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Résumé

Dans la dernière décennie, les approches basées sur les réseaux de neurones convolutionnels

sont devenus les standards pour la plupart des tâches en vision numérique. Alors qu'une

grande partie des méthodes classiques de vision étaient basées sur des règles et algorithmes,

les réseaux de neurones sont optimisés directement à partir de données d'entraînement qui

sont étiquetées pour la tâche voulue. En pratique, il peut être di�cile d'obtenir une quantité

su�sante de données d'entraînement ou d'interpréter les prédictions faites par les réseaux.

Également, le processus d'entraînement doit être recommencé pour chaque nouvelle tâche ou

ensemble d'objets. Au �nal, bien que très performantes, les solutions basées sur des réseaux

de neurones peuvent être di�ciles à mettre en place.

Dans cette thèse, nous proposons des stratégies visant à contourner ou solutionner en partie

ces limitations en contexte de détection d'instances d'objets. Premièrement, nous proposons

d'utiliser une approche en cascade consistant à utiliser un réseau de neurone comme pré-

�ltrage d'une méthode standard de � template matching �. Cette façon de faire nous permet

d'améliorer les performances de la méthode de � template matching � tout en gardant son inter-

prétabilité. Deuxièmement, nous proposons une autre approche en cascade. Dans ce cas, nous

proposons d'utiliser un réseau faiblement supervisé pour générer des images de probabilité a�n

d'inférer la position de chaque objet. Cela permet de simpli�er le processus d'entraînement et

diminuer le nombre d'images d'entraînement nécessaires pour obtenir de bonnes performances.

Finalement, nous proposons une architecture de réseau de neurones ainsi qu'une procédure

d'entraînement permettant de généraliser un détecteur d'objets à des objets qui ne sont pas vus

par le réseau lors de l'entraînement. Notre approche supprime donc la nécessité de réentraîner

le réseau de neurones pour chaque nouvel objet.
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Abstract

In the last decade, deep convolutional neural networks became a standard for computer vision

applications. As opposed to classical methods which are based on rules and hand-designed

features, neural networks are optimized and learned directly from a set of labeled training

data speci�c for a given task. In practice, both obtaining su�cient labeled training data

and interpreting network outputs can be problematic. Additionnally, a neural network has

to be retrained for new tasks or new sets of objects. Overall, while they perform really well,

deployment of deep neural network approaches can be challenging.

In this thesis, we propose strategies aiming at solving or getting around these limitations for

object detection. First, we propose a cascade approach in which a neural network is used as

a pre�lter to a template matching approach, allowing an increased performance while keeping

the interpretability of the matching method. Secondly, we propose another cascade approach

in which a weakly-supervised network generates object-speci�c heatmaps that can be used to

infer their position in an image. This approach simpli�es the training process and decreases the

number of required training images to get state-of-the-art performances. Finally, we propose

a neural network architecture and a training procedure allowing detection of objects that were

not seen during training, thus removing the need to retrain networks for new objects.
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Introduction

Deep Learning is a powerful way to approximate any mathematical functions by �enabling

the computer to build complex concepts in terms of other simpler concepts� [24]. It has

progressed signi�cantly in the last decade with the advent of more powerful general purpose

graphics processing units (GP-GPUs), bigger annotated datasets, new techniques and easy-

to-use software librairies. As such, most state-of-the-art approaches in �elds such as computer

vision (image classi�cation, detection, segmentation, etc.), natural language processing and

speech recognition are now based on deep learning. As an example, the top-5 classi�cation

error of the winning approach on the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [74], which is an image classi�cation contest, went from 25% in 2011 to less than

3% in 2017. Notably, in 2012, a deep learning approach won the challenge for the �rst time.

The proposed approach, AlexNet [44], won with a top-5 error of 16% while the runner-ups

were in the 20-30% range. It marked a point of no return in history, as the popularity of deep

learning has grown ever since.

While very popular in both research and industry, deep learning has some limitations. For

instance, one of the main limitations is that models need a lot of annotated training data to

obtain state-of-the-art results. For particular �elds such as industrial robotics, it can be quite

di�cult to �nd annotated datasets available for download with the required set of objects.

Therefore, datasets have to be acquired and annotated by people in what can be a time-

consuming process, especially for tasks such as object detection (boxes have to be drawn

around each object and each box has to be labeled as belonging to a category) and object

segmentation (each pixel of every image has to be labeled). For example, it has been reported

that the acquisition and annotation process for an object detection dataset of 1400 images was

about 201 hours (10 hours for image acquisition, 185 hours for labeling and 6 hours to correct

the annotations) [33]. Scaling that kind of dataset to millions of images like in ImageNet

would be very di�cult and ine�cient. In certain niches, such as collaborative robotics, tasks to

be done or object sets can change frequently, which triggers the need to retrain the network or

acquire a new dataset. Consequently, coupled with the challenge of debugging and interpreting

the results of deep networks, which are often referred as black boxes, many classical approaches

are still used in favor of deep learning.

1



The main objective of this thesis is to propose new ways to simplify the use of deep learning

approaches, particularly for computer vision in the context of robotic grasping. A review of

these existing approaches is contained in Chapter 1. Then, the core of the thesis consists of

3 publications that are presented in chronological order. The publications, along with their

contributions, are summarized below:

� Chapter 2: A cascaded approach in which a deep learning model generates prior in-

formation (ranking of probable objects in an image) to a classical template matching

method. The approach allows to improve detection performances of the template match-

ing method while keeping its interpretability.

� Chapter 3: A cascaded approach in which the proposed architecture leverages the

strengths of weakly-supervised and adversarial learning to train a network from a com-

bination of synthetic and weakly-labeled images. The proposed approach generates

class-speci�c probability maps to initialize an iterative pose estimation method. The

full approach achieves performances similar to the state-of-the-art, but with a simpli�ed

process for image acquisition and annotation.

� Chapter 4: A new object detection approach trained only on synthetic images that

allows to detect new objects (unseen during training) at test time without having to

retrain or �netune the network. The approach is versatile and achieves performances

that are similar to other state-of-the-art approaches, but without being trained on the

test objects.

2



Chapter 1

Object Detection for Robotic Grasping

To grasp objects sucessfully, humans require di�erent senses such as vision and touch. In the

same way, to accomplish robotic grasping, robotic arms need di�erent sensors to perceive their

environment. Visual light cameras and more recently, 3D cameras, are the most commonly

used sensors for this task because of their simplicity, cheap price and all the possible appli-

cations they allow. Other sensors, such as tactile ones, can be useful by providing additional

modalities [5, 10, 56]. However, they are not studied in this thesis.

In the left part of Fig. 1.1, an example of a typical vision-based grasping system is shown.

This system comprises a robotic arm equipped with a gripper and a camera that can either

be placed directly on the arm or in a �xed overhead position. The arm is placed alongside a

worksurface on which target objects usually lie.

Figure 1.1 � Typical vision-based robotic grasping workspace. On the left, the system com-
prises a robotic arm equipped with a gripper and a camera (that can be placed directly on the
arm or on a �xed overhead position) that grasps objects placed on a surface. On the right, the
typical steps for grasping are shown: object localization (detection), pose estimation, grasping
points estimation and motion planning to achieve the grasp. Image from [12].

The typical work�ow for vision-based grasping is illustrated on the right of Fig. 1.1. Grasping

can be performed either on known or unknown objects. To grasp unknown objects, systems

rely on the 2D or 3D visual data to directly determine a grasping point. DexNet 2.0 is a

3



successful example of such an approach: it predicts the quality (probability of grasp success)

from previously-determined grasp point candidates. Instead of being limited by a prior step

like the prediction of grasp candidates, Levine et al. [47] predict movements of the gripper

that maximizes the probability of successfully grasping an object solely from an overhead

camera. While these approaches work really well, they are limited to simple tasks, since the

system does not know the object it is manipulating nor its con�guration in the robotic gripper.

For more complex manipulation tasks, such as splitting di�erent objects in di�erent bins or

inserting objects into others, knowing objects in advance simpli�es the problem. In an o�ine

phase, speci�c information such as prede�ned grasp points, features, templates or 3D models

can be stored for each object and then used at test time to localize them, estimate their poses

and grasp them.

The focus of the thesis is on object localization/detection of known objects. The detection

task, as shown in Fig. 1.2, typically is to �nd rectangular regions, called bounding boxes,

around objects of interest and determine which object is enclosed in the box. These objects

can be classi�ed as di�erent generic categories (persons, cars, dogs, etc.) or can represent

speci�c object instances (this person, this car, this dog, etc). For robotic grasping, we are

more interested in the �nding speci�c instances. Example images of the target object obtained

from one or multiple viewpoints, also referred as �templates�, can be used as training data in

an o�ine phase or directly at runtime for matching. In the following sections, object detection

methods are reviewed, from traditional rule-based approaches based on handcrafted features

(sec. 1.1) to modern deep learning approaches (sec. 1.2) and their limitations (sec. 1.3).

Figure 1.2 � Typical output for object detection [70]

1.1 Traditional Methods

To localize known objects in images, traditional computer vision approaches use handcrafted

features to represent object characteristics. In this section, we review some traditional ap-

proaches belonging to correspondence-based and template-based approaches.

4



Figure 1.3 � Typical pipeline for correspondence-based methods. Feature points from the
input image are matched with precomputed features of the template image for detection. PnP
methods can be used to retrieve the pose of the object if 3D information about the template
is available. Figure from [12].

1.1.1 Correspondence-based approaches

Correspondence-based approaches use local features to �nd known objects by matching small

image patches with similar properties between an example image of the target object (tem-

plate) and an input image. A typical pipeline for such task is shown in Fig. 1.3. The �rst step

consists of computing local feature points. It is usually achieved by detecting interest points

or �keypoints� in the image (edges, corners or regions/blobs) and then computing descriptors

for each of them. Then, the next step is to �nd matches (corresponding features) between the

template and input image and generate transformation hypotheses from the possible matches.

If 3D information about the template is available and the camera intrinsic parameters are

known, the 6D pose of objects can be estimated with methods solving the Perspective-n-Point

(PnP) problem [20, 31, 46]. These typical steps are brie�y described in more details below:

Keypoint Extraction Keypoint extraction is used to improve the matching speed by de-

creasing the number of points to match between source and target images (instead of

matching every pixel). Keypoint extraction methods aim to be repeatable under dif-

ferent image transformations such as rotation, translation, scale, etc. Popular keypoint

detection methods include the Canny edge detector [6], Sobel operator [81], Harris cor-

ner detector [27], Features from accelerated segment test (FAST) [72], Laplacian of the

Gaussian (LoG), Di�erence of Gaussians (DoG) and maximally stable extremal regions

(MSER) [58].

Feature calculation During feature calculation, a descriptor (feature) is computed for each

detected keypoints. Descriptors are represented by caracteristics of the point and/or its

neighbourhood and can be as simple as the color or gradient of the pixel. Descriptors

are designed to be as distinct as possible between them (to decrease the likelihood of bad

matches) and to be robust to di�erent image transformations. In the litterature, descrip-

tors are often compared by their dimensionality, data types (binary or �oating point)

and their invariance properties (scale, rotation, illumination, viewpoint, blur, etc.). Pop-

ular descriptors include the Scale-Invariant Feature Transform (SIFT) [55], Speeded Up

Robust Features (SURF) [1] and Oriented FAST and Rotated BRIEF (ORB) [73].
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Correspondences retrieval and rejection Correspondences are searched between ex-

tracted features from the template and input image. For fast processing of the multiple

match possibilities, a library for fast approximation of nearest neighbors search such as

FLANN [59] is usually used. For increased robustness and reliability of correspondences,

di�erent strategies, such as the ratio and symmetry tests, can be applied. The ratio

test consists of dividing the distance of the best match by the distance of the second

best match. Those with a ratio higher than a prede�ned threshold are rejected to

avoid ambiguities. This strategy is used in SIFT [55] and eliminates approximately 90%

of the bad correspondences while maintaining most of the good ones. The symmetry

test rejects a correspondence if the best match of a feature in one way (e.g. template

towards input image) is not the best match in the other way (e.g. input image towards

template).

Transformation Hypotheses From the possible correspondences, transformation hypothe-

ses are generated. One of the most popular approaches is Random Sample Concensus

(RANSAC) [17]. In RANSAC, random triplets are iteratively selected to compute trans-

formations. The one with the most inliers is kept as the best transformation hypothesis.

1.1.2 Template-based methods

Feature correspondence methods work really well when target objects have rich textures, but

are suboptimal for textureless objects. Instead of generating a sparse set of correspondences,

template-based methods produce dense sets of correspondences and thus work well on texture-

less objects which have few discriminating features. To create a dense set of correspondences,

template-based methods typically employ a sliding window approach in which the template is

slid over the input image and outputs similarities between the two at each position.

The most naïve template-based approaches try to match a template identical to what is seen

in the input image. Simple comparison metrics, such as the sum of squared di�erences, can

be used for this kind of approach, since a perfect match is expected. For cases where there are

small di�erences (brightness, noise, etc.) between the template and the object in the image,

cross-correlation or normalized cross-correlation, which output similarities for each sliding

windows, are good solutions. Like many template matching methods, they are greatly limited

by their sensitivity to scale and rotation changes.

Using image gradients is usually more robust to illumination changes. They are therefore a

popular choice of feature for template-based methods. For instance, Histogram of Oriented

Gradients (HoG) [11] can be used for detection. In [57], they trained a linear Support Vector

Machine (SVM) for each object instance. This approach is relatively slow compared to more

recent approaches, since at test time, each classi�er needs to be computed on each image patch

coming from the sliding window.
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One of the most popular and recent example of template matching approaches is called

Linemod [32]. As shown in Fig. 1.4, Linemod uses multiple modalities (color gradients and

surface normals) for each rendered view of a 3D model to retrieve the object instance in

RGB-D images. Its variant, Line-2D, only uses gradients and works on color images. Since

generated templates represent speci�c viewpoints, a rough estimation of the object pose in

the input image can be retrieved from the most similar template.

(a) Pipeline (image from [12]) (b) Template modalities

Figure 1.4 � Linemod [32] is a template matching method that uses templates generated from
3D models. Its pipeline is illustrated in (a) and the template modalities it uses are shown in
(b).

1.2 Deep Learning Methods

Images can be composed of thousands or millions of pixels and be altered in nearly unlimited

ways. Consequently, the appearance and shape of objects contained in images can vary wildly

(see Fig. 1.5). Traditional methods, which are based on engineered features and sets of rules,

tend to fail to generalize to these in�nite variations.

Figure 1.5 � Challenging conditions for computer vision approaches [51].
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Deep learning, on the other hand, is a powerful and �exible machine learning technique mostly

applied to high-dimensional data such as images. Importantly, they can approximate any

non-linear mathematical function. As opposed to traditional methods that depend on �xed

handcrafted rules, deep learning approaches learn directly from the data and tend to generalize

better, as long as they are trained on a large quantity of data. In 2012, AlexNet [44] was

released and won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [74] by

a wide margin. Since then, most of the research and state-of-the-art approaches in the area of

computer vision are based on deep learning. Many concepts used in deep learning, however,

date back to much earlier than 2012. For instance, Convolutional Neural Networks (CNNs),

which form the basis of most deep learning approaches applied to vision, were introduced

towards the end of the 20th century [18, 45]. It was not until recently, with innovations such

as general-purpose graphics processing units (GP-GPUs), bigger annotated datasets and new

techniques, that they became so prevalent. In this section, we review the general concepts

of CNNs (sec. 1.2.1), the most notable innovations and network architectures (sec. 1.2.2) and

speci�c approaches for object detection (sec. 1.2.3).

1.2.1 Convolutional Neural Networks (CNNs)

In this section, a typical CNN architecture is �rst described. Then, the training process is

brie�y explained.

Architecture

The global structure of a Convolutional Neural Network (CNN) is similar to a Multilayer

perceptron (MLP): it has an input, hidden layers and an output. A typical example of a CNN

architecture for the task of object classi�cation is shown in Fig. 1.6a. The input is the image

and the output is a vector of prediction scores with one score per object class. The core of the

archictecture is the hidden layers that are stacked on top of each others to form a hierarchy

in which complex and abstract concepts are learned from simpler concepts. As shown in

Fig. 1.6b, a hidden layer is generally composed of multiple blocks that include convolution

�lters, activation functions and pooling. These components are brie�y described below:

Convolution A convolution layer is composed of multiple convolution �lters that are opti-

mized through training. The role of the �lters is to extract features at every pixel of

an image, based on their neighbourhood (size of the �lter). Using a sliding window

approach, each �lter is slided over the whole input, generating feature maps.

