4,686 research outputs found

    A Neuromorphic Model for Achromatic and Chromatic Surface Representation of Natural Images

    Full text link
    This study develops a neuromorphic model of human lightness perception that is inspired by how the mammalian visual system is designed for this function. It is known that biological visual representations can adapt to a billion-fold change in luminance. How such a system determines absolute lightness under varying illumination conditions to generate a consistent interpretation of surface lightness remains an unsolved problem. Such a process, called "anchoring" of lightness, has properties including articulation, insulation, configuration, and area effects. The model quantitatively simulates such psychophysical lightness data, as well as other data such as discounting the illuminant, the double brilliant illusion, and lightness constancy and contrast effects. The model retina embodies gain control at retinal photoreceptors, and spatial contrast adaptation at the negative feedback circuit between mechanisms that model the inner segment of photoreceptors and interacting horizontal cells. The model can thereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A new anchoring mechanism, called the Blurred-Highest-Luminance-As-White (BHLAW) rule, helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural color images under variable lighting conditions, and is compared with the popular RETINEX model.Air Force Office of Scientific Research (F496201-01-1-0397); Defense Advanced Research Project and the Office of Naval Research (N00014-95-0409, N00014-01-1-0624

    Object knowledge modulates colour appearance

    Get PDF
    We investigated the memory colour effect for colour diagnostic artificial objects. Since knowledge about these objects and their colours has been learned in everyday life, these stimuli allow the investigation of the influence of acquired object knowledge on colour appearance. These investigations are relevant for questions about how object and colour information in high-level vision interact as well as for research about the influence of learning and experience on perception in general. In order to identify suitable artificial objects, we developed a reaction time paradigm that measures (subjective) colour diagnosticity. In the main experiment, participants adjusted sixteen such objects to their typical colour as well as to grey. If the achromatic object appears in its typical colour, then participants should adjust it to the opponent colour in order to subjectively perceive it as grey. We found that knowledge about the typical colour influences the colour appearance of artificial objects. This effect was particularly strong along the daylight axis

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    A model of perceived dynamic range for HDR images

    Get PDF
    For High Dynamic Range (HDR) content, the dynamic range of an image is an important characteristic in algorithm design and validation, analysis of aesthetic attributes and content selection. Traditionally, it has been computed as the ratio between the maximum and minimum pixel luminance, a purely objective measure; however, the human visual system's perception of dynamic range is more complex and has been largely neglected in the literature. In this paper, a new methodology for measuring perceived dynamic range (PDR) of chromatic and achromatic HDR images is proposed. PDR can benefit HDR in a number of ways: for evaluating inverse tone mapping operators and HDR compression methods; aesthetically; or as a parameter for content selection in perceptual studies. A subjective study was conducted on a data set of 36 chromatic and achromatic HDR images. Results showed a strong agreement across participants' allocated scores. In addition, a high correlation between ratings of the chromatic and achromatic stimuli was found. Based on the results from a pilot study, five objective measures (pixel-based dynamic range, image key, area of bright regions, contrast and colorfulness) were selected as candidates for a PDR predictor model; two of which have been found to be significant contributors to the model. Our analyses show that this model performs better than individual metrics for both achromatic and chromatic stimuli

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Melanopsin Sensitivity in the Human Visual System

