2,239 research outputs found

    A Utility Framework for Selecting Immersive Interactive Capability and Technology for Virtual Laboratories

    Get PDF
    There has been an increase in the use of virtual reality (VR) technology in the education community since VR is emerging as a potent educational tool that offers students with a rich source of educational material and makes learning exciting and interactive. With a rise of popularity and market expansion in VR technology in the past few years, a variety of consumer VR electronics have boosted educators and researchers’ interest in using these devices for practicing engineering and science laboratory experiments. However, little is known about how such devices may be well-suited for active learning in a laboratory environment. This research aims to address this gap by formulating a utility framework to help educators and decision-makers efficiently select a type of VR device that matches with their design and capability requirements for their virtual laboratory blueprint. Furthermore, a framework use case is demonstrated by not only surveying five types of VR devices ranging from low-immersive to full-immersive along with their capabilities (i.e., hardware specifications, cost, and availability) but also considering the interaction techniques in each VR device based on the desired laboratory task. To validate the framework, a research study is carried out to compare these five VR devices and investigate which device can provide an overall best-fit for a 3D virtual laboratory content that we implemented based on the interaction level, usability and performance effectiveness

    Remote Visual Observation of Real Places Through Virtual Reality Headsets

    Get PDF
    Virtual Reality has always represented a fascinating yet powerful opportunity that has attracted studies and technology developments, especially since the latest release on the market of powerful high-resolution and wide field-of-view VR headsets. While the great potential of such VR systems is common and accepted knowledge, issues remain related to how to design systems and setups capable of fully exploiting the latest hardware advances. The aim of the proposed research is to study and understand how to increase the perceived level of realism and sense of presence when remotely observing real places through VR headset displays. Hence, to produce a set of guidelines that give directions to system designers about how to optimize the display-camera setup to enhance performance, focusing on remote visual observation of real places. The outcome of this investigation represents unique knowledge that is believed to be very beneficial for better VR headset designs towards improved remote observation systems. To achieve the proposed goal, this thesis presents a thorough investigation of existing literature and previous researches, which is carried out systematically to identify the most important factors ruling realism, depth perception, comfort, and sense of presence in VR headset observation. Once identified, these factors are further discussed and assessed through a series of experiments and usability studies, based on a predefined set of research questions. More specifically, the role of familiarity with the observed place, the role of the environment characteristics shown to the viewer, and the role of the display used for the remote observation of the virtual environment are further investigated. To gain more insights, two usability studies are proposed with the aim of defining guidelines and best practices. The main outcomes from the two studies demonstrate that test users can experience an enhanced realistic observation when natural features, higher resolution displays, natural illumination, and high image contrast are used in Mobile VR. In terms of comfort, simple scene layouts and relaxing environments are considered ideal to reduce visual fatigue and eye strain. Furthermore, sense of presence increases when observed environments induce strong emotions, and depth perception improves in VR when several monocular cues such as lights and shadows are combined with binocular depth cues. Based on these results, this investigation then presents a focused evaluation on the outcomes and introduces an innovative eye-adapted High Dynamic Range (HDR) approach, which the author believes to be of great improvement in the context of remote observation when combined with eye-tracked VR headsets. Within this purpose, a third user study is proposed to compare static HDR and eye-adapted HDR observation in VR, to assess that the latter can improve realism, depth perception, sense of presence, and in certain cases even comfort. Results from this last study confirmed the author expectations, proving that eye-adapted HDR and eye tracking should be used to achieve best visual performances for remote observation in modern VR systems

    Using Virtual Reality to Improve Sitting Balance

    Get PDF
    This thesis focuses on using virtual reality (VR) to enhance sitting balance and core strength. It is a study in how to create a VR exercise program which is interesting enough to keep players/patients motivated, but comfortable to play and not overwhelming to the senses. The software used for this study was written with the hope that a later version of it might be used with occupational/physical therapy patients one day. For this master’s thesis, the initial testing has been done with healthy volunteers. The software incorporates what developers know thus far about designing for VR, and it is hoped that later software developers will benefit from knowing the results of this initial round of testing. All of the 39 test participants agreed that the game was fun, with 82% indicating “strongly agree” in the questionnaire. The enthusiastic responses indicate that the game probably has recreational value beyond therapy patients

    Experiencing Cinematic VR: Where Theory and Practice Converge in the Tribeca Film Festival Cinema360

    Get PDF
    Cinematic virtual reality (VR) production has reached enough capacity to support a festival. This paper offers a theoretical framework of VR narrative structure to critically examine one such festival in cinematic VR. The spotlight here is on the fifteen entries in the 2020 Tribeca Film Festival Cinema360. Findings suggest that although the field of cinematic VR has advanced substantially in recent years in terms of narrative design and user experience, there is still a considerable distance for VR storytellers to travel to fully utilize the nature and potential of the developing medium of virtual reality