Activation Function Activation functions allow networks to approximate non-linear func-

tions. The most common activation function is the Recti�ed Linear Unit (ReLU) [60]. Its

main property is that it allows to train deeper networks without the vanishing gradient

problem present with other activation functions such as sigmoid and tanh.
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(a) Typical CNN Architecture (b) Typical convolution block

Figure 1.6 � In (a), a typical CNN architecture for classi�cation is shown. The input image
passes through multiple convolution blocks (convolution + ReLU + pooling), which is shown
in more details in (b), to �nally be processed by fully-connected layers that output a prediction
vector. During training, a loss function is used so that the network can be optimized using
gradients computed by backpropagation. Figures from [12].

Pooling Pooling layers create downsampled feature maps by splitting them in a certain num-

ber of regions and calculating a certain value (usually either average or maximum) for

all these regions. By reducing the spatial resolution of the feature maps, pooling allows

CNNs to become invariant to small translations.

For the output layer, fully-connected layers are often used. Their multiple neurons are �fully�

connected (connected to every cell of the previous layer) and generate �attened outputs (vec-

tors instead of feature maps for convolutions) of desired dimension. If used as the last layer of

the network, their output (predicted class scores) is usually transformed in probabilities with

the softmax function:

Softmax(xi) =
exp(xi)∑
j exp(xj)

(1.1)

where xi is the score to be normalized and xj are the scores for each individual class.

Training Process

The training of deep learning approaches is an iterative process in which annotated training

data is sampled at each iteration. To train the network, there is an additional step called

backward pass that is added after the forward pass (prediction made from the input). During

this backward pass, an error is calculated using a loss function (e.g. cross-entropy for object

classi�cation) that compares the predictions made by network and the expected predictions

(ground truths). Then, an optimization method such as Stochastic gradient descent (SGD) [42,
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71] updates the weights of the network in attempt to minimize the error. This is achieved

by computing the gradients of the loss function with respect to the weights of the CNN, a

step called backpropagation, and then updating the weights according to the learning rate

and the previously-computed gradients. For SGD, each weight update is based on gradients

that are calculated on minibatches (small numbers of random training data). It allows fast

approximations of the gradient compared to methods that calculate the gradient on the whole

dataset for a single weight update.

1.2.2 Timeline of CNN architectures

At this point, general deep learning concepts have been reviewed. In this section, some of the

most notable CNN architectures and their contributions are reviewed in chronological orders.

� In 2012, AlexNet [44] revolutionized computer vision by winning by almost 10% (ab-

solute gain) the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [74],

which evaluated the top-5 error rate on object classi�cation. They combined previously-

proposed ideas, such as ReLU [60] (see section 1.2.1) and regularization techniques such

as dropout [34] (randomly setting to 0 the output of a neuron in fully-connected layers)

and data augmentation [8, 9] (random translations, re�ections, crops and RGB intensity

alterations) to reduce over�tting.

� In 2014, VGGNet [79] and GoogLeNet [83] improved the top-5 error on ImageNet to

respectively 6.8% and 6.7%. In VGG, they used stacked 3x3 convolutions to increase

the network depth. In GoogLeNet, they introduced Inception modules and replaced the

usual fully-connected layers by global average pooling. The Inception modules process

the input with parallel convolutional �lters of di�erent sizes that are concatenated to

generate the output features, which allows more �exibility regarding the receptive �eld

of the network.

� In 2015, Batch Normalization [39] was introduced. By using the mean and variance of

mini-batches to normalize, scale and shift layer inputs, batch normalization allows faster

training and better generalization of networks.

� In 2016, ResNet [30] decreased the top-5 error on ImageNet to 3.6% by proposing skip

connections which made identity mapping possible, thus allowing much deeper networks

than it was previously possible with other architectures.

� In 2017, Squeeze and Excitation Networks [37] reduced the top-5 error on ImageNet to

2.3% by proposing a channel-wise feature recalibration block that scales input feature

maps. This block is made of a global average pooling layer, two fully-connected layers

separated by a ReLU and a sigmoid activation function.
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1.2.3 Object Detection Architectures

As shown in Fig. 1.2, the object detection task is about �nding rectangular regions enclosing

objects of interest. Typically, object detection network architectures use generic networks such

as those introduced in sec. 1.2.2 (minus the �nal layers) to act as backbones and stack task-

speci�c layers on top of them. Backbones are usually pretrained on ImageNet, meaning that

their weights are initialized with the �nal weights of a network trained for object classi�cation

on ImageNet. It is a standard practice that results in the faster convergence of the training

process, according to [28]. The task-speci�c part of detection networks is either performed in

one or two stages. Approaches belonging to both of these groups are detailed below.

Two-Stage Detectors

The two steps of two-stage approaches consist of i) region proposal and ii) region classi�cation.

In region proposal, regions which possibly contain any object, independently of their class

(class-agnostic), are proposed. Then, for each region, prediction scores are computed for each

class or object. In most architectures, bounding box coordinates are also regressed in this

second step. Most of the popular two-stages approaches are described below:

Regions with CNN features (R-CNN) [23] To create an object detector, R-CNN (shown

in Fig. 1.7) combines two popular ideas at the time: Selective Search [87] and AlexNet [44].

Selective Search is a region proposal algorithm that uses color, texture, size and shape

similarities to generate proposals. In R-CNN, all proposed regions are cropped and then

warped (resized) to an image of square dimensions before being passed to the pretrained

CNN (AlexNet), which extracts features. The classi�er from AlexNet is removed and

replaced by class-speci�c linear SVMs classi�ers to predict the object category and linear

regressors to predict o�sets of the bounding box. This architecture is limited, mainly

because all region proposals need to be cropped and evaluated by the CNN. Training

and inference time are thus quite slow. For instance, it was reported that with a VGG16

backbone, the detection time was 47s/image on a GPU [22].
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Figure 1.7 � Overview of R-CNN. Figure from [51].

Fast R-CNN [22] Fast R-CNN (shown in Fig. 1.8) improves training and inference speeds

(9x faster for training and 213x faster at test-time). They indroduced Region of Interest

(RoI) pooling, which replaces the image warping of R-CNN at the image level. Instead,

RoI pooling resizes regions at the feature level, just before the classi�er, to get �xed-

length feature vectors. Furthermore, they replaced the SVM classi�ers and bounding box

regressors by fully-connected layers that predict softmax probabilities for classi�cation

and o�sets for bounding box regression.

Figure 1.8 � Overview of Fast R-CNN. Figure from [51].

Faster R-CNN [70] In Faster R-CNN (shown in Fig. 1.9 and 1.10), they replace the time-

consuming Selective Search algorithm by a Region Proposal Network (RPN), which

allows a running rate of 5 FPS (10x faster than Fast R-CNN). The RPN shares the

same backbone as the classi�er and predicts objectness scores (class-agnostic, predicts

foreground or background) and o�sets (regression for translation and size) for bounding

boxes of prede�ned scales and aspect ratios (anchors). As shown in Fig. 1.9, predictions

are made for the k di�erent anchors at the center of each feature maps. In the original

implementation, they used 3 di�erent anchors sizes (128, 256 and 512 pixels) and 3

aspect ratios (1:2, 1:1 and 2:1) for a total of 9 anchors.

To train the complete network, the RPN is trained in alternance with the fully connected

layers used for classi�cation and regression. During the RPN training, only 256 anchors
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Figure 1.9 � Region Proposal Network for Faster R-CNN [70]. Multiple anchor boxes of
prede�ned sizes and aspect ratios are used as references to predict objectness scores and
o�sets for each cell of convolutional feature maps. For each of the k anchors used, there are 2
outputs for objectness (foreground and background) and 4 outputs for the o�sets relative to
the bounding box proposals (translation in x, translation in y, width ratio and height ratio).

are sampled in a 1:1 ratio between positive and negative examples to avoid a bias towards

negative examples. At test time, the predictions with the best objectness scores are used

as proposals.

Figure 1.10 � Overview of Faster R-CNN. Figure from [51].

Mask R-CNN [29] Mask R-CNN (shown in Fig. 1.11) extends Faster R-CNN by adding a

parallel branch in which segmentation masks are predicted for each region of interest.

The RoI pooling operation in Faster R-CNN usually extracts feature maps of 7x7 for each

region of interest. It however causes pixelwise misalignments by rounding feature map

locations. In Mask R-CNN, they instead propose a quantization-free operation named

RoI Align that uses bilinear interpolation to preserve spatial locations. The overhead

created by the mask prediction branch is relatively small. The network can run at a rate

of 5 FPS while obtaining state-of-the-art performances for detection and segmentation.
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Figure 1.11 � Overview of Mask R-CNN. Figure from [51].

Single-Stage Detectors

Single stage detectors are optimized end-to-end and bypass the region proposal stage required

by two-stage architectures. They are thus usually less computationally expensive, being fully

convolutional. Some of the most popular approaches are described below.

You Only Look Once (YOLO) V1 [67], V2 [68] and V3 [69] YOLO (shown in Fig. 1.12)

was the �rst proposed single-stage detector. It is signi�cantly faster than two-stage de-

tectors (45 FPS or 155 FPS for the smaller version) at the cost of slightly worse

performances (10% drop with respect to Faster R-CNN for the mAP metric on Pascal

VOC datasets). In YOLO, the image is divided in a SxS grid, for which each cell

predicts bounding boxes (location and size), objectness con�dence (class-agnostic) and

class probabilities. Since the grid is coarse, the network struggles to detect small objects.

In V2, they replaced the backbone of V1 (custom version of GoogLeNet) by their own

backbone called DarkNet19. They added Batch Normalization, removed fully-connected

layers, trained their network with images of di�erent scales and used pre-de�ned anchor

boxes like Faster R-CNN to improve their performance. It outperforms Faster R-CNN

while running at 40 FPS.

In V3, the softmax classi�er is removed and replaced by logistic ones to allow multi-label

classi�cation. This way, classes do not compete between themselves. They also replaced

their backbone network with a new one called Darknet-53. Compared to Darknet-19, it

has more layers and they added residual (skip) connections. Additionally, inspired from

Feature Pyramid Networks (FPN) [49], they predict bounding boxes at three di�erent

scales in the feature maps instead of only a single one to improve their accuracy on small

objects. They use three prede�ned anchor boxes at each scale for a total of nine anchors.
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Figure 1.12 � Overview of YOLO. Figure from [51].

Single Shot Detector (SSD) [52] SSD (shown in Fig. 1.13) is a fast fully-convolutional

architecture with a processing rate of 59 FPS on images of resolution 300 x 300 pixels

and is as accurate as Faster R-CNN. It adds convolution layers on top of the VGG16

backbone and predicts classes and bounding box o�sets on feature maps of di�erent

scales.

Figure 1.13 � Overview of SSD. Figure from [51].

To improve the performance of the network on small objects, they use a data augmenta-

tion trick that they call image expansion or �zoom out� that improves the mAP metric

of their network by 2-3% on many datasets. In this technique, they place the original

image on a new image that has up to 16x of the original resolution before resizing or

cropping. As shown in Fig. 1.14, it thus creates more small objects for training.
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(a) Normal image of an apple (b) Zoom out image of an apple

Figure 1.14 � Zoom out data augmentation strategy example. The original image of an apple
(a) is placed in a bigger image �lled with mean values and is then rescaled to the original
resolution (b), thus creating a smaller apple.

RetinaNet [50] A speci�c problem of object detection methods is the imbalance between

the number of positive (object) and negative (background) examples. To tackle this

problem, they introduced the Focal loss in RetinaNet (shown in Fig. 1.15), in which

the classical cross-entropy loss is modi�ed so that easy negatives have less impact on

the loss than harder ones. For the architecture, they used a Feature Pyramid Network

(FPN) backbone [49] and stacked two di�erent subnetworks on top of it for bounding box

classi�cation and regression. In FPN, predictions are made at multiple resolutions from

feature maps coming from the di�erent levels of the CNN. It is a faster way to replicate

image pyramids which allows networks to detect objects at various scales. It especially

improves detection performances on smaller objects, since most networks predict from

the last layer, which has low spatial resolution.

Figure 1.15 � Overview of RetinaNet. Figure from [50].

1.3 Deep Learning Limitations

Deep Convolution Neural Networks are trained to accomplish complex functions directly from

labelled data. They can be limited by the data (cost of acquisition and labeling, biases, etc.)

or the networks themselves (need of powerful computing ressources, lack of interpretability,

etc.). Some of these limitations and di�erent ways of overcoming them are presented in this

16



section.

1.3.1 Dataset Acquisition

For generalization purposes, CNNs require big annotated datasets. However, obtaining anno-

tated data for certain domains or tasks can be a tedious process. For example, [33] reported

that the acquisition and annotation process for an object detection dataset of 64 objects and

1400 images took around 200 hours. Scaling this process to generate datasets with millions

of images is therefore close to impossible. Fortunately, di�erent techniques can decrease re-

quirements for annotated images. In Fig. 1.16, di�erent research areas related to this topic

are listed. They are further described in this section.

Lot of annotated 
data required

Domain Adaptation

Data Augmentation

Weak Supervision

Few-Shot Learning Simulation

Transfer Learning

Figure 1.16 � Research areas related to decreasing annotated data requirements

Transfer Learning One of the most popular transfer learning technique is pretraining. Ac-

cording to [28], pretraining is used to make CNNs converge faster during training. Fea-

tures from networks trained on big datasets can be transferred to networks for di�erent

and smaller datasets of related tasks. For vision-related tasks such as object classi�ca-

tion, detection and segmentation, starting with weights trained on a big dataset such

as ImageNet provide a good initialization since many learnt features are generic (espe-

cially the low-level features at the beginning of the network). The network thus requires

much less training data to converge to a good solution for a new related task. In all the

proposed approaches contained in this thesis, pretraining was used.

Weak Supervision The concept of weak supervision is to use a simpler supervision level

to accomplish a more complex task. For instance, networks trained for classi�cation

with image-level labels can predict the location (bounding boxes) and segmentation

masks of objects. By combining Fully Convolutional Networks (FCNs) [53] with di�erent

aggregation strategies such as global average pooling [94], min-max pooling [13] or peak
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stimulation [95], these methods are able to train a classi�er and retrieve scores for each

object at every spatial locations in the feature maps. This principle is at the core of our

proposed approach in Chapter 3.

Domain Adaptation When a learning-based approach is trained on data that is quite dif-

ferent from the test data, there is what is called a domain gap/shift. This discrepancy

between source and target datasets may cause a signi�cant performance drop. For

example, networks trained with synthetic data, such as our approaches presented in

Chapters 3 and 4, often exhibit poor performances when tested on real data. To reduce

the gap, domain adaptation methods either try to modify the input directly [7, 96] or

align the feature space of both domains [19, 54]. Adversarial methods based on Genera-

tive Adversarial Networks (GANs) [25] and Domain Adversarial Networks (DANNs) [19]

have achieved good success of decreasing the performance gap. However, most of these

methods require some data in the target domain (labelled or not). A method speci�c to

synthetic data called Domain Randomization [85, 86], which is introduced in the next

paragraph on �Simulation�, has shown great success to improve the generalization per-

formance of networks trained on synthetic images without requiring images from the

target domain during training.

Simulation Synthetic images generated in simulation allow to increase the size of datasets

without the need for additional hand labeling. Despite the discrepency between synthetic

and real data (reality gap), it has been shown that combining synthetic images with real

images increase object detection performances. For instance, [14] proposed a simple

approach in which object instances are pasted on random backgrounds. They also used

di�erent data augmentation and blending techniques to help networks ignore artifacts

created by the pasting operation. Also, domain randomization [85, 86] has recently

gained popularity. The idea is to generate enough variations in simulation parameters

(lighting, textures, object placement, noise, etc.), such as what is shown in Fig. 1.17,

so that real images are seen as simple variations of the simulation images. Domain

randomization is especially interesting because it outperforms models trained on realistic

synthetic images [86]. It also has been shown that synthetic images generated in a

context similar to the test images (settings in which the objects are present) can improve

detection results [35, 64].
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Figure 1.17 � Synthetic data generation pipeline of [33]. 3D models are rendered in di�erent
poses on top of di�erent synthetic backgrounds and are augmented with random parameters
(light position and color, noise and blur) to generate the annotated synthetic dataset for object
detection.