    Get PDF
    The human retina contains long [L]-wavelength, medium [M]-wavelength, and short [S]-wavelength cones, rods, and intrinsically photosensitive retinal ganglion cells expressing the blue-sensitive (λmax = ~480 nm) photopigment melanopsin. Previous animal studies have pointed to a role of melanopsin in advancing circadian phase, melatonin suppression, the pupillary light reflex (PLR), light avoidance, and brightness discrimination, often relying on genetic tools to study melanopsin in isolation in animal models. This work addresses the question of human melanopsin sensitivity and function in vivo using a spectrally tunable light source and the method of silent substitution, allowing for the selective stimulation of melanopsin in the human retina, in combination of pupillometry, psychophysics, and BOLD functional neuroimaging (fMRI). In three studies, we find (1) that the temporal transfer function of melanopsin in controlling the pupil in humans is low-pass, peaking at slow temporal frequencies (0.01 Hz), with a sharp drop off at higher frequencies (1-2 Hz); (2) that signals originating from S cones get combined in an antagonistic fashion with melanopsin signals and signals from L and M cones cones, demonstrating spectral opponency in the control of the human PLR; (3) that nominally cone-silent melanopsin-directed spectral modulations stimulate cones in the partial shadow of the retinal blood vessels (termed penumbral cones), leading to the entoptic percept of the subjective retinal vasculature; and (4) that there is no measurable signal due to melanopsin stimulation in human visual cortical areas (V1, V2/V3, MT, LOC; measured with BOLD fMRI) at temporal frequencies most relevant to spatial vision (0.5–64 Hz) while modulations directed at L+M, L–M and S photoreceptor combinations yield characteristic temporal transfer functions in these areas. This work advances to our understanding of the functional significance of melanopsin function in the human visual system, contributing to the study of human health in relation to light and color

    Neural Dynamics of Motion Perception: Direction Fields, Apertures, and Resonant Grouping

    Full text link
    A neural network model of global motion segmentation by visual cortex is described. Called the Motion Boundary Contour System (BCS), the model clarifies how ambiguous local movements on a complex moving shape are actively reorganized into a coherent global motion signal. Unlike many previous researchers, we analyse how a coherent motion signal is imparted to all regions of a moving figure, not only to regions at which unambiguous motion signals exist. The model hereby suggests a solution to the global aperture problem. The Motion BCS describes how preprocessing of motion signals by a Motion Oriented Contrast Filter (MOC Filter) is joined to long-range cooperative grouping mechanisms in a Motion Cooperative-Competitive Loop (MOCC Loop) to control phenomena such as motion capture. The Motion BCS is computed in parallel with the Static BCS of Grossberg and Mingolla (1985a, 1985b, 1987). Homologous properties of the Motion BCS and the Static BCS, specialized to process movement directions and static orientations, respectively, support a unified explanation of many data about static form perception and motion form perception that have heretofore been unexplained or treated separately. Predictions about microscopic computational differences of the parallel cortical streams V1 --> MT and V1 --> V2 --> MT are made, notably the magnocellular thick stripe and parvocellular interstripe streams. It is shown how the Motion BCS can compute motion directions that may be synthesized from multiple orientations with opposite directions-of-contrast. Interactions of model simple cells, complex cells, hypercomplex cells, and bipole cells are described, with special emphasis given to new functional roles in direction disambiguation for endstopping at multiple processing stages and to the dynamic interplay of spatially short-range and long-range interactions.Air Force Office of Scientific Research (90-0175); Defense Advanced Research Projects Agency (90-0083); Office of Naval Research (N00014-91-J-4100

    Función espacial de la luz en la puesta en escena de la coreografía contemporánea

    Get PDF
    The principles of using light in choreographic performances are the basis of image perception integrity. The novelty of the study is determined by the fact that the illumination as a component of the performance can be based not only on the physical laws of light, but also on its imitation. To look into the matter of illumination, the authors consider it necessary to use a polygonal model, which can also form a spatial picture if necessary. The paper defines the general illumination model, which uses ray tracing technology and allows to determine the structure of lighting in the hall and to distribute the light to understand the director's intention among the entire visual sector. The practical significance of the study is determined by the structure of using lighting as part of staging choreography in the postmodern genre.Los principios del uso de la luz en las interpretaciones coreográficas son la base de la integridad de la percepción de la imagen. La novedad del estudio está determinada por el hecho de que la iluminación como componente de la actuación puede basarse no solo en las leyes físicas de la luz, sino también en su imitación. Para analizar el tema de la iluminación, los autores consideran necesario utilizar un modelo poligonal, que también puede formar una imagen espacial si es necesario. El trabajo define el modelo de iluminación general, que utiliza la tecnología de trazado de rayos y permite determinar la estructura de la iluminación en la sala y distribuir la luz para comprender la intención del director entre todo el sector visual. La importancia práctica del estudio está determinada por la estructura del uso de la iluminación como parte de la coreografía escénica en el género posmoderno
    corecore