    Electronic Imaging & the Visual Arts. EVA 2017 Florence

    Get PDF
    The Publication is following the yearly Editions of EVA FLORENCE. The State of Art is presented regarding the Application of Technologies (in particular of digital type) to Cultural Heritage. The more recent results of the Researches in the considered Area are presented. Information Technologies of interest for Culture Heritage are presented: multimedia systems, data-bases, data protection, access to digital content, Virtual Galleries. Particular reference is reserved to digital images (Electronic Imaging & the Visual Arts), regarding Cultural Institutions (Museums, Libraries, Palace - Monuments, Archaeological Sites). The International Conference includes the following Sessions: Strategic Issues; New Sciences and Culture Developments and Applications; New Technical Developments & Applications; Museums - Virtual Galleries and Related Initiatives; Art and Humanities Ecosystem & Applications; Access to the Culture Information. Two Workshops regard: Innovation and Enterprise; the Cloud Systems connected to the Culture (eCulture Cloud) in the Smart Cities context. The more recent results of the Researches at national and international are reported in the Area of Technologies and Culture Heritage, also with experimental demonstrations of developed Activities

    User Experience in Virtual Reality, conducting an evaluation on multiple characteristics of a Virtual Reality Experience

    Get PDF
    Virtual Reality applications are today numerous and cover a wide range of interests and tastes. As popularity of Virtual Reality increases, developers in industry are trying to create engrossing and exciting experiences that captivate the interest of users. User-Experience, a term used in the field of Human-Computer Interaction and Interaction Design, describes multiple characteristics of the experience of a person interacting with a product or a system. Evaluating User-Experience can provide valuable insight to developers and researchers on the thoughts and impressions of the end users in relation to a system. However, little information exists regarding on how to conduct User-Experience evaluations in the context of Virtual Reality. Consecutively, due to the numerous parameters that influence User-Experience in Virtual Reality, conducting and organizing evaluations can be overwhelming and challenging. The author of this thesis investigated how to conduct a User-Experience evaluation on multiple aspects of a Virtual Reality headset by identifying characteristics of the experience, and the methods that can be used to measure and evaluate them. The data collected was both qualitative and quantitative to cover a wide range of characteristics of the experience. Furthermore, the author applied usability testing, think-aloud protocol, questionnaires and semi-structured interview as methods to observe user behavior and collect information regarding the aspects of the Virtual Reality headset. The testing session described in this study included 14 participants. Data from this study showed that the combination of chosen methods were able to provide adequate information regarding the experience of the users despite encountered difficulties. Additionally, this thesis showcases which methods were used to evaluate specific aspects of the experience and the performance of each method as findings of the study

    Establishing user immersion of consumer virtual reality products through qualitative measurement

    Get PDF
    New consumer technologies such as the Oculus Rift and other head-mounted displays (HMDs) in the field of virtual reality (VR) have introduced another method of experiencing immersive content. The effectiveness of these new mediums can be compared to more traditional products that are currently in use; such as televisions, desktop monitors, and variations which include 3D display capabilities. This raises the question of whether there is a notable difference between the immersive experiences each medium can offer. This study hypothesized that a significant difference in immersion could be identified between consumer devices. Also, using qualitative analysis, an attempt to identify what consumers believe comprises immersion could be devised. Data from 30 participants indicated that the immersive potential of consumer devices can be differentiated and compared. In addition the understanding of the term “immersion” is not clearly understood or shared by consumers.Master of Science (MSc) in Computational Scienc

    Assessing Forensic Ballistics Three-Dimensionally through Graphical Reconstruction and Immersive VR Observation

    Get PDF
    © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.A crime scene can provide valuable evidence critical to explain reason and modality of the occurred crime, and it can also lead to the arrest of criminals. The type of evidence collected by crime scene investigators or by law enforcement may accordingly effective involved cases. Bullets and cartridge cases examination is of paramount importance in forensic science because they may contain traces of microscopic striations, impressions and markings, which are unique and reproducible as “ballistic fingerprints”. The analysis of bullets and cartridge cases is a complicated and challenging process, typically based on optical comparison, leading to the identification of the employed firearm. New methods have recently been proposed for more accurate comparisons, which rely on three-dimensionally reconstructed data. This paper aims at further advancing recent methods by introducing a novel immersive technique for ballistics comparison by means of Virtual Reality. Users can three-dimensionally examine the cartridge cases shapes through intuitive natural gestures, from any vantage viewpoint (including internal iper-magnified views), while having at their disposal sets of visual aids which could not be easily implemented in desktop-based applications. A user study was conducted to assess viability and performance of our solution, which involved fourteen individuals acquainted with the standard procedures used by law enforcement agencies. Results clearly indicated that our approach lead to faster adaptation of users to the UI/UX and more accurate and explainable ballistics examination results.Peer reviewe
    • …
    corecore