Data Augmentation It is possible to decrease over�tting by increasing the number of train-

ing examples with data augmentation techniques [77]. Data augmentation includes, but

is not limited to, basic image manipulations such as kernel �lters (sharpen, blur), geo-

metric transformations (translation, rotation, cropping, �ipping) and color space trans-

formations (lighting, noise, contrast, white balance, color jittering). It is also possible to

learn data augmentation policies [97]. A special focus was given to data augmentation

in Chapter 4 to maximize the number of objects seen by the network during training.

Few-Shot Learning Deep Neural Networks have a lot of parameters and require a lot of

annotated examples in training to generalize well to new data. The aim of few-shot

learning is to achieve the same, but only with few annotated examples. Since training

with few labelled samples usually lead to over�tting, most few-shot learning methods

are based on meta-learning, which is a concept of �learning to learn�. A classic example

of a meta-learning approach for few-shot learning is a classi�er that is trained on series

of training tasks with few examples of di�erent classes. The network therefore learns

to learn from few labelled data. Meta-learning approaches can be separated in multiple

categories:

1. Based on metric learning. These methods learn to generate embeddings to distin-

guish between unknown classes [36, 43, 80, 82, 88].

2. Fast adaptation. These methods optimize the parameters so that they can quickly

converge given new data [16, 62, 66].

3. Parameter prediction. These methods adapt network weights speci�cally for the

classes given in input [2, 21, 41, 65].
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Di�erent approaches based on meta-learning have been proposed for object detection [15,

41, 75, 93]. However, it has been demonstrated that �ne-tuning the last layer of a network

outperforms most recent approaches [92]. Object tracking can also be framed as one-

shot detection, with trackers initialized with a previous example of a target object.

For instance, in approaches based on Siamese Region Proposal Networks [48, 91], the

weights of some kernels are adjusted by the network that processes the object to track.

As opposed to �fast adaptation� methods, these approaches do not need to be retrained

for new data. Our proposed approach in Chapter 4 is based on this principle to detect

objects that have not been seen during training.

1.3.2 Dataset Biases

The size of datasets is not the only limitation related to the data itself. However big they are,

datasets are generally biased and CNNs are likely to learn their biases. For instance, in the

real world, a guitar player is usually a person and most datasets are probably biased this way.

In Fig. 1.18a, a guitar placed in front of a monkey is enough to change the class prediction

from �monkey� to �person�. The �guitar� is also detected as a �bird�, most likely due to the

background. It is a good example of how biases can in�uence predictions of object detectors.

Also, very small perturbations have been shown to modify network predictions [26, 61], as

shown in Fig. 1.18b. These perturbations, called adversarial examples, show not only that

networks are vulnerable to di�erent kind of attacks [38, 63], but that even though networks

have good generalization performances, they do not perform as we expect for all possible

inputs. Consequently, they are highly dependent of their training data.

(a) Context (image from [90]) (b) Adversarial examples (image from [26])

Figure 1.18 � In (a) is shown an extreme example where a dataset may be biased towards
di�erent contexts. The monkey, occluded by the guitar, is classi�ed as a person and the
guitar, probably because of the forest in background, is detected as a bird by the network. In
(b), a small perturbation added to the input image modi�es the network prediction.

Also, in scenarios where data is more di�cult to acquire, obtaining data from videos can be an

easier way to rapidly expand the size of a dataset. The individual frames are therefore highly

correlated. An example of a dataset acquired in this manner is Occluded Linemod [3], which
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we used to evaluate all of our approaches. The limitation of this dataset is not necessarily the

dataset itself, but how it is used. Many state-of-the-art approaches on this dataset [4, 84, 89]

randomly sample the video sequence to generate a training set. Hence, the reported results

are likely biased positively, since these approaches are tested on the same image sequence that

they were trained on.

1.3.3 Network-related Limitations

Networks are not only limited by their training data, but also by the network architecture

themselves. Some of these architecture-related limitations are brie�y described here:

Hardly interpretable CNNs solve complex non-linear mathematical functions with multiple

convolution layers stacked on top of each other. They are often seen as �black boxes�,

because interpreting the weights of networks is quite di�cult. In particular, it becomes

di�cult for a human to understand how a particular decision was reached by a network.

Rigidity Once a network is trained, the weights are �xed. They do not learn from their

mistakes at test time and additional knowledge can not be added unless the network is

�ne-tuned or retrained. This process takes time: networks may take few hours to few

weeks to be trained. This compares badly to traditional engineered features methods,

which can work right out of the box for new objects.

Specialized hardware GPUs are necessary for training and preferable if fast inference time

is important. Also, dedicated equipment such as servers with multiple nodes can be

useful, especially for hyperparameter optimization.

Some solutions have been proposed for these limitations. For instance, to show the inner

workings of CNNs, some work focus on visualization techniques [76, 78]. They show which

parts of the input are activated and responsible for a prediction. These visualizations are

useful to understand networks at a high-level, but how to debug them (eg. modify some �lter

weights to solve a bad prediction made by the network on a certain input without impacting

the output on other inputs) is still not quite understood.

In this chapter, we reviewed background material related to object detection methods for

robotic grasping, from traditional rule-based methods to recent deep learning approaches. We

have also seen the data and network-related limitations of deep learning approaches. In the

following chapters, we present our di�erent approaches in which we try to tackle some of these

limitations for object detection in the context of robotic grasping.
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Chapter 2

Deep Object Ranking for Template

Matching

2.1 Résumé

Dans le domaine de la robotique industrielle, les applications de � pick-and-place �, qui

consistent à saisir des objets a�n de les déplacer à un nouvel endroit, sont très populaires.

Pour localiser les objets à saisir avec su�samment de précision, les approches de type � tem-

plate matching � sont généralement utilisées. Cependant, dans les cas où les systèmes doivent

composer avec une base de données contenant plusieurs objets, ces approches peuvent devenir

dispendieuses en temps de calcul en plus d'être dépendantes de seuils di�ciles à con�gurer.

Dans cet article, nous proposons d'utiliser des réseaux de neurones en pré-traitement dans

le but d'améliorer les performances de méthodes traditionnelles de � template matching �.

Les résultats sur deux jeux de données démontrent que notre approche est compétitive par

rapport à une approche par force brute pour retrouver les objets en plus d'être plus rapide.

Ceci ouvre donc la possibilité d'utiliser des approches de � template matching � en industrie

avec un nombre d'objets plus élevé.

2.2 Abstract

Pick-and-place, which consists of picking objects and placing them somewhere else, is an im-

portant task in robotic manipulation. In industry, template-matching approaches are often

used to provide the level of precision required to locate an object to be picked. However, if

a robotic workstation is to handle numerous objects, brute-force template-matching becomes

expensive, and is subject to notoriously hard-to-tune thresholds. In this paper, we explore

the use of Deep Learning methods to speed up traditional methods such as template match-

ing. In particular, we employed a Single Shot Detection (SSD) [20] and a Residual Network

(ResNet) [9] for object detection and classi�cation. Classi�cation scores allow the re-ranking
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of objects so that template matching is performed in order of likelihood. Tests on a dataset

containing ten industrial objects demonstrated the validity of our approach, by getting an

average ranking of 1.37 for the object of interest. Moreover, we tested our approach on the

standard Pose dataset [30] which contains 15 objects and got an average ranking of 1.99.

Because SSD and ResNet operates essentially in constant time in a Graphics Processor Unit,

our approach is able to reach near-constant time execution. We also compared the F1 scores

of LINE-2D [12], a state-of-the-art template matching method, using di�erent strategies (in-

cluding our own). The results show that our method is competitive to a brute-force template

matching approach. Coupled with near-constant time execution, it therefore opens up the

possibility for performing template matching for databases containing hundreds of objects.

2.3 Introduction

The automation of simple industrial operations, particularly for the small scale, fast turnaround

robotics equipment, is seen as a key concept of the fourth industrial revolution (often dubbed

Industry 4.0 ). A desirable characteristic for its acceptance would be the ability for a non-

technical person to program advanced robotic equipment, such as robotic arms. The Baxter

robot, from Rethink Robotics, exempli�es this concept, by being able to perform pick-and-

place operations using intuitive programming methods. In this system, training by examples

replaces the traditional and more tedious computer programming by experts.

In this paper, we explore the idea of improving both the robustness and speed of a key and

traditional component used in pick-and-place solutions, namely template matching. We aim

at exploiting recent developments in Deep Learning on object detection and classi�cation to

�rst detect, then sort, putative objects before performing template matching. These networks

are trained by employing databases of images collected in a simple manner. This way, we stay

within the philosophy of training by example. As our approach is fairly conservative (the �nal

object localization is still performed via template matching), we believe that it might speed

up the acceptance of Deep Learning approaches in the industry.

Deep neural networks, particularly the convolutional networks, have established themselves as

clear winners in many classi�cation tasks. Moreover, with the use of GPU (Graphics Processor

Units), they have shown to perform classi�cation over a thousand object categories in real-

time. This speed is possible because a) GPUs provide massive parallel computing capabilities,

up to several thousands of cores and b) the features are extracted only once by the neural

network, and are available to all object classi�ers, since the object classi�cation is performed

in the fully-connected layers at the top of the network architecture. By contrast, parallelizing

template matching libraries is tedious, as it requires signi�cant hand-crafting and tuning.

Moreover, current template-matching approaches do not share the feature extraction pipeline

across templates, making them inherently less e�cient at exploiting the massive parallelism
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of GPUs.

Template matching [8] has been used for a long time in machine vision, and has now been

widely accepted in industry. It has proven to perform well in retrieving the pose of an already-

identi�ed object. However, it comes with a number of known �aws. For instance, the matching

speed is dependent on the number of templates the method is trying to match. Furthermore,

the �nal decision about whether an object has been well detected/located is based on a thresh-

old on the matching score. Thresholds are notoriously di�cult to select properly, as there is

an intrinsic compromise to be made between a low threshold (which results in many false

detections) and a high threshold (which has less false detections but will also reject good

detections).

We propose a generic template matching pre-processing step that takes advantage of the

success and properties of Deep Learning for object detection and recognition. A diagram

of our approach is shown in Fig. 2.1. It consists in detecting, classifying and ranking the

seen objects before using template matching. As such, our approach is completely agnostic

to the subsequent step. This cascading philosophy is not novel. In fact, it is a common

approach in vision-related tasks, in order to accelerate processing. For instance, the Viola-

Jones real-time detection technique [31] uses a number of progressively more discriminative

(and expensive) classi�ers. Neural networks have also been employed in cascade for object

understanding, notably a two-staged approach for grasp location detection in range images [18].

Deep Learning approaches might be used for initializing model-matching, such as with the

tracking of body parts, as they are more robust due to their larger basin of attraction [7]. In

some sense, our approach uses the same philosophy, where the coarse part (object detection

and classi�cation) is performed with a Convolutional Neural Network, while the �ne-tuning

of object pose estimation is completed via template matching.

A signi�cant advantage of our proposed approach is that detection and classi�cation modules,

which are often expensive, are essentially executed in constant time. Indeed, one forward-pass

of a typical deep neural network can recognize amongst a thousand objects in less than 80

ms [17]. On the other hand, if object recognition is to be done by template matching, one

needs to run it until a su�ciently-high scoring template has been found. In this case, the

average number of templates that will be tried by this template matching method should be,

on average, around half of the total number of templates. As we will demonstrate, by pre-

ranking templates by con�dence of our object classi�er before matching begins, this number

tends to be signi�cantly less. It can thus allow for fast matching, even if there is a large

number of templates, as long as classi�cation precision is su�ciently high.

Another positive e�ect of our approach is an increase in robustness for object classi�cation. In

some template-matching approaches, any score higher than the user-selected threshold results

in a positive match and the termination of the algorithm. By using a low threshold on template
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matching scores (higher recall), it results in a high number of bad detections (lower precision),

as the �rst template tried will return a positive match. In another kind of approach, every

template is processed, and the template which scored the best is selected. By pre-ranking

templates in a �rst step, our method improves the performance of the ��rst-match� approach,

and get similar results to the �best-match� approach, while having to process signi�cantly less

templates.

Figure 2.1 � Block diagram of our proposed method. Object detection and classi�cation are
performed by Deep Neural Networks, providing robustness and speed. Objects in the database
are sorted by their classi�cation scores before being passed to the template matching module.
Objects are processed one after the other until a template results in a score higher than a
user-de�ned threshold, upon which the algorithm terminates.

2.4 Related Work

Some approaches have been used to reduce the computational load of template matching

methods, which can be heavy, especially for those that searches for the complete set of possible

transformations [16, 22, 28]. In [23], they used a convolutional neural network to predict the

�matchability� of templates across di�erent transformation of the input image. They then

select regions around local maximums from the computed matchability maps as templates for

any selected template matching method. In [2], they employed a Support Vector Regression to

�nd a function which is used to generate template candidates at runtime, but strictly applied

to visual tracking.

Object detection methods based on keypoint descriptors work well on textured objects [3, 21].

However, by looking at speci�c visual patterns on surfaces, they do not perform well on

untextured objects by nature, and they tend to require heavy calculations [1]. On the opposite,

template matching methods work well on objects with little visual texture [12, 15, 24], provided

that they are located on a distinctive background. Since a signi�cant number of objects in an

industrial context are devoid of textures (such as metallic parts that are freshly machined),

template matching tends to be more appropriate for those environments.

LINEMOD [12] is among the state-of-the-art methods for template matching on textureless
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objects. It uses quantized color gradients for the 2D version (LINE-2D) along with surface

normals for the 3D version. They use some optimizations, such as a look-up table for the color

gradients and linearization of gradient response maps, to increase the speed of their method.

To detect objects under varying poses, it requires a training phase in which a signi�cantly large

collection of templates needs to be acquired from di�erent viewpoints. In practice, full 3D

models are needed to generate these viewpoints. DTT-3D [24] improved the performance and

speed of LINEMOD. In their approach, they train a SVM with positive and negative examples

to learn the discriminative regions of templates, and use them only in the matching process.

They also divide the templates of each objects into di�erent clusters using their own similarity

measure and the clustering method of [13], which represents a group of similar templates with

what they refer as a �cluster template�. On the other hand, Hashmod [15] uses a hash function

on concatenated LINEMOD descriptors (color gradient and surface normals) to match templates.

Following a sliding window approach, they compute hashed descriptor at each image locations

and if the descriptor is close enough to a descriptor in the hash table (which contains the hashed

descriptors for each object under a certain pose), it is considered a match. [32] followed a similar

approach, but instead of using a hash function, they trained a CNN to learn descriptors for

varying poses of multiple objects. Matching was performed with a Nearest Neighbor search.

As opposed to the previously mentioned methods, [5] used only monocular grayscale images

to retrieve the 3D pose of known objects (they still had a 3D model of the object), as methods

based on depth sensors tend to fail for metallic objects due to their specular surfaces. They

based their pose estimation method on the 2D reprojection of control points located on the

di�erent and manually labeled parts of the 3D models. From the 3D-2D correspondences of

all control points of the di�erent parts, they solve the PnP problem to estimate the 3D pose,

which results in a method more robust to occlusions.

2.5 Overview of the proposed method

Fig. 2.1 shows a work�ow of template matching including our proposed pre-processing steps,

which detect and rank objects before further processing. As it can be observed, our method

is highly modular. As such, it allows a drop-in replacement of any module (e.g. template

matcher) if any better method becomes available. In the rest of this Section, we describe the

implementation details of each of the modules.

2.5.1 Object Detection

The �rst step in our method is to perform object hypotheses detection. We have used the

state-of-the-art Single Shot Multi Box Detector (SSD) [20] trained on the Microsoft COCO

dataset [19], which contains more than 2 million instances of the 80 object categories. SSD is

a convolutional neural network framework that can take as input images resized to 300× 300

(SSD300) or 500× 500 (SSD500) pixels, and outputs bounding boxes and classi�cation scores

26



(a) (b) (c)

Figure 2.2 � Image sequence showing object hypotheses retrieved from our object detection
module. One can notice that as the clutter in the workspace diminishes, objects previously
undetected by SSD can now be detected.

of every class. On proper hardware (GPU), it can run in real-time (58 FPS for SSD300) or

close to real time (23 FPS for SSD500). Objects are considered as detected when the score of

a bounding box is higher than a user-speci�ed threshold τSSD. In our experiments, we used

the SSD500 version with a low threshold τSSD = (0.08). We preferred SSD500 over SSD300

as it outputs more bounding boxes, while still being su�ciently fast. An example of object

detection on our object database with SSD is shown in Fig. 2.2. We can see in Fig. 2.2a that

some objects are undetected. It sometimes happens that an object will be considered as part

of the background in the presence of some clutter, i.e. when multiple objects are near each

other. This e�ect tends to decrease when near objects are removed, as shown in Fig. 2.2b and

Fig. 2.2c, where we can see that both the green and the gold objects were �nally detected,

once there was fewer objects around them. In a robotics grasping application where the goal

is to empty a work cell from all objects, this is usually not a signi�cant issue. Indeed, objects

around the undetected one would eventually all be grasped. Once the undetected objects

are the only objects remaining, the detection threshold can be decreased to get more object

hypotheses.

