png → the binary segmentation mask

• loc.txt → pixel location in the original raw image

In addition, data for some of the objects is marked lr, this is shorthand for
low-resolution and its significance will be detailed in the next section.

CAD models CAD models are an important part of the dataset. Although not
all objects have a corresponding model, almost all textured objects do have one
as well as some of the none textured ones. The Collada (*dae) format was chosen
due to its popularity, and not least the possibility to store materials and textures.
Currently 48 of the objects that have partial view data also have a CAD model
model. The rest of the objects pose difficulties when it comes to scanning them,
either because of their small size (e.g. AA batteries) or their visual characteristics
(e.g. shiny forks). The dataset homepage offers additional information about the
modalities for each data.

Tabletop Scenes Scenes gathered from the robot are an important part of
the data. Classifiers trained with data gathered only from the turntable have
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(a) Arrangement 1 (b) Arrangement 2 (c) Arrangement 3

Figure B.2: Examples of table-top scenes from the perspective of the robot

a significant drop in performance when applied to data coming from a mobile
platform. Currently seven different scenarios are released. Four of these seven
scenarios were recording while performing pick-and-place tasks with a robot. The
remaining three are split into distinct breakfast scenes (Figure B.2) with increasing
complexity, and contain objects that also have partial views data.

This data has been post processed and table top scene segmentation has
been run, in order to extract the objects. In some cases this segmentation is
erroneous, and this is intended. Using mobile robotic platforms, one cannot
guarantee that objects will be successfully segmented. The naming convention for
the data is as follows: <ground truth> <idx> <specifier> <ts>.png, where
ground truth is the label, specifier is the same as previously described for partial
views and ts is the timestamp.

Object Taxonomy The taxonomy of objects is an important part of the data.
The names of the objects are grounded in the KnowRob ontologies. Having the
objects represented in a ontology allows users to query based on object super
types and to easily generate subsets of the data. For instructions on how to install
KnowRob and use the ontology, interested readers are kindly referred to the
KnowRob project website2.

Acquisition The different parts of the dataset were acquired with different
modalities. Figure B.3 shows the most important hardware systems used during
acquisition.

2www.knowrob.org
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(a) Turn table (b) CREAFORM GoScan 50 (c) PR2 in a kitchen

Figure B.3: The different modalities of acquiring the data

Acquisition of the partial views was done using a custom built turntable
(Figure B.3a) and an ASUS Xtion RGB-D camera. The RGB sensor of the camera
was set to high-resolution (1280 × 960 pixels), with depth registration turned
on. For objects marked with “ lr” the resolution of the RGB image was set to
VGA. The acquisition itself was conducted in a similar fashion to the WRGB-D
dataset, performing one complete rotation of the object while positioning the
camera at around one meter distance from the object, at three different viewing
angles: thirty, forty-five and sixty degrees. The big difference is that, while in the
WRGB-D dataset the angular resolution is one degrees, in the case of the data
presented here a view every five degrees was recorded. It has been shown that
the extra views resulting from a recording with a one degree turning do not result
in a high information gain, since the resulting images are very similar.

The 3D CAD models were recorded using a commercially available hand held
3D scanner, the GoScan 50 (Figure B.3b). While currently not all objects have a
CAD model, the dataset is continuously being updated and new models will be
added as they are available.

The scene data was collected using an Xbox Kinect sensor mounted on a PR2
mobile robotic platform. Using the objects from the turn-table data scenes of
increasing complexity were set up on a counter top (see Figure B.2 and Figure B.3c)
while the robot was driven around, pointing its camera at the scene. The collected
images were processed using the RoboSherlock framework in order to extract
the objects on the table, and to annotate them with ground truth data.

In order to keep the size of the dataset manageable point cloud data is not
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provided directly. Instead python and bash scripts are provided to generate these
from the depth and RGB images.
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SLAM Simultaneous Localization and Mapping. 132, 189
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