25,037 research outputs found

    Improving Mathematics in the Early Years and Key Stage 1

    Get PDF

    Renewing the framework for secondary mathematics : spring 2008 subject leader development meeting : sessions 2, 3 and 4

    Get PDF

    Designing Effective Questions for Classroom Response System Teaching

    Get PDF
    Classroom response systems (CRSs) can be potent tools for teaching physics. Their efficacy, however, depends strongly on the quality of the questions used. Creating effective questions is difficult, and differs from creating exam and homework problems. Every CRS question should have an explicit pedagogic purpose consisting of a content goal, a process goal, and a metacognitive goal. Questions can be engineered to fulfil their purpose through four complementary mechanisms: directing students' attention, stimulating specific cognitive processes, communicating information to instructor and students via CRS-tabulated answer counts, and facilitating the articulation and confrontation of ideas. We identify several tactics that help in the design of potent questions, and present four "makeovers" showing how these tactics can be used to convert traditional physics questions into more powerful CRS questions.Comment: 11 pages, including 6 figures and 2 tables. Submitted (and mostly approved) to the American Journal of Physics. Based on invited talk BL05 at the 2005 Winter Meeting of the American Association of Physics Teachers (Albuquerque, NM

    The State-of-the-Art of Set Visualization

    Get PDF
    Sets comprise a generic data model that has been used in a variety of data analysis problems. Such problems involve analysing and visualizing set relations between multiple sets defined over the same collection of elements. However, visualizing sets is a non-trivial problem due to the large number of possible relations between them. We provide a systematic overview of state-of-the-art techniques for visualizing different kinds of set relations. We classify these techniques into six main categories according to the visual representations they use and the tasks they support. We compare the categories to provide guidance for choosing an appropriate technique for a given problem. Finally, we identify challenges in this area that need further research and propose possible directions to address these challenges. Further resources on set visualization are available at http://www.setviz.net

    Spatial Aggregation: Theory and Applications

    Full text link
    Visual thinking plays an important role in scientific reasoning. Based on the research in automating diverse reasoning tasks about dynamical systems, nonlinear controllers, kinematic mechanisms, and fluid motion, we have identified a style of visual thinking, imagistic reasoning. Imagistic reasoning organizes computations around image-like, analogue representations so that perceptual and symbolic operations can be brought to bear to infer structure and behavior. Programs incorporating imagistic reasoning have been shown to perform at an expert level in domains that defy current analytic or numerical methods. We have developed a computational paradigm, spatial aggregation, to unify the description of a class of imagistic problem solvers. A program written in this paradigm has the following properties. It takes a continuous field and optional objective functions as input, and produces high-level descriptions of structure, behavior, or control actions. It computes a multi-layer of intermediate representations, called spatial aggregates, by forming equivalence classes and adjacency relations. It employs a small set of generic operators such as aggregation, classification, and localization to perform bidirectional mapping between the information-rich field and successively more abstract spatial aggregates. It uses a data structure, the neighborhood graph, as a common interface to modularize computations. To illustrate our theory, we describe the computational structure of three implemented problem solvers -- KAM, MAPS, and HIPAIR --- in terms of the spatial aggregation generic operators by mixing and matching a library of commonly used routines.Comment: See http://www.jair.org/ for any accompanying file

    Secondary mathematics guidance papers: summer 2008

    Get PDF

    The Effectiveness of Representations in Mathematics

    Get PDF
    This article focuses on particular ways in which visual representations contribute to the development of mathematical knowledge. I give examples of diagrammatic representations that enable one to observe new properties and cases where representations contribute to classification. I propose that fruitful representations in mathematics are iconic representations that involve conventional or symbolic elements, that is, iconic metaphors. In the last part of the article, I explain what these are and how they apply in the considered examples

    The Effectiveness of Representations in Mathematics

    Get PDF
    This article focuses on particular ways in which visual representations contribute to the development of mathematical knowledge. I give examples of diagrammatic representations that enable one to observe new properties and cases where representations contribute to classification. I propose that fruitful representations in mathematics are iconic representations that involve conventional or symbolic elements, that is, iconic metaphors. In the last part of the article, I explain what these are and how they apply in the considered examples
    corecore