2.5.2 Object Classi�cation

To classify objects, we used a Residual Network (ResNet) [9, 11]. It has been recently demon-

strated as a top contender for ImageNet object classi�cation. For instance, [9] won the ILSVRC

2015 classi�cation task. The key idea of ResNet is that residual mappings are easier to opti-

mize than absolute ones. To take advantage of this fact, ResNet adds skip connections that

bypass several convolutional layers using identity mappings to form shortcuts in the network,

called residual blocks. With a combination of Batch Normalization (BN) [14] and MSR initial-

ization [10], stacking residual blocks signi�cantly improves the training e�ciency by reducing

the vanishing gradient degradation. This allows learning very deep networks far more easier

than it is without residual connections.
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Model Description

The ResNet architecture and the residual blocks are shown in Fig. 2.3, where we can formulate

each residual block as follows:

xl+1 = xl + F(xl,Wl) , (2.1)

where xl and xl+1 are the input and output of the l-th residual block and F is the residual

mapping. As seen in Fig. 2.3a, we opted for a Conv-PELU-Conv-BN residual mapping, where

PELU stands for Parametric Exponential Linear Unit, an adaptive activation function that

showed high performance on several image classi�cation task over other alternatives [25, 29].

The overall 18-layers network, which has about 11.7 M parameters to be learned, is shown in

Fig. 2.3b. It takes as input a 224× 224 color image, and using a series of various transforma-

tions, outputs a c-dimensional vector of class conditional probabilities. The �rst convolutional

layer contains 64 7× 7 �lters, which are convolved with a 2× 2 stride and 3× 3 zero-padding.

We will denote such convolutional layer as Conv(64, 7×7, 2×2, 3×3). PELU is then applied

on the resulting feature maps of the �rst layer, followed by a max pooling layer MaxPool(3×3,

2× 2, 1× 1). The input then passes through four twice-replicated residual blocks, containing

respectively 64, 128, 256 and 512 �lters in each of their convolutional layers. The network

performs a �nal PELU activation, followed by a global average pooling AvgPool(7× 7, 1× 1)

and linear layer 512→ c, where c represents the number of classes. When the network doubles

the residual block number of �lters, the input spatial dimensionality is reduced by half. This

particularity allows the network to gradually pool spatial information into its feature maps

and extract higher-level information. For instance, between ResBlock 64 and ResBlock 128,

the input spatial dimensionality is reduced from 56 × 56 to 28 × 28 pixels. However, this

poses a problem for the �rst ResBlock 128, as we cannot apply an identity skip connection

because the input and output spatial dimensionality are di�erent. In this case, we use as skip

connection a convolutional layer with 1× 1 �lters with a stride of 2× 2, currently known as a

type B connection [11].

Training Details

In spite of the recent experiments showing that �ne-tuning an ImageNet [6] pre-trained network

gives good results [26], we instead opted to train our network from scratch. We relied heavily

on data augmentation techniques for improving generalization performances. This powerful

technique allows generating new images from existing datasets to arti�cially grow their sizes,

and thus help the network converge at a better local optimum. During training, prior to

inputting the image to the network, we applied the �ve following random transformation:

color jittering (contrast, lighting and saturation are changed by a small amount), lighting

Noise (a PCA-based noise in RGB space from [17]), color standardization (we subtracted the

mean and divided by the standard deviation of each RGB channel to get a mean of 0 and
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(a) Residual block (b) Residual network

Figure 2.3 � Residual block and network used in this paper

unit-variance), horizontal �ip (images are randomly �ipped horizontally), rotation (images are

randomly rotated from 0 to 360 degrees). At test time, we simply did color standardization. All

transformations were performed on the �y during training, and due to the randomness of the

process, the network had e�ectively seen a new image at each iteration, even though our dataset

only contained 50 images per object (see section 2.6.1 for more information about the dataset).

For training the network, we used the hyper-parameters and the Torch implementation of [29].

Note that this number of images is much less than in the standard ImageNet database, which

has between 700-1300 images per class [6].

2.5.3 Object Ranking

This simple step takes the con�dence scores returned by the classi�cation step as input, cre-

ating a list ordered by their classi�cation scores. The most likely objects to appear in the

image, according to our classi�er, are therefore placed at the beginning of the list. The whole

algorithm is summarized in Algorithm 1.

2.5.4 Template Matching

To match object templates, we employed the LINE-2D [12] algorithm, which uses the orien-

tation of gradients to perform matching. LINE-2D is considered as one of the state-of-the-art

template matching method on monocular color images. We used its default implementation

in the OpenCV library [4], with 2 pyramid levels and 63 features. In an o�ine phase, we

acquired, with a �xed and uncalibrated webcam, multiple templates per object under varying
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Algorithm 1 Object Ranking

1: procedure RankHypotheses
2: ClassScores[1..class] = [0, 0 .. 0]
3: BoundingBoxes← SSD(inputImage)
4: CroppedImages← crop(BoundingBoxes)
5: For i in CroppedImages :
6: scores[1..class]← ResNet(i)
7: For j in 1..class :
8: if scores[j] > ClassScores[j] :
9: ClassScores[j]← scores[j]

10: ClassRanking ← sort(ClassScores)

poses instead of generating them from CAD models. We also did perform some data augmen-

tation to increase the number of templates per object. In our case, we limited ourselves to

scaling. For each template in our training dataset, we added a smaller (90%) and a bigger

(110%) version. This was deemed su�cient, as our experimental setup mimicked a robotic

work cell, where objects are assumed to be placed on a �at surface at a �xed, known distance

from the camera.

At runtime, objects are matched starting with the better ranked objects coming from our

pre-processing. If no template from an object has a higher score than a given threshold,

the next object on the list is tried. This process is repeated until the matching score of a

template is higher than the threshold τscore. In this case, this template is then considered as

matched and the template matching algorithm is stopped. It is important to note that we

used less templates (few dozens to few hundreds) than the original implementation of [12] (few

thousands). Also, we used larger image resolutions (980x720 instead of 640x480 pixels).

2.6 Experiments

In this Section, we describe the experiments we performed to test our method. In particular,

we detail the training and testing datasets used, motivating our choice of acquiring our own

datasets. We then present results, in the form of speed up (ranking of objects) and F1-score

classi�cation results.

2.6.1 Datasets

In-house dataset

In order to validate our approach, we acquired our own training and test datasets, much

in the same way that an operator would provide training examples during the con�guration

procedure of a robotic work cell. This stays in line with the concept that non-experts should be

able to program such systems in an intuitive manner. Moreover, it complies with the situation
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where there is no a priori knowledge about objects, such as 3D models. Another reason for

gathering our own datasets is that the majority of image datasets available in computer vision

contests represents natural objects with signi�cant intra-class variation, shown over complex

background. These are not representative of the low intra-class variation typical of industrial

objects, which are also generally placed on surfaces with uniform backgrounds. For our image

datasets creation, we selected 10 objects that could be present in typical industrial robotic

grasping applications. Care was taken to select them so that the majority had low-texture

and/or were made of polished metal. The latter tend to have widely-varying appearance from

viewpoints, due to specular re�ections.

For the acquisition of the �rst dataset Dgreen (used for training purposes), our setup consisted

in a �xed camera placed over a table, on which lied a green-colored cardboard. The cardboard

allowed to easily segment objects from the background. For each object, a total of 50 images

were captured, while being manually placed in random poses (translation and in-plane rota-

tions). The goal was to try to capture the impact of the lighting on the appearance of the

object. For instance in Fig. 2.4, one can see that the metallic part has one side slightly darker

in appearance than the other (image with the green background on the left), while its sur-

face has a more similar appearance in a di�erent orientation (right image with the fake-wood

background). For each image, ground truth images were created by our object segmentation

method, which extracted image regions lying inside of the automatically generated bound-

ing boxes. After this, a manual veri�cation was done on all ground truth images to remove

those for which the automatic segmentation failed. Speci�c training procedures were taken

for LINE-2D and our ResNet, which are detailed in Sections 2.5.4 and 2.5.2, respectively.

The Dother dataset, used mainly for testing purposes, consisted of 20 images per object, for a

total of 200 images. Like for theDgreen dataset, objects were manually placed in random poses.

The main di�erence is that objects were placed on a di�erent background, seen in Fig. 2.4,

namely glossy fake wood. It provided for extra challenge, as it is a di�erent background than

Dgreen, with texture and re�ection of the wood. We have decided to use a di�erent background

for this other dataset for a simple reason: we wanted to estimate the impact of the change of

background on the results. If we take a real scenario of an industrial user wanting to use many

robotic grasping stations for multiple objects, it would be ideal for them to have a training

station where they acquire the necessary information and then share this knowledge with every

other grasping station. For small industrial robots, it is very likely that each grasping station

will have di�erent backgrounds. Therefore, this dataset will allow us to partially evaluate the

performance of our approach for such cases.

Pose Dataset

We have also tested our method on the Pose dataset from [30]. It consists of 15 objects, for

which half the images are objects that are rendered on a black background, and the other
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Figure 2.4 � Di�erent backgrounds used for our experiments: Dgreen (left) and test Dother

(right) datasets

half on a cluttered background. There are around 700 images for both backgrounds, to o�er

a visual sampling of each object at regular angle intervals. We used the black background

images along as our training dataset, as it bears similarities with our Dgreen datasets (uniform

backgrounds). Additionally, we have randomly selected around a hundred images from the

images with a cluttered background to the training set of our ResNet to avoid over�tting.

We have also randomly selected another hundred images from the remaining images with a

cluttered background as our test dataset. Fig. 2.5 shows an overview of the objects in the

dataset and an example of an object rendered on a cluttered background.

Figure 2.5 � Objects from the pose dataset [30]. The image on the left shows a number of its
objects, rendered on a uniform background. On the right, an example of an object rendered
on a cluttered background.

2.6.2 Results

In here, we evaluated what we consider two advantages of our approach. First, we wanted

to establish the quality of our ranking, which directly translate into a speed up of matches.

This is done by measuring the average rank of the ground truth object in the sorted output of

our ResNet classi�er. Then, we evaluate the increase in matching reliability that the ranking

inherently brings, as better matches are performed on average �rst.

Average Ranking

We evaluated the ranking performance of our approach on the 2 datasets described in sections

2.6.1, namely our own acquired dataset D1 and the pose dataset D2.
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We evaluated on our own dataset D1 for two scenarios, which only di�ered slightly by the

training datasetDtrain. For the �rst experiment, the training dataset contained strictly images

from the uniform green background, i.e. Dtrain = Dgreen. This was done in order to con�rm

the risk of over�tting with ResNet, if proper care is not taken when building training datasets.

In the second experiment, a single image Ij per object is randomly picked from the Dother

dataset containing the wood background, and added to our training dataset , i.e. Dtrain =

Dgreen + Ij , with Ij ∈ Dother. For the �rst case, experiments reported an average rank of 4.05

over 10 objects on the testing dataset Dother, which is barely above randomness (the average

rank would be 5 for an approach that uses a random order). This simply demonstrated,

unsurprisingly, the over�tting of our ResNet, which has learned objects only when they were

on a colored and textureless background. It then cannot generalize to objects shown on the

textured background. More surprising was the fact that adding a single image from Dother

was su�cient to nearly completely overcome this over�tting issue. Indeed, the average rank

for this newly trained network was 1.37 over Dtest = {Dother \ Ij}, very close to the results

obtained directly on the training set (1.13). It therefore shows that a few examples can help

to generalize to new backgrounds.

On the pose dataset D2, we did not compute the average ranking on its training dataset

consisting of the images with a black background Dtrain = Dblack, since we already con�rmed

the risk of over�tting with dataset D1. For the experiment on this dataset, we randomly

picked 100 images {Ij} of the cluttered background Dother, which is a pretty conservative

number considering our results with dataset D1, and added them to our training set, Dtrain =

Dblack + {Ij}, with {Ij} ∈ Dother. The results for the average rank of the di�erent scenarios

are recapitulated in Table 2.1.

Training Set Avg. Rank (D1) Avg. Rank (D2)
(over 10 objects) (over 15 objects)

Dtrain 4.05 -
Dtrain + {Ij}, with {Ij} ∈ Dother 1.37 1.99

Table 2.1 � Average ranking of objects

F1 Score

In this section, we present the results of evaluating the performance of LINE-2D template

matching, with and without our pre-processing approach. We used the multi-class F1 score

de�ned in [27] to do the evaluation. The score can be calculated as follows:

F1scoreµ =
2× Precisionµ × Recallµ
Precisionµ + Recallµ

(2.2)
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Figure 2.6 � Di�erent performance indicators with respect to template matching thresholds
on our own acquired dataset D1

Precisionµ =

∑x
i=1 tpi∑x

i=1 tpi + fpi
(2.3)

Recallµ =

∑x
i=1 tpi∑x

i=1 tpi + fni
(2.4)

These last equations are valid to measure classi�cation performance for classes Ci. The vari-

ables tpi, fpi, tni and fni are respectively for true positives, false positives, true negatives

and false negatives, all for class Ci.

Scores are shown in Fig. 2.6 on our dataset D1 and in Fig. 2.7 for the pose dataset D2. These

graphs show the performance of LINE-2D for 3 di�erent methods: our pre-processing method,

the best score and random order. For a description of our method, see section 2.5. For the

best score approach, all templates are processed and the template with the highest score is

considered a match. For the random order approach, a random order of objects is generated

and all the templates of that particular object are processed. It is repeated until a template

of the object gets a score higher than the selected threshold. In these graphs, we can see that

our method clearly outperforms randomness. The e�ect of using our ResNet for classi�cation

is shown for low thresholds, where the score represents the classi�cation performance of our

ResNet. We therefore show that our method greatly mitigates the negative impact brought

on by electing a threshold τscore that is too low. Compared to the best score approach, we

can see that our method performs slightly worse for lower thresholds, but gets slightly better

performances as the threshold is increased. The big di�erence between these 2 methods is

that our method performs the matching for only a few objects while the best score approach

needs to process all of them.

34



threshold
0 20 40 60 80 100

tr
u

e
 p

o
s
it
iv

e
s
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

Our method
Best Score
Random order

(a) True Positives

threshold
0 20 40 60 80 100

fa
ls

e
 p

o
s
it
iv

e
s
 (

%
)

0

10

20

30

40

50

60

70

80

90

100
Our method
Best Score
Random order

(b) False Positives

Threshold

0 20 40 60 80 100

F
1
 S

c
o
re

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Our method

Best Score

Random order

(c) F1 Score

Figure 2.7 � Di�erent performance indicators with respect to template matching thresholds
on the pose dataset D2

2.7 Conclusion

In this paper, we proposed a generic and modular template matching pre-processing method

which ranks objects by using Deep Learning for object detection and recognition. We have

shown that our pre-ranking can speed up the matching of templates while increasing its re-

liability (in case of �rst-match search). More precisely, our method was able to reduce the

number of objects that needed to be processed by template matching from an average of 5 ob-

jects down to 1.37 for our own dataset and from an average of 7.5 to 1.99 for the Pose dataset.

This indicates that we would get near constant-time computation, for small to moderately

sized databases of objects (up to 1,000). Moreover, F1 scores indicate that we are competitive

with a brute-force template matching approach, while being signi�cantly faster.

With this project, we also hope to ease the transition of deep learning into industries by

proposing to use a deep learning detector as pre-processing approach for a template matching

method. Further testing in real environments and with larger object sets will be needed.
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Chapter 3

Learning Object Localization and 6D

Pose Estimation from Simulation and

Weakly Labeled Real Images

3.1 Résumé

Entraîner des réseaux de neurones profonds pour des méthodes d'estimation de pose d'objets

est un processus long et demandant, alors qu'il est nécessaire de fournir aux réseaux un grand

nombre d'images avec la pose en six dimensions (trois pour la translation et trois pour la ro-

tation) de chaque objet. Dans cet article, nous proposons une approche en cascade, composée

d'un réseau de neurones faiblement supervisé en amont d'une méthode d'estimation de pose,

qui permet de simpli�er le processus d'acquisition et d'annotation d'images d'entraînement.

Les performances de notre approche en estimation de pose sur deux jeux de données publics

(YCB-video [1] et Occluded Linemod [2]) montrent qu'elle se classe parmi les plus perfor-

mantes lorsque comparées avec les méthodes de l'état-de-l'art malgré l'utilisation d'un niveau

de supervision plus faible et d'une plus petite quantité d'images réelles à l'entraînement.

3.2 Abstract

Accurate pose estimation is often a requirement for robust robotic grasping and manipulation

of objects placed in cluttered, tight environments, such as a shelf with multiple objects. When

deep learning approaches are employed to perform this task, they typically require a large

amount of training data. However, obtaining precise six degrees of freedom for ground-truth

can be prohibitively expensive. This work therefore proposes an architecture and a training

process to solve this issue. More precisely, we present a weak object detector that enables

localizing objects and estimating their 6D poses in cluttered and occluded scenes. To minimize

the human labor required for annotations, the proposed detector is trained with a combination
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of synthetic and a few weakly-annotated real images (as little as 10 images per object), for

which a human provides only a list of objects present in each image (no time-consuming

annotations, such as bounding boxes, segmentation masks and object poses). To close the gap

between real and synthetic images, we use multiple domain classi�ers trained adversarially.

During the inference phase, the resulting class-speci�c heatmaps of the weak detector are used

to guide the search of 6D poses of objects. Our proposed approach is evaluated on several

publicly available datasets for pose estimation. We also evaluated our model on classi�cation

and localization in unsupervised and semi-supervised settings. The results clearly indicate

that this approach could provide an e�cient way toward fully automating the training process

of computer vision models used in robotics.

3.3 Introduction

Robotic manipulators are increasingly deployed in challenging situations that include signif-

icant occlusion and clutter. Prime examples are warehouse automation and logistics, where

such manipulators are tasked with picking up speci�c items from dense piles of a large va-

riety of objects, as illustrated in Fig. 3.1. The di�cult nature of this task was highlighted

during the recent Amazon Robotics Challenges [3]. These robotic manipulation systems are

generally endowed with a perception pipeline that starts with object recognition, followed by

the object's six degrees-of-freedom (6D) pose estimation. It is known to to be a computation-

ally challenging problem, largely due to the combinatorial nature of the corresponding global

search problem. A typical strategy for pose estimation methods [2, 4�6] consists in generating

a large number of candidate 6D poses for each object in the scene and re�ning hypotheses

with the Iterative Closest Point (ICP) [7] method or its variants. The computational e�ciency

of this search problem is directly a�ected by the number of pose hypotheses. Reducing the

number of candidate poses is thus an essential step towards real-time grasping of objects.

Training Convolutional Neural Networks (CNN) for tasks such as object detection and seg-

mentation [9�11] makes it possible to narrow down the regions that are used for searching for

object poses in RGB-D images. However, CNNs typically require large amounts of annotated

images to achieve a good performance. While such large datasets are publicly available for

general-purpose computer vision, specialized datasets in certain areas such as robotics and

medical image analysis tend to be signi�cantly scarcer and time-consuming to obtain. In

a warehouse context (our target context), new items are routinely added to inventories. It

is thus impractical to collect and manually annotate a new dataset every time an inventory

gets updated, particularly if it must cover all possible lighting and arrangement conditions

that a robot may encounter during deployment. This is even more challenging if one wants

this dataset to be collected by non-expert workers. The main goal of our approach is thus

to reduce such a need for manual labeling, including completely eliminating bounding boxes,

segmentation masks and 6D ground truth manual annotations.
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Figure 3.1 � Overview of our approach for 6D pose estimation at inference time. This �gure
shows the pipeline for the drill object of the YCB-video dataset [1]. A deep learning model
is trained with weakly annotated images. Extracted class-speci�c heatmaps, along with 3D
models and the depth image, guide the Stochastic Congruent Sets (StoCS) method [8] to
estimate 6D object poses. Further details of the network are available in Section 3.5.

Our �rst solution to reduce manual annotations is to leverage synthetic images generated

with a CAD model rendered on diverse backgrounds. However, the visual features di�erence

between real and synthetic images can be large to the point of leading to poor performance

on real objects. The problem of learning from data sampled from non-identical distributions

is known as domain adaptation. Domain adaptation has been increasingly seen as a solution

to bridge the gap between domains [12, 13]. Roughly speaking, domain adaptation tries to

generalize the learning from a source domain to a target domain, or in our case, from synthetic

to real images. Since labeled data in the target domain is unavailable or limited, the standard

way is to train on labeled source data, while trying to minimize the distribution discrepancy

between source and target domains.

While having a small labeled dataset on a target domain allows to boost performances, it may

still require signi�cant human e�ort for the annotations. Our second solution is to use weakly

supervised learning, which signi�cantly decreases annotation e�orts, albeit with a reduced

performance compared to fully-annotated images. Some methods [14, 15] have been shown to

be able to retrieve a high level representation of the input data (such as object localization)

while only being trained for object classi�cation. To the best of our knowledge, this promising

kind of approach has not yet been applied within a robotic manipulation context.

In this paper, we propose a two-step approach for 6D pose estimation, as shown in Fig. 3.1.
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First, we train a network for classi�cation through domain adaptation, by using a combina-

tion of weakly labeled synthetic and real color images. During the inference phase, the weakly

supervised network generates class-speci�c heatmaps that are subsequently re�ned with an

independent 6D pose estimation method called Stochastic Congruent Sets (StoCS) [8]. Our

complete method achieves competitive results on the YCB-video object dataset [1] and Oc-

cluded Linemod [2] while using only synthetic images and few weakly labeled real images (as

little as 10) per object in training. We also empirically demonstrate that for our test case,

using domain adaptation in semi-supervised settings is preferable than training in unsuper-

vised settings and �ne-tuning on available weakly labeled real images, a commonly-accepted

strategy when only a few images from the target domain are available.

3.4 Related Work

In this paper, we aim at performing object localization and 6D pose estimation with a deep

network, with minimal human labeling e�orts. Our approach is based on training from syn-

thetic and weakly labeled real images, via domain adaptation. These various concepts are

discussed below.

6D Pose Estimation Recent literature in pose estimation focuses on learning to predict 6D

poses using deep learning techniques. For example, [1] predicts separately the object center

in images for translation and regresses over the quaternion representation for predicting the

rotation. Another approach is to �rst predict 3D object coordinates, followed by a RANSAC-

based scheme to predict the object's pose [5, 6]. Similarly, [6] uses geometric consistency

to re�ne the predictions from the learned model. These methods, however, need access to

several images that are manually labeled with the full object poses, which is time-consuming

to acquire. Some other approaches make use of the object segmentation output to guide a

global search process for estimating object poses in the scene [8, 16, 17]. Although the search

process could compensate for errors in prediction when the segmentation module is trained

with synthetic data, the domain gap could be large, and a computationally expensive search

process may be needed to bridge this gap.

Learning with Synthetic Data Training with synthetic data has recently gained signi�cant

interest, as shown by the multiple synthetic datasets recently available [18�23], with some

focusing on optimizing the realism of the generated images. While the latter can decrease to a

certain degree the gap between real and synthetic images, it somehow defeats the purpose of

using simulation as a cost-e�ective way to create training data. To circumvent this issue, [24,

25] proposed instead to create images using segmented object instances copied on real images.

This type of approach, akin to data augmentation, is however limited to the number of object

views and illuminations that are available in the original dataset. Recently, [26, 27] showed

promising results by training object detectors with 3D models rendered in simulation with
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randomized parameters, such as lighting, number of objects, object poses, and backgrounds.

While in [26] they only use synthetic images in training, [27] demonstrated the bene�ts of

�ne-tuning on a limited set of real labeled images. The last one also showed that using

photorealistic synthetic images does not necessarily improve object detection, compared to

training on a less realistic synthetic dataset generated with randomized parameters.

Domain Adaptation Domain adaptation techniques [12, 13] can serve to decrease the dis-

tribution discrepancy between di�erent domains, such as real vs. synthetic. The popular

DANN [28] approach relies on two classi�ers: one for the desired task, trained on labeled data

from a source domain, and another one (called domain classi�er) that classi�es whether the

input data is from the source or target domain. Both classi�ers share the �rst part of the

network, which acts as a feature extractor. The network is trained in an adversarial manner:

domain classi�er parameters are optimized to minimize the domain classi�cation loss, and

shared parameters are optimized to maximize the domain classi�cation loss. It is possible

to achieve this minimax optimization in a single step by using a gradient reversal layer that

reverses the sign of the gradient between shared and non-shared parameters of the domain

classi�er. To the best of our knowledge, the present work is the �rst use a DANN-like approach

for point-wise object localization, a fundamental problem in robotic manipulation.

Weakly Supervised LearningWe are interested in weakly supervised learning with inexact

supervision, for which only coarse-grained labels are available [29]. In [14], a network was

trained only with weak image-level labels (classes that are present in images, but not their

position) and max-pooling was used to retrieve approximate location of objects. The proposed

WILDCAT model [15] performs classi�cation and weakly supervised point-wise detection and

segmentation. This architecture learns multiple localized features for each class, and uses a

spatial pooling strategy that generalizes to many ones (max pooling, global average pooling

and negative evidence). In the present work, we push the paradigm of minimum human

supervision even further. To this e�ect, we propose to train WILDCAT with synthetic images,

in addition to weakly supervised real ones, and use MADA (a variant of DANN) for domain

adaptation.

3.5 Proposed Approach

We present here our approach to object localization and 6D pose estimation. It is trained using

a mix of synthetic and real images and only requires weak annotations (only class-presence)

in both domains.

3.5.1 Overview

Figure 3.2 depicts an overview of our proposed system. It comprises i) a ResNet-50 model

pre-trained on ImageNet as a feature extractor (green), ii) a weak classi�er inspired from
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Figure 3.2 � Overview of the proposed approach for object localization and 6D pose estimation
with domain adaptation, using a mix of synthetic images and weakly labeled real images.

the WILDCAT model [15] (blue), iii) the Stochastic Congruent Sets (StoCS ) for 6D pose

estimation (red) [8], and iv) the MADA domain adaptation network to bridge the gap between

synthetic and real data. During the inference phase, the domain adaptation part of the

network is discarded. Given a test image, class-speci�c heatmaps are generated by the network.

These heatmaps indicate the most probable locations of each object in the image. This

probability distribution is then fed to StoCS, a robust pose estimation algorithm that is

speci�cally designed to deal with noisy localization. To force the feature extractor to extract

similar features for both synthetic and real images, a MADA module (described below) is

employed. MADA's purpose is to generate gradients during training (via a reversal layer) in

order to improve the generalization capabilities of the feature extractor.

3.5.2 Synthetic Data Generation

For synthetic data generation, we used a modi�ed version of the SIXD toolkit1. This toolkit

generates color and depth images of 3D object models rendered on black backgrounds. Virtual

camera viewpoints are sampled on spheres of di�erent radii, following the approach described

in [30]. We extended the toolkit with the functionality of rendering more than one object per

image, and also used random backgrounds taken from the LSUN dataset [31]. Similarly to

recent domain randomization techniques [32], we observed from our experiments that these

simple modi�cations help transferring from simulation to real environments where there are
1https://github.com/thodan/sixd_toolkit
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(a) (b)

Figure 3.3 � Examples of synthetic image used in training.

multiple objects of interest, occlusions and diverse backgrounds. Figure 3.3 displays some

examples of the generated synthetic images that we used to train our network.

3.5.3 Weakly Supervised Learning with WILDCAT

The images used for training our system are weakly labeled: only a list of object classes present

in the image is provided. In order to recover localization from such weak labels, we leverage the

WILDCAT architecture [15]. Indeed, WILDCAT is able to recover localization information

through its high-level feature map, even though it is only trained with a classi�cation loss. As

a feature extractor, we employ a ResNet-50 (pretrained on ImageNet) for which the last layers

(global average pooling and fully connected layers) are removed, as depicted in Figure 3.2.

The WILDCAT architecture added on top of this ResNet-50 comprises three main modules:

a multimap transfer layer, a class pooling layer and a spatial pooling layer. The multimap

transfer layer consists of 1× 1 convolutions that extracts M class-speci�c modalities per class

C, with M = 8 as per the original paper [15]. The class pooling module is an average pooling

layer that reduces the number of feature maps from MC to C. Then, the spatial pooling

module selects k regions with maximum/minimum activations to calculate scores for each

class. The classi�cation loss for this module is a multi-label one-versus-all loss based on max-

entropy (MultiLabelSoftMarginLoss in PyTorch). The classi�cation scores are then rescaled

between 0 and 1 to cooperate with MADA.

3.5.4 Multi-Adversarial Domain Adaptation with MADA

We used the Multi-Adversarial Domain Adaptation (MADA) approach [33] to bridge the �re-

ality gap�. MADA extends the Domain Adversarial Networks (DANN) approach [28] by using

one domain discriminator per class, instead of a single global discriminator as in the original

version of DANN [28]. Having one discriminator per class has been found to help aligning class-

speci�c features between domains. In MADA, the loss Ld for the K domain discriminators
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and input xi is de�ned as:

Ld =
1

n

K∑
k=1

∑
xi∈Ds∪Dt

Lkd

(
Gkd

(
ŷki Gf (xi)

)
, di

)
, (3.1)

wherein i ∈ {1, . . . , n}, and n = ns+nt is the total number of training images in source domain

Ds (synthetic images) and the target domain Dt (real images). Gf is the feature extractor

(the same for both domains), ŷki is the probability of label k for image xi. This probability ŷki
is the output of the weak classi�er WILDCAT. Gkd is the k-th domain discriminator and Lkd is

its cross-entropy loss, given the ground truth domain di ∈ {synthetic, real} of image xi. Our

global objective function is:

C =
1

n

∑
xi∈D

Ly

(
Gy

(
Gf (xi)

)
, yi

)
− λLd , (3.2)

where Ly is the classi�cation loss, Ld the domain loss and λ has been found to work well with

a value of 0.5. The heat-map probability distribution extracted from WILDCAT is used to

guide the StoCS algorithm in its search for 6D poses, as explained in the next section.

3.5.5 Pose Estimation with Stochastic Congruent Sets (StoCS)

The StoCS method [8] is a robust pose estimator that predicts the 6D pose of an object

in a depth image from its 3D model and a probability heatmap. We employ a min-max

normalization on the class-speci�c heatmaps of the Wildcat network, transforming them into

a probability heatmaps wpi , using the per-class minimum (wmin) and maximum (wmax) values:

πpi→Ok
=

wpi − wmin
wmax − wmin

. (3.3)

This generates a heatmap providing the probability π of an object Ok being located at a

given pixel pi. The StoCS algorithm then follows the paradigm of a randomized alignment

technique. It does so by iteratively sampling a set of four points, called a base B, on the point

cloud S and �nds corresponding set of points on the object model M . Each corresponding

set of four points de�nes a rigid transformation T , for which an alignment score is computed

between the transformed model cloud and the heatmap for that object. The optimization

criteria is de�ned as

Topt = argmaxT
∑

mi∈Mk

f(mi, T, Sk), (3.4)

f(mi, T, Sk) = πk(s∗), if | T (mi)− s∗ |< δs. (3.5)

The base sampling process in this algorithm considers the joint probability of all four points

belonging to the object in question, given as

Pr(B → Ok) =
1

Z

4∏
i=1

{φnode(bi)
j<i∏
j=1

φedge(bi, bj)}. (3.6)
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where φnode is obtained from the probability heatmap and φedge is computed based on the

point-pair features of the pre-processed object model. Thus, the method combines the nor-

malized output of the Wildcat network with the geometric model of objects to obtain base

samples which belong to the object with high probability.

In the next two Sections, we demonstrate the usefulness of our approach. First in Section 3.6,

we quantify the importance of each component (Wildcat, MADA) in order to train a network

that generates relevant feature maps from weakly labeled images. In Section 3.7, we then

evaluate the performance of using these heatmaps with StoCS for rapid 6D pose estimation,

which is the �nal goal of our paper.

3.6 Weakly Supervised Learning Experiments for object

detection and classi�cation

In this �rst experimental section, we perform an ablation study to evaluate the impact of

various components for classi�cation and point-wise localization. We �rst tested our approach

without any human labeling, as a baseline. We then evaluated the gain obtained by employing

various numbers of weakly labeled images for four semi-supervised strategies.

We performed these evaluations on the YCB-video dataset [1]. This dataset contains 21 objects

with available 3D models. It also has full annotations for detection and pose estimation on

113,198 training images and 20,531 test images. A subset of 2,949 test images (keyframes) is

also available. Our results are reported for this more challenging subset, since most images in

the bigger test set are video frames that are too similar and would report optimistic results.

For these experiments, we trained our network for 20 epochs (500 iterations per epoch) with

a batch size of 4 images per domain. We used stochastic gradient descent with a learning rate

of 0.001 (decay of 0.1 at epochs 10 and 16) and a Nesterov momentum of 0.9. The ResNet-50

was pre-trained on ImageNet and the weights of the �rst two blocks were frozen (con�guration

that performed the best in initial experiments).

3.6.1 Unsupervised Domain Adaptation

For this experiment, we trained our model with weakly labeled synthetic images (WS) and

unlabeled real images (UR). We tested three architecture con�gurations of domain adaptation:

1) without any domain adaptation module (WILDCAT model trained onWS), 2) with DANN

(WS+UR) and 3) with MADA (WS+UR). We evaluated each of these con�gurations for

both classi�cation and detection. For classi�cation, we used the accuracy metric to evaluate

our model's capacity to discriminate which objects are in the image. We used a threshold

of 0.5 on classi�cation scores to predict the presence or absence of an object. For detection,

we employed the point-wise localization metric [14], which is a standard metric to evaluate
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(a) (b)

Figure 3.4 � Performance analysis. In (a), we compare classi�cation accuracy and point-wise
detection when no label on real images are available. In (b), we compare the performance of
di�erent training processes when di�erent numbers of real images are weakly labeled.

the ability of weakly supervised networks to localize objects. For each object in the image,

the maximum value in their class-speci�c heatmap was used to retrieve the corresponding

pixel in the original image. If this pixel is located inside the bounding box of the object of

interest, it is counted as a good detection. Since the class-speci�c heatmap is a reduced scale

of the input image due to pooling, a tolerance equal to the scale factor was added to the

bounding box. In our case, a location in the class-speci�c heatmaps corresponds to a region

of 32 pixels in the original image. In Figure 3.4a, we report the average scores of the last 5

epochs over 3 independent random runs for each network variation. These results a) con�rm

the importance of employing a domain adaptation strategy to bridge the reality gap, and b)

the necessity of having one domain discriminator Gkd for each of the X objects in the YCB

database (MADA), instead of a single one (DANN). Next, we evaluate the gains obtained by

employing weakly-annotated real images.

3.6.2 Semi-Supervised Domain Adaptation

A signi�cant challenge for agile deployment of robots in industrial environments is that they

ideally should be trained with limited annotated data, both in terms of numbers of images

and of their extensiveness of labeling (no pose information, just class). We thus evaluated the

performance of four di�erent strategies as a function of the number of such weakly-labeled

real images:

1. Without domain adaptation:

a) Real Only: Trained only on weakly labeled real images,

b) Fine-Tuning: Trained on synthetic images and then �ne-tuned on weakly labeled

real images,
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2. With domain adaptation:

a) Fine-Tuning: Trained on synthetic images and then �ne-tuned on weakly labeled

real images,

b) Semi-Supervised: Trained with synthetic images and weakly labeled real images

simultaneously.

For 1.a and 1.b, we validate that using �ne-tuning on a network pre-trained with synthetic data

is preferable to training directly on real images. For 2.a and 2.b, we compare the performance

of our approach trained with �ne-tuning, and in a semi-supervised way (using images from both

domains at the same time). We are particularly interested in comparing the two approaches

2.a and 2.b, since [34] achieved the lowest error rate compared to any other semi-supervised

approach by only using �ne-tuning.

Our results are summarized in Figure 3.4b. From them, we conclude that training with

synthetic images improves classi�cation accuracy drastically, especially when few labels are

available. Also, our approach performs slightly better when trained in a semi-supervised

setting (2.b) than with a �ne-tuning approach (2.a), which is contrary to [34].

In this Section, we justi�ed our architecture, as well as the training technique employed, to

create a network capable of performing object identi�cation and localisation through weak

learning. In the next Section, we demonstrate how the feature maps extracted by our network

can be employed to perform precise 6 DoF object pose estimation via StoCS.

3.7 6D Pose Estimation Experiments

We evaluated our full approach for 6D pose estimation on YCB-video [1] and Occluded

Linemod [2] datasets. We used the most common metrics to compare with similar methods.

The average distance (ADD) metric [35] measures the average distance between the pairwise

3D model points transformed by the ground truth and predicted pose. For symmetric objects,

the ADD-S metric measures the average distance using the closest point distance. Also, the

visible surface discrepancy [36] compares the distance maps of rendered models for estimated

and ground-truth poses.

We used the same training details mentionned in section 3.6. Since the network architecture

is fully convolutional, we also added an experiment for which we combined the output of the

network for 3 di�erent scales of the input image (at test time only).

3.7.1 YCB-Video Dataset

This dataset comprises several frames from 92 video sequences of cluttered scenes created

with 21 YCB objects. The training for competing methods [1, 37, 38] is performed using
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113,199 frames from 80 video sequences with semantic (pixelwise) and pose labels. For our

proposed approach, we used only 10 randomly sampled weakly annotated (class labels only)

real images per object class combined with synthetic images. As in [1], we report the area

under the curve (AUC) of the accuracy-threshold curve, using the ADD-S metric. Results

are reported in Table 3.1. Our proposed method achieves 88.67% accuracy with a limited

number of weakly labeled images and up to 93.60% when using the full dataset with multiscale

inference. It outperforms competing approaches, with the exception of PoseCNN+ICP, which

performs similarly. However, our approach has a large computational advantage with an

average runtime of 0.6 seconds per object as opposed to approximately 10 seconds per object

for the modi�ed-ICP re�nement for PoseCNN. It also uses a) nearly a hundredfold less real

data, and b) also only using the class labels. This results thus demonstrate that we can reach

fast and competitive results without the need of 6D fully-annotated real datasets.

3.7.2 Occluded Linemod Dataset

This dataset contains 1215 frames from a single video sequence with pose labels for 9 objects

from the LINEMOD dataset with high level of occlusion. Competing methods are trained

using the standard LINEMOD dataset, which consists in average of 1220 images per object.

In our case, we used 10 real random images per object (manually labelled) on top of the

generated synthetic images, using the weak (class) labels only. As reported in Table 3.1, our

method achieved scores of 68.8% and 76.6% (multiscale) for the ADD evaluation metric and

using a threshold of 10% of the 3D model diameter. These results compare with state-of-

the-art methods while using less supervision and a fraction of training data. The multiscale

variant (input image at 3 di�erent resolutions) made our approach more robust to occlusions.

We did not train with the full Linemod training dataset, since the dataset only has annotations

for 1 object per image and our method requires the full list of objects that are in the image.

Furthermore, we evaluated our approach on the 6D pose estimation benchmark [36] using the

visual discrepency metric. We evaluated our network with multiscale inference and we can

see in Table 3.2 that we are among the top 3 for the recall score while being the fastest. We

also tested the e�ect of combining ICP with StoCS. At the cost of more processing time, we

obtain the best performance among the methods that were evaluated on the benchmark.
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Method Modality Supervision Full Dataset AUC (ADD-S) ADD-10%
YCB-Video Occluded Linemod

PoseCNN [1] RGB Pixelwise labels + 6D poses Yes 75.9 24.9
PoseCNN+ICP [1] RGBD Pixelwise labels + 6D poses Yes 93.0 78.0

DeepHeatmaps [37] RGB Pixelwise labels + 6D poses Yes 81.1 28.7
FCN + Drost et. al. [38] RGBD Pixelwise labels Yes 84.0 -

FCN + StoCS [8] RGBD Pixelwise labels Yes 90.1 -
Brachmann et al. [5] RGBD Pixelwise labels + 6D poses Yes - 56.6
Michel et. al. [6] RGBD Pixelwise labels + 6D poses Yes - 76.7

OURS RGBD Object classes No (10 weakly labeled images) 88.7 68.8
OURS RGBD Object classes Yes 90.2 -

OURS (multiscale inference) RGBD Object classes No (10 weakly labeled images) - 76.6
OURS (multiscale inference) RGBD Object classes Yes 93.6 -

Table 3.1 � Area under the accuracy-threshold curve for 6D Pose estimation on YCB-Video
dataset (ADD-S metric) and ADD metric for Occluded Linemod with threshold of 10% of the
diameter (ADD-S metric for 2 objects).

Method Recall Score (%) Time (s)

Vidal-18 [39] 59.3 4.7
Drost-10 [38] 55.4 2.3

Brachmann-16 [40] 52.0 4.4
Hodan-15 [41] 51.4 13.5

Brachmann-14 [5] 41.5 1.4
Buch-17-ppfh [42] 37.0 14.2

Kehl-16 [43] 33.9 1.8
OURS (MS) 55.2 0.6

OURS (MS) + ICP 62.1 6.4

Table 3.2 � Visual discrepency recall scores (%) (correct pose estimation) for τ = 20mm and
θ = 0.3 on Occluded Linemod, based on the 6D pose estimation benchmark [36]. MS means
multiscale.

3.8 Conclusion

In this paper, we explored the problem of 6D pose estimation in the context of limited anno-

tated training datasets. To this e�ect, we demonstrated that the output of a weakly-trained

network is su�ciently rich to perform full 6D pose estimation. Pose estimation experiments

on two datasets showed that our approach is competitive with recent approaches (such as

PoseCNN), despite requiring signi�cantly less annotated images. Most importantly, our anno-

tation level requirement for real images is much weaker, as we only need a class label without

any spatial information (either bounding box or full 6D ground truth). In this end, this

makes our approach compatible with an agile automated warehouse, where new objects to be

manipulated are constantly introduced in a training database by non-expert employees.
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Chapter 4

Deep Template-based Object Instance

Detection

4.1 Résumé

Les réseaux de neurones sont limités à un ensemble d'objets pour lesquels ils sont entraî-

nés. Pour généraliser à de nouveaux objets, les réseaux doivent être ré-entrainés. Ce n'est

pas pratique lorsque les objets d'intérêts peuvent changer souvent et rapidement, tel qu'en

robotique industrielle. Dans cet article, nous proposons une approche générique de détection

d'objets basée sur les réseaux de neurones pouvant être utilisée pour des objets jamais vus

lors de l'entraînement. Notre approche améliore d'environ 30% les performances en détec-

tion d'objets pour la métrique � mean Average Precision � (mAP) par rapport à l'approche

LINE-2D [11] (50.7% contre 21%), qui est l'état-de-l'art pour les méthodes de détection géné-

rique d'objets. Les performances de notre approche sont également comparables aux méthodes

d'apprentissage entraînées spéci�quement pour l'ensemble d'objets de test. Notre approche est

donc performante et simpli�e l'utilisation en pratique pour des cas où l'ensemble d'objets à

retrouver peut changer fréquemment.

4.2 Abstract

Much of the focus in the object detection literature has been on the problem of identifying

the bounding box of a particular class of object in an image. Yet, in contexts such as robotics

and augmented reality, it is often necessary to �nd a speci�c object instance�a unique toy or

a custom industrial part for example�rather than a generic object class. Here, applications

can require a rapid shift from one object instance to another, thus requiring a fast turnaround

which a�ords little-to-no training time. What is more, gathering a dataset and training a

model for every new object instance to be detected can be an expensive and time-consuming

process. In this context, we propose a generic 2D object instance detection approach that
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uses example viewpoints of the target object at test time to retrieve its 2D location in RGB

images, without requiring any additional training (i.e. �ne-tuning) step. To this end, we

present an end-to-end architecture that extracts global and local information of the object

from its viewpoints. The global information is used to tune early �lters in the backbone while

local viewpoints are correlated with the input image. Our method o�ers an improvement of

almost 30 mAP over the previous template matching methods on the challenging Occluded

Linemod [3] dataset (overall mAP of 50.7). Our experiments also show that our single generic

model (not trained on any of the test objects) yields detection results that are on par with

approaches that are trained speci�cally on the target objects.

4.3 Introduction

Object detection is one of the key problems in computer vision. While there has been sig-

ni�cant e�ort and progress in detecting generic object classes (e.g. detect all the phones in

an image), comparatively little attention has been devoted to detect speci�c object instances

(e.g. detect this particular phone model). Recent approaches on this topic [21, 29, 40, 43]

have achieved very good performance in detecting object instances, even under challenging

occlusions. By relying on textured 3D models as a way to specify the object instances to be

detected, these methods propose to train detectors tailored for these objects. Because they

know the objects to be detected at training time, these approaches essentially over�t to the

objects themselves: they become specialized at detecting them (and only them).

While this is a promising and active research direction, requiring knowledge of the objects to

be detected at training time might not always be practical. For instance, if a new object needs

to be detected, the entire training process must be started over. This implies �rst generating a

full training dataset and then optimizing the network. Also, using a single network per object

can be a severe constraint in embedded applications where memory is a limited resource.

In this work, we explore the case of training a generic 2D instance detector, where the speci�c

object instance to be detected is only known at test time. The object to be found is represented

by a set of images of that object captured from di�erent viewpoints (�g. 4.1). In order to

simplify the data capture setup and to facilitate comparisons to previous work on standard

datasets, in this work we employ 3D models of the test objects and render di�erent viewpoints.

If a 3D model is not accessible, it would be possible to instead capture a few viewpoints of

the object on a plain background.

This paper is akin to a line of work which has received somewhat less attention recently,

that of template matching. These techniques scan the image over a dense set of sub-windows

and compare each of them with a template representing the object. A canonical example is

Linemod [11], which detects a 3D object by treating several views of the object as templates,

and by e�ciently searching for matches over the image. While very e�cient, traditional
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Figure 4.1 � Overview of the proposed method. At test time, our network predicts the 2D lo-
cation (in an RGB image) of a target object (unseen during training) represented by templates
acquired from various viewpoints.

template matching techniques can be quite brittle, especially under occlusion, and yield large

amounts of false positives.

In this paper, we revive this line of work and propose a novel instance detection method.

Using a philosophy sharing resemblance to meta-learning [38], our method uses a large-scale

3D object dataset and a rendering pipeline to learn a versatile template representation. At

test time, our approach takes as input multiple viewpoints of any object and detects it from

a single RGB image immediately, without any additional training (�g. 4.1).

Our main contribution is the design of a novel deep learning architecture which can localize

instances of a target object from a set of input templates. Instead of matching pixel intensi-

ties directly such as other template matching methods, our network is trained to localize an

instance from a joint embedding space. Our approach is trained exclusively on synthetic data

and takes a single RGB image as input. In addition, we introduce a series of extensions to

the architecture which improve the detection performance such as tunable �lters to adapt the

feature extraction process to the object instance in the early layers of a pretrained backbone.

We quantify the contribution of each extension through a detailed ablation study. Finally,

we present extensive experiments that demonstrate that our method can successfully detect

object instances that were not seen during training. In particular, we report performances

that signi�cantly outperform the state of the art on the popular Occluded Linemod [3] dataset.

Notably, we attain a mAP of 50.71%, which is almost 30% better than LINE-2D [11] and on

par with methods that over�t on the object instance during training.
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4.4 Related work

Our work is most related to two areas: object instance detection in RGB images, and 2D

tracking in RGB images.

Object instance detection. Our work focuses on retrieving the 2D bounding box of a par-

ticular object instance. This is in contrast with well-known methods such as Faster-RCNN [31]

and SSD [25] or with methods that bear more resemblance to our approach such as CoAE [18],

which all provide 2D locations of object classes. Detecting a speci�c object is challenging due

to the large variety of objects that can be found in the wild. Descriptor-based and template-

based methods are useful in such context. Generic features such as gradient histograms [11]

and color histograms [34] can be computed and then retrieved from an object codebook.

Recent progress in deep learning enabled the community to develop approaches that auto-

matically learn features from the 3D model of an object using neural network [21, 29, 40, 43]

or random forest [4] classi�ers. While these methods perform exceptionally well on known

benchmarks [16], they share the important limitation that training these deep neural networks

requires a huge amount of labeled data tailored to the object instances to be detected. Conse-

quently, gathering the training dataset for speci�c objects is both costly and time-consuming.

Despite this, e�orts have been made to capture such real datasets [3, 7, 12, 15, 32, 33] and to

combine them together [16]. A side e�ect is that it con�nes most deep learning methods to the

very limited set of objects present in these datasets, as the weights of a network are speci�cally

tuned to detect only a single [21] or a few instances [21, 29]. The di�culty of gathering a real

dataset can be partially alleviated using simple rendering techniques [13, 21, 29] combined

with data augmentation such as random backgrounds and domain randomization [35, 36, 42],

but still su�ers from a domain gap with real images. Recently, Hodan et al. [17] demonstrated

that the domain gap can be minimized with physics-based rendering. Despite this progress,

all of the above methods share the same limitation, in that they all require signi�cant time

(and compute power) to train a network on a new object. This implies a slow turn-around

time, where a practitioner must wait hours before a new object can be detected.

To circumvent these limitations, we propose a novel generic network architecture that is trained

to detect a target object that is unavailable at training time. Our method is trained on a large

set of objects and can generalize to new, di�erent objects at test time. Our architecture bears

resemblance to TDID [1] that uses a template to detect a particular instance of an object. We

show in our experiments that our method performs signi�cantly better than [1] on objects not

seen during training.

Tracking in 2D images. Our work shares architectural similarities with 2D image-based

tracking, for which approaches use a template of the object as input, typically identi�ed as a

bounding box in the �rst frame of the video. In contrast, we focus on single frame detection.

Thus, we employ known viewpoints of the object acquired o�ine. Many of these tracking
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approaches propose to use an in-network cross-correlation operation (sometimes denoted as

?d) between a template and an image in feature space [5, 22, 39]. Additionally, recent 6-

DOF trackers achieve generic instance tracking using simple viewpoint renders from a 3D

model [8, 23, 26]. These methods are limited by the requirement of a previous temporal state

in order to infer the current position. Our method takes inspiration from these two lines of

work by �rst using the in-network cross-correlation and second, our experiments show that

using renders is su�cient to locate a speci�c object instance from a single RGB image.

4.5 Network architecture

We �rst introduce an overview of our proposed network architecture, depicted in �g. 4.2. Then,

we discuss the two main stages of our architecture: 1) correlation and 2) object detection. The

correlation stage borrows from classical template matching methods, where the template of

an object is compared to the query image in a sliding-window fashion. The second stage is

inspired from the recent literature in class-based object detection.

4.5.1 Architecture overview

We design an architecture that receives knowledge of the object as input, computes the tem-

plate correlation as a �rst stage, and regresses bounding boxes around the object from the

correlation results in a second stage. As shown in �g. 4.2, the network takes as input the

RGB query image and two types of templates: 1) a global template used as an object atten-

tion mechanism to specialize early features in the backbone network; and 2) a local template

that helps extract viewpoint-related features. Each template is an RGB image representing

the rendered 3D object from a given viewpoint on a black background, concatenated with its

binary mask to form four-channel images. The templates are obtained with a fast OpenGL

render of the object with di�use re�ectance, ambient occlusion and lit by a combination of

one overhead directional light and constant ambient lighting.

4.5.2 Correlation stage

The query image is �rst processed by a conventional backbone to extract a latent feature rep-

resentation. The global template is fed to an �Object Attention Branch� (OAB), which injects

a set of tunable �lters early into this backbone network such that the features get specialized

to the particular object instance. On the other hand, the local template is consumed by the

�Pose-Speci�c Branch� (PSB) to compute an embedding of the object. The resulting features

are then correlated with the backbone features using simple cross-correlation operations. Note

that at test time, the backbone (85% of total computing) is processed only once per instance,

while the second stage is computed for each template.
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Stage 1: Correlations
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Figure 4.2 � Our proposed architecture. In stage 1, the network learns to localize an object
solely from a set of templates. Object-speci�c features are learned by the �object attention�
and �pose-speci�c� branches, and are subsequently correlated/subtracted with the generic
features of the backbone network. In stage 2, the network leverages the learned representation
to perform di�erent tasks: binary segmentation, center and bounding box prediction. At
test time, a single �global� template is randomly selected, while several �local� templates are
combined.

Backbone network. The role of the backbone network is to extract meaningful features

from the query image. For this, we use a DenseNet121 [19] model pretrained on ImageNet [6].

Importantly, this network is augmented by adding a set of tunable �lters between the �rst

layer of the backbone (7× 7 convolution layer with stride 2) and the rest of the model. These

tunable �lters are adjusted by the Object Attention Branch, described below.

Object attention branch (OAB). It has been widely studied that using a pretrained

backbone provides better features initialization [28]. For a task related to template matching,

this however limits the feature extraction process to be generic and not specialized early on

to a particular instance (e.g. it is not necessary to have a high activation on blue objects

if we are looking for a red object.). Thus, a specialized branch named �Object Attention

Branch� (OAB) guides the low-level feature extraction of the backbone network by injecting

high-level information pertaining to the object of interest. The output of the OAB can be seen

as tunable �lters, which are correlated with the feature map of the �rst layer of the backbone

network. The correlation is done within a residual block, similarly to [10]. The ablation study

in sec. 4.7.3 demonstrates that these tunable �lters are instrumental in conferring to a �xed

backbone the ability to generalize to objects not seen during training.

The OAB network is a SqueezeNet [20] pretrained on ImageNet, selected for its relatively small

memory footprint and good performance. In order to receive a four-channel input (RGB and

binary mask), an extra channel is added to the �rst convolution layer. The pretrained weights

for the �rst three channels are kept and the weights of the fourth channel are initialized by

the Kaiming method [9]. During training, a di�erent pose of the target object is sampled at
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each iteration. For testing, a random pose is sampled once and used on all test images.

Pose-speci�c branch (PSB). Since an object instance can greatly vary depending on

its viewpoint, a �pose-speci�c branch� (PSB) is trained to produce a high-level representation

(embeddings) of the input object under various poses. This search, based on learned features,

is accomplished by depth-wise correlations and subtraction with 1× 1 local templates applied

on the backbone output feature map. This correlation/subtraction approach is inspired by [1],

where they have demonstrated an increased detection performance when combining these two

operations with 1× 1 embeddings. Siamese-based object trackers [2, 39] also use correlations,

but with embeddings of higher spatial resolution. We found bene�cial to merge these two

concepts in our architecture, by using depth-wise correlations (denoted as ?d) in both 1 × 1

and 3 × 3 spatial dimensions. The �rst one is devoid of spatial information, whereas the

second one preserves some of the spatial relationships within a template. We conjecture that

this increases sensitivity to orientation, thus providing some cues about the object pose.

This PSB branch has the same structure and weight initialization as the OAB, but is trained

with its own specialized weights. The output of that branch are two local template embeddings:

at 1 × 1 and 3 × 3 spatial resolution respectively. Depth-wise correlations (1 × 1 and 3 × 3)

and subtractions (1 × 1) are applied between the embeddings generated by this branch and

the feature maps extracted from the backbone. All of them are processed by subsequent 3× 3

convolutions (C1�C3) and are then concatenated.

At test time, the object viewpoint is not known. Therefore, a stack of templates from multiple

viewpoints are provided to the pose speci�c branch. Processing time can be saved at runtime

by computing the templates embeddings in an o�ine phase. Note that the correlation between

the local templates and the extracted features is a fast operation and can be easily applied in

batch. The backbone network is only processed once per object instance.

4.5.3 Object detection stage

The second stage of the network deals with estimating object information from the learned

correlation map. The architecture comprises a main task (bounding box prediction) and two

auxiliary tasks (segmentation and center prediction).

Bounding box prediction. The bounding box classi�cation and regression tasks are used

to predict the presence and location of the object respectively (as in [24]). The classi�cation

head predicts the presence/absence of the object for k anchors at every location of the fea-

ture map while the regression head predicts a relative shift on the location (x, y) and size

(width, length) with respect to every anchor. In our method, we have k = 24: 8 scales (30,

60, 90, 120, 150, 180, 210 and 240 pixels) and 3 di�erent ratios (0.5, 1 and 2). Both heads are

implemented as 5-layer convolution branches [24]. Inspired from RetinaNet [24], anchors with
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an Intersection-over-Union (IoU) of at least 0.5 are considered as positive examples, while

those with IoU lower than 0.4 are considered as negatives. The other anchors between 0.4 and

0.5 are not used. At test time, bounding box predictions for all templates are accumulated

and predictions with an (IoU) > 0.5 are �ltered by Non-Maximum Suppression (NMS). Also,

for each bounding box prediction, a depth estimation can be made by multiplying the depth at

which the local template was rendered with the size ratio between the local template size (124

pixels) and the prediction size. Predictions that have a predicted depth outside the chosen

range of [0.4, 2.0] meters, which is a range that �ts to most tabletop settings, are �ltered out.

Segmentation and center prediction. The segmentation head predicts a pixel-wise bi-

nary mask of the object in the scene image at full resolution. The branch is composed of 5

convolution layers followed by 2× bilinear upsampling layers. Additionally, the center predic-

tion head predicts the location of the object center at the same resolution than the correlation

map (29× 39) to encourage a strong correlation. The correlation channels are compressed to

a single channel heatmap with a 1× 1 convolution layer.

Loss Functions. The network is trained end-to-end with a main (bounding box detection)

and two auxiliary (segmentation and center prediction) tasks. As such, the training loss

`train = λ1`seg+λ2`center+`FL+`reg, where `seg is a binary cross-entropy loss for segmentation,

`center is an L1 loss for the prediction of the object center in a heatmap, `FL is a focal loss [24]

associated with the object presence classi�cation and `reg is a smooth-L1 loss for bounding

box regression. The weights λ1, λ2 were empirically set to 20.

4.6 Training data

In this section, we detail all information related to the input images (query and templates)

during training. In particular, we de�ne how the synthetic images are generated and how the

dataset is augmented.

4.6.1 Domain randomization training images

We rely on 125 di�erent textured 3D models gathered in majority from the various datasets of

the 6D pose estimation benchmark [16] (excluding Linemod [11] since it is used for evaluation).

Our fully-annotated training dataset is generated with a physic-based simulator similar to [27],

for which objects are randomly dropped on a table in a physical simulation. Every simulation

is done in a simple cubic room (four walls, a �oor and a ceiling) containing a table placed on

the �oor in the middle of the room. Inspired from the success of domain randomization [35,

36], we added randomness to the simulation parameters in order to reduce the domain gap

between synthetic and real images. The following parameters are randomized: the texture

of the environment (walls, �oor and table), lighting (placement, type, intensity and color),
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(a) (b) (c)

Figure 4.3 � Examples from our domain randomization training set. In (a), objects are ran-
domly placed in front of the camera and rendered using OpenGL with a background sampled
from Sun3D dataset [41]. In (b) and (c), a physical simulation is used to drop several objects
on a table with randomized parameters (camera position, textures, lighting, materials and
anti-aliasing). For each render, 2 variations are saved: one with simple di�use materials and
without shadows (b), and one with more sophisticated specular materials and shadows (c).

object materials (di�use and specular re�ection coe�cients) and anti-aliasing (type and various

parameters).

Renders. Our physics-based domain randomization dataset is composed of 10,000 images.

To generate these images, we ran 250 di�erent simulations with di�erent sets of objects (be-

tween 4 and 13 objects in each simulation). In 50% of the simulations, objects were au-

tomatically repositioned to rest on their bottom/main surface to replicate a bias found in

many tabletop datasets. For each simulation, 20 camera positions were randomly sampled on

half-spheres of radius ranging from 0.8 to 1.4 meters, all pointing towards the table center

with random o�sets of ±15 degrees for each rotation axis. For each sampled camera position,

two image variations were rendered: one with realistic parameters (containing re�ections and

shadows) as shown in �g. 4.3-(c) and the other without, as shown in �g. 4.3-(b). Tremblay

et al. [37] showed that using di�erent kinds of synthetic images reduced the performance gap

between synthetic and real images. Accordingly, we have generated an additional set of 10,000

simpler renders using OpenGL. For this, we rendered objects in random poses on top of real

indoor backgrounds sampled from the Sun3D dataset [41] (�g. 4.3-(a)).

Labels. After the simulations, we kept the 6 degree of freedom pose of each object as the

ground truth. We used the pose together with the 3D model to generate a visibility mask

for the segmentation task, and projected the center of the 3D model in the image plane to

generate the center heatmap. The ground-truth heatmap is a 2D Gaussian with an amplitude

of 1 and a variance of 5 at the projected center of the object at an image resolution equivalent

to the output of the network.

4.6.2 Templates

The following section describes the template generation procedure for training. We also remind

the di�erent procedure used at test time, as described in sec. 4.5.2.
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For each training iteration, one of the objects from the query image is selected as the target

object and all the others are considered as background. All templates are rendered with a

resolution of 124×124 pixels. To render consistent templates from multiple objects of various

size, we adjust the distance of the object so that its largest length on the image plane falls in

the range of 100 to 115 pixels. The borders are then padded to reach the size of 124× 124.

Global template (OAB): In an o�ine phase, 240 templates are generated for each 3D

model by sampling 40 viewpoints on an icosahedron with 6 in-plane rotations per viewpoint.

During training, one of the 240 templates is sampled randomly for each iteration. At test

time, a single one is randomly selected for all experiments.

Local template (PSB): We apply perturbations on the orientation of the template image

by sampling a random rotation axis and rotation magnitude, and adding that perturbation to

the ground truth viewpoint before rendering the local template. The impact of using di�erent

rotation magnitude is quanti�ed in table 4.2, with best performance obtained with random

rotations perturbation in the range of 20�30◦ to the ground truth viewpoint. At test time, a

stack of 160 templates rendered from 16 viewpoints is used.

4.7 Experiments

In this section, we provide details on the training procedure and on the dataset and metrics

used to evaluate our approach. We also describe the various ablation studies that validate

our design choices. Finally, we present an extensive evaluation against the state-of-the-art

methods.

4.7.1 Training details

Our complete network is trained for 50 epochs with AMSGrad [30].We used a learning rate

of 10−4 with steps of 0.1 at epochs 20 and 40, a weight decay of 10−6 and mini batches of

size 6. We used 1k renders as a validation set and used the remaining 19k of the generated

dataset (OpenGL and physics-based) for training. Each epoch, the network was trained for

1,300 iterations and images are sampled with a ratio of 80/20 respectively from the physics-

based and OpenGL renders. Once the training was complete, the network with the smallest

validation loss (computed at the end of each epoch) was kept for testing.

4.7.2 Datasets and metrics

We evaluate on the well-known Linemod [12] and Occluded Linemod [3] datasets. Linemod

consists of 15 sequences of real objects containing heavy clutter where the annotations of a

single object are available per sequence. Occluded Linemod is a subset of Linemod, where

annotations for 8 objects have been added by [3]. Keeping in line with previous work, we only
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Network ∆ performance (%)

w/o tunable �lters (OAB) -19.76
w/o auxiliary tasks -7.73
w/o 3× 3 correlation (PSB) -5.37

Table 4.1 � Network architecture ablation study. Removing tunable �lters resulted in the most
notable performance drop of almost 20% while dismissing auxiliary tasks and 3x3 correlations
decreased accuracy by 7.73% and 5.37% respectively.

keep the prediction with the highest score for each object and use the standard metrics listed

below. We use a subset containing 25% of the Linemod dataset for the ablation studies.

Linemod. The standard metric for this dataset is the �2D bounding box� [3], which calcu-

lates the ratio of images for which the predicted bounding box has an intersection-over-union

(IoU) with the ground truth higher than 0.5.

Occluded Linemod. The standard mean average precision (mAP) is used to evaluate the

performance of multi-object detection. To allow for direct comparison, we regroup the predic-

tions made for di�erent objects and apply NMS on predictions with an IoU > 0.5. We use the

same methodology as in [3]: the methods are evaluated on 13 of the 15 objects of the Linemod

dataset (the �bowl� and �cup� objects are left out). Of the remaining 13 objects, 4 are never

found in the images, yet those are still detected and kept in the evaluation (as an attempt to

evaluate the robustness to missing objects). The mAP is therefore computed by using all the

predictions on the 9 other objects left.

4.7.3 Ablation studies

Network architecture. We evaluate the importance of di�erent architecture modules (pre-

sented in sec. 4.5). For each test, a speci�c module is removed and its performance is compared

to the full architecture. Tab. 4.1 shows that removing the �Object Attention Branch� resulted

in the largest performance drop (almost 20%). Also, removing the higher-resolution 3× 3 em-

beddings and auxiliary tasks reduced performances by approximately 5% and 8% respectively.

Importance of local template perturbation during training. A perfect match between

the template pose and the target object pose in the scene is unlikely. As such, the training

procedure must take this into account by adding orientation perturbations to local templates

at train time. Here, we investigated what is the desirable magnitude of such perturbations. In

tab. 4.2, a random rotation of 0◦ represents local templates selected with the same orientation

as the object in the scene. Perturbations are then added by randomly sampling a rotation

axis (in spherical coordinates) and a magnitude. A network was retrained for each amount of

perturbation. Tab. 4.2 illustrates that perturbations of 20�30◦ seems to be optimal. Networks
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Random rotations 0◦ ±10◦ ±20◦ ±30◦ ±40◦ ±180◦

∆ performance (%) -4.33 -3.12 0 -0.42 -5.18 -16.07

Table 4.2 � Ablation study on random rotations applied to the local template orientation
during training. A random rotation of 0◦ represent a strict training where the local template
perfectly matches the ground truth object while ±180◦ is equivalent to a random rotation
angle. A random perturbation of ±20/30◦ provides the best compromise.

# of templates 80 160 320 oracle

∆ performance (%) -2.80 0 +0.03 +16.75
runtime (ms) 230 430 870 60

Table 4.3 � Evaluating the bounding box detection performance and runtime for various num-
bers of local templates at test time. While runtime grows linearly, the performance gain
saturates around 160 templates. The oracle sets an upper bound of performance by providing
a single template with the ground truth object pose as input thus greatly reducing uncertainty.

trained with too small perturbations may not be able to detect objects under all their possible

con�gurations, resulting in small performances drop of less than 5%, and those trained with

too big perturbations are more prone to false detections (the network is trained to allow for

bigger di�erences in appearance and shape between the template and scene object), resulting

in a bigger drop of 16% for rotations of 180◦.

Number of local templates. The impact of providing various numbers of local templates

to the network at test time is evaluated, both in terms of accuracy and speed, in tab. 4.3.

Timings are reported on a Nvidia GeForce GTX 1080Ti. To generate a varying number of

templates, we �rst selected 16 pre-de�ned viewpoints spanning a half-sphere over the object.

Each template subsequently underwent 5 (80 templates), 10 (160 templates) and 20 (320

templates) in-plane rotations. Tab. 4.3 compares performance with that obtained with an

oracle who used a template with the ground truth pose. Performance ceases to improve

beyond 160 templates.

Global template selection. In tab. 4.4, we show that the object pose of the global tem-

plate does not impact signi�cantly the detection performance. For the �rst test, we report the

average performance of 5 di�erent evaluations in which a random global template was selected.

The performance slightly improved compared to the random template used in all other tests,

suggesting that the template selection in every other test was suboptimal. However, it also

shows that the templates were not cherry-picked for optimal performance on the test datasets.

Secondly, we show that using a template of the good object is primordial. Using empty tem-

plates (all 0's) or providing templates from another object results in a dramatic performance

drop of more than 30%, thus hinting about the discriminative power of the OAB.
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Global template selection Random pose Empty Wrong object

∆ performance (%) +1.21 -32.47 -38.15

Table 4.4 � Robustness towards di�erent selection of global templates. Evaluating with dif-
ferent random templates of the same object (Random pose), empty global templates (Empty)
and random templates of other objects (Wrong object). The OAB uses global information
about the object while being invariant to the provided pose.

# of objects 15 30 63 90 125

∆ performance (%) -31.58 -15.97 -10.42 -3.58 0

Table 4.5 � Impact of the number of objects used during training. Performance increases
rapidly when few objects are used at training but plateaus as more objects are added.

Number of objects in the training set. The network was retrained on subsets of ob-

jects of the synthetic dataset. The remaining objects were considered as background clutter.

Tab. 4.5 shows the performance w.r.t the quantity of objects used during training. While

using few objects still performs reasonably well, more objects does improve generalization.

Similar objects in the training set. While no single object were present in both training

and test sets, it is possible that the training set contained objects that shared similarities to

objects in the test set. To evaluate the potential impact this might have, we removed all cups

from our training set (13 were found), trained a network on the resulting set, and evaluated

its performance on the test set. Doing so reduced the overall score by less than 1%, but

the average performance solely on cups slightly improved (not statistically signi�cant). This

experiment demonstrates that the network does not over�t on a particular class of instances.

4.7.4 Comparative evaluation to the state of the art

We report an evaluation on Linemod and Occluded Linemod (OL) in tab. 4.6 and compare

with other state-of-the-art RGB-only methods. Competing methods are divided into 2 main

groups: those who do know the test objects at train time (�known objects�), and those who do

not. Approaches such as [4, 17, 21, 43] are all learning-based methods that were speci�cally

trained on the objects. On the other hand, [11, 34] and [1, 39] are respectively template

matching and learning-based methods that do not include a speci�c training step targeted

towards speci�c object instances. It is worth noting that even though [34] is classi�ed as

not needing known objects at training time, it still requires an initialization phase using real

images (to build a dictionary of histogram features). As in [4], they thus use parts of the

Linemod dataset as a training set that covers most of the object viewpoints. These methods

have therefore an unfair advantage compared to our approach and Line-2D, since they leverage

domain-speci�c information (lighting, camera, background) of the evaluation dataset.
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Methods
Known Real Linemod Occluded Linemod
objects images (2D BBox) (mAP)

Brachmann et al. [4] Yes Yes 97.50 51.00
SSD-6D [21] Yes No 99.40 38.00
DPOD [43] Yes No N/A 48.00
Hodan et al. [17] Yes No N/A 55.90*

Tjaden et al. [34] No Yes 78.50 N/A
LINE-2D [11] No No 86.50 21.0
TDID correlations [1] No No 54.37 34.13
SiamMask correlations [39] No No 68.23 41.47
Ours No No 77.92 50.71

Table 4.6 � Quantitative comparison to the state of the art, with 2D bounding box metric
on Linemod and mAP on Occluded Linemod (OL). The 2D bounding box metric calculates
the recall for the 2D bounding boxes with the highest prediction score. For both metrics,
predictions are considered good if the IoU of the prediction and the ground truth is at least
0.5 (0.75 for Hodan et al. [17]). The methods are separated �rst according to their prior
knowledge of test objects and then if real images similar to the test set are used to optimize
the performance. Our approach is the most robust of all methods that were not trained for
the test objects, having a good score on Linemod and the best score on Occluded Linemod.

Our method is evaluated without prior knowledge of the Linemod objects. It can be directly

compared with Line-2D [11] which also uses templates as input. On the standard Linemod

dataset, Line-2D outperforms our method by 8.5% on the �2D bounding box� metric. The

better results of Line-2D on Linemod can be explained in part by an additional and naive post-

processing color-based check that rejects false positives [4] while we report the performance

of our approach without any post-processing. We note that this naive approach fails if minor

occlusions occurs. In contrast, our method outperforms Line-2D by almost 30% in mAP on

the more di�cult Occluded Linemod. Our approach also provides competitive performance

that is on par or close to all other methods that test on known objects and/or have access

to real images. Fig. 4.4 shows qualitative results on Occluded Linemod. We also compare

our approach with TDID [1] and SiamMask [39]. We replaced their original backbones by

the same architecture (DenseNet) we are using. As speci�ed by those methods, a siamese

backbone replaced our 2 branches approach (OAB and PSB). TDID uses a 1 × 1 embedding

whereas a 3 × 3 embedding is used for SiamMask. All implementations were trained on the

same task following the same procedure than our approach and their scores are reported in

tab. 4.6. Overall, our proposed approach signi�cantly outperforms these two baselines.
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Figure 4.4 � Qualitative results on the Occluded Linemod dataset [3], showing good (green),
false (blue) and missed (red) detections. For reference, the 15 objects are shown in the
bottom row (image from [16]). To generate these results, all objects (except objects 3 and 7)
are searched in each image.

4.8 Discussion

We have proposed a method for detecting speci�c object instances in an image that does

not require knowledge of the object at training time. At test time, the proposed network

takes multiple viewpoints of the object as input, and predicts its location from a single RGB

image. Our experiments show that while the network has not been trained with any of the

test objects, it is signi�cantly more robust to occlusion than previous template-based methods

(30% improvement in mAP over Line-2D [11]). It is also highly competitive with networks

that are speci�cally trained on the object instances.

Limitations. False positives arise from clutter with similar color/shape as the object, as

shown in �g. 4.4. We hypothesize that our late correlation at small spatial resolution (tem-

plates of 3 × 3 and 1 × 1) prevents the network from leveraging detailed spatial information

related to the object shape. Another limitation is that the method requires 0.43s to detect a

single object instance in an image (c.f. tab. 4.3), scaling linearly with the number of objects.

The main reason for this is the object attention branch (OAB), which makes the backbone

features instance-speci�c via tunable �lters, which needs to be recomputed for each object.

Also, while capturing a 3D model has become increasingly simpler (it takes less than 5 minutes
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with commodity hardware [14]), this may not always be practical. While our experiments rely

on such 3D models to allow for quantitative evaluation on standard datasets for which only the

3D model is available, obtaining multiple viewpoints of an object could also be done simply

by photographing it against a uniform background.

Future directions. By providing a generic and robust 2D instance detection framework,

this work opens the way for new methods that can extract additional information about the

object, such as its full 6-DOF pose. We envision a potential cascaded approach, which could

�rst detect unseen objects, and subsequently regress the object pose from a high-resolution

version of the detection window.

4.9 Supplementary Material

4.9.1 Per object performances

In table 4.6, we reported the performance of our approach on Linemod [12] and Occluded

Linemod [3] datasets. We extend the reported results by showing the performance of our

approach on each object in tables 4.7 and 4.8. Object with their corresponding indices can be

viewed in �g. 4.5.

Object ID 2D BBox metric (%)

1 89.16
2 71.50
3 94.00
4 46.88
5 92.47
6 80.75
7 82.74
8 77.19
9 63.31
10 96.89
11 89.51
12 67.83
13 87.67
14 86.39
15 42.48

Mean 77.92

Table 4.7 � Performances on the 2D bounding box metric for each object of the Linemod
dataset.
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Object ID Mean Average Precision (mAP)

1 36.58
2 55.92
5 73.49
6 29.18
8 55.20
9 77.48
10 52.79
11 16.26
12 59.52

Mean Average Precision (mAP) 50.71

Table 4.8 � Average precision for each object evaluated on the Occluded Linemod dataset.

Figure 4.5 � All 15 objects in the Linemod dataset (taken from [16]).

4.9.2 Domain randomization training images

Additional examples of domain randomization images generated with our simulator are shown

in �g. 4.6.

4.9.3 Qualitative results on Linemod dataset

We show examples of good and bad predictions on Linemod dataset in �g. 4.7.

4.9.4 Qualitative results on Occluded Linemod

We show additional qualitative results on Occluded Linemod in �g. 4.8 to expand results

shown in �g. 4.4 of the paper.

4.9.5 Architecture details

To expand �g. 4.2 of the main paper, we show more detailed networks in �g 4.9.
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Figure 4.6 � More domain randomization images generated with our simulator
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Figure 4.7 � Qualitative results on Linemod dataset [12] with predictions (yellow) and ground-
truths (red). The �rst two rows show good predictions while the last row shows examples of
bad predictions.
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Figure 4.8 � More qualitative results on the Occluded Linemod dataset [3].
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Conclusion

In this thesis, we proposed di�erent strategies to facilitate the use of deep learning approaches

for object detection in the context of robotic grasping. We �rst proposed to combine the

strengths of deep networks and engineered solutions in cascaded approaches as a way to im-

prove the performances of the engineered solutions while keeping their interpretability. We

also proposed di�erent image acquisition and annotation strategies such as using simulation

and weak labels to decrease the usual required e�ort to acquire and annotate deep learning

datasets. Simulation, for instance, allows to get nearly labor-free annotation on data. More-

over, it can also improve generalization performances by enabling many conditions (lighting,

backgrounds, camera parameters, object poses, etc.) that can be di�cult to reproduce in the

real world. It can therefore help to reduce biases that can happen when only using real images.

Some biases, however, can be worth keeping. If something is expected to be constant between

training and testing conditions, over�tting on that particular aspect can improve performance.

For instance, in [35], they showed an absolute improvement of 13% on the mAP metric when

training with objects in the same context (objects placed in a shelf) as the test set compared

to when training with objects placed out of context (not in a shelf). In our case, even when

training with synthetic images, we mostly used images in similar contexts to the test settings

(tabletop with small objects on it). Hence, the reported performances of our approaches could

di�er if evaluated in di�erent contexts.

Also, most datasets for tabletop settings contain really few objects (10 to 30). It can therefore

be relatively easy for networks to distinguish them, especially if the objects are quite di�erent.

For this reason, the reported performances on these datasets are circumstantial and may not

necessarily represent how an approach would perform in the real world with a more diverse

group of objects.

Limitations and Future Work

In this last part, we review some limitations of our approaches and propose potential research

directions.

In our �rst approach presented in Chapter 2, we proposed a cascaded approach with indepen-
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dent blocks for object proposals and classi�cation. Our main motivation for using separate

blocks was that it was easier and faster to acquire a dataset for object classi�cation than for

object detection, which would have required bounding box annotations. Another limitation

of our proposed approach is that we did not use the location of the predictions in the ranking.

The main idea of our method was to use a global object ranking to limit the number of objects

that are tested with template matching approaches, which resulted in less false detections. A

combination of the ranking with the location of the top prediction (or top k predictions) would

likely improve the performance of our approach.

In the work presented in Chapter 3, we used a weakly-supervised network to train with clas-

si�cation annotations to retrieve the location of objects. One of the main limitations of the

approach is that we did not use all of the available annotations in simulation (bounding boxes,

pixelwise). Instead, we used the same training losses for both synthetic and real images. We

tried to simultaneously train for segmentation on synthetic images, but it did not improve our

results. Another limitation is the bias of the datasets that were used. For the experiments

in which we trained our network with real images, we randomly sampled training images.

While we did not train using the same images that were in the test set, some could look really

similar since the datasets were acquired from videos. Also, both datasets used nearly identical

settings (background, lighting, clutter, etc.) for most of the sequences, making it easy for

networks to over�t on them. With such biases in the datasets, it is di�cult to assess the real

generalization performance of the approach.

Our last work in Chapter 4 was inspired from template matching approaches, but was only

applied for detection. The 6D pose of objects could have been estimated from the template that

contributed the most to the target object detection, but in unreported experiments, we found

that it did not work well in practice. We attribute this to the fact that the �Pose Speci�c

Branch� correlates templates with the input at the end of the network (where the spatial

resolution of the feature maps is at its minimum) and that the network is not optimized for

that speci�c task. Therefore, during training, our network does not extract any pose-related

features. There are di�erent possible solutions to retrieve the object orientation that we did

not investigate, such as adding a loss for the pose. However, unlike other pose estimation

methods, our approach is applied to unknown objects. Thus, a relative pose error between the

pose of the template and the target object in the input image should be estimated instead of an

absolute pose. There could also be an advantage of correlating features at a higher resolution

or at di�erent scales using a feature pyramid. Moreover, the templates were synthetic renders,

so the object masks were perfect. If we tried to replicate our approach with real objects as

templates, imperfect object masks could potentially impact the performance.

Also, in general, the appearance of objects may shift signi�cantly under di�erent perspectives,

scales, illumination and occlusions. It makes them di�cult to detect under all their possible

variations. To improve the robustness of detectors, a simple solution could be to take advantage
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of multiple viewpoints. For instance, di�erent cameras could be installed at di�erent locations

around a scene or a camera mounted on a robotic arm could be moved around and acquire

an image sequence. This would allow detectors to obtain more semantic information about

the scene and likely obtain easier viewpoints for certain objects (bigger size, less occluded,

etc.), thus improving the detector's e�ectiveness. This research topic is not well explored in

the litterature (less than 1% of papers in recent object detection surveys [40, 51] used �multi-

view� in their titles) and can be explained mostly by the lack of datasets (standard challenging

datasets are mostly single-view), a recurring theme for deep learning